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Abstract

The paper addresses the empirical application of multivariate cointegration analysis to a small
model of narrow money, prices, output and interest rates in the UK. Practical determination of
cointegration rank is difficult for many reasons: deterministic terms play a crucial role in limiting
distributions, and systems may not be formulated to ensure similarity to nuisance parameters; finite-
sample critical values may differ from asymptotic equivalents (the latter are usually obtained via
simulation, but could be based on response surfaces); dummy variables alter critical values, often
greatly; multiple cointegration vectors must be identified to allow inference; the data may beI(2)
rather thanI(1), altering distributions; and conditioning to partial systems must be done with care.
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1 Introduction

The literature on the formulation, estimation, and testing of models for potentially cointegrated eco-
nomic time series is truly vast, bordering on a complete discipline in its own right. Even texts which
summarize the material comprise many hundreds of pages: see,inter alia, Banerjee, Dolado, Galbraith
and Hendry (1993), Hamilton (1994), Hendry (1995), Johansen (1995b) (double that length when the
companion workbook, Hansen and Johansen, 1998, is added), and Hatanaka (1996). Since, we could
only consider a small fraction of the topic, we will focus on one salient problem: determining the coin-
tegration rank of a linear dynamic system for economic time series.

Determining cointegration rank is difficult in practice for many reasons, including:

• the presence or absence of deterministic terms (such as constants and trends) in the generating
process and/or the model can greatly alter limiting distributions;

• the system may have beeen formulated in such a way that the (asymptotic) similarity of key test
statistics to nuisance parameters is lost;

• alternative choices of test statistics may deliver apparently conflicting inferences;
• finite-sample critical values can differ notably from asymptotic equivalents;
• the latter are usually approximations, obtained by simulation perhaps summarized by response

surfaces;

∗Financial support from the UK Economic and Social Research Council under grant R000237500 is gratefully acknow-
ledged. We are grateful to Hans-Martin Krolzig for helpful discussions on the topic. The authors’ web pages are respectively:
www.nuff.ox.ac.uk/users/doornik/, www.nuff.ox.ac.uk/economics/people/hendry.htm www.nuff.ox.ac.uk/users/nielsen/.
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• indicator variables for ‘blips’ can alter the outcome of the analysis;
• the lag length selected may not remove all residual autocorrelation, or may be too long;
• multiple cointegration vectors must be identifiable to allow coherent inference;
• the data may beI(2), or nearI(2), rather thanI(1), again altering the relevant limiting distributions;

and:
• there may be non-modelled variables, and conditioning to create ‘partial’ systems must be done

with care, even under weak exogeneity.

This paper addresses many of these important issues of inference in the empirical application of mul-
tivariate cointegration analysis, illustrating the analysis by a (much studied) four-equation model of
narrow money (M1), prices, aggregate expenditure, and interest rates in the UK. These data have been
the subject of extensive analysis: see,inter alia, Hendry (1979), Hendry (1985), Ericsson, Campos
and Tran (1990), Hendry and Ericsson (1991), Boswijk (1992), Hendry and Mizon (1993), Hendry and
Doornik (1994), and Harris (1995) as well as Johansen (1992b), Paroulo (1996) and Rahbek, Kongsted
and Jørgensen (1998) who suggest they areI(2). Different investigators have also found varying num-
bers of cointegrating vectors, though all agree on at least one connecting these four variables.

Part of the difficulty in the empirical analysis is the important role played by structural breaks,
including financial liberalization, and both external and domestic shocks. The first of these induced
rapid growth in money holdings relative to nominal income, perhaps part of the explanation for theI(2)
hypothesis, and is modelled here by using an appropriate measure of the opportunity cost of holding
money. The treatment of the last two (oil shocks and major government budget changes) is problematic,
and we consider below how indicator variables affect the empirical analysis. Consequently, the data
modelling raises the typical problems empirical researchers regularly confront, and illustrates many of
the aspects of the theoretical analysis of cointegration.

The structure of the paper is as follows. To set the scene on the roles of the various forms of
non-stationarity,§2.1 discusses the effects of near unit roots in a scalar example, and§2.2 looks at the
impacts of blip dummies. Section 3 discusses the statistical problem, beginning with a description of
the time-series data we will analyse (§3.1), the economic analysis (§3.2), the notation and formulation
of linear dynamic systems (§3.3), and the associated preliminary empirical analysis (§3.4): empirical
illustrations occur throughout the text, and are not concentrated in one section. Then§3.5 introduces the
cointegration representation, followed by the empirical unrestricted cointegration analysis in§3.6. Next,
the impacts of various formulations of intercepts and linear deterministic trends are considered in§4.
New Monte Carlo simulation evidence illustrating the importance of the formulation of deterministic
effects is presented in§5. Section 6 considers the impacts of impulse dummy variables (indicators) in
cointegrated systems. Section 7 reviews other issues arising in determining the cointegration rank of a
closed system, so briefly discusses recursive estimation, finite-sample critical values, and approxima-
tions to the asymptotic distributions of the tests. This is followed by a discussion of identification issues
in §8.1, and the estimation of the restricted empirical cointegration relations. The problems when an
I(2) analysis is needed are noted in§9. Then,§10 turns to the analysis of long-run weak exogeneity
and conditional systems, where new problems in determining cointegration rank appear. Finally,§11
concludes. The Appendix gives relevant analytical results.

2 Background

This section first illustrates the problems arising when roots of the dynamics are close to unity, as of-
ten happens for empirical economic data; the ideas generalize to testing for cointegration in systems.
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Secondly, since our model of UK M1 includes two indicator variables to remove the impacts of inter-
ventions, we consider that issue in§2.2.

2.1 Unit roots

Consider the scalar, mean-zero, first-order autoregressive process:

yt = ρyt−1 + νt where νt ∼ IN
[
0, σ2

ν

]
. (1)

Theνt are independent and normally distributed with mean zero and varianceσ2
ν . When|ρ| < 1, the

least-squares estimatorρ̂ is asymptotically distributed as:

√
T (ρ̂− ρ) D→ N

[
0,
(
1 − ρ2

)]
. (2)

Whenρ ' 1, but still lies in the stationarity region, then (2) suggests that in large samples,ρ̂ will have
a negligibly small variance. This transpires to be a poor approximation in small samples, and not very
good in large. Figure 1a reports Monte Carlo sampling standard deviations (MCSDs, which estimate the
actual variability inρ̂) and estimated standard errors (MCSEs, based on the usual regression formula)
whenρ = 0.9999, together with their theoretical valuess =

√
T−1 (1 − ρ2) from (2).1 The ratios

of the MCSDs and MCSEs tos are shown in panel c and reveal departures as large as 20-fold when
T ' 50; even forT = 350, the MCSD overestimatess by 10-fold. However, whenρ = 0.8, the theory
and practice are much closer, as panels b and d show: the maximum departures are about 10%, with the
ratios converging on unity.2

Approximation (2) works poorly because the form of the limiting distribution changes asρ→ 1 and
a reformulation is required whenρ = 1. Write (1) as:

∆yt = γyt−1 + νt (3)

wherey0 = 0 and γ = ρ − 1. When γ = 0, then ∆yt = νt. Now the estimatêγ of γ needs
to be normalized byT (rather than

√
T as in (2)), and does not converge on a normal distribution

asymptotically, but to a functional of Brownian motion with a non-zero variance, and a substantial
negative bias. This makes discrimination betweenI(1) andI(0) difficult (see,inter alia, Hendry, 1995,
Ch.4). Economic data are certainly not stationary, and even if exact unit roots were not present in
economics, many of the following results would be more useful as approximations to practical behaviour
than assuming stationarity.

2.2 Indicator variables

Indicators are often added to remove the impacts of ‘outliers’ and thereby obtain a better estimate of
the innovation variance. However, as§6 below shows, introducing dummy variables into cointegration
analyses raises many issues, even when their existence is based on good historical grounds. This section
first illustrates the potential problems in a stationary dynamic model. Let:

yt = ρyt−1 + ψzt + νt where νt ∼ IN
[
0, σ2

ν

]
(4)

11000 replications were used in PcNaive: see Hendry, Neale and Ericsson (1991). In figures,2 × 2 panels of graphs are
notionally labelleda, b; c, d, such that

�
a b
c d

�
denotes the location;3 × 3 panels asa, b, c; d, e, f ; g, h, i; and so on.

2There remained considerable sampling uncertainty in the MCSD at 1000 replications, so 10,000 were used in panels b
and d; that the MCSE underestimates the MCSD may be due to averaging estimated standard errors, rather than variances.
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Figure 1 MCSDs and MCSEs forρ = 0.9999 andρ = 0.8.

when|ρ| < 1. In (4), zt = 1{t=Tb} is a zero-one indicator (1{t=Tb} = 0 except fort = Tb). In a static
setting, includingzt is equivalent to dropping theT th

b observation. Since:

yt =
∞∑
i=0

(
ρiψzt−i + ρiνt−i

)
,

then, lettingσ2
u = σ2

ν/
(
1 − ρ2

)
:

T−1
T∑

t=1

E
[
y2

t

] ' σ2
u +

T−1ψ2

1 − ρ2
. (5)

Whenψ is a fixed number, its effect on (5) is negligible for largeT , and hence it has no influence on the
limiting distribution. Indeed, least-squares estimation of (4) yields:( √

T (ρ̂− ρ)
ψ̂ − ψ

)
D→ N2

[
0,

(
1 − ρ2 0

0 σ2
ν

)]
.

The limiting distribution of
√
T (ρ̂ − ρ) is unaffected by the inclusion of the dummy, and does not

depend on the value ofψ. The residual variance remains a consistent estimator ofσ2
ν . However, since

different scalings are needed on the two estimators to obtain non-degenerate limiting distributions,ψ̂

is inconsistent forψ. Omitting the indicator from the estimated model does not affect the limiting
distribution, but would bias estimators ofρ andσ2

v in finite samples.
When the impulse is large in terms of the error relative to the available sample, approximated by

ψ =
√
Tδσν , then:

T−1
T∑

t=1

E
[
y2

t

] ' σ2
u

(
1 + δ2

)
. (6)
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As yTb−1 does not depend onψ:(
ρ̂− ρ

δ̂ − δ

)
gapp N2

[
0, T−1

( (
1 − ρ2

) (
1 + δ2

)−1 0
0 1

)]
. (7)

Thus, the approximate distribution of̂ρ in (7) is affected by the size of the break, but is little affected
by the inclusion or exclusion of the dummy. This is unlike a static model, where including the indicator
would completely remove the effect of the ‘blip’. Again the residual variance is unbiased, but is biased
if zt is omitted. Finally, the appropriately-scaled dummyδ has a variance of O(T−1): for example, if
σv = 0.01 (1%) andT = 100, thenψ = 0.05 corresponds toδ = 0.5 (SE = 0.1).

3 Formulation of the statistical problem

The analysis commences from an unrestricted Gaussian vector autoregression, such as that in (10) below.
The objective is to find an empirically well-behaved specification as the starting point for cointegration
analysis. But first we discuss the data and the economic analysis.

3.1 Data

The data used to illustrate issues in cointegration inference are quarterly, seasonally-adjusted, time series
over 1963(1)–1989(2) onM , I, P andRn for the United Kingdom.3

M nominalM1,
I real total final expenditure (TFE) at 1985 prices,
P theTFEdeflator,
Ra the three-month local authority interest rate,
Rm learning-adjusted interest rate,
Rn Ra −Rm.

Rm is the learning-adjusted interest rate on interest-bearing checking accounts at commercial banks.
This type of account was introduced in 1984(3), see Hendry and Ericsson (1991) for details. Money and
expenditure are in£ million, the deflator is unity in 1985, and the interest rates are annual, in fractions.
Lower-case letters denote logs of the corresponding capitals. After allowing for lags, estimation is
usually over 1964(3)–1989(2), which yields 100 observations (Ericsson, Hendry and Tran, 1994, analyse
the corresponding raw data, but here we focus on the seasonally-adjusted series: also see Hendry and
Mizon, 1993, and Hendry and Doornik, 1994).

The lower-right panel in Figure 2 shows the time series of the observations form − p, i, ∆p, Rn

(standardized to facilitate comparison).

3.2 The economic background

The theoretical formulation entails relationships to determine the demand for money, aggregate ex-
penditure, inflation, and the opportunity cost of holding money. We consider these in turn.

Despite being primarily used for transactions, narrow money is also part of financial portfolios, and
is held as a liquid reserve for contingencies. Thus, the quantity of nominal money demanded (Md)
depends on the price level (P ), the volume of real transactions to be financed (I), the opportunity cost
of inter-temporal holding, measured by inflation (ṗ), and on both the own rate of interest and competing

3The data are supplied with the demo version of PcGive, available from Doornik’s web page.
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rates of return on alternative liquid assets.4 Since money demand should be unit free, the relation is
usually assumed to be homogeneous of degree one inP (i.e., real money is demanded), increasing
in I (sometimes homogeneously as well), decreasing in both inflation andRa, and increasing inRm.
Frequently, a log-linear form is assumed linkingM, P, andI, with interest rates entering in levels, and
we write this schematically, in steady state, as:

md − p = τ0 + τ1i− τ2ṗ− τ3Ra + τ4Rm . (8)

The coefficientsτ1 . . . τ4 are anticipated to be positive as written, probably withτ1 = 1, andτ3 = τ4.
Equation (8) defines the anticipated cointegration relation. However, dynamics are central to many
theories of money demand: here economic agents are assumed to have upper and lower targets for
their desired real-money holdings, and adjust balances back towards the mean when these bands are
exceeded.5 While the observed money stock also depends on the supply, on the basis of institutional
knowledge, we assume that the monetary authority controls the shortest interest rate, and manipulates
that to achieve its policy objectives.

Total real expenditure is very schematically modelled here in terms of a trend, approximating growth
in human and physical capital, both of which embody technical progress, and demand determinants,
represented by the real interest rateRa − 4ṗ (inflation is re-scaled to annual units), leading to:

i = ρ0 + ρ1t− ρ2 (Ra − 4ṗ) . (9)

Again, dynamic adjustments to the path in (9) need to be modelled empirically. In both (8) and (9), the
log form is adopted in the expectation of relatively constant proportional errors. The lack of data onRm

for most of the sample led us to replace−τ3Ra + τ4Rm in (8) by −τ3Rn, and−ρ2 (Ra − 4ṗ) in (9)
by −ρ2Rn + ρ3ṗ. Large policy changes (such as major budget changes) are handled using an indicator
variable, calleddout(see§3.4).

Inflation is a complex phenomenon, and the model lacks many of the variables that might be ex-
pected to account for its behaviour, including exchange rates and world prices, government deficits,
factor-market conditions, and commodity prices. Thus, the most likely long-run determinants here are
the excess demands for money and goods embodied in deviations from (8) and (9). We also introduce a
non-modelled indicator for special effects from price shocks (such as the oil crises).

Finally, despite being a net interest rate,Rn is sufficiently short term to be treated here as being set
by the monetary authority, perhaps to stabilize the excess demands in (8) and (9), or achieve a target for
inflation.

3.3 Linear dynamic systems

We consider a closed, linear dynamic system forn variablesxt, with a maximum lag length ofs periods,
and assume normality, thereby postulating a vector autoregression (VAR) withm deterministic variables
qt, over a samplet = 1, . . . , T , expressed as:

∆xt =
s−1∑
j=1

Πj∆xt−j + πxt−1 + Φqt + νt where νt ∼ INn [0,Ω] , (10)

whenINn [0,Ω] denotes ann-dimensional independent, normal density with mean zero and covariance
matrix Ω (symmetric, positive definite). In (10), the parameters(Π1 . . .Πs−1,π,Φ,Ω) are assumed

4A measure of the volatility of income might reflect precautionary demands, but is omitted here: see e.g., Tobin (1958).
5See e.g., Miller and Orr (1966), Akerlof (1973), Milbourne (1983), and Smith (1986).
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to be constant and variation free, with sufficient observations to sustain estimation and inference (T −
s � n (s+m+ 2)). To allow interpretation of the results, none of the roots of the companion-form
polynomial should lie inside the unit circle (see e.g., Banerjeeet al., 1993, Ch. 5). We focus ons = 2
for exposition, and denoteΠ1 by Π. Note that (10) is isomorphic to a VAR in levels.

3.4 Preliminary empirical analysis

For coherent inference, it is important that the empirical model satisfies the assumptions of the statistical
analysis. We begin by analysingm− p, i, ∆p, andRn, thereby imposing long-run price homogeneity;
we return in§9 to consider the properties of the levelsm andp. The four series analysed are treated
as potentiallyI(1) over this sample. The initial VAR in (10) for{(m − p)t, it,∆pt, Rn,t} has 2 lags
and includes an intercept unrestrictedly, and a trend. Earlier research suggests that longer lags are not
needed. We base our specification closely on Hendry and Doornik (1994), who provide modelling
details, so include their dummy variables. These aredout for output shifts, zero except for unity in
1972(4), 1973(1), 1979(2), anddoil for price shocks (such as the oil crises and VAT changes), equal to
unity in 1973(3), 1973(4), and 1979(3). These indicators adjust for the largest residuals in the Hendry
and Mizon (1993) model. The sample period (after creating lags) is 1964(3)–1989(2), so thatT = 100.
Computations and graphics were produced with GiveWin and PcFiml (see Doornik and Hendry, 1996,
1997); simulations were done in Ox (Doornik, 1998b).

Table 1 reports summary evaluation statistics for the estimated VAR:σ̂ denotes the standard devi-
ation of the residuals. The diagnostic tests comprise5th-order residual vector serial correlation (Fv

ar5: a
multivariate version of Breusch, 1978–Godfrey, 1978, see Doornik, 1995b) and vector heteroscedasti-
city (Fv

het: a multivariate version of White, 1980, see Doornik, 1995b), as well as a chi-square test for
joint normality (χ2 v

nd (8): see Doornik and Hansen, 1994). Significance at the 5% and 1% levels is
denoted by∗ and∗∗ respectively;p-values are given in square brackets.

Table 1 System evaluation.[
m− p i ∆p Rn

σ̂ 1.65% 1.04% 0.68% 1.31

]


statistic value p-value
Fv

ar5 (80, 258) 1.21 [0.13]
Fv

het (180, 548) 0.97 [0.59]
χ2 v

nd (8) 19.4∗ [0.013]



Apart from the non-normality due to some remaining outliers in the inflation equation, the results
are consistent with a congruent system. All first lags and the indicators are significant, but the second
lags and the trend appear insignificant (onF(4, 85), at 5% or less). The equations for∆p andRn show
some non-constancy, although the system break-point Chow (1960) test nowhere exceeds the 1% critical
value within sample.

Following this preliminary analysis, it is of interest to determine the dynamic properties of the
system. The eigenvalues of the long-run matrixπ in (10) are−0.39, −0.17, and−0.05± 0.05i (using i
to denote

√−1), so the rank seems non-zero, and is unlikely to be greater than two. The eigenvaluesλ

of the companion form (the inverses of the roots) are shown in Table 2.
Two roots are close to unity, two have moduli near0.7, and the remainder are small, so overall, this
representation appears to beI(1), probably with two cointegrating vectors, and two unit roots. We now
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Table 2 System dynamics.[
λ 0.96 ± 0.02i 0.68 ± 0.03i −0.34 0.32 −0.21 ± 0.10i
|λ| 0.96, 0.96 0.68, 0.68 0.34 0.32 0.24, 0.24

]

formalize the cointegration analysis.

3.5 Cointegration formulation

Equation (10) shows that the matrixπ determines how the levels of the processx enter the system:
for example, whenπ = 0, the dynamic evolution does not depend on the levels. This indicates the
importance of the rank ofπ in the analysis. The statistical hypothesis of cointegration is:

H(r): rank (π) ≤ r.

Under this hypothesis,π can be written as the product of two matrices:

π = αβ′,

whereα and β have dimensionn × r, and vary freely. As suggested by Johansen (1988, 1995b),
such a restriction can be analysed by maximum likelihood methods. The idea is to find the canonical
correlations between the first differences∆xt and the lagged levelsxt−1, having corrected both of these
for the other components in (10). It is then possible to test that then− r smallest canonical correlations
are zero.

Keeping the lag length at two (s = 2), and restricting (10) by the hypothesisH(r), we obtain:

∆xt = Π∆xt−1 + α
(
β′xt−1

)
+ Φqt + νt. (11)

In applications, it is of interest to estimate the rank rather than just finding an upper bound of the form
rank(π) ≤ r. When the rank equalsr, the properties of the system can be interpreted using the Granger
representation theorem (see Engle and Granger, 1987, and Johansen, 1995b, Theorem 4.2).

Whenxt is I(1), then the first differences∆xt and ther cointegrating relationsβ′xt are I(0). To
ensure thatxt is I(1) and notI(2), we require rank(α′

⊥Γβ⊥) = n−r. HereΓ = − (In − Π + π) is the
mean-lag matrix,α⊥ andβ⊥ aren × (n− r) matrices such thatα′

⊥α = 0, β′
⊥β = 0 with (α : α⊥)

and(β : β⊥) being rank-n matrices. The issue ofI(2)-ness is discussed in§9.

3.6 Unrestricted cointegration analysis

Prior to a theoretical analysis of the deterministic terms, ourI(1) cointegration analysis restricts the
trend to the cointegration space (coefficients denoted byρ), and enters the constant (φ) and dummies
(dt) unrestrictedly. Equation (11) then becomes:

∆xt = Π∆xt−1 + α

(
β

ρ

)′(
xt−1

t

)
+ φ + Υdt + νt. (12)

The first part of Table 3 reports the log-likelihood values (`), and eigenvalues (µ). The latter are
the squared canonical correlations between first differences and lagged levels with trend (corrected for
lagged differences, constant and dummies). The remainder of Table 3 reports the trace and maximum
eigenvalue (Max) statistics together with the first two estimated cointegrating vectors, and thep-values
for the trace test. Table 4 records the feedback coefficients (α̂) and their standard errors whenr = 2.

Before discussing the interpretation of these results, we consider the roles of the constant and trend.
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Table 3 Cointegration analysis. r 0 1 2 3 4
` 1799.7 1838.3 1845.5 1849.8 1852.9
µ 0.55 0.13 0.08 0.06




H(r) r = 0 r ≤ 1 r ≤ 2 r ≤ 3
Trace 108.5∗∗ 29.3 14.8 6.2

[0.00] [0.55] [0.60] [0.45]
Max 79.3∗∗ 14.5 8.6 6.2


 β̂′ m− p y ∆p Rn t

1 1 −1.00 7.34 7.65 −0.0005
2 −0.06 1 −3.38 0.86 −0.0059



Table 4 Feedback coefficients for rank 2.


α̂ 1 2

m− p −0.09 −0.01
y −0.02 −0.10

∆p −0.00 0.08
Rn −0.00 −0.06




SE [α̂] 1 2
m− p 0.012 0.074
y 0.007 0.047

∆p 0.005 0.031
Rn 0.009 0.060



4 Intercepts and linear deterministic trends

Deterministic terms, such as the intercept, linear trend, and indicator variables, play a crucial role in
both data behaviour and limiting distributions of estimators and tests in integrated processes: see, for
example, Johansen (1994). Depending on their presence or absence, the system may manifest drift,
linear trends in cointegration vectors, or even quadratic trends (although the last seems unlikely in
economics). Appropriate formulation of the model is important to ensure that cointegrating-rank tests
are not too dependent on ‘nuisance parameters’ related to the deterministic terms. Here we consider the
intercept and trend;§6 considers dummies.

The impact on the processxt of qt with parameterΦ in (11) can be described using Granger’s
representation theorem as:

CΦ
t∑

i=0

qi +
∞∑
i=0

CiΦqt−i, (13)

whereC = β⊥(α′
⊥Γβ⊥)−1α′

⊥. Two distinct effects are apparent: a cumulative influence throughCΦ,
and a distributed lag with coefficientsCiΦ. WhenΦ = αR (say) the former vanishes sinceCα = 0.
It is no surprise that this affects the distributions of test statistics, which we now consider in detail.
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4.1 Statistical analysis

When determining rank, three models merit consideration. These can be described by the dependence
of the expected values ofx andβ′x on functions oft:

Hypothesis x β′x
Hl(r) linear linear
Hc(r) constant constant
Hz(r) zero zero

In these models, the processx and the cointegrating relations exhibit the same deterministic pattern. At
a later stage, when the rank has been determined, it will be possible to consider further models of the
trending behaviour. Note that, underHz(r), it is necessary thatE[x0] = E[∆x0] = 0 to ensure that the
non-stationary components have zero expectation. Likewise, for the other models, the conditions on the
initial values must be such that they preserve the postulated behaviour.

The hypotheses are formalized in Table 5 in terms of the parameters of (11). The parametersα,β ∈
R

n×r, φ,∈ R
n, andρc,ρl ∈ R

r vary freely when present.

Table 5 Models for rank and deterministic trend.

Hl(r) : π = αβ′ and Φqt = φ + αρlt,

Hc(r) : π = αβ′ and Φqt = αρc,

Hz(r) : π = αβ′ and Φqt = 0.

Let H(r) be one ofHl(r), Hc(r), andHz(r). The hypotheses are nested as follows:

H (0) ⊂ · · · ⊂ H (r) ⊂ · · · ⊂ H (n) . (14)

The rank can be determined consistently by adopting the procedure given by Johansen (1995b, Section
12.3). Start by testingH(0) against the general alternativeH(n). If H(0) is rejected, testH(1) against
H(n), and so on. The rank is estimated asr if H(r) is the first hypothesis which cannot be rejected.
The test statistic which is used in this procedure is the trace test. As pointed out by Nielsen and Rahbek
(1998), these tests are asymptotically similar with respect to the parameters related to the deterministic
components (provided that theI(1) conditions are satisfied).

The maximum eigenvalue test is the likelihood ratio test ofH(r− 1) againstH(r). While this test is
sometimes used in practice, a corresponding result of consistency has not been established.

4.2 Test results

There may be economic ground for preferring one specification over another. In particular, for our
model, we preferHl(r) based on the following economic considerations:

a) While inflation andRn should not drift, realTFE has grown at an annual rate of about 2.5%,
precluding a zero intercept. A long-run unit income elasticity of demand for real money then
restricts its intercept to equal that forTFE.

b) A linear trend in the cointegration space approximates growth inTFE from cumulative human
and physical capital; its coefficient must therefore match that in a).

c) When the analysis uses dummies, as withdoil anddout in our case, similar considerations apply.
We return to this issue in§6.
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Referring back to Table 3, and noting that it corresponds toHl(r), we can now interpret the results
of the test statistics. Following the rank selection procedure described in the previous section, the null
of no cointegration is strongly rejected. Although the second cointegrating vector is not significant, we
retain it following Hendry and Mizon (1993). The interpretation of the coefficients in relation to the
economic issues in§3.2 will be considered in§8 after imposing further restrictions.

4.3 Further models

From Table 5, letφc = αρc andφl = αρl. Two additional models arise whenφc andφl are allowed
to vary freely, and we embed these in an extension of that table:

Hypothesis x β′x
Hql(r) : π = αβ′, Φqt = φc + φlt quadratic linear
Hl(r) : π = αβ′, Φqt = φc + αρlt linear linear
Hlc(r) : π = αβ′, Φqt = φc linear constant
Hc(r) : π = αβ′, Φqt = αρc constant constant
Hz(r) : π = αβ′, Φqt = 0 zero zero

In terms of the notation used in PcFiml, the hypotheses are:

Hypothesis trend constant

Hql(r) unrestricted unrestricted
Hl(r) restricted unrestricted
Hl(r) absent unrestricted
Hc(r) absent restricted
Hz(r) absent absent

Likelihood-ratio test statistics for the two additional models have also been derived by Johansen
(1995b). The asymptotic distribution underHql(r) depends on whether or notα′

⊥φl = 0, and this
complicates the rank determination considerably (op. cit.,Theorem 6.2). To develop a consistent test
procedure, the idea is to only testHql(r) if Hl(r) has been rejected (op. cit.,Ch. 12). In that case, we
rule out the possibility that the rank is at mostr as well asα′

⊥φl = 0, and therefore the assumptions of
the asymptotic theory are satisfied. The relevant hypotheses are nested as:

Hql (0) ⊂ · · · ⊂ Hql (r) ⊂ · · · ⊂ Hql (n)
∪ ∪ q

Hl (0) ⊂ · · · ⊂ Hl (r) ⊂ · · · ⊂ Hl (n) .
(15)

By testing the hypotheses

Hl(0),Hql(0),Hl(1),Hql(1), . . . ,Hl(n− 1),Hql(n− 1),

sequentially against the unrestricted alternative and stopping whenever the hypothesis is accepted, a
consistent procedure is obtained.

A corresponding complication arises withHlc(r). The test procedure is then based on:

Hlc (0) ⊂ · · · ⊂ Hlc (r) ⊂ · · · ⊂ Hlc (n)
∪ ∪ q

Hc (0) ⊂ · · · ⊂ Hc (r) ⊂ · · · ⊂ Hc (n) .
(16)
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When we allow for a quadratic trend in the UK-M1 model we find for the trace test: r = 0 r ≤ 1 r ≤ 2 r ≤ 3
Hql(r) 97.4∗∗ 22.4 8.1 1.2
Hl(r) 108.5∗∗ 29.3 14.8 6.2

 .
We encounter108.5∗∗, 97.4∗∗, 29.3, so that the first hypothesis to be accepted isHl(1). Therefore the
quadratic trend is rejected, and the conclusion is as before.

It is possible, but not very likely, that an insignificant value is followed by a significant statistic.
An example would be: rejectHl(0), acceptHl(1), and rejectHl(2). This could be indicative of more
general model mis-specification.

5 Illustrating the models of trend behaviour

The practical problem of estimating the cointegrating rank for an appropriate treatment of the determin-
istic terms can be done by the various sequential testing strategies just discussed. We now illustrate this
using an artificial DGP based on the emprical model in this paper. The data exhibit a linear trend, ap-
parent in fig. 2d, so we adopt the model with a restricted trend and two cointegrating vectors to generate
the data.

5.1 The artificial DGP

The artificial DGP satisfiesHl(2). The design of the DGP closely mimics the UK-M1 empirical model,
and uses the observations for 1964(1)–(2) as its initial conditions.

∆xt =


−0.102 0

0 −0.149
0 0.036
0 −0.04


(

1 −1 6.41 7.16 0 −0.209
0 1 −2.13 1.48 −0.0063 −11.186

) xt−1

t

1



+


0.0063
0.0063

0
0

+


−0.3 0 0 −0.06

0 0 0 0
0.068 0 −0.26 0

0 0 0 0.17

∆xt−1 + νt, (17)

when:

νt ∼ IN4 [0,Σ] , where Σ∗ =


1.6%

−0 .08 1%
−0 .51 0 .03 0.69%
−0 .49 0 .09 0 .31 1.3%

 ,

using the lower triangle ofΣ∗ to show the cross correlations of the errors, and:(
x′−1

x′
0

)
=

(
10.9445 11.1169 0.000779 0.048967
10.9369 11.1306 0.013567 0.050

)
.

Figure 2 records the data generated in three randomly-selected trials, together with the actual empirical
outcomes in the fourth panel (all variables are standardized). The outcomes seem representative of the
actual data.
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Figure 2 Data generated in three replications, with the actual outcomes.

5.2 Monte Carlo analysis

We now simulate the rejection frequencies of the testsHql(r), Hl(r), Hlc(r), andHc(r) when using
data generated by (17). We do not considerHz, because it is too far removed from our DGP. The first
cointegrating vector is very well determined, withH(0) rejected virtually 100% of the time at all the
sample sizes considered, so we omit this from the graphs.

The results are presented in fig. 3 as a4 × 3 matrix of graphs. The graphs give recursive Monte
Carlo results for sample sizesT = 50, 75, 100, 125, 150, 200, 250, 500. In all cases, common random
numbers were used, so that all graphs were based on the same data, and within each replication, a subset
of the 500 data points was analysed. Each row corresponds to one of the four models for testing the
rank hypothesis. Each column corresponds to a different rank specification. Rejection frequencies are
given at 10% and 5% level based on asymptotic critical values. For example, the graph forHl(1) in the
second row, (which also formed the basis for the DGP) shows a high probability for rejectingr ≤ 1,
which is satisfactory because the actual rank is two.

The second row outcomes forHl correspond to our recommended treatment of deterministic factors:
high rejection frequency of the null of no second cointegration vector, and somewhat oversized in reject-
ing the third. So adopting the procedure in (14) to determine the rank, we usually arrive at the correct
conclusion. AtT = 100, there is still some uncertainty about the second vector, but this problem gradu-
ally vanishes. The probability of rejectingr ≤ 3 is virtually zero, as might be hoped when the rank is
only two (and is expected from asymptotic theory).

The first row shows that serious problems arise when rank determination is solely based onHql. The
rejection frequencies forr ≤ 2 are considerably higher than 5% and 10% respectively, with even worse
results forr ≤ 3. However, when adopting the procedure (15), we rejectHl(1), Hql(1), and accept
Hl(2).

In the remaining two rows, the models are mis-specified relative to the DGP. The fourth row (Hc) is
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Figure 3 Cointegration rejection frequencies.

certainly unrealistic, in that it enforces no growth on the system. This highlights the severe drawbacks
of inappropriate treatment of the deterministic terms: now it is quite possible to accept 3 cointegrating
vectors when using the procedure (14).

When the deterministic trend is erroneously omitted as in the third row, there is a tendency to replace
it by a stochastic trend. Of course, the correct procedure to use here is (16), but the mis-specification
prevents us from reaching the right rank.

5.3 Over-specified trend

It is interesting to consider what happens whenHl is used to analyze data that do not in fact have a
deterministic trend. To investigate this, we used two versions of the DGP. The first omitted the trend
from the cointegrating vector (so was a member ofHlc(2)), and the second only maintained the intercept
in the cointegrating vectors (i.e., all three values0.0063 were replaced with zero, placing it inHc(2)).

The resulting graphs were visually impossible to distinguish from the second row of fig. 3. This
is explained by the (asymptotic) invariance to the value of the trend coefficient in the modelHl. Thus,
adopting a model that includes a trend in the cointegration space has low cost even when the DGP does
not have one. Such a beneficial outcome contrasts markedly with the costs of adding an unnecessary
unrestricted trend.

5.4 Asymptotic analysis

The asymptotic background for the results reported in fig. 3 is now discussed. Further details are given
in the appendix.

Test forHl(r) againstHl(n) when the DGP isHl(s)
This is the standard case (second row), and the results correspond to the asymptotic analysis.
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Test forHql(r) againstHql(n) when the DGP isHl(s)
The first row of fig. 3 shows oversized tests, as expected from the asymptotic analysis.

Two asymptotic distributions are of relevance in the analysis ofHql(r). The standard distribution
applies when the conditionα′

⊥φl 6= 0 is satisfied. However, when the DGP, as here, satisfiesHl(r)
the condition is not satisfied sinceα′

⊥φl = 0 and a different asymptotic distribution is relevant. The
latter distribution is not tabulated in the literature. Simulations indicate that it dominates the standard
distribution, and consequently the considered test is oversized.

In fig. 3, the test forHql(2) is based on the critical values 15.9 and 18.2, the 10% and 5% quantiles
whenα′

⊥φl 6= 0. The asymptoticp-values for these values are approximately 35% and 22% respect-
ively when the rank is two as specified, butα′

⊥φl = 0. Similarly, the asymptoticp-values for the test
for Hql(3) are approximately 60% and 38% whenα′

⊥φl = 0 and the rank is two.

Test forHlc(r) againstHlc(n) when the DGP isHl(s)
The first panels of the first two rows of fig. 3 show that the power of a test for rank(π) ≤ (r − 1) tends
to one when rank(π) = r in a well-specified model. This is not necessarily the case for a mis-specified
model, as indicated by the first panel of the third row. Actually the rejection frequency convergences to a
constant less than unity when testingHlc(1) using the DGP. This convergence is illustrated analytically
in the Appendix.

Test forHc(r) againstHc(n) when the DGP isHl(s)
For this test, the rejection frequency converges to one when testing that the rank is at mostr andr <
rank(π). However, the rejection frequency of the test forHc(rank(π)) converges to a constant less than
unity, explaining the excess rejections in the second panel of row four. Again, the Appendix provides
an analytic derivation.

6 Dummy variables

Two impulse dummies were included unrestrictedly in the analysis. Since the inclusion of dummies
can greatly alter the distribution approximating the rank test, we consider the empirical and economic
background to thedoutanddoil dummies in more detail, noting some specific problems related to the
UK M1 analysis. The effects of dummies are studied using a Monte Carlo experiment; analytical results
are presented in the Appendix.

6.1 Dummies in the UK M1 model

The indicatorsdoutanddoil serve two purposes. The first is to improve the fit of the model. The graphs
of output i, and inflation∆p, indicate two transient shocks to the economy around 1973 and 1979 –
see fig. 3. Also, the residuals of a VAR fitted without dummies have large outliers in these periods.
This problem is removed by the inclusion of dummies. Initially, six separate impulse dummies were
included, but, as a special feature of this data set, it was found that they could be collected into just two
dummies as discussed by Hendry and Mizon (1993). The second feature of the dummies is that they
describe shocks to the economy which can be attributed to specific events in the UK’s economic history:
the ‘Heath–Barber’ boom and the first effects of the Thatcher government for output, and the two oil
crises for inflation.

There are several possible strategies for handling impulse dummies: they could be ignored, entered
unrestrictedly, restricted to the cointegration space, or a mixture of the last two. It transpires that the size



16

of their effect matters, potentially even asymptotically. We now discuss the impact on the asymptotic
distribution of the rank test of including small (really ‘not too big’) and large impulse dummies.

6.2 The rank test in the presence of small dummies

The impact ofqt on xt was described in (13) above. The usual asymptotic results concerning the rank
test hold as long as:

1√
T

Φ
t∑

i=0

qi → 0 for T → ∞,

so that the effect of the dummy is negligible as compared with a random walk (see Johansen, 1995a,
§5.8). A break in the slope of a linear trend, corresponding to a change in the growth rate, would lead
to new asymptotic tables. New tables also apply when a level shift is included in the cointegrating
vector. These different asymptotic distribution could be simulated using the program DisCo (Johansen
and Nielsen, 1993).

A dummy which is unity at a few points and zero otherwise may give a persistent shock to the
non-stationary components of the process, but is usually asymptotically negligible. However, if the
parameter of such a dummy is big in relation to

√
T , then this is not necessarily the case.

6.3 Distribution of the rank test in the presence of large dummies

In the analysis of Hendry and Doornik (1994), the impact of the dummies is quite dramatic. When
the dummy for the output shocks,dout, was entered unrestrictedly in the model, one cointegration
relation was found, whereas two were found whendout was restricted to the cointegrating vector. In
this particular example, the estimated coefficient for the dummy is large, so the standard asymptotic
distribution – which is derived by ignoring the dummies – is misleading. In their final model (Table
5), the coefficient for thedoutdummy is 0.046. The dummy is unity for three out of 100 observations,
and zero otherwise, hence, the cumulated effect of the dummy is 0.138. This number is approximately
10, or

√
100, times the standard deviation of the innovations, which is of order 0.014. The impact of

such a big dummy is illustrated by the following example, related to that in§2.2; details are given in the
Appendix.

Consider a data generating process given by:

∆xt = ρ
√
T1{t=Tb} + νt where νt ∼ IN [0, 1] , (18)

and1 < Tb < T. This is a unit-root process with a broken constant level. Assumingx0 = 0, then:

xt = ρ
√
T1{t≥Tb} +

t∑
i=1

νi.

When these data are analysed using a univariate, first-order model, where the dummy is entered un-
restrictedly as in Table 3 of Hendry and Doornik (1994), then the likelihood-ratio test for a unit root
converges to a distribution which depends on the nuisance parameterρ. However, when a univariate
first-order model with a dummy restricted to the cointegration space is applied, as in Table 4 of Hendry
and Doornik (1994), the eigenvalue converges to a non-zero distribution. Accordingly, the size of the
likelihood-ratio test for a unit root converges to unity, leading to the conclusion that the process may
be stationary. Thus, the two results for the UK money data could be explained by a DGP with one
cointegrating vector and a shock generated by unrestricted dummies.
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6.4 A Monte Carlo study of impulse dummies

To investigate the impact of dummies, we use the artificial DGP from§5.1. We start by investigating
the impact of adding dummies to the model when they are not present in the DGP. So the baseline is
a DGP underHl(2) as in (17). In the experiments we restrict ourselves to two dummy variables. Let
s49 ands55 denote step dummies with value zero beforeT = 49, 55 respectively, and unity after. The
impulse dummies ared49 = ∆s49 andd55 = ∆s55. Estimation (after allowing for lags) was from
T = 3 onwards.

In the first experiment, there were no breaks in that DGP, but impulses were included in the stat-
istical models (i.e., small dummies). Concerning trend and intercept, the model conforms toHl. Four
specifications were considered for the dummy variables:

M1: d49 andd55 unrestricted
M2: d49 andd55 restricted
M3: d49 andd55 restricted,∆d49 and∆d55 unrestricted
M4: s49 ands55 restricted,d49 andd55 unrestricted

Figure 4 shows the rejection frequencies forHl(1) andHl(2) for the four models. The graphs reveal that
the specifications of the dummies had little impact on the test forr ≤ 1, but could dramatically alter
the outcome of testingr = 2 when rank(π) = 2. Now only M1 produces reasonable sizes, which are
essentially unchanged from fig. 3 (the first two graphs in the second row).
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Figure 4 Impacts of impulse dummies on cointegration-rank test.

Changing the DGP toHc(2) hardly alters the outcomes from fig. 4. However, changing the coeffi-
cients of the impulses in the DGP from zero can significantly alter the results. We consider two further
versions of (17) underHl(2), where we add the two dummies unrestrictedly to the DGP:

DGP1: small break:0.05d49 in x2, 0.02d55 in x3,
DGP2: large break:0.5d49 in x2, 0.2d55 in x3.
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The two new DGPs are analyzed byM0 (no dummies in model), andM1–M3 from the previous
experiment. This generates the eight graphs shown in fig. 5. The two columns correspond to small and
large dummies, the four rows to the models. Panel a reveals that there is little problem in simply omitting
the impulses when they are small, and b shows this finding extends approximately to large dummies.
Panel c confirms the results in fig. 4a, and d shows that large dummies entered unrestrictedly, if anything,
enhance that finding. The remaining four panels emphasise the disastrous nature of restricting the
dummies to the cointegration space and adopting conventional critical values.
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Figure 5 Breaks in cointegrating vectors and data.

7 Further issues in determining cointegration rank

Three further issues are noted in this section: recursive estimation of the eigenvaluesµi; computation-
ally convenient approximations to the asymptotic distribution of the rank test; and the small-sample
properties of the trace test.

7.1 Recursive estimation

Graphs of the recursive estimates of the eigenvalues may be of help in revealing which eigenvalues stay
systematically away from zero (see Hansen and Johansen, 1992, and Hansen and Johansen, 1998). It
must be remembered that the eigenvalues are ordered at each sample size, and hence cannot ‘cross over’
by construction. Figure 8 below records the time series of the first two recursively-computed eigenvalues
in panels b and d. They are shown for models with unrestricted dummies and with no impulses included.
Both sets of eigenvalues are relatively constantly estimated, and the omission of the dummies has not
worsened the constancy.

When plotting the recursive eigenvalues, there is a choice between re-estimating the complete coin-
tegration analysis for every sample size, or estimating the short-run only once for the full sample, and
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Figure 6 Recursive eigenvalues, re-estimating the short-run parameters.
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Figure 7 Recursive eigenvalues, conditioning on short-run parameters.

then doing the cointegration analysis conditional on the estimated short-run. Figures 6 and 7 plot the
distributions of the eigenvalues for sample sizesT = 25, 50, 75, 100, 200, based on5000 replications.
In fig. 7 the eigenvalues are estimated conditionally on the short run atT = 200. In this case, the
collapsing of the distribution ofµ3 andµ4 on zero is already more pronounced at smaller sample sizes.
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7.2 Approximating the asymptotic distribution

The asymptotic distributions of tests for cointegration rank involve integrals of Brownian motions for
which no closed form expressions are available. To allow testing, tables have been based on simulation
experiments.

Until recently, the most widely used tables were those constructed by Osterwald-Lenum (1992).
Updated versions of these tables are in Johansen (1995b), computed with the DisCo program (Johansen
and Nielsen, 1993). MacKinnon, Haug and Michelis (1996) note that a sample size of400, on which
these tables are based, is not so accurate for higher dimensions. These approaches are inconvenient for
use in a computer program, either because they only list a few quantiles, or because they require a large
amount of data.

Doornik (1998a) approximates the asymptotic distribution of cointegration tests using the Gamma
distribution. Formulae for the parameters of the Gamma distributions are derived from response surfaces
involving terms of O(T−1) (although this remains an asymptotic and not a finite-sample approximation).
The resulting approximation works sufficiently well to replace the standard tables, and can provide
quantiles as well asp-values. It is also easy to implement, requiring only 150 numbers to summarize the
distributions for all test statistics (both for theI(1) and theI(2) model). All rejection frequencies and p-
values in this paper are based on this approximation. Ox code implementingI(1) andI(2) cointegration
tests and theirp-values is available from the first author’s web page.

7.3 Small-sample properties of the trace test

Whereas the previous section dealt with tabulating the asymptotic distribution, there has been some con-
cern in the literature about the appropriateness of the asymptotic distribution in small samples. Figure 3
showed that in simulations the asymptotic distributions worked well in samples≥ 150, although there
is some lack of power to find the second vector for the sample size we use (T ≤ 100).

Somewhat ad hoc small-sample corrections have been suggested by Reinsel and Ahn (1992) and
Reimers (1992). This involves a so-called degrees-of-freedom correction, which entails scaling the test
statistic by(1−ns/T ) wheren is the dimension of the time series ands is the lag length. The effect of
such a correction is that the acceptance region for the hypothesisH(r) is enlarged and therefore more
cointegrating relations are found than when the correction is not used.

The degrees-of-freedom correction is not theoretically founded, and sometimes misleading. This
is, for instance, the case for the very simplest situation: testing for a unit root in a univariate first-
order autoregressive model. The exact distribution of the trace statistic is indistinguishable from the
asymptotic distribution whenever the sample has more than seven observations, see Nielsen (1997a). In
this situation the degrees of freedom correction(1 − 1/T ) introduces a size distortion. When testing
the hypothesis of no cointegration,H(0), in a first-order model, the degrees-of-freedom correction is
similarly over-correcting (Nielsen, 1997b).

In most practical situations, nuisance parameters are involved in the asymptotic distribution of the
trace test. If the rank ofπ is r and theI(1) conditions are satisfied, then only one asymptotic distribution
applies when testingH(r). However, this does not ensure asymptotic similarity. On the boundary of
the set given by these restrictions different distributions apply whenever the process has extra unit roots.
The simplest example is the test for ‘no cointegration’,H(0), in a univariate second-order model,n = 1,
s = 2. UnderH(0), the time series is given by:

∆xt = π∗1∆xt−1 + εt.
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The I(1) conditions are satisfied if the first difference of the process isI(0), that is|π∗1 | < 1. However,
if π∗1 = 1, the first difference isI(1) and the process itself isI(2). In this case, a different asymptotic
distribution applies (see Pantula, 1989). Asymptotically, this is obviously not a problem; however, the
small-sample distribution is some sort of a weighted average of the various asymptotic distributions.
Nielsen (1997b) suggests a new asymptotic theory which includes the nuisance parameters continu-
ously. This would give rather accurate approximations to the exact distribution at the expense of a more
complicated asymptotic distribution.

8 Cointegration in the UK M1 model

8.1 Identification

Whenr > 1, asαβ′ = αHH−1β′ for all r× r non-singular matricesH, the cointegration vectors and
feedback coefficients are not uniquely determined. One cannot compute standard errors ofβ̂ until it is
identified, although by fixinĝβ, standard errors of̂α can be obtained, as shown in Table 4 for a fixed
rank of two. Consequently, we next consider the use of restricted estimation of the parameters ofαβ′;
this allows us to test over-identification and obtain standard errors for the over-identified parameters.
The number of restrictions imposed in doing so may not match the degrees of freedom of the resulting
tests as some restrictions are not binding, or can be ‘absorbed’ by changes elsewhere. Johansen (1995a)
and Boswijk (1994) consider the identification conditions applicable to cointegration vectors and tests
thereof. Doornik (1995a) considers identification under general, possibly non-linear, restrictions on the
cointegration space.

8.2 Restricted cointegration analysis

To uniquely determine the two cointegration vectors, given their possible interpretations as excess de-
mands for money and goods respectively as discussed in§3.2, we removed the trend from the first, and
m− p from the second. Then we restricted the income coefficient to−1 in the first vector (converting it
to an inverse-velocity relation), and the trend coefficient in the second to the mean value of∆i (namely,
0.0063, approximately 2.5% p.a.). Finally, we set the feedbacks to zero for the second vector on the first
equation, and the first on the last three equations (related to long-run weak exogeneity) which yields the
results shown in Table 6, with the test of the restrictions beingχ2(6) = 5.36 [p = 0.5].

Table 6 Restricted cointegration analysis.

α̂ 1 2

m− p
−0.102
(0.011)

0
(−)

i
0

(−)

−0.149
(0.038)

∆p
0

(−)

0.036
(0.023)

Rn
0

(−)

−0.040
(0.043)


,


β̂′ m− p i ∆p Rn t

1
1

(−)

−1
(−)

6.41
(1.37)

7.16
(0.53)

0
(−)

2
0

(−)

1
(−)

−2.13
(0.69)

1.48
(0.27)

−0.0063
(−)



The first cointegration vector relates the ratio of money to expenditure (m − p − i) negatively
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to inflation and interest rates, corresponding an excess demand for transactions money. The second
cointegration vector is interpretable as the excess demand for goods and services, being the deviation
of expenditure from trend, negatively related to interest rates and positively to inflation; as its main
influence is onto thei equation, we retain these two long-run relations.

1965 1970 1975 1980 1985 1990

0

.5

1
c1u
c1

1975 1980 1985 1990
0

.25

.5

.75

1
mu1, no dv
mu1

1965 1970 1975 1980 1985 1990

10.35

10.4

10.45

10.5

c2u
c2

1975 1980 1985 1990
0

.25

.5

.75

1
mu2, no dv
mu2

Figure 8 Cointegration vectors and recursively-computed eigenvalues.

Figure 8 records the time series of the two unrestricted (ciu) and restricted (ci) cointegration vectors,
and the associated recursively-computed eigenvalues discussed above. The unrestricted and restricted
vectors for money are similar, whereas the restrictions have somewhat altered the second. Thus, sub-
tracting their in-sample means, the two, zero-mean,I(0) linear combinations defining the equilibrium-
correction mechanisms (EqCMs) are:

c1,t = mt − pt − it + 6.41∆pt + 7.16Rn,t − 0.209 (19)

and:
c2,t = (it − 0.0063t) − 2.13∆pt + 1.48Rn,t − 11.186. (20)

The definitions in (19) and (20) are required for multi-step forecasts when formulating the model in
terms of the differences (∆ (m− p)t , ∆it, ∆

2pt, ∆Rn,t) of the original variables.

9 I(2) analysis

The UK money data have been analysed inI(2) models by Johansen (1992a), Paroulo (1996) and Rahbek
et al. (1998). The datam, p, i, Rn were analysed in levels using a fifth-order VAR. The last two papers
conclude that there are twoI(2) trends and one stationary polynomial cointegrating relation. To compare
that result with theI(1) analysis reported above, we now return to analyse the original measures,m, p, i,
andRn. Should the analysis commence inI (2) space, thenα′

⊥Γβ⊥ = γδ′ is also reduced rank, so some
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linear combinations first cointegrate fromI (2) to I (1) and thenr others (perhaps withI (1) differences
of I (2) variables) cointegrate toI (0). Thus, bothI (2) andI (1) impose reduced rank restrictions on the
initial formulation in (10), and the former imposes restrictions on (11).

Empirically, Rahbeket al. (1998) find that the cointegration relation has the form:

C∗
1 = C1 + 11.63∆ (m− p) , (21)

where:
C1 = m− p− i+ 6.13∆p + 7.01R.

Thus, the change in real money is needed to establish cointegration in their analysis, so real money is
I(2). Hence, either the nominal magnitudes are one degree of integration higher, or nominal money
and prices do not cointegrate. Neither implication is very palatable, nor can we interpret (21) easily in
terms of the possible plans of economic agents. Conversely, adding11.63∆(m−p) toC1 makes it look
considerably more stationary as fig. 9b shows. Note that the cointegrating relations found in Hendry
and Ericsson (1991), Hendry and Doornik (1994),C1, andc1 in (19) are all very similar. Figure 9a
records the original and the negative of the additional correction (without any graphical matching), and
fig. 9d records the cross plot: as can be seen, there is an almost perfect offset. Figure 9c shows the first
difference ofC1, which would beI(0) if the original wasI(1).
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Figure 9 Comparisons of alternative cointegration measures.

The coefficient of11.63 times a feedback of 0.093 is almost precisely unity, hence in equation (6)
of Hendry and Ericsson (1991):

∆ (m− p)t = −0.17∆ (m− p)t−1 − 0.093C1,t−1 + . . . , (22)

or:

∆2 (m− p)t = −1.17∆ (m− p)t−1 − 0.093C1,t−1 + . . .

= −0.09∆ (m− p)t−1 − 0.093C∗
1,t−1 + . . . , (23)
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so theI(1) versusI(2) decision turns on the significance of∆(m−p)t−1. Estimating (23) by OLS reveals
a very small effect, even though it was significant in (22). Interestingly, on ADF tests∆(m−p)t, ∆Rn,t

and∆2pt are allI(0) (i.e., the tests reject unit roots at 1% or better), but do not reject forC1,t. As (23)
shows, if ones keepsC1,t, then the coefficient on∆(m− p)t−1 is less than−1, and if∆(m− p)t is I(0),
then∆2(m− p)t is I(−1), so∆(m− p)t cannot matter for cointegration.

In the I(2) analysis, there is also some evidence for a second cointegrating relation. Rahbeket al.
(1998) find that the asymptotic probability of rejecting the hypothesis of at most one cointegrating
relation, and thereby accepting two such relations, is around 15%. Their second relation has the form:

C∗
2 = C2 + 0.38∆ (m− p) ,

where the coefficients ofC2 are very similar to those reported in (20). The coefficient of the (possibly)
I(1) component, the first differences of real money, is very small as compared with that in the money
relation (21): however, the second relation,C2, appears to be more stable than the first,C1,

The economic analysis in§3.2 suggested that it was more convenient to base an econometric analysis
on the variablesm − p, ∆p, i, andRn. An I(2) analysis of these data confirms this. There is oneI(2)
trend and one (possibly two) cointegrating relations. Thep-values and coefficients are hardly changed
from theI(1) analysis. When dummies are included, as discussed in§6, the conclusions are similar to
those in Hendry and Doornik (1994). This analysis was based on the extension by Jørgensen (1996) to
the program CATS by Hansen and Juselius (1994), and also using an Ox routine for testingI(2)-ness
(Doornik, 1998b).

10 Long-run weak exogeneity and conditional systems

In a conditional analysis, namely of a system with unmodelled variables, there is a tendency to find
more cointegrating relations than in the corresponding closed-system analysis. For the UK money data,
this was found in the analysis of Harbo, Johansen, Nielsen and Rahbek (1998).

The joint likelihood ofxt = (yt, zt) can always be factorised into the product of the conditional
likelihood ofyt givenzt, and the marginal likelihood ofzt. When the parameters of the two likelihood
functions vary freely,zt is said to be weakly exogeneous for the parameters of the conditional likelihood,
and, in particular, it is equivalent to maximize the two likelihood functions jointly or separately (see
Engle, Hendry and Richard, 1983). For cointegration analysis, Johansen (1995b, Ch. 8) finds thatzt

is weakly exogeneous for the cointegration parameter if the adjustment parameter has the formα′ =
(α′

y,0).
The conditional likelihood can be analysed for cointegration using the ‘partial’ systems approach of

Harboet al. (1998). They consider an analysis ofm− p conditional on(i,∆p,Rn) assuming the rank
is at most unity, as well as(m− p,∆p) conditional on(i, Rn) when the rank is at most 2. The dummies
are omitted in their analysis, and a lag length of five is chosen. The results are therefore slightly different
from those of this paper and Hendry and Doornik (1994).

To test for long-run weak exogeneity in the two-variable conditional model requires testing ifα is
of the form:

m− p

i

∆p
Rn


∗ ∗
0 0
∗ ∗
0 0

 .

Referring back to Table 6, we see a highly significant feedback coefficient for the second cointegrating
vector in thei equation, rejecting this hypothesis in the restricted model. In the unrestricted rank-two
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model of Tables 3–4, we also reject this form of long-run weak exogeneity:χ2(4) = 10.9∗ [0.03]. The
same result (to the reported accuracy) is obtained when we apply the mis-specification test suggested in
Harboet al. (1998). In that case, the significance of the cointegration vectors is tested in a regression
of ∆it and∆Rnt on∆(m− p)t−1,∆2pt−1,∆it−1,∆Rn,t−1, c1,t−1, c2,t−1, 1, t, doil, dout. When using
five lags and without dummies (as in Harboet al., 1998), thep-value of the test increases to about 30%,
and the hypothesis is not rejected.

Long-run weak exogeneity is easily accepted forRn. The results for the model conditional onRn

are given in Table 7. Now the critical values are changed (thep-values are derived using the Gamma
approximation of Doornik, 1998a), and there is slightly stronger support for the hypothesis of two
cointegrating vectors.

Table 7 Cointegration analysis, conditional onRn. r 0 1 2 3
` 1363.0 1401.7 1408.6 1412.7
µ 0.55 0.13 0.08


 Hl(r) r = 0 r ≤ 1 r ≤ 2

Trace 101.4∗∗ 22.2 8.4
[0.00] [0.35] [0.43]


A valid conditional cointegration analysis should give higher power in determining the cointegration

rank. A power analysis can explain this finding. To simplify the argument, consider a three-dimensional
DGP such that :

∆x1,t = − b

T
x1,t−1 + ν1,t,

∆xi,t = νi,t for i = 2, 3.

The asymptotic power of the test for no cointegration in the full system is derived by Johansen (1995b,
Chapter 14). The power for the conditional analysis of the first component, given the last two, can
be derived correspondingly: also see Phillips (1988). Figure 10 shows that the asymptotic power of
the test in a conditional system is considerably higher than for the closed-system test, which explains
the tendency to find more cointegrating relations. Table 6 gives the adjustment coefficient for the first
cointegrating vector as approximately 0.1. The corresponding value ofb is 10 whenT = 100.

11 Conclusions

The determination of cointegration rank remains a subtle task, dependent on a number of modelling
considerations. The introduction listed many of these, and the paper concentrated on seven issues.

First, the treatment of the constant and a deterministic trend in the cointegration formulation. A
range of possible models was evaluated analytically and by Monte Carlo simulation. We found that
including an unrestricted trend was problematic, and could lead to excess rejection for ranks above that
in the DGP. However, a restricted trend in the cointegration space with an unrestricted constant produced
good power, and reasonable size. Moreover, the known asymptotic similarity of this case extended to
finite samples in our Monte Carlo, and the same formulation worked well even when the DGP was
a special case with no trend, and even no drift. Thus, we recommend commencing the analysis with
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Figure 10 Asymptotic power functions of the test for no cointegration at 5% in a closed and conditional
system,T = 400,M = 10000.

a linear trend restricted to the cointegration space and an unrestricted constant to ensure (asymptotic)
similarity to the nuisance parameters of these effects.

Next, concerning the choice of test statistic, there is a consistent rank-selection procedure for the
trace test, even for the extended set of models in§4.3. However, for the maximum eigenvalue test, the
consistency of the rank-selection procedure has not been established. For the model formulationsHl(r)
in Table 5, trace tests are asymptotically similar with respect to the values taken by the parameters of the
deterministic components (assuming theI(1) conditions are satisfied): see Nielsen and Rahbek (1998).
As this does not apply to the extended models, we recommend the sequential trace test based onHl(r).

Third, the asymptotic distributions of the test statistics under the null can be well approximated
by response surfaces for most case of practical concern. However, their adequacy as a guide to finite
samples depends on the unknown values of various nuisance parameters, particularly the presence of
roots close to making the processI(2). Existing finite-sample corrections based on degrees of freedom
need not work well, and often over-correct.

Concerning the treatment of impulse indicator variables, we strongly recommend that these be
entered unrestrictedly if they are used to establish an estimate of the innovation variance. We certainly
advise against their restriction to the cointegration space, and the Appendix suggested an explanation for
the results in Hendry and Doornik (1994). However, our analysis is incomplete, and requires extension
to other forms of dummy (such as step changes). Also, further analysis is needed of including the integ-
ral of a dummy in the cointegration space with the original unrestricted, as some forms of invariance, or
similarity, may be present, although new critical values will be needed.

We did not address the selection of lag length in this paper.
Restricted cointegration analysis to estimate identified cointegration relations is straightforward to

implement, and yielded interpretable results for our empirical example of UK M1. This allowed stand-
ard errors of the cointegration and the feedback coefficients to be calculated. Nevertheless, formal
identification depends on having an adequate number of restrictions to impose.

Considerable doubt remains as to whether the UK M1 data areI(1) or I(2). We first analyzed them
asI(1) in the space of real money, real expenditure, inflation and nominal net interest rates, and in earlier
research developed a congruent model of the four series. However, when (m, p, i, Rn) are treated as
I(2), two I(2) components have been found, and consistent with that result, when (m− p, ∆p, i,Rn) are
treated asI(2),oneI(2) component remains. Thus, reduction toI(0) involves polynomial cointegration,
with double differencing ofm− p. Nevertheless, the resulting model is essentially isomorphic to the
earlier specification – a plus for focusing on developing congruent representations.
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Finally, we considered recent research on modelling conditional, or ‘partial’ systems, and noted the
care needed to ensure coherent inference. If possible, it seems advisable to first model the complete
system, test for long-run weak exogeneity, and only model the conditional system if long-run weak
exogeneity is not rejected. This may increase the power of the trace test.
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12 Appendix: Some Analytical Results

12.1 Illustration of the models of trend behaviour

Test forHql(r) againstHql(n) when the DGP isHl(s)
Whenα′

⊥φ = 0, so the assumptionα′
⊥φ 6= 0 is not satisfied, the standard asymptotic distribution does

not apply. Instead, ifr < rank(π), then the power converges to unity; otherwise (r ≥ rank(π)), the
limit distribution of the trace test is given by the distribution of the sum of then−r smallest eigenvalues
of: ∫ 1

0
dBuF′

u

(∫ 1

0
FuF′

udu

)∫ 1

0
FudB′

u. (24)

HereBu is ann−rank(π) dimensional standard Brownian motion, andFu is Bu corrected for a linear
trend and a constant.

Simulations indicate that whenr = rank(π), the distribution in (24) is stochastically larger than
that forα′

⊥φ 6= 0 (given in Johansen, 1995b, Theorem 11.1 and Table 15.5). On the other hand, the
distribution is smaller than that which applies when testingHl(r) in Hl(n) (op. cit.,Table 15.4).

Test forHlc(r) againstHlc(n) when the DGP isHl(s)
The power of this mis-specified test converges to unity ifr < rank(π) − 1, and to a constant less than
unity if r ≥ rank(π) − 1, provided theI(1) conditions are satisfied. The constant depends on a number
of nuisance parameters, which we illustrate for a bivariate case.

Consider a bivariate DGP with one cointegrating vector and a restricted trend:

∆xt =

(
0 0
0 −1

)
xt−1 +

(
φ

0

)
+

(
0
ρ

)
t+ νt whereνt ∼ IN2[0, I].

The modelHlc is analysed by a two-step procedure. First,∆xt andxt−1 are corrected for the intercept,
giving the residualsR0 andR1:

R0 = ∆xt |1 =

{
ν1t − ν1t,

∆ν2t − ∆ν2t,

R1 = xt−1 |1 =

{
φ
(
t− t

)
+ ςt−1 − ς,

ρ
(
t− t

)
+ ν2t − ν2t.

whereςt =
∑t

i=1 ν1t. Next, the empirical canonical correlations ofR0 andR1 are found as the solutions
to the eigenvalue problem: ∣∣λS00 − S01S−1

11 S10

∣∣ = 0, (25)

whereSij = T−1R′
iRj (the product-moment matrices of the residuals).

For the asymptotic analysis, letBu be a univariate standard Brownian motion and let:

B =
∫ 1

0
Budu.

Further, forρ 6= 0, define:

A =

( (
φ2 + ρ2

)√
T 0

0 −ρ

)−1(
φ ρ

−ρ φ

)
,

so that:

AR1 =

{
1√
T

(
t− t

)
+ φ√

T (φ2+ρ2)
(ςt−1 − ς) + ρ√

T (φ2+ρ2)
(ν2t − ν2t) ,

(ςt−1 − ς) − φ
ρ (ν2t − ν2t) .
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and similarly forAR0.
Then, by the analysis of linear processes in Phillips and Solo (1992):

T−1AS11A′ D→
∫ 1

0

( (
u− 1

2

)(
Bu −B

) )( (
u− 1

2

)(
Bu −B

) )′
du,

AS10
D→


∫ 1

0

(
u− 1

2

)
dBu 0∫ 1

0

(
Bu −B

)
dBu φ/ρ

 ,

S00
P→

(
1 0
0 2

)
,

since:

T−3
∑(

t− t
)2 → ∫ (

u− 1
2

)2 du,
∑(

t− t
)
(ν2t − ν2t) = Op

(
T 3/2

)
,

T−5/2
∑(

t− t
)
(ςt−1 − ς) → ∫ (

u− 1
2

) (
Bu −B

)
du,

∑
(ςt−1 − ς) (ν2t − ν2t) = Op (T ) ,

T−2
∑

(ςt−1 − ς)2 → ∫ (
Bu −B

)2 du,
∑

(ν2t − ν2t)
2 = Op (T ) .

and

T−3/2
∑(

t− t
)
ν1t →

∫ (
u− 1

2

)
dBu,

∑(
t− t

)
∆ν2t = Op (T ) ,

T−1
∑

(ςt−1 − ς) ν1t →
∫ (
Bu −B

)
dBu,

∑
(ςt−1 − ς)∆ν2t = Op

(
T 1/2

)
,∑

(ν2t − ν2t) ν1t = Op

(
T 1/2

)
,

∑
(ν2t − ν2t) ∆ν2t = −T +Op

(
T 1/2

)
.

By substituting these asymptotic results into the eigenvalue problem (25), it can be shown that both
eigenvalues converge to zero at a rate of1/T . So when testingHlc (0), the power does not converge
to unity, but to a constant which is smaller than unity: compare with the power function for the test of
Hlc(1) in fig. 3. Moreover, the asymptotic distribution ofTλ1, Tλ2 depends on the ratioφ/ρ.

Figure 3 illustrates that, for certain values ofφ, the rejection frequency of the test ofHlc(rankπ−1)
could converge to a level which is larger than the nominal size. This is not generally the case for all
values ofφ. If actually φ = 0 andρ 6= 0, then the rejection frequency for the test ofHlc(0) against
Hlc(2) converges to zero. The reason is that the smallest eigenvalue converges to zero at rate1/T 2, and
the largest eigenvalue, normalized byT , converges to the asymptotic distribution of the test forHc(0)
againstHc(1) in a well-specified model. So, the test forHlc(0) againstHlc(2) for the above DGP has
the same asymptotic distribution, which is tabulated as the entry for one degree of freedom in Johansen
(1995b, Table 15.1). The postulated result is then found by comparison of this distribution with the
standard asymptotic distribution for the test forHlc(0) againstHlc(2) (op. cit.,Table 15.3).

Test forHc(r) againstHc(n) when the DGP isHl(s)
The first asymptotic observation concerning this test is that the power converges to unity ifr < rank(π)
and to a constant less than unity otherwise, provided that theI(1) conditions are satisfied. However, for
certain values of the nuisance parameter, the convergence of the test forHc(rankπ) is rather slow. This
feature is seen in fig. 3 for the test ofHc(1). The DGP of the previous argument is considered again.

The statistical analysis is based on the squared empirical canonical correlations of∆xt and the
vector ofxt−1 and 1. Because of invariance, the latter vector can be replaced by that ofxt−1 corrected
for 1, and 1. The new residual matrices are denotedS∗

ij. Now, defines0 as:

s0 =
1
T

T∑
t=1

∆xt =

(
φ

ρ

)
+

1
T

T∑
t=1

(
ν1,t

∆ν2,t

)
=

(
φ

ρ

)
+ Op

(
1/
√
T
)
,
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then:

S∗
11 =

(
S11 0
0 1

)
, S∗

10 =

(
S10

s′0

)
, S∗

00 = S00 + s0s′0,

so the eigenvalue problem is given by:

0 =
∣∣λS∗

00 − S∗
01S

∗−1
11 S∗

10

∣∣
=

∣∣(λ − 1) s0s′0 + λS00 − S01S−1
11 S10

∣∣ .
Thus, one eigenvalue converges to a non-zero constant, whereas the smallest, normalized byT , con-
verges to a distribution involving various nuisance parameters. It also follows that, ifs0s′0 is small
relative toS00, then the convergence of the largest eigenvalue could be rather slow.

A corresponding result holds for general processes as in (10). A more detailed representation of the
process than that given by Johansen (1995b, Theorem 4.2) yields:

s0
P→ Cφ − (CΓ + Ir)β(β′β)−1ρ,

whereC = β⊥(α′
⊥Γβ⊥)−1α′

⊥, and, for a process with two lags,Γ = −(In − Π + π): see Appendix
A of Rahbek and Mosconi (1998). For the DGP (17), bothρl andα′

⊥φc are rather small.

12.2 Dummies

12.2.1 Unit-root test in a model with an unrestricted dummy

It is of interest to find out whether the distribution of the test depends on the parameter of the dummy.
From the following analysis, it is concluded that the asymptotic distribution does not depend on a nuis-
ance parameter unless this parameter is of a size proportional to the square root of the sample size. Since
dummies are often used in connection with big outliers, this indicates that the finite-sample distribution
would be affected.

Consider the univariate DGP:

∆xt = ψ1{t=Tb} + νt where νt ∼ IN
[
0, σ2

ν

]
(26)

whent = 1, . . . , T and1 < Tb < T . The unit-root test is based on the squared correlation of∆xt and
xt−1 where both are corrected for1{t=Tb}. We setσ2

ν = 1.
The case of large dummies is considered first. Introduce the scaled parameterδ = ψ/

√
T and the

univariate Brownian motionBu. Then the asymptotic behaviour of the residual matrix, for fixedδ, is
given by:

S00 = 1
T

∑
t6=Tb

∆x2
t

P→ 1

S10 = 1
T

∑
t6=Tb

xt−1∆xt
D→

∫ 1

0
BudBu + δ (B1 −Bb) = G (say),

S11 = 1
T 2

∑
t6=Tb

x2
t−1

D→
∫ 1

0

(
Bu + δ1{u≥b}

)2
du = H (say).

(27)

In (27),B1 andBb are the values at full sample and the proportionb. Therefore the distribution of the
unit-root test is asymptotically equivalent to

Tλ = TS−1
00 S01S

−1
11 S10

D→ G2

H
.

This also indicates that for small dummies, for fixedψ, the usual asymptotic distribution without nuis-
ance parameters applies.
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12.2.2 Unit-root test in a model with a restricted dummy

A well-specified model of this type may lead to similar tests, although these are based on non-standard
distributions. A general model to consider in this case is given by:

∆xt = π′

 xt−1

1
1{t=Tb}

+ ψ∆1{t=Tb} + νt.

This would allow for processes with a ‘blip’ in all components at timeTb. However, to simplify the
algebra, we consider a simpler situation, where the conclusion is basically the same.

Consider the DGP:
∆xt = νt.

This will be analysed using the squared multiple correlation,λ, of ∆xt and the vector
(
xt−1, 1{t=Tb}

)
.

Due to invariance,xt−1 can be replaced byxt−1 corrected for the dummy. The residual matrices are:

S00 =
1
T

∑
t6=Tb

∆x2
t

P→ 1,

(
1 0
1 T

)
S10 =

(
1
T

∑
t6=Tb

xt−1∆xt

∆xTb

)
D→
( ∫ 1

0 BudBu

νTb

)
1
T

(
1 0
1 T

)
S11

(
1 0
1 T

)
=

(
1

T 2

∑
t6=Tb

x2
t−1 0

0 1

)
D→
( ∫ 1

0 B
2
udu 0

0 1

)
Consequently:

Tλ
D→
(∫ 1

0 BudBu

)2

∫ 1
0 B

2
udu

+ ν2
Tb
. (28)

This is the usual asymptotic unit-root statistic plus an extra term, which has an expected value of unity.
There are three points to be made.

First, the two asymptotic terms in (28) are independent. This is seen by noting thatxt =
∑t

i=1 νi

and introducingx∗t = xt − νTb
1{t≥Tb}. Then:

1
T

∑
t6=Tb

xt−1∆xt =
1
T

∑
t6=Tb

x∗t−1∆xt +
νTb√
T
T−1/2

∑
t>Tb

νt.

The first term is independent ofνTb
, whereas the second term is asymptotically negligible. Correspond-

ingly:
1
T 2

∑
t6=Tb

x2
t−1 =

1
T 2

∑
t6=Tb

x∗2t−1 +
2νTb√
T
T−3/2

∑
t>Tb

xt−1 +
ν2

Tb

T
T−1

∑
t>Tb

1.

Again the first term is independent ofνTb
, and the last two terms are asymptotically negligible.

Secondly, a model with (say) two dummies would result in the addition of an extra independent term
in (28), again with an expectation of unity. We checked this result using the Monte Carlo in§6.4 when
there were no breaks in the DGP. Figure 11 shows the rejection frequencies when restricting dummies
to the cointegration space, and increasing the number of impulses added to the model. The size of the
test ofr = 2 when rank(π) = 2 grows towards unity in this four-variable system. Indeed, the means
of the test statistics increased essentially linearly inn − r as Table 8 shows. The columns correspond
roughly ton, n− 1 andn− 2, as anticipated from (28).

Finally, the asymptotic distribution does not depend on the location in the sample of the dummy.
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Model: impulse dummies restricted, dummies at T=42,62,32,72,52

five dummies

DGP: H  (2)l

H(2): 5%

Figure 11 Rejection frequencies with restricted dummies in the model but none in the DGP.

Table 8 Increments in means of test statistics.

dummies Hl(0) Hl(1) Hl(2)
0 0.00 0.00 0.00
1 4.24 3.18 2.08
2 4.03 3.04 1.96
3 4.07 2.95 1.92
4 4.18 3.17 2.06
5 4.03 3.05 1.99

12.2.3 Unit-root test in a mis-specified model with a restricted dummy

This example illustrates a possible explanation for the results reported in Hendry and Doornik (1994,
Table 4): a dummy in the non-stationary component is modelled using a dummy which only occurs
in the cointegration space. The conclusion from the analysis below is quite dramatic. The asymptotic
distribution of the test depends on nuisance parameters, and in case of large dummies, the test is not
consistent.

Consider the DGP (26). This is analyzed using the squared multiple correlation,λ, of ∆xt and of
the vector

(
xt−1, 1{t=Tb}

)
. The results of§12.2.1 are therefore of relevance again. The residual matrices

are given by:

S∗
00 =

1
T

∑
t=Tb

∆x2
t

P→ 1 + ρ2, S∗
10 =

(
S10

∆xTb
/T

)
, S∗

11 =

(
S11 0
0 1

)
.
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Using the scaling matrix:

MT =

(
1/
√
T 0

0
√
T

)
,

for large values ofψ, i.e., fixed values ofδ = ψ/
√
T :

λ = S∗−1
00 S∗

01S
∗−1
11 S∗

10

= S∗−1
00 S∗

01MT (MT S∗
11MT )−1MTS∗

10

P→ (
1 + δ2

)−1

(
0
δ

)′(
G 0
0 1

)−1(
0
δ

)
= δ2

1 + δ2
,

so that the test statistic, which is asymptotically equivalent toTλ, diverges to infinity.
It can be seen that for small values of the dummy parameter, the asymptotic distribution of the test

involves a nuisance parameter.


