
 

  

 

Aalborg Universitet

Inference in hybrid Bayesian networks with Mixtures of Truncated Basis Functions

Langseth, Helge; Nielsen, Thomas Dyhre; Rumí, Rafael; Salmerón, Antonio

Published in:
Proceedings of the Sixth European Workshop on Probabilistic Graphical Models

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Langseth, H., Nielsen, T. D., Rumí, R., & Salmerón, A. (2012). Inference in hybrid Bayesian networks with
Mixtures of Truncated Basis Functions. In A. Cano, M. Gómez-Olmedo, & T. D. Nielsen (Eds.), Proceedings of
the Sixth European Workshop on Probabilistic Graphical Models (pp. 171-178). DECSAI, University of Granada.
http://leo.ugr.es/pgm2012/

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2022

https://vbn.aau.dk/en/publications/4b7e46aa-4391-4b1a-8f4c-267b9dd1d7e7
http://leo.ugr.es/pgm2012/


Inference in hybrid Bayesian networks with Mixtures of
Truncated Basis Functions

Helge Langseth
Department of Computer and Information Science

The Norwegian University of Science and Technology
Trondheim (Norway)
helgel@idi.ntnu.no

Thomas Dyhre Nielsen
Department of Computer Science

Aalborg University
Aalborg (Denmark)
tdn@cs.aau.dk

Rafael Rumı́
Department of Statistics and Applied Mathematics

University of Almeŕıa, Almeŕıa (Spain)
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Abstract

In this paper we study the problem of exact inference in hybrid Bayesian networks using
mixtures of truncated basis functions (MoTBFs). We propose a structure for handling
probability potentials called Sum-Product factorized potentials, and show how these po-
tentials facilitate efficient inference based on i) properties of the MoTBFs and ii) ideas
similar to the ones underlying Lazy propagation (postponing operations and keeping fac-
torized representations of the potentials). We report on preliminary experiments demon-
strating the efficiency of the proposed method in comparison with existing algorithms.

1 Introduction

Inference in hybrid Bayesian networks has
received considerable attention over the last
decade. In order to perform exact propaga-
tion in hybrid domains, the main challenge is
to find a representation of the joint distribution
that supports an efficient implementation of the
usual inference operators: marginalization, and
combination.

If the joint distribution belongs to e.g.
the class of conditional Gaussian distributions
(Lauritzen, 1992; Lauritzen and Jensen, 2001;
Olesen, 1993), then inference can be performed
exactly. However for this model class the con-
tinuous variables are assumed to follow a lin-
ear Gaussian distribution and the discrete vari-
ables are not allowed to have continuous par-
ents. The mixture of truncated exponentials
(MTE) model (Moral et al., 2001) does not im-
pose such restrictions, but instead allows con-
tinuous and discrete variables to be treated in a
uniform fashion. Furthermore, the MTE model
class supports both exact (Cobb et al., 2004)

and approximate inference methods (Rumı́ and
Salmerón, 2007). Recently, the mixtures of
polynomials (MOPs) model has been proposed
as an alternative to the MTE model (Shenoy
and West, 2011); the MOP model shares the ad-
vantages of MTEs, but it also provides a more
flexible way of handling deterministic relation-
ships among variables (Shenoy, 2011).

A more general approach for representing hy-
brid Bayesian networks has been introduced by
Langseth et al. (2012) in the form of the mix-
tures of truncated basis functions (MoTBFs)
model. MoTBFs are based on general real-
valued basis functions that includes exponen-
tial and polynomial functions as special cases.
Langseth et al. (2012) also show that efficient
algorithms can be devised for approximating
arbitrary probability density functions using
MoTBFs.

In this paper we explore the problem of exact
inference in hybrid Bayesian networks, where
the potentials are specified using MoTBFs. We
propose an algorithm that exploits properties of



the basis functions and makes use of the ideas
behind Lazy propagation in discrete networks
(Madsen and Jensen, 1999; Madsen, 2010), i.e.,
postponing operations as long as possible and
keeping factorized representations of the prob-
ability potentials. Preliminary experimental re-
sults show that the proposed algorithm provides
significant improvements in efficiency compared
to existing inference procedures for MTEs.

2 Preliminaries

The MoTBF potential was proposed by
Langseth et al. (2012) as an alternative to the
MTE and the MOP models, for which the ex-
ponential and polynomial functions are replaced
by the more abstract notion of a basis function.1

Definition 1. Let X be a mixed n-dimensional
random vector. Let Y = (Y1, . . . , Yd) and Z =
(Z1, . . . , Zc) be the discrete and continuous parts
of X, respectively, with c + d = n. Let Ψ =
{ψi(·)}

∞
i=0 with ψi : R → R define a collection

of real basis functions. A function f̂ : ΩX →
R
+
0 is a mixture of truncated basis functions

(MoTBF) potential of level k wrt. Ψ if one of
the following two conditions holds:

1. f̂ can be written as

f̂(x) = f̂(y, z) =
c
∏

j=1

k
∑

i=0

a
(j)
i,y ψi(zj), (1)

where a
(j)
i,y are real numbers.

2. There is a partitioning Ω1
X, . . . ,Ω

m
X of ΩX

for which the domain of the continuous
variables, ΩZ, is divided into hyper-cubes
such that f̂ is defined as

f̂(x) = f (l)(x) if x ∈ Ωl
X, (2)

where each f (l), l = 1, . . . ,m, can be writ-
ten in the form of Equation (1).

An MoTBF potential is a density if
∑

y∈ΩY

∫

ΩZ

f̂(y, z)dz = 1.

1We give a definition wich is slightly altered compared
to the orignal deinition by Langseth et al. (2012). This
subtle difference is introduced to simplify the following
deductions and will not have practical implications.

An MoTBF f(z1, z2,y) defined over the con-
tinuous variables Z1 and Z2 and the discrete
variables Y is a conditional MoTBF for Z1 if
∫

z1
f(z1, z2,y)dz1 = 1 for all z2 ∈ ΩZ2

and

y ∈ Ωy.
2 Following Langseth et al. (2012) we

assume that the conditioning variables only af-
fect the density through the hyper-cubes over
which the density is defined. Thus, for vari-
ables Z1 and Z2 with ΩZ2

partitioned into
Ω1
Z2
, . . . ,Ωm

Z2
we define the conditional MoTBF

density f(z1|z2,y) as:

f(z1|z2,y) =
c
∏

j=1

k
∑

i=0

a
(j)
i,y,l

ψi(z
(j)
1 ), (3)

for z2 ∈ Ωl
Z2
. Consequently, given a parti-

tioning of the conditioning variables z2, find-
ing a conditional MoTBF f(z1|z2) for a single
variable z1 reduces to specifying a collection of
univariate MoTBFs. By extension, specifying
the distributions of a hybrid Bayesian network
therefore involves univariate MoTBF potentials
only, and the form of the MoTBF potentials
simplifies to

f̂(z1|z2,y) =

k
∑

i=0

a
(1)
i,y,l ψi(z1),

for z2 ∈ Ωl
Z2
.

The approximation procedure described in
(Langseth et al., 2012) also assumes that the
basis functions Ψ are both legal and orthonor-
mal : If Q is the set of all linear combina-
tions of the members of a set of basis functions
Ψ = {ψi(·)}

∞
i=0, then Ψ is said to be a legal set of

basis functions if the following conditions hold:

• ψ0 is constant in its argument.

• If f ∈ Q and g ∈ Q, then (f · g) ∈ Q.

• For any pair of real numbers s and t, there
exists a function f ∈ Q such that f(s) 6=
f(t).

Clearly, the sets of basis functions {xi}∞i=0 and
{exp(−i · x), exp(i · x)}∞i=0 are legal and corre-
spond to examples of bases for the MOP and
MTE frameworks, respectively.

2For ease of presentation we disregard possible parti-
tionings of ΩZ1

.



When considering orthonormal basis func-
tions, we focus on the space L2[a, b] of quadrat-
ically integrable real functions over the finite
interval [a, b]. For two functions f(x) and g(x)
defined on [a, b] we define the inner product as

〈f, g〉 =

∫ b

a

f(x)g(x)dx,

and say that two functions are orthonormal if
and only if 〈f, g〉 = 0 and 〈f, f〉 = 〈g, g〉 = 1.
A set of non-orthonormal basis functions can
easily be orthonormalized using, for instance,
the Gram-Schmidt procedure.

In this paper we will often refer to MoTBF
potentials defined only over continuous vari-
ables. In such cases, we understand, unless
specified otherwise, that all the claims about
such potentials are extensible to those poten-
tials also containing discrete variables in their
domains, simply by having the claims hold
for each configuration of the discrete variables.
Furthermore, in the remainder of the paper we
assume a fixed set of m basis functions for
each continuous variable in the network, i.e.,
Ψ = {ψ0, ψ1, . . . , ψm−1}.

3

3 Operations over MoTBFs

There are three operations used by exact infer-
ence algorithms: restriction, combination, and
marginalization. The first operation is trivial
and is basically used to incorporate evidence
prior to the inference process, while the others
are used throughout the inference process.

Definition 2 (Combination). Let f1(y1, z1)
and f2(y2, z2) be MoTBF potentials defined over
the partitions P1 = {Ω1

Z1
, . . . ,Ωk1

Z1
} and P2 =

{Ω1
Z2
, . . . ,Ωk2

Z2
} of ΩZ1

and ΩZ2
, respectively:

fh(yh, zh) =

ch
∏

j=1

m−1
∑

i=0

a
(j)
i,y,lh

ψi(z
(j)
h ),

for zh ∈ Ωlh
Zh

(Ωlh
Zh

∈ Ph) and h = 1, 2. The
combination of f1 and f2 is a potential f (y, z)

3Note that any potential defined over a subset Ψ′ ⊆
Ψ can be represented by setting the coefficients of the
potentials in Ψ \Ψ′ to 0.

over Y = Y1 ∪Y2 and Z = Z1 ∪ Z2:

f (y, z) =

c1
∏

j=1

c2
∏

r=1

(
m−1
∑

i=0

a
(j)
i,y1,l1

ψi(z
(j)
1 )

(

m−1
∑

i=0

a
(r)
i,y2,l2

ψi(z
(r)
2 ))

(4)

for all z ∈ Ωl1
Z1

× Ωl2
Z2

and y ∈ Ωl1
Y1

× Ωl2
Y2

.

Observe that each factor in Equation (4) is
an MoTBF. If the products in Equation (4) are
not expanded any further, we call the operation
lazy combination, pointing out the fact that no
actual product is carried out; instead the factors
in the original potentials are concatenated in a
single list.

Definition 3 (Factorized potential). A poten-
tial defined over hyper-cubes, and where in each
hyper-cube the potential is defined as a list of
factors of the form given in Equation (4) is
called a factorized potential.

Generalizing the notion of lazy combination
to factorized potentials follows immediately.

Definition 4 (Marginalization of factorized po-
tentials). Let fZ be a factorized potential de-
fined for variables Z = {Z1, . . . , Zc} over hyper-
cubes ∪k

h=1Ω
h
Z. The result of marginalizing

out a variable Zj from fZ is a new poten-
tial defined on Z \ {Zj} over the hyper-cubes
∪k′

h=1Ω
h
Z\{Zj}

, where for each new hyper-cube

Ωh
Z\{Zj}

, h = 1, . . . , k′ (obtained by projecting

Ωh
Z onto Z \ {Zj}) the marginalized potential is

defined as

fZ\{Zj}
(z1, . . . , zj−1, zj+1, . . . , zc)

=
r
∑

l=1

∫

ΩZj

f (h,l)(z1, . . . , zc)dzj ,

where Ω1
Zj

∪ · · · ∪Ωr
Zj

is the partition of the do-

main of Zj in fZ and f (h,l) denotes the value of
potential fZ in hyper-cube Ωh

Z\{Zj}
× Ωl

Zj
.

Proposition 1. Let fZ be a factorized poten-
tial under the same conditions as in Defini-
tion 4. Then, for each hyper-cube Ωh

Z\{Zj}
,



h = 1, . . . , k′,

fZ\{Zj}
(z1, . . . , zj−1, zj+1, . . . , zc)

=

r
∑

l=1





∏

i 6=j

m−1
∑

s=0

a
(i)
s,·,(h,l)ψs(zi)



 .

Proof. By expanding the integral in Def. 4 we
get
∫

f (h,l)(z1, . . . , zc)dzj

=

∫ c
∏

i=1

(
m−1
∑

s=0

a
(i)
s,·,(h,l)ψs(zi))dzj

=
∏

i 6=j

(
m−1
∑

s=0

a
(i)
s,·,(h,l)ψs(zi))

∫ m−1
∑

s=0

a
(j)
s,·,(h,l)ψs(zj)dzj

=
∏

i 6=j

(
m−1
∑

s=0

a
(i)
s,·,(h,l)ψs(zi))(

m−1
∑

s=0

a
(j)
s,·,(h,l)

∫

ψs(zj)dzj).

Since the basis functions ψs, s = 0, . . . ,
m − 1 are orthonormal, it holds that
∫

ΩZj

ψs1(zj)ψs2(zj)dzj = 0 for any s1 6= s2 ∈

{0, . . . ,m − 1}. Moreover, taking into ac-
count that ψ0(zj) is a constant, it follows that
∫

ΩZj

ψs(zj)dzj = 0 for any s > 0. Furthermore,

if s = 0 we have that

a
(j)
0,·,(h,l)

∫

ΩZj

ψ0(zj)dzj = 1.

Hence,
∫

ΩZj

f (h,l)(z1, . . . , zc)dzj

=
∏

i 6=j

(

m−1
∑

s=0

a
(i)
s,·,(h,l)ψs(zi)

)

.

�

From Prop. 1 we see that the result of
marginalizing out a variable from a factorized
potential is not necessarily a factorized poten-
tial, but rather a sum of factorized potentials.
We therefore need to extend the concept of fac-
torized potentials in order to allow factorized
representations with respect to sums and prod-
ucts.

Definition 5 (SP factorized potential). Let
fZ be a potential defined for variables Z =
{Z1, . . . , Zc} over hyper-cubes ∪k

i=1Ω
i
Z. We say

that fZ is a Sum-Product (SP) factorized po-
tential if it can be written as

fZ(z) =
t
∑

j=1

f
(j)
Z (z), (5)

where t > 0 and f (j), j = 1, . . . , t, are factorized
potentials according to Definition 3.

Corollary 1. The result of marginalizing out
a variable from a factorized potential is an SP
factorized potential.

Proof. It follows directly from the proof of
Proposition 1. �

Definition 6 (Combination of SP factorized
potentials). Let

fXi
(xi) =

ri
∑

l=1

f
(l)
Xi

(xi) for i = 1, 2

be two SP factorized potentials over variables
X1 and X2, respectively. The combination of
fX1

and fX2
is a new potential over variables

X1,2 = X1 ∪X2 defined as

fX1,2
(x1,2) =

r1
∑

l=1

r2
∑

m=1

f
(l)
X1

(x1)f
(m)
X2

(x2). (6)

Proposition 2. The combination of two SP
factorized potentials is another SP factorized po-
tential. That is, the class of SP factorized po-
tentials is closed under combination.

Proof. Notice that each summand in Equa-
tion (6) is a product of two factorized potentials,
which is itself a factorized potential. Therefore,
the result of the combination is a sum of factor-
ized potentials, and that is, by definition, an SP
factorized potential. �

Definition 7 (Marginalisation of SP factorized
potentials). Let

fZ(z) =
r
∑

l=1

f
(l)
Z (z)



be an SP factorized potential defined for vari-
ables Z = {Z1, . . . , Zc} over hyper-cubes
∪k
h=1Ω

h
Z. The result of marginalizing out a

variable Zj from fZ is a new potential defined
on Z \ {Zj} over the hyper-cubes ∪k′

h=1Ω
h
Z\{Zj}

:

f(z1, . . . , zj−1, zj+1, . . . , zc)

=
r
∑

l=1

f
(l)
Z\{Zj}

(z1, . . . , zj−1, zj+1, . . . , zn),

where f
(l)
Z\{Zj}

, l = 1, . . . , r, are computed ac-

cording to Definition 4.

Proposition 3. The class of SP factorized po-
tentials is closed under marginalization.

Proof. As an SP factorized potential is a sum
of factorized potentials, marginalizing out one
variable consists of marginalizing it out in each
of the factorized potentials where the variable
appears. From Prop. 1 we know that the result
of marginalizing out one variable from a factor-
ized potential is an SP factorized potential. �

4 Inference in BNs with MoTBFs

Consider an MoTBF model with discrete vari-
ables Y = {Y1, . . . , Yd} and continuous vari-
ables Z = {Z1, . . . , Zc}. Probabilistic inference
in such a BN can be carried out using stan-
dard propagation algorithms that rely on sum
and product operations, as the SP factorized
MoTBF potentials are closed under product and
marginalization.

For ease of presentation and analysis of the
results, we formulate the inference process for
MoTBFs using the classical variable elimina-
tion algorithm. This algorithm is designed to
compute the posterior distribution over a tar-
get variable W ∈ X. It is based on sequentially
eliminating the variables in (X \E) \ {W} (ac-
cording to the minimum size heuristic with one
step look ahead) from the potentials contain-
ing them. The elimination of a variable from
a set of potentials is carried out by i) combin-
ing the potentials containing the variable and
ii) marginalizing out that variable from the re-
sult of the combination. If not stated otherwise,
we shall assume that if two variables X1 and

X2 have the same parent Z, then ΩZ is parti-
tioned identically in the specification of the two
MoTBF potentials for X1 and X2.

The complexity of the inference process is
determined by the size of the potentials con-
structed during inference. The next proposition
gives the size (the number of factors) resulting
from combining a set of potentials, according to
the combination operation described in Def. 6.

Proposition 4. Let f (1), . . . , f (h) be h SP fac-
torized potentials, and let Yi, Zi, i = 1, . . . , h,
be the discrete and continuous variables of each
of them. Let Z = ∪h

i=1Zi = {Z1, . . . , Zj}, and
let nl, l = 1, . . . , j, be the number of intervals
into which the domain of Zl is split. If ΩYi

is
the set of possible values of the discrete variable
Yi, then it holds that

size(f (1) · · · f (h)) ≤

∏

Yi∈
h
∪

i=1

Yi

|ΩYi
|

j
∏

l=1

nl

h
∏

l=1

sl

h
∑

l=1

tl,
(7)

where sl and tl, l = 1, . . . , h are, respectively,
the maximum number of summands and the
maximum number of factors in each summand,
in potential f (l) (see Definition 5).

Proof. The first factor is justified by the fact
that for each possible configuration of the dis-
crete variables, there is an MoTBFs parame-
terization corresponding to the continuous vari-
ables. The second factor comes from the defi-
nition of combination in Definition 2, and the
fact that the set of possible split points is fixed
for each variable. Finally, the third and fourth
factors also follow directly from Definition 6. �

Proposition 4 gives an upper bound on the
size of the SP factorized potentials resulting
from a combination of factors. We see a signifi-
cant reduction in size with respect to the bound
given in (Rumı́ and Salmerón, 2007, Proposi-
tion 6) for the particular case of MTEs:

size(f (1) · · · f (h)) ≤
∏

Yi∈
h
∪

i=1

Yi

|ΩYi
|

j
∏

l=1

n
kl
l

h
∏

l=1

tl,

(8)



where kl, l = 1, . . . , h, is the number of con-
tinuous variables in f (l) and in this case, tl,
l = 1, . . . , h is the number of exponential terms
of the potential in each hyper-cube of f (l). The
differences between Equations (7) and (8) lie in
the last three and two terms respectively. The
difference in the second terms implies a signifi-
cant reduction in size, and is based on the fact
that we assume that the points in which the do-
main of each variable is split is selected from a
fixed set of points. Under such an assumption,
the number of intervals involved in the domain
of a variable that appears in several potentials
being combined, never increases after carrying
out a combination. Note that if a potential rep-
resents a conditional MoTBF, only the domain
of the conditioning variables is split and thus
the corresponding term in the product would
be equal to 1.

Regarding the third and forth terms, in Equa-
tion (7), they give the number of factors or uni-
variate MoTBFs stored in each resulting hyper-
cube, while in Equation (8), the third factor
gives the number of exponential terms in each
resulting hyper-cube. Therefore, as we are as-
suming that the number of summands, m, is
the same for every variable, the third factor in
Equation (8) could be replaced by mh, while
the number of summands reported by Equa-
tion (7) would be (

∏h
l=1 sl)(

∑h
l=1 tl)m, which

grows more slowly than mh, except for trivial
cases. For instance, combining two univariate
MoTBFs, would result in a potential with 2m
summands, while the same operation with tra-
ditional combination of MTEs would yield a po-
tential with m2 exponential terms.

5 Experimental evaluation

In order to evaluate the proposed MoTBF-based
inference procedure, we used the Variable Elim-
ination algorithm for doing inference in a set of
randomly generated networks where the number
of continuous variables ranges from 4 to 24 (with
increments of 2). The goal is to measure the
increase in efficiency obtained by the MoTBF
approach in comparison to inference using clas-
sical combination and marginalization of MTEs

(Moral et al., 2001). That is, we want to mea-
sure the impact, in terms of efficiency, of using
SP factorized potentials and their correspond-
ing operations instead of traditional potentials
and their operations. Note that all the meth-
ods considered here carry out exact inference,
i.e. they obtain exactly the same marginals, and
therefore the only differences are in terms of effi-
ciency. The results can be extrapolated to other
formalisms compatible with the MoTBF frame-
work, like MOPs (Shenoy and West, 2011). One
advantage of choosing the MTE model as straw-
man framework in the experiments is the avail-
ability of the Elvira software (Elvira Consor-
tium, 2002) that implements the MTE model.
As the novelties of the approach proposed in
this paper concentrate on the handling of con-
tinuous variables, we have not included discrete
variables in the networks.

The networks have been constructed by ran-
domly assigning a number of parents to each
variable, following a Poisson distribution with
mean 2. In order to guarantee an increase in
network complexity as the number of variables
grows, each new network is built by adding vari-
ables to the previous one. For instance, the net-
work with 6 variables is obtained by randomly
adding 2 variables to the already generated net-
work with 4 variables, and so on. We assumed
that in each hypercube of every conditional dis-
tribution the domain of the child variable is not
split (see Eq. (3)). Also, all the univariate po-
tentials contained in the networks correspond to
1-piece and 7-terms MoTBF approximations of
the standard Gaussian density (within the range
[−2.5, 2.5]) found using the procedure described
in (Langseth et al., 2012) based on exponential
basis functions. The domains of the variables
were split in two parts, using the mid point of
the interval and keeping the split point of the
variable fixed for all distributions in which they
appear.4 This also ensures that no new hyper-
cubes are constructed by the combination oper-
ator, thereby reducing complexity during infer-
ence.

4For the MoTBF framework this only pertains to the
conditioning variables, since the domain of a head vari-
able is not partitioned.



#vars M-vars A-vars VE[MoTBF] VE[MTE]

4 4 2.7 0.0084 2.730
6 5 3.1 0.0094 300.909
8 5 3.2 0.0048 342.770
10 5 3.3 0.0050 363.877
12 6 3.7 0.0218 —
14 9 4.1 0.0482 —
16 11 4.7 0.2129 —
18 12 5.0 0.5462 —
20 12 5.0 0.9508 —
22 14 5.6 3.4464 —
24 14 5.7 9.1388 —

Table 1: Average run time per variable (in sec-
onds) of the variable elimination algorithm us-
ing the MoTBF approach (VE[MoTBF]) and
the same algorithm using classical combination
and marginalization (VE[MTE]). #vars indi-
cates the number of variables in the network, M-
vars is the maximum number of variables in the
potentials used during the variable elimination
algorithm, and A-vars is the average number of
variables in the above mentioned potentials.

The results are shown in Table 1, where the
average time used to run the variable elimina-
tion algorithm for each variable in the network
is displayed. Empty cells in the table indicate
that the algorithm ran out of memory during
inference in the corresponding network (2.5GB
allocated). The label VE[MoTBF] refers to the
proposed variable elimination algorithm using
the MoTBF approach (based on SP factorized
potentials), while the label VE[MTE] indicates
the same algorithm, but with traditional com-
bination and marginalization. In all the tested
cases, the proposed algorithm provides a signif-
icant improvement in efficiency, which is more
evident as the number of variables increases. In
fact, VE[MTE] is not able to obtain any results
for networks with more than 10 variables.

With the experiment described above, we
have illustrated the increase in efficiency when
doing MoTBF-based inference as compared to
the MTE approach. However, the use of SP-
factorized potentials also carry over to the tra-
ditional MTE framework; this entails lifting
the restriction of having a fixed set of possi-
ble split points for the variables, allowing split

points in the domains of child variables in con-
ditional distributions, and not being able to ex-
ploit the properties of the basis functions. In or-
der to analyze this modified inference algorithm,
we designed a second experiment in which the
split points for the variables in each potential
were chosen at random. Also, instead of using
MTE approximations of the Gaussian density,
we used randomly generated MTEs with 10 ex-
ponential terms. The results of this experiment
are displayed in Table 2, where we see a signif-
icant increase in efficiency for all the network
sizes, supporting the use of SP factorized po-
tentials even for the classical MTE framework.

#vars M-Vars A-Vars VE[MTE]L VE[MTE]

4 3 2.5 0.0408 25.538
6 5 2.8 0.0209 431.836
8 5 2.6 0.0274 329.008
10 6 3.1 0.3432 —
20 9 4.0 1.7602 —

Table 2: Average run time per variable (in
seconds) of the lazy variable elimination algo-
rithm (VE[MTE]L) and the same algorithm us-
ing classical combination and marginalization
(VE[MTE]) with randomly generated MTE dis-
tributions and split points. #vars, M-vars and
A-vars have the same meaning as in Table 1.

In both experiments, the benefits of using the
new framework are significant. The gain in effi-
ciency, however, is not only caused by postpon-
ing the operations or by keeping the potentials
in a factorized form. An important contribution
to the improvement is due to the fact that basis
functions are defined only over one variable. In
previous MTE inference algorithms exponential
functions could be defined over several variables
as the products were actually carried out. This
involved dealing with linear functions in the ex-
ponents (represented as lists of variables and
factors in the implementation) and consume a
relatively large part of the run time of the in-
ference algorithm.

6 Conclusions

In this paper we have developed the necessary
tools for carrying out inference with MoTBFs.



The efficiency of the MoTBF-based inference
procedure comes from the use of SP factorized
potentials, the properties of the basis functions,
and the fact that the domains of the child vari-
ables in the conditional distributions are not
split. We have shown how the basic operations
necessary for inference are compatible with SP
factorized potentials.

The gain in efficiency with respect to the
classical MTE approach has been illustrated
through an experimental analysis based on a
version of the variable elimination algorithm op-
erating with MoTBFs. We have also tested the
use of SP factorized potentials within the clas-
sical MTE approach. In both cases, the results
of the experiments indicate that the gain in ef-
ficiency is significant.

We have only reported on experiments over
networks formed by continuous variables. The
impact of incorporating discrete variables is ex-
actly the same in all the algorithms consid-
ered in this paper. We leave for future work
a more extensive experimentation incorporating
discrete variables.
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