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Vector autoregressive (VAR) models assume linearity between the en-
dogenous variables and their lags. This assumption might be overly restric-
tive and could have a deleterious impact on forecasting accuracy. As a so-
lution we propose combining VAR with Bayesian additive regression tree
(BART) models. The resulting Bayesian additive vector autoregressive tree
(BAVART) model is capable of capturing arbitrary nonlinear relations be-
tween the endogenous variables and the covariates without much input from
the researcher. Since controlling for heteroscedasticity is key for producing
precise density forecasts, our model allows for stochastic volatility in the er-
rors. We apply our model to two datasets. The first application shows that the
BAVART model yields highly competitive forecasts of the U.S. term struc-
ture of interest rates. In a second application we estimate our model using a
moderately sized Eurozone dataset to investigate the dynamic effects of un-
certainty on the economy.

1. Introduction. In macroeconomics and finance, most models commonly employed to
study the transmission of economic shocks or produce predictions assume linearity in their
parameters and are fully parametric. One prominent example is the vector autoregressive
(VAR) model that is extensively used in central banks and academia (see Doan, Litterman
and Sims (1984), Litterman (1986), Sims (1980), Sims and Zha (1998)). In normal times,
and with macroeconomic relations remaining stable, this linearity assumption might describe
the data well. In turbulent times, however, key transmission channels often change, and more
flexibility could be necessary. Ignoring such changes or failing to effectively control for out-
liers could translate into weak out-of-sample forecasts and potentially has adverse effects on
the estimation of impulse responses.

The linearity assumption has been subject to substantial criticism in the literature. For
instance, Granger and Terasvirta (1993) show that macroeconomic and financial quantities
depend nonlinearily on each other and thus assuming linearity might be overly restrictive.
As a solution, researchers increasingly rely on nonlinear models which feature time-varying
parameters. These models either allow for gradually evolving coefficients or feature a rather
low number of structural breaks. All these models have in common that, within each point
in time, the relationship between the endogenous and explanatory variables is linear and
deciding on the specific law of motion is an important modeling decision.

Another strand of the literature proposes Bayesian nonparametric time series models in
order to relax the linearity assumption. In particular, several recent papers (see, e.g., Bassetti,
Casarin and Leisen (2014), Billio, Casarin and Rossini (2019), Kalli and Griffin (2018))
propose novel methods that assume the transition densities to be nonparametric. These tech-
niques are characterized by featuring an infinite dimensional parameter space that is flexibly
adjusted to the complexity of the data at hand.1 Within the nonparametric paradigm there

Received August 2020; revised April 2021.
Key words and phrases. Bayesian additive regression trees, BAVART, decision trees, nonparametric regres-

sion, vector autoregressions.
1For a review on Bayesian nonparametric methods, see Hjort et al. (2010).

104

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
https://doi.org/10.1214/21-AOAS1488
http://www.imstat.org
mailto:florian.huber@sbg.ac.at
mailto:luca.rossini@unimi.it


INFERENCE IN BAYESIAN ADDITIVE VECTOR AUTOREGRESSIVE TREE MODELS 105

has been a number of popular competing approaches that make use of machine learning
techniques, such as boosting (Freund and Schapire (1997), Friedman (2001)), bagging and
random forests (Breiman (2001)), decision trees and Mondrian forests (Lakshminarayanan,
Roy and Teh (2014), Roy and Teh (2009)) and Bayesian additive regression tree (BART)
models (Chipman, George and McCulloch (2002), Chipman, George and McCulloch (2010),
Gramacy and Lee (2008), Linero (2018)).

In this paper our focus is on BART models and applying them to multivariate time series
data. BART has been successfully applied for dealing with model uncertainty (Hernández
et al. (2018)), sparse regression problems (Linero (2018)) and spatial models as well as for
limited dependent variable models (Krueger, Bansal and Buddhavarapu (2020)). Moreover, in
several recent studies BART has been shown to yield precise forecasts and improve upon sev-
eral competing models from the statistics and machine learning literature (see He, Yalov and
Hahn (2019), Kapelner and Bleich (2015), Linero (2018), Prüser (2019), Waldmann (2016),
Huber et al. (2021)). BART has also been successfully used for carrying out causal effect
estimation (see, e.g., Dorie et al. (2019), Green and Kern (2012), Hill (2011), Kern et al.
(2016), Hahn, Murray and Carvalho (2020)).

The strong empirical performance of BART for forecasting and causal inference gives rise
to the main contribution of the paper. We aim to bridge the literature on BART (see Chipman,
George and McCulloch (2010)) with the literature on VAR models. BART, being a flexible
nonparametric regression approach, allows for unveiling nonlinear relations between a set
of endogenous and explanatory variables without needing much input from the researcher.
Intuitively speaking, it models the conditional mean of the regression model by summing
over a large number of trees which are, by themselves, constrained through a regularization
prior. The resulting individual trees will take a particularly simple form and can thus be
classified as “weak learners”. Each of these simple trees only explains a small fraction of the
variation in the response variable while a large sum of them is capable of describing the data
extremely well.

It is precisely this intuition upon which we build when we generalize these techniques to a
multivariate setting. More precisely, we assume that a potentially large dimensional vector of
endogenous variables is determined by its lagged values. As opposed to VAR models which
model this relationship using a linear function, we assume the precise functional form to
be unknown. This function is then estimated using BART. The resulting model, labeled the
Bayesian additive vector autoregressive tree (BAVART) model, is a highly flexible variant
that can be used for forecasting and impulse response analysis.

Estimation and inference are carried out using Markov chain Monte Carlo (MCMC) tech-
niques. Since the error covariance matrix is nondiagonal, we propose methods that allow
for equation-by-equation estimation of the multivariate model. These techniques imply that
model estimation scales well in high dimensions and permits estimation of huge dimensional
models. Another novel feature of our approach is that it allows for flexibly handling het-
eroscedasticity. We control for time-variation in the error variances by proposing a stochastic
volatility specification. This feature is crucial for producing precise density forecasts. To pro-
duce higher-order forecasts and impulse response functions (IRFs), we develop techniques
that enable us to sample from the predictive distribution and the posterior distribution of the
IRFs. This proves to be another important contribution of the paper which is closely related
to the literature on estimating nonlinear impulse response functions (see, e.g., Barnichon and
Matthes (2018), Plagborg-Møller (2019)).

We illustrate our BAVART model using two empirical applications. The first deals with
forecasting the U.S. term structure of interest rates. Since financial data often exhibit non-
linear features, our BAVART model might be well suited for dealing with interest rates at
differing maturities. We consider two ways of modeling the yield curve. The first models a
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panel of yields simultaneously along the lines of Carriero, Kapetanios and Marcellino (2012),
whereas the second approach fits a Nelson–Siegel (NS) model in the spirit of Diebold and
Li (2006) but assumes the three NS factors to follow a BAVART model. Within each of
these classes, we consider several linear and nonlinear competing models. Since interest not
only centers on one-step-ahead predictive distributions but also on multistep-ahead forecasts,
we provide algorithms to simulate from the relevant predictive distributions. The findings
show that, for one-month-ahead point forecasts, our proposed BAVART model with NS fac-
tors yields highly competitive forecasts for bonds with maturities greater than five years. For
higher-order forecasts, these accuracy gains become smaller. When the full predictive distri-
bution is considered, jointly modeling the yields without imposing a factor structure gives
rise to more precise density predictions. As opposed to point forecasts, we find that using
BART on the conditional mean helps in improving density forecasts for maturities below
seven years and both one-step-ahead and three-steps-ahead predictions.

In a second application, we apply the BAVART model to macroeconomic data for the Eu-
rozone. Instead of using our model to produce forecasts, we analyze the dynamic effects of
uncertainty on the Eurozone economy. As opposed to the existing literature, which deals with
the macroeconomic effects of uncertainty using nonlinear models (see, e.g., Aastveit, Natvik
and Sola (2017), Alessandri and Mumtaz (2019), Caggiano, Castelnuovo and Groshenny
(2014), Crespo Cuaresma, Huber and Onorante (2020), Ferrara and Guérin (2018), Jackson,
Kliesen and Owyang (2020), Mumtaz and Theodoridis (2018), Paccagini and Colombo
(2020), Caggiano, Castelnuovo and Nodari (2021)), our approach remains agnostic on the
precise form of nonlinearities and infers these in a data-based manner. This constitutes a
substantial advantage since there is considerable uncertainty with respect to selecting the
appropriate type of nonlinearities in multivariate time series models.

To assess how macroeconomic reactions change in our nonlinear and nonparametric frame-
work if interest rates are at the zero lower bound, we simulate dynamic responses under the re-
striction that short-term interest rates are zero and not allowed to react to uncertainty shocks.
Our findings indicate that increases in economic uncertainty have negative effects on real
activity. Specifically, we observe increases in unemployment rates, declining consumption
levels, and a drop in prices. By contrast, financial market quantities display adverse reactions
with declines in stock prices and decreasing short-term interest rates. These findings are, in
general, consistent with established findings in the literature and thus show that our BAVART
model can be used to carry out meaningful structural inference.

The remainder of this paper is organized as follows. Section 2 discusses the BART model
in the context of the homoscedastic regression model, while Section 3 extends this method to
the VAR case and proposes the BAVART specification and how we control for heteroscedas-
ticity. Section 4 presents the results of the term structure forecasting exercise, while Section 5
investigates the relationship between uncertainty and macroeconomic dynamics in the Euro-
zone. Finally, the last section summarizes our findings and concludes the paper.

2. Bayesian additive regression tree models. In this section we briefly review BART.2

Let y = (y1, . . . , yT )′ denote the T -dimensional response vector and X = (x1, . . . ,xT )′ be a
T × K-dimensional matrix of exogenous variables with xt being the K covariates in time t .
We assume that y depends on X through a potentially nonlinear function f : RT ×K → R

T

as follows:

y = f (X) + ε, ε ∼ N
(
0T , σ 2IT

)
,

2For an extensive introduction to BART models, see Hill, Linero and Murray (2020).
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where σ 2 denotes the error variance and the function f is generally not known. BART ap-
proximates the function f by summing over N (which is a large number) regression trees,

(1) f (X) ≈
N∑

j=1

g(X|Tj ,mj ).

In Eq. (1), the function g(X|Tj ,mj ) corresponds to a single tree model with Tj denoting
the tree structure associated with the j th binary tree, mj = (μj1, . . . ,μjbj

)′ is the vector of
terminal node parameters associated with Tj and bj are the leaves of the j th tree. In what
follows, and in consistency with Chipman, George and McCulloch (2010), we set N = 250
in all our empirical applications.

These binary trees are constructed by considering splitting rules of the form {X ∈ Ajk} or
{X /∈ Ajk} with Ajk being a partition set. These rules typically depend on selected columns
of X, denoted as X•j (j = 1, . . . ,K) and a threshold c. The set Ajk is then defined by
splitting the predictor space, according to {X•j ≤ c} or {X•j > c}.

The step function g is constant over the elements of Ajk ,

g(X|Tj ,mj ) = μjk, if X ∈ Ajk, k = 1, . . . , bj .

Hence, the set Ajk defines a tree-specific unique partition of the covariate space such that the
function g returns a specific value μjk for specific values of xt .

To avoid overfitting, the trees are encouraged to be small (i.e., take a particularly simple
form) and the terminal node parameters to be shrunk to zero. If the first tree, g(x|T1,m1), is
a weak learner and fitted in a reasonable way, the corresponding tree structure will be very
simple and elements in m1 will be pushed toward zero. This implies that the first tree will
explain a small fraction of the variation in y. Subtracting g(X|T1,m1) from y yields a new
conditional model with transformed ỹ = y −g(X|T1,m1), and then the next tree will be fitted
with y being replaced by ỹ. This procedure is repeated for a sufficiently large number N of
trees until the fit of the additive model becomes reasonably good.

We illustrate BART using a simple example. In this simple example we first focus on a
single regression tree model (i.e., N = 1). The case of several regression trees is considered
afterward.

EXAMPLE 1. Consider the regression tree g(X|Tj ,mj ) in Figure 1. We include two
covariates in xt = (x1t , x2t ). In the figure each rectangle refers to a splitting rule, and we
henceforth label this a node. At the top node (also called root node or simply root), we have

FIG. 1. Example of binary regression tree, g(x|Tj ,mj ), with internal nodes labeled by their splitting rules and
leaf nodes labeled with the corresponding parameters μjk , with j = 1 and k = 1,2,3.
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FIG. 2. Example of a sum of regression tree, g(x|Tj ,mj ), with internal nodes labeled by their splitting rules
and leaf nodes labeled with the corresponding parameters μjk , where j = 1,2 and k = 1,2,3.

the condition that asks whether x1t < 0.8. If this condition is not true, then we arrive at the
terminal node, μj1 and set E(yt ) = μj1. By contrast, if the condition is fulfilled, we move to
the next node. The corresponding splitting rule states that if x2t ≥ 0.3, we reach a terminal
node with E(yt ) = μj2, whereas if x2t < 0.3, we set E(yt ) = μj3. Using a single tree thus
yields three possible values for the conditional mean, μj1, μj2 and μj3 and implies abrupt
shifts between them. If yt is evolving smoothly over time, using a single tree would thus lead
to a rather simplistic conditional mean structure.

EXAMPLE 2. Since the tree model in the first example is too simplistic, our second
example deals with a more flexible conditional mean structure. Let us consider a sum of
regression trees with N = 2 trees and 3 covariates, depicted in Figure 2. Within a given tree
the same intuition as in Example 1 applies. However, since we now use two trees, we gain
more flexibility in modeling the conditional mean of yt . This is because the conditional mean
at a given point in time is equal to the sum of the terminal node parameters for the two trees,
and the combination of the two parameters depends on the specific set of decision rules across
both trees. This allows for a substantially richer mean structure and increased flexibility, as
opposed to a single tree model.

The second example shows how flexibility is increased by adding more trees and illustrates
how BART handles nonlinearities in a flexible manner. In particular, each regression tree is
a simple stepwise function, and when we sum over the different regression trees, we gain
flexibility. The resulting additive model essentially allows for approximating nonlinearities
without prior assumptions on the specific form of the nonlinearities.

3. BART models for multivariate time series analysis.

3.1. Bayesian additive vector autoregressive tree models. In this section we general-
ize the model outlined in the previous section to the multivariate case. Consider an M-
dimensional vector of endogenous variables yt = (y1t , . . . , yMt )

′. Stacking the rows yields
a T × M matrix Y = (y1, . . . ,yT )′. We assume that Y depends on a T × K matrix
X = (X1, . . . ,XT )′ with each Xt = (y′

t−1, . . . ,y
′
t−P )′ being a K(= PM)-dimensional vec-

tor of lagged endogenous variables. The BAVART model is then given by

yt = F(Xt ) + εt ,
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or, in terms of full-data matrices,

(2) Y = F(X) + ε,

with ε = (ε1, . . . ,εT )′ denoting a T × M matrix of shocks with typical t th row εt ∼
N (0M,�). For the moment, we assume that the error variance-covariance matrix � is time-
invariant.

In Eq. (2), F is defined in terms of equation-specific functions fj (X):

F(X) = (
f1(X), . . . , fM(X)

)′
.

Similarly to the standard BART specification, we approximate each fj (j = 1, . . . ,M)
through a sum of N regression trees,

fj (X) ≈
N∑

k=1

gjk(X|Tjk,mjk).

Here, gjk (k = 1, . . . ,N ) denotes an equation-specific step function with arguments Tjk and
mjk . As before, the individual tree structures Tjk are associated with a bjk-dimensional vec-
tor mjk = (μjk,1, . . . ,μjk,bjk

)′ of terminal node coefficients associated with bjk , denoting
the number of leaves per tree in equation j . Notice that both the tree structures and the ter-
minal node parameters are now specific to equation j . The main difference to the model,
illustrated in Section 2, is that we approximate M different functions fj . This implies that if
certain elements in yt depend linearly on Xt , then our flexible multivariate specification can
pick this up.

In what follows, we will estimate the BAVART model by exploiting its structural form.
Using the structural form of the VAR to speed up computation has been done in several
recent papers (see, e.g., Carriero, Clark and Marcellino (2019), Huber, Koop and Onorante
(2021)).3 This implies that Eq. (2) can be written as follows:

(3) Y = F(X) + εA′
0,

whereby A0 denotes a M × M-dimensional lower triangular matrix with diag(A0) =
(1, . . . ,1)′ and ε = (ε1, . . . , εT )′ is a T × M matrix of orthogonal shocks with εt ∼
N (0M,H ). H denotes a M ×M-dimensional diagonal matrix with the variances on its main
diagonal. Hence, the covariance matrix is � = A0HA′

0.
Conditional on A0, this form permits equation-by-equation estimation since the shocks

are independent. This leads to enormous computational gains. The j th > 1 equation can be
written as

(4) y•j =
N∑

k=1

gjk(X|Tjk,mjk) +
j−1∑
l=1

ajlε•l + ε•j .

Here, y•j , ε•l and ε•j refers to the j th or lth column of Y , ε and ε, respectively. ajl denotes
the (j, l)th element of A0.

Notice that Eq. (4) is a generalized additive model that consists of a nonparametric part
(
∑N

k=1 gjk(X|Tjk,mjk)) and a regression part (
∑j−1

l=1 ajlε•l). For j = 1, the model reduces
to a standard BART specification without the regression part.

3The algorithm proposed in Carriero, Clark and Marcellino (2019) is sampling from an “inexact” full condi-
tional posterior distribution (see, Carriero et al. (2021)). As a robustness check, we have recomputed several of
the results in Sections 4 and 5 using an algorithm that replaces the shocks in the previous j − 1 equations with the
actual contemporaneous values in yt and thus sample the trees in the structural representation. The corresponding
results are similar and we expect that the differences which arise are mainly driven by the fact that all priors are
specified on structural as opposed to reduced-form parameters.
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The key idea behind this formulation is that, for a sufficiently large number of trees, we
approximate nonlinear relations between yt and its lags while allowing for linear relations
between the contemporaneous values of εt . These linear relations determine the covariances
and are of vital importance for the identification of structural shocks.

3.2. Allowing for heteroscedasticity. Up to this point, we assumed the error variance to
be constant. If the researcher wishes to relax this assumption, several feasible options ex-
ist. In a recent paper, Pratola et al. (2020) propose a combination of a standard additive
BART model with a multiplicative BART specification to flexibly control for heteroscedas-
ticity. But modeling heteroscedasticity with BART implies that we need some information
on how the volatility of economic shocks depends on additional covariates (which potentially
differ from X). As a simple yet flexible solution, we adopt a standard stochastic volatil-
ity (SV) model. SV models are frequently used in macroeconomics and finance and have a
proven track record for forecasting applications (see, e.g., Clark (2011), Clark and Ravazzolo
(2015)).

Our SV specification assumes that H is time-varying,

H t = diag
(
eh1t , . . . , ehMt

)
,

with the time-varying variances ehjt . We assume that the hjt ’s follow an AR(1) model:

hjt = cj + ρj (hjt−1 − cj ) + σjhνjt , νjt ∼N (0,1),(5)

hj0 ∼ N
(
cj ,

σ 2
jh

1 − ρ2
j

)
.(6)

Here, cj is the unconditional mean, ρj is the persistence parameter and σ 2
jh is the error

variance of the log-volatility process. This specification essentially implies that, if ρj is close
to one, the log-volatilities evolve smoothly over time and tend to be persistent.

For macroeconomic and financial data, using SV has been shown to greatly increase fore-
cast accuracy. Moreover, it is worth noting that using SV entails a much more flexible error
distribution than the one used in, for example, Chipman, George and McCulloch (2010).
Hence, coupling the BAVART model with a stochastic volatility component yields a model
which allows for flexible adjustments of the conditional mean while also being flexible on
the error variances. In our empirical work, the models considered feature stochastic volatility
of this form.

3.3. The prior and posterior simulation. The Bayesian approach calls for the specifica-
tion of suitable priors over the parameters of the model. Here, we mainly follow the dif-
ferent strands of the literature our approach combines. In particular, we focus on the priors
associated with the trees Tjk and the terminal node parameters mjk for j = 1, . . . ,M and
k = 1, . . . ,N . We assume that the hyperparameters across priors are the same for each equa-
tion. On the covariances we use the horseshoe prior (Carvalho, Polson and Scott (2009)).

For each equation j , the joint prior structure is given by

p
(
(Tj1,mj1) . . . , (TjN ,mjN), cj , ρj , σ

2
j ,aj

) = p
(
(Tj1,mj1) . . . , (TjN ,mjN)

)

× p(cj ) × p(ρj ) × p
(
σ 2

j,h

) × p(aj ).

At this level the prior implies independence between p((Tj1,mj1) . . . , (TjN ,mjN)) and the
remaining model parameters. Chipman, George and McCulloch (2010) further introduce the
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following factorization:

p
(
(Tj1,mj1), . . . , (TjN,mjN)

) =
N∏

k=1

p(mjk|Tjk) × p(Tjk),

p(mjk|Tjk) =
bjq∏
q=1

p(μjk,q |Tjk),

implying that the tree components (Tjk,mjk) are independent of each other and of the re-
maining parameters while the prior on mjk depends on the tree structure. This prior structure
allows for integrating out mjk from the posterior of the trees and thus greatly simplifies com-
putation.

The prior on the tree structure is specified along the lines suggested in Chipman, George
and McCulloch (1998) and Chipman, George and McCulloch (2010). Specifically, instead of
constructing a prior on the trees directly, we construct a tree generating stochastic process
that consists of three steps to grow trees. Let s = 0 be the first iteration of this tree generating
process. Then, the following steps for constructing trees are used:

Start with the trivial tree that consists of a single terminal node (i.e., its root) which will
be denoted by ηjk for each equation j and k = 1, . . . ,N .

Step 1. Split the terminal node ηjk with probability

pSPLIT
(
ηjk,T (s)

jk

) = α(1 + d)−β, α ∈ (0,1), β ≥ 0, d = 0,1,2, . . . ,

where d denotes the depth of the tree and (α,β) are prior hyperparameters. These parameters
are set as follows. In detail, a node at depth d spawns children with pSPLIT(ηjk,T (s)

jk ), and,
as the tree grows, d increases while the prior probability decreases, making it less likely that
a node spawns children. This implies that the probability that a given node becomes a bottom
node increases, and thus a penalty on tree complexity is introduced. We set α = 0.95 and
β = 2, implying that the probability that a given node is nonterminal decreases quadratically
if the trees become more complicated (i.e., for increasing levels of d).

Step 2. If the current node is split, we introduce a splitting rule κjk drawn from the dis-

tribution function pRULE(κjk|ηjk,T (s)
jk ) and use this rule to spawn a left and right children

node. In particular, the rule pRULE(κjk|ηjk,T (s)
jk ) is set such that a given “splitting” covariate

X•j is chosen with probability 1/K . As described above, conditional on a chosen covariate,
one needs to estimate a threshold. The prior on this threshold is, in the absence of substantial
information, assumed to be uniformly distributed over the range of X•j .

Step 3. Once we obtain all terminal nodes (i.e., no node is split anymore), we will label
this new tree T (s+1)

jk and return to step (2).

On the terminal node parameter μjk,q , we use a conjugate Gaussian prior distribution
N (0, σ 2

μ), where σ 2
μ is set as follows:

σ 2
μ = Rj

2s̃
√

N
,

with Rj denoting the range of the endogenous variable in equation j , and s̃ denotes the
number of prior standard deviations. This hyperparameter is set equal to 2, implying that
μjk,q will place around 95% prior mass on the range of y•j . One key property of this prior is
that it increases with Rj . This implies that if outliers in Y are observed, the range increases,
and the prior becomes looser. By contrast, it decreases in the number of trees, implying that if
N is large, the terminal node parameters associated with a given tree will be strongly pushed
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toward zero. This is consistent with the notion that we aim to use a composite model of many
weak learners, as opposed to having a small to moderate number of complex trees.

For the free elements in A0, we introduce a horseshoe prior on each element of aj =
(aj1, . . . , ajj−1)

′. This prior consists of local scaling parameters τjl , which are specific to
each covariance parameter ajl , and a global shrinkage parameter λ which pushes all covari-
ances toward zero. The horseshoe prior on the covariances is given by

ajl|τjl, λ
2 ∼ N

(
0, τ 2

j lλ
2)

,

τjl ∼ C+(0,1),

λ ∼ C+(0,1),

where j = 1, . . . ,M ; l = 1, . . . , j − 1 and C+ denote the half-Cauchy distribution.
The prior specification on the parameters of the log-volatility equation follows the setup

proposed in Kastner and Frühwirth-Schnatter (2014). In details we use a zero mean Gaussian
prior with variance 102 on the unconditional mean cj , a Beta prior on the (transformed)

persistence parameter, ρj+1
2 ∼ B(25,5) and a Gamma prior on the error variance of the log-

volatility process σ 2
j,h ∼ G(1/2,1/2).

These priors can be combined with the likelihood to yield a joint posterior distribution over
the coefficients and latent states in the model. To simulate from this joint posterior distribu-
tion, we adopt an MCMC algorithm. This algorithm simulates all quantities in an equation-
specific manner. Since all steps necessary are standard, we only provide an overview. The
Appendix provides more detail on sampling the trees. Here, it suffices to say that we sam-
ple all quantities related to the trees (i.e., Tjk , mjk for all j , k) using the algorithm outlined
in Chipman, George and McCulloch (2010). The latent states and the coefficients associ-
ated with the state equation of the log-volatilities are obtained through the efficient algo-
rithm discussed in Kastner and Frühwirth-Schnatter (2014). Conditional on the trees and log-
volatilities, the posterior of aj is multivariate Gaussian and takes a standard form since the
resulting conditional model is a linear regression model with heteroscedastic shocks. Finally,
the parameters of the horseshoe prior are simulated using techniques outlined in Makalic and
Schmidt (2015) which involve sampling from inverse Gamma distributions (conditional on
introducing auxiliary shrinkage parameters) only.

4. Forecasting the term structure of interest rates. In this section we illustrate the
predictive capabilities of the BAVART model. After providing an overview of the dataset, the
model specification and the design of the forecasting exercise adopted, our focus will be on
how well our approach works when applied to US yield curve data.

4.1. Data overview, model specification and design of the forecasting exercise. In this
section we briefly discuss the two datasets adopted. For our forecasting application we use
data on the nominal yield curve which is close to the dataset proposed in Gürkaynak, Sack
and Wright (2007). These are downloaded from the website of the Federal Reserve Board
(https://www.federalreserve.gov/data/nominal-yield-curve.htm) and range from June 1961 to
December 2019. The maturities included are one, three, five, seven, 10 and 15 years, and we
will consider changes in the interest rates. We will then use the period from June 1961 to
June 2006 as our initial training sample. This allows us to compute forecast distributions for
July 2006. We then move on to expand this estimation period by one month, until we reach
the end of the full sample. This procedure yields a sequence of 160 predictive distributions,
which we then evaluate using the observed outcomes.

We consider two approaches of modeling the term structure of interest rates. Due to its
empirical success, we use the three-factor Nelson–Siegel (NS) model, originally proposed in

https://www.federalreserve.gov/data/nominal-yield-curve.htm
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Nelson and Siegel (1987) and combined with a VAR state evolution equation on the factors in
Diebold and Li (2006). The NS model assumes that the yield at maturity � , it (�) depends
on three latent factors, as follows:

(7) it (�) = Lt + 1 − e−γ�

γ�
St +

(
1 − e−γ�

γ�
− e−γ�

)
Ct ,

whereby Lt , St and Ct denote a level, slope and curvature factor, respectively. Moreover,
γ is a parameter which shapes the factor loadings. Consistent with Diebold and Li (2006),
we set γ = 0.0609. This value maximizes the factor loadings on Ct . The three factors are
then obtained on a t-by-t basis using OLS estimation. The NS model sets yt = (Lt ,St ,Ct )

′
and assumes it to evolve according to a multivariate dynamic model (such as our BAVART
specification). Predictions of yt are then mapped back using Eq. (7).

The second approach follows Carriero, Kapetanios and Marcellino (2012) and models
the M = 7 yields directly in a VAR. This approach is thus less parsimonious but also more
flexible since it essentially allows for maturity-specific idiosyncrasies.

For these two approaches we benchmark the BAVART model against several linear and
nonlinear competing models. The first model we consider is a time-varying parameter (TVP)
VAR with a normal-gamma shrinkage prior on the state innovation variances (for the ex-
act specification; see Huber, Koop and Onorante (2021)). Since the period of the zero lower
bound (ZLB) is a dominant source of nonlinearities in yield curve data, we estimate nonlin-
ear models that assume a dependence between the parameters of the model and the lagged
short-term interest rate (in our case the one-year yield). This gives rise to the second model
which is an interacted VAR (IVAR) that introduces interaction effects between the first lag of
the short-term interest rate and the remaining model parameters (see, e.g., Caggiano, Castel-
nuovo and Pellegrino (2017)), whereas the third model is a smooth transition VAR (STVAR)
which assumes that coefficients evolve slowly between two regimes (see Gefang and Stra-
chan (2010), Auerbach and Gorodnichenko (2012)). Fourth, we consider a Bayesian thresh-
old VAR (TVAR) which assumes that coefficients change if the (first lag) of the short-term
interest rate passes a threshold to be estimated (see Alessandri and Mumtaz (2017), Huber
and Zörner (2019)). All these models are estimated using a horseshoe prior on the VAR coef-
ficients and benchmarked against a constant parameter NS -VAR equipped with a Minnesota
prior and stochastic volatility. Moreover, we include P = 2 lags of the endogenous variables
in all models considered.

4.2. Forecasting results. Before discussing the results of the forecast exercise, the ques-
tion on how to compute the predictive distribution naturally arises. Producing one-step-ahead
forecasts is computationally easy, since, conditional on the tree structures, splitting values and
splitting covariates, it is straightforward to compute a prediction for yT +1. More precisely,
(and with a slight abuse of notation), the one-step-ahead predictive distribution is given by

p(yT +1|y1:T ) =
∫

p(yT +1|y1:T ,�)p(�|y1:T ) d�,

where y1:T denotes the full history of yt and � is a generic notation that summarizes all
parameters and latent states (i.e., the tree structures, terminal nodes, log-volatilities etc.).
This integral is solved numerically through Monte Carlo integration.

The conditional density p(yT +1|y1:T ,�) is

yT +1|y1:T ,� ∼ N
(
F(XT +1), �̃T +1|T

)
,

with �̃T +1|T is a random draw obtained by using Eq. (6) to predict the log-volatilities and
using these predictions to form H T +1|T . Higher order forecasts are then computed iteratively
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by first simulating from the one-step-ahead predictive distributions to obtain a prediction for
yT +1. We label this draw ỹT +1. �̃T +2|T is again computed by exploiting Eq. (6). This allows
us to draw ỹT +2 from

ỹT +2 ∼ N
(
F(X̃T +2), �̃T +2|T

)
.

We repeat this procedure until we have a prediction yT +o with o denoting the desired forecast
horizon. In what follows, we will consider o = 1 and three-steps-ahead forecasts.

The point (i.e., median forecasts) and density predictions are then evaluated by using rel-
ative mean squared forecast errors (MSFEs) and the continuous ranked probability score
(CRPS), respectively. The MSFEs allow us to gauge the quality of point forecasts while the
CRPS is used to also take into account higher-order moments of the predictive distribution.
All results are benchmarked against the NS-Minnesota VAR.

The findings of our forecasting exercise are summarized in heatmaps depicted in Figures 3
and 4. If a given model is performing worse than the benchmark VAR, the corresponding cell
will become darker (marking a relative MSE/CRPS score well below or above unity).

Our forecasting horse race draws a rich picture of relative model performance. We consider
models of different sizes (namely, the NS variants and the ones that use the selected yields
exclusively), priors, assumptions on the conditional mean and forecast horizons. Besides, we
consider both point and density forecasts.

Starting with one-month-ahead point forecasting accuracy, depicted in Figure 3, we ob-
serve that the set of competing models improves upon the benchmark VAR. But these im-
provements are rather small and mostly concentrated toward the short-end (i.e., maturities

FIG. 3. Mean squared forecast errors relative to the NS-Minnesota VAR over the hold-out period: July 2006 to
December 2019.
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shorter than seven years) of the yield curve. For this yield curve segment there is no clear
picture emerging on whether using the NS factor model or jointly modeling the different ma-
turities improves upon the other. For some models the NS variant yields slightly smaller MSE
ratios than the unrestricted model (e.g., our BAVART model or NS-TVP), whereas, for other
models, unrestricted modeling of the maturities yields more precise point forecasts (e.g., the
IVAR and the TVAR).

The relative performance of our proposed BART-based model increases with the maturity.
For shorter maturities we find that BAVART performs well but in most cases is outperformed
by one of the competing models (such as the NS-TVAR for one-year bonds and the NS-TVP
for the three-year bonds). When we consider bonds with maturities larger or equal than five
years, the performance of the NS-BART model improves appreciably. These improvements
reach 7% for 10-year government bonds and 9% for 15-year government bonds. Interestingly,
these relative MSE ratios are always smaller than the ones we observe for the unrestricted
BAVART model. We conjecture that the stronger performance of BAVART for bonds with
longer maturities is mainly driven by the fact that these time series display more variation,
especially after the global financial crisis. This is the period where the U.S. Federal Reserve
introduced unconventional monetary policy measures, such as quantitative easing to push
down the slope of the yield curve.

When we focus on the one-quarter-ahead forecasts, we observe a great deal of light gray
cells on the right panel of Figure 3, indicating only small differences in predictive accuracy
vis-á-vis the BVAR benchmark. Most models feature MSE ratios close to unity with accuracy
gains ranging from around two to five percent (in the case of the NS-TVP model and for the
one-year-ahead bond yield).

Considering only point forecasts imply that we do not factor in how well a given model
predicts higher order moments of the predictive distribution. We now turn to discuss the
accuracy of density forecasts. Figure 4 shows that several of our competing models yield
density forecasts which are slightly worse than the ones of the benchmark VAR for both
forecast horizons. There are two exceptions to this pattern. First, we find that both versions
of the BAVART and the TVP VAR yield precise density predictions for one- up to five-
year yields (with the TVP VAR being better for one-year and three-year yields and the NS-
BAVART outperforming all competitors for five-year yields). Especially for the short-end
of the yield curve, these improvements are sizable (around 25% for the unrestricted TVP-
VAR and 14% for the unrestricted BAVART). We conjecture that this stems from the fact
that one-year yields display little variation during the period of the ZLB. In such a situation
the most flexible models in our pool (i.e., BAVART and the TVP VAR) quickly adjust both
the parameters and the error variances and thus yields tighter predictive intervals centered
around values close to zero. The other models lack this flexibility since all parameters in the
system either change or display no/little change. Even though the signal variable is the short-
term interest rate, this potentially is a limitation and thus could negatively impact density
forecasting accuracy.

Second, when we focus on three-months-ahead forecasts, a similar picture emerges. The
unrestricted BAVART and the TVP model work well at the short end of the yield (with sizable
gains for one- and three-year yields in both cases). For higher maturities and in contrast to
the results shown in Figure 3, we find relative CRPSs close to one, indicating that all models
included have a hard time beating the benchmark VAR with SV.

To sum up, our forecasting exercise shows that the BAVART model works remarkably well
for predicting the U.S. term structure of interest rates. When we focus on point forecasts, the
predictive gains of the BAVART model increase with the maturity of the bond. For density
predictions this story is reversed, indicating that both variants of the BAVART work well at
the short-end of the yield curve.
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FIG. 4. Continuous ranked probability scores relative to the NS-Minnesota VAR over the hold-out period: July
2006 to December 2019.

5. The effects of macroeconomic uncertainty on the Eurozone. We now turn to our
application based on Eurozone data. The next subsection provides a brief introduction to
the dataset used while Section 5.2 shows some in-sample results. Section 5.2.1 deals with the
question of how macroeconomic uncertainty impacts the Eurozone economy with a particular
emphasis on the zero lower bound.

5.1. Data overview. In the second application we apply our BAVART model to analyze
the effects of uncertainty shocks on macroeconomic outcomes. Several recent papers ana-
lyze this question using U.S. datasets (Bloom (2009), Caggiano, Castelnuovo and Pellegrino
(2017), Jurado, Ludvigson and Ng (2015), Ramey and Zubairy (2017), Carriero, Clark and
Marcellino (2018)). Instead of focusing on U.S. data, we apply our approach to monthly Eu-
rozone data that ranges from January 1999 to January 2019. We opt for this dataset because
the Eurozone economy underwent structural changes over this estimation period, multiple
recessions and, in general, a challenging environment since the time series we consider are
rather short.

The dataset we use is a selection of time series from the popular Euro Area Real Time
Database (EA-RTD). We consider a medium-scale model that includes six macroeconomic
and financial time series. These six time series are augmented by an uncertainty index (ab-
breviated as UNC) which is estimated using the approach outlined in Jurado, Ludvigson
and Ng (2015). Apart from the uncertainty indicator, we include the (log) level Dow Jones
Euro Stoxx 50 price index (DJE50), HICP inflation (C_OV), unemployment rate (UNETO),
three-month Euribor (EUR3M), industrial production (XCONS) and the yield on Euro area
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TABLE 1
Number of times a given covariate shows up across splitting rules in a medium-scale VAR with one lag

UNCt DJE50t EUR3Mt C_OVt UNETOt XCONSt 10Yt

UNCt−1 52 44 44 38 41 45 44
DJE50t−1 46 56 44 32 39 43 47
EUR3Mt−1 49 50 62 55 40 47 45
C_OVt−1 47 48 48 60 43 50 50
UNETOt−1 47 46 27 38 60 49 47
XCONSt−1 45 43 43 30 45 51 47
10Yt−1 43 42 33 37 41 43 51

10-year benchmark government bonds (10Y). We include one lag of the endogenous vari-
ables.4

5.2. In-sample results. In this section we illustrate key features of our BART-based ap-
proach using a subset of the dataset discussed in the previous section. Variable importance is
gauged by considering the posterior median of the number of times a given quantity shows up
in a splitting rule. These frequencies are shown in Table 1. The columns refer to the different
equations and the rows to the corresponding covariates.

A simple inspection of the main diagonal elements of the table reveals that the first, own
lag of a given variable within the corresponding equation shows up frequently. This finding
holds for all equations and resembles key results of the literature on Bayesian VARs which
states that the AR(1) term explains most variation in yt . However, here it is worth stressing
that our model is far from sparse, and also the lags of other variables seem to play a role in
determining the dynamics of a given endogenous variable. The lags of other quantities in a
given equation are also often included as splitting variables, indicating that we can not tell a
simple story about some few elements in xt exclusively shaping the dynamics of yt .

5.2.1. Impulse responses to an uncertainty shock and the role of the zero lower bound.
In this section we illustrate how the BAVART model can be used to carry out structural
inference. There is a broad body of literature dealing with the macroeconomic effects of un-
certainty using nonlinear models (Alessandri and Mumtaz (2019), Crespo Cuaresma, Huber
and Onorante (2020), Ferrara and Guérin (2018), Mumtaz and Theodoridis (2018), Paccagini
and Colombo (2020), Caggiano, Castelnuovo and Nodari (2021)). These papers all rely on
parametric approaches and make rather strong assumptions on the nature of nonlinearities.
Our BAVART model, by contrast, introduces almost no restrictions and thus remains agnostic
on the specific form of nonlinearities in the transmission mechanisms.

Because of the highly nonlinear nature of our model, we resort to generalized impulse re-
sponse (GIRF) functions (see Koop, Pesaran and Potter (1996)). These impulse responses are
computed as follows. Let εt denote the M structural shocks, and sj denotes a M × 1 selec-
tion vector that equals 1 in the j th position. Hence, εjt = s′

jεt yields the j th structural shock.
The GIRF to the j th structural shock is then defined as the difference between the forecast
which assumes εjt = 1 (while setting the other shocks to zero) and the unconditional forecast
(i.e., with ε = 0M ) for a given forecast horizon. The posterior distributions of the GIRFs are

4Using a single lag allows for simple inspection of several features of the model. Including more lags is straight-
forward, but lags larger than one only rarely show up in the splitting rules and the impulse responses look very
similar to the ones reported in the main body of the text.
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computed by repeating this procedure during MCMC sampling. The structural shock is com-
puted by setting H t equal to the unconditional mean, that is, H t = diag(ec1, . . . , ecM ) and
assuming that the uncertainty factor is ordered first.

To assess whether BART uncovers implicit nonlinear relations consistent with the litera-
ture quoted above, we consider two experiments. The first assumes that the economy is hit by
a one standard deviation uncertainty shock. The dynamic reactions of yt are left unrestricted.
This implies that the central bank is able to react to increases in uncertainty by lowering
interest rates.

The second experiment asks how the reactions in yt change if the economy is stuck at the
zero lower bound (ZLB) and the central bank can not use conventional monetary policy tools.
This second experiment is interesting because our BAVART model can use the information
that the short-term interest rate is zero so that different branches of a given tree are effectively
ruled out. For instance, consider a simple tree which has a root node with a decision rule
that splits the observations according to whether the short-term interest rate is below one
percent or greater than one percent. If we introduce the restriction that the interest rate is
zero, the second branch of the tree (the above one percent interest rate branch) will play
no role in constructing the impulse responses. Hence, only different configurations of the
covariate space, which are consistent with interest rates close to zero, are being considered.
The restriction that the short-term interest rate is at the ZLB is easily incorporated by zeroing
out the forecast of the short rate.

Figure 5 presents the dynamic responses to a one standard deviation uncertainty shock.
The gray shaded area is the marginal posterior distribution of the IRFs, with solid black lines
denoting the 16(25)th and 75(84)th percentiles. The dotted black lines represent the 16th
and 84th credible intervals of the impulse responses, based on zeroing out the reaction of the
short-term interest rate.

In general, we find that the IRFs closely resemble the ones reported in the literature (see,
among many others, Bloom (2009), Jurado, Ludvigson and Ng (2015), Mumtaz and Theodor-
idis (2018)). Focusing on the reactions of stock markets (DJE50), there is some limited ev-
idence that equity prices decline. If interest rates are stuck at the ZLB, these declines are
somewhat more pronounced and appear to peak slightly later.

Considering the dynamic responses of short-term interest rates (EUR3M) reveal that, after
a month, short rates decrease appreciably. This decline in interest rates peaks after about two
months and reaches around 100 basis points. In economic terms the negative reaction of short-
term interest rates is likely induced by expansionary monetary policy measures undertaken by

FIG. 5. Dynamic responses to a one-standard deviation uncertainty shock. The dashed gray lines represent 16th
and 84th posterior credible intervals.
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the central bank. Notice that, in the presence of the ZLB, we assume no interest rate reaction
at the short-end of the yield curve.

Turning to inflation reactions (C_OV) suggest that prices tend to fall after about six
months. This decline in inflation is consistent with a negative demand channel which implies
that firms lower prices in response to a decline in aggregate demand (see Bloom (2009)).
When the economy is stuck at the ZLB, we observe somewhat stronger but insignificant in-
flation reactions. These responses are consistent with Caggiano, Castelnuovo and Pellegrino
(2017) who also find more pronounced but insignificant inflation responses if short rates hit
the ZLB.

The unemployment rate (UNETO), with a lag of around two to three months, increases
and remains elevated for several months before turning insignificant. This increase in the un-
employment rate is consistent with Jurado, Ludvigson and Ng (2015) and Carriero, Clark and
Marcellino (2018) who, for U.S. data, find similar unemployment responses. One interesting
finding is that the unemployment responses in the presence of the ZLB are similar in magni-
tude but tend to peter out faster and thus are more short-lived than the ones if interest rates
are allowed to react freely. It is noteworthy that the impulse responses are very similar over
the first four to five months and then depart from each other.

When we consider industrial production (XCONS), we observe a sluggish decline which
peaks at around minus five percent in the second month and then, after around six months the
reactions of real activity turn insignificant. Interestingly, we do not observe a rebound in real
activity arising from a“’wait-and-see” mechanism reported in, for example, Bloom (2009).
Gieseck and Largent (2016), for Eurozone data, find similar responses for GDP which are also
rather short-lived and do not display a substantial real activity overshoot. When we assume
that the ZLB is binding, the reactions of industrial production become more pronounced,
which is consistent with other findings who report that, if interest rates hit zero, real activity
reacts stronger to uncertainty shocks (Caggiano, Castelnuovo and Nodari (2021)). Finally,
long-term interest rates display no statistically significant reaction throughout the impulse
response horizon.

To sum up, a key take away from this exercise is that our BAVART model is capable of
producing meaningful impulse responses which are consistent with the literature. Without
introducing any assumptions on the specific form of nonlinearities but in the presence of the
ZLB, our BAVART specification yields impulse responses that are consistent with papers that
assess how the uncertainty, real activity nexus, changes if the central bank is constrained by
the ZLB.

6. Conclusions. VAR models assume that the lagged dependent variables influence the
contemporaneous values in a linear fashion. In this paper we relax this assumption by blend-
ing the literature on BART models and VARs. The resulting BAVART model can handle arbi-
trary nonlinear relations between the endogenous and the exogenous variables. Our proposed
model is, moreover, capable of handling stochastic volatility in the shocks. As opposed to
existing models, which make strong assumptions on the nature of nonlinearities, our model
remains agnostic and allows to estimate these forms in a data-based manner. To make the
model operational, we briefly discuss Bayesian estimation but also show how to compute
multistep-ahead forecasts and generalized impulse responses.

We illustrate our approach using two topical applications. In the first application we apply
the model to the U.S. term structure of interest rates. Using several linear and nonlinear
competing models and different ways of modeling the yield curve, we show that our BAVART
model yields precise point and density forecasts. The point forecasting accuracy differences
become larger with the maturity of a given bond. An opposite picture emerges when the full
predictive distribution is used: in that case, forecast gains can be mostly found at the short-end
of the yield curve.
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The second application deals with the effects of uncertainty on the Eurozone economy.
To investigate the role of the ZLB on interest rates, we consider impulse responses which
restrict interest rate reactions to zero and compare these to their unrestricted counterpart.
The findings indicate that uncertainty has a detrimental effect on macroeconomic outcomes.
Unemployment increases, prices fall, stock markets decline and industrial production drops
markedly. In general, these reactions are similar to other findings in the literature which
mainly focus on U.S. data. When we assume that interest rates are stuck at the ZLB, real
activity responses become somewhat more elevated. Especially for output, we observe much
stronger responses if the central bank is not able to react adequately.

There are many possible avenues for further research and possible applications of our
model. For instance, the model can be used to track asymmetries in the transmission of eco-
nomic shocks. Or it could be applied to high-frequency financial data, such as daily stock
returns and then combined with a heavy-tailed error distribution to produce precise density
forecasts. From an econometric perspective, BART could be used to model time-variation
in regression coefficients and thus generalize TVP regressions which assume a random walk
evolution on the latent states.

APPENDIX: POSTERIOR APPROXIMATION OF THE TREES

In this appendix, we provide details on the MCMC algorithm used to simulate from the
joint posterior distribution of the trees and the terminal node parameters. The remaining quan-
tities take well known forms and are very easy to simulate using textbook results for the
Gaussian linear regression model.

As stated in Section 3.3 and following Carriero, Clark and Marcellino (2019), Koop, Ko-
robilis and Pettenuzzo (2019) and Kastner and Huber (2020), we rely on a structural repre-
sentation of the model that entails equation-by-equation estimation.

We simulate from the conditional posterior of (Tjk,mjk) by conditioning on all trees ex-
cept the kth one. This is achieved by using the Bayesian backfitting strategy discussed in
Chipman, George and McCulloch (2010). More precisely, the likelihood function depends
on (Tjk,mjk) through the partial residuals

Rjk = y•j −
j−1∑
l=1

ajlε•l − ∑
s 
=k

gjs(X|Tjs,mjs).

The algorithm proposed in Chipman, George and McCulloch (2010) then proceeds by inte-
grating out mjk and then drawing Tjk with Metropolis–Hastings (MH) algorithm, detailed in
Chipman, George and McCulloch (1998).

This step is implemented by generating a candidate tree T ∗
jk from a proposal distribution

q(Tjk,T ∗
jk), and then accept the proposed value with probability

α
(
Tjk,T ∗

jk

) = min
{

1,
q(T ∗

jk,Tjk)

q(Tjk,T ∗
jk)

p(Rjk|X,T ∗
jk,Mj)

p(Rjk|X,Tjk,Mj)

p(T ∗
jk)

p(Tjk)

}
.

The first term is the ratio of the probability of how the previous tree moves to the new tree
against the probability of how the new tree moves to the previous one. The second term is
the likelihood ratio of the new tree against the previous tree, and the last term denotes the
likelihood ratio of the new against the previous tree under the prior distribution.

The proposal distribution q(Tjk,T ∗
jk) features four local steps (Chipman, George and Mc-

Culloch (1998)). The first step grows the tree by splitting a node into two different nodes.
This step is chosen with probability 0.25 The second step combines two nonterminal nodes
into a single terminal node. We select this step with probability 0.25 as well. The third step
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swaps splitting rules between two terminal nodes (with probability 0.4), and the final step
changes the splitting rule of a single nonterminal node (with probability 0.1).

After sampling the tree structure we can easily simulate from the posterior distribution of
the terminal nodes. Since the prior is conjugate, the resulting posterior will also be a Gaussian
distribution that takes a standard form and does not explicitly depend on the tree structure but
only on the subset of elements in the residuals allocated to a specific terminal node.
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