
UC Irvine
ICS Technical Reports

Title
Inference in inheritance networks using propositional logic and constraint networks 
techniques

Permalink
https://escholarship.org/uc/item/6vx3b61d

Authors
Ben-Eliyahu, Rachel
Dechter, Rina

Publication Date
1992
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6vx3b61d
https://escholarship.org
http://www.cdlib.org/


Inference in Inheritance Networks

using Propositional Logic and
Constraint Networks Technique^

Rachel Ben-EIiyah^
ra ch el(§cs .ucla.edu

Cognitive Systems Laboratory
Computer Science Department

University of California, Los Angeles, CA 90024

Rina Dechter

dechteri^ics. uci. edu

Information and Computer Science
University of California, Irvine, CA 92717

Technical Report 92-64

May, 1992

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

63

no. ^>-6/

Appeared in the Proceedings of the Canadian AI Conference-92., Vancouver.

This work was supported in part by Air Force Office of Scientific Research, AFOSR 900136,
NSF grant IRI-9I57636, by GE Corporate R&D and by Toshiba of America.



Inference in Inheritance Networks using Prepositional Logic and
Constraint Networks Techniques

Rachel Ben-EIiyahu
rachei^cs. ucla.edu

Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, California 90024

Abstract

This paper focuses on network default theo
ries. Etherington [Etherington, 1987] has es
tablished a correspondence between inheritance
networks with exceptions and a subset of Re-
iter s default logic called network default the
ories, thus providing a formal semantics and a
notion of correct inference for such networks.
We show that any such propositional network
default theory can be compiled in polynomial
time into a classical propositional theory such
that the set of models of the latter coincides
with the set of extensions of the former. We
then show how constraint satisfaction tech
niques can be used to compute extensions and
to identify tractable network default theories.
For any propositional network theory, our algo
rithms compute all its extensions and verifies if
a given conclusion is in one or all extensions.

1 Introduction

Research in multiple inheritance networks has focused
on two main issues: developing fast algorithms that will
operate on the network links to produce conclusions that
match our intuition, and providing formal semantics for
such networks. Clearly, thesecond iscrucially important
for adequate evaluation of the correctness of the first.

Etherington [Etherington, 1987] had approached the
semantic issue by formalizing inheritance networks,
called network default theories, within Reiter's default
logic. While his framework has been criticized for de
manding all exceptions be listed explicitly, his approach
is still valuable in that it embeds the notion of inheri
tance within this general and widely studied framework
of default logic.

Our paper focuses on the computational aspects of
such network theories. We first present a necessary and
sufficient condition for their coherence, namely, for de
ciding whether or not they have an extension. Then,
using constraint satisfaction techniques, we present effec
tive schemes for computing the extensions for any such
network. In contrast, Etherington's procedure is only
applicable to a subclass of networks theories called "or
dered network theories". .Moreover, the complexity of
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our schemes is related to the sparseness of the nei works,
as captured by the parameter of induced width.

The approach leading to these results has already been
applied to the subclass of propositional disjunction-free
semi-normal default theories [Ben-EIiyahu and Dechter
1991a]. We have shown there that any such default the
ory can be compiled in polynomial time into a preposi
tional theory, such that each of its models corresponds
to an extension of the default theory. Constraint net
work techniques are then applied to compute extensions
and to identify, analyze and solve tractable subclasses of
this default logic. A generalization of this approach to
network theories requires allowing size-two disjuncrions
in the default theory.

Our results pave the way for applying constraint net
works techniques to logic programming as well since it
has been shown that there is a one-to-one correspon
dence between stable models of logic programs and ex
tensions ofeach of their default interpretations [Geifond
and Lifschitz, 1990]. Elkan [Elkan, 1990] has also shown
that stable models of a logic program with no classical
negation can be represented as models of propositional
logic.

The paper is organized as follows: in section 2 w»
briefly introduce default logic and inheritauice networks
In section 3 we describe how tasks of default theories are
mapped into equivalent tasks inpropositional logic. This
mapping is exploited in section 4 where we present new
procedures for query processing and identify tractable
classes using constraint networks techniques. Section 5
provides concluding remarks. Due to space considera
tions all proofs are omitted. For more details see [Ben-
EIiyahu and Dechter, 1991b].

2 Default logic and inheritance
networks

2.1 Reiter*s default logic

Following is a brief introduction to Reiter's default logic
[Reiter, 1980]. Let £ be a first order language. Adefault
lAeoryis apair A = (D. W), where D is a set of defaults
and W is a set of closed wffs (well formed formulas) in
C. A default is a rule of the form a : 0i, • where

and y are formulas in C. The intuition behind
a default can be; if I believe o, and I have no rt^ason !(>



believe that one of the 3i is false, then I can believe 7
Adefault a : 3/^ is norms/ if7 sr/?. Adefault is jemi^
normalxjxi is mthe form at : J A7/7. Adefault theory
IS closed if all the first order formulas in D and W are
closed.

The set ofdefaults D induces an extension on W. In
tuitively an extension is a maxima! set offormulas that
can be deduced from W using the defaults in D. Let
Lh(L) denote the logical closure of E in C. We use the
following definition of an extension;
Definition 2.1 ([Reiier, 1980],theorem S.I ) Lei ECC
/r" -^ = (D, W) Ae a doseddefault lAeory. Define^

• £0 = W

. For i > 0 = Th(E,) U {7|a : € D
where a e Ei and ^ £;}.

^ iff for some ordering E =
Ui=0^» ^

Most tasks on a default theory A can be formulated
using one of the following queries:
Coherence: Does A have anextension ? Ifso, find one.
Set-Membership; Given a set offormulas 5, Is 5 con

tained in some extension of A?

Set-Entailment: Given a set of formulas 5, Is 5 con
tained in every extension of A?

In this paper we show how, for a subclass called "net
work default theories", the above queries can be reduced
to propositional satisfiability.

2.2 Inheritance networks and network default
theories

The following brief introduction is adopted from [Ether-
ington, 1987] and [Touretzky, 1984].

Inheritance networks are a knowledge representation
scheme in which the knowledge is organized in a tax-
onomic hierarchy, thus allowing representational com
pactness. If many individuals share a group ofcommon
properties, an abstraction of those properties is created
and all those individuals can "inherit" from that abstrac
tion. Inheritance from multiple classes is also allowed.

Usually, the inheritance network is a directed graph
whose nodes represent individuals and abstractions
( classes ), and whose arcs denote relations between
those nodes. The most common relations are "IS-A"
and "ISN'T-A".

Consider the following information:
• Mammals are warm-blooded.

• Dolphins are mammals.

• Flipper is a dolphin.
This information can be encoded in the inheritance net-

1 (where a solid arrow represents
an IS-A relation). A reasonable conclusion would be
that Flipper is warm-blooded.

When exceptions to inheritance are allowed, the infer
ence in those systems becomes non-monotonic, namely,
conclusions might change in light of new evidence. Sup
pose we start with the following set of axioms:

'.Vote the appearance of £ in the formula for £,+1.

Flipper

O
Dolphins

-o
Warm-blooHeH

Figure I: An inheritance network with no exceptions

Mammals

Dolphins Live-on-iand

^ O
Warm-bloode

Figure 2: An inheritance network with excepti is

• Mammals are warm-blooded.
• Mammals live on land.

• Dolphins are mammals.

• Dolphins do not live on lamd.
This is an example ofan inheritance network wi cx-

«ption: dolphins are mammals who live in the v ter
The network in figure 2represents this knowledge ( an-
celed arrows denote "ISN'T-A" relation). Given tl in
formation that Flipper is a mammal, we will con ide
that he lives on land, but the additional evidence hai
he IS a dolphin will force us to retract that conch 1011
and adopt the belief that he does not live on land-

Etherington [Etherington, 1987] proposed a sub us
ofdefault theories called "network default theories in
short, '̂ network theories") as suitable to provide foi lal
semantics and a notion ofsound inference for those n-
works:

Definition 2.2 (Network default theory;/EMennj n.
1987] Adefault theory A is a network default theori ff
it satisfies the following conditions:

• W con/ains onlg:
~ iitemls (i.e atomic formulae or their ne •.

tions), and
- dw;«nc(j o//Ae/orm(aV/?) where a and i , •

literals.

• D contains onlg normal and seminormal defaults of
the form: o :/?//? or a :/? A71 A when
3 and fi are literals. •

^This coaclusion is supported by the coBvention ihai
a subclass override those of a super-class.



El.. gton suggests a ^rmaliie inheritance
relations in network theories. His translation is as fol
lows;

Strict IS-A: As arc always B's". Etherington sug
gests translating this to the first-order formula
Vz.A(z)—S(*). Since we restrict our treatment
to propoeitional theories, we will translate this link
to the propoeitional rule schema A(jr)—B(r).

Membership: "The individual a belongs to the class
A". This is represented by the fact A(a) (which
denotes here a propoeitional literal).

Strict ISN T-A: "A's are never B's". Ethering
ton translates this to the first-order formula

We will translate this link to
the propoeitional rule schema A(r)—-•fl(z).

Nonmembership: "The individual a does not belong
to the class A". This is represented by the fact
-A(a).

Default IS-A: "A's are normally B's, but exceptions
are allowed". This can be represented by the default
rule schema A(r} : B{z)/B{x).

Default ISN'T-A: "Normally A's arc not B's, but ex
ceptions are allowed". This can be represented by
the default rule schema A(r) ; -'S(z)/-<B(x).

Exception: "Normally A's are (not) B's, unless they
have at least one of the properties Ct,..., Cn"• This
translates to the default rule schema A{r) : B{x) A
-Ci{x)A...A^Cn{x)/B(x)
{A{x): -B(z) A-C,(x) A... A^Cnix)/^B{x) )

Example 2.3 The inheritance network in figure 2 will
be translated to the foUowtng network theory:
Pj _ j M^malfzJ Ltves-on'land(z)A-^Dolphtnefx)

LtveS'On'land(z)
Dolphtnefz) "LtveS'On'landfz).

-< Ltves-on'landfz) '
= { Doiphine(z)^-'\fammal(z),

\fammal(z)^-»Warm-blooded{z) } •
An extension of a network theory then corresponds to

a set of coherent conclusions one could draw from the in
heritance network it represenu. Thus all the queries de
fined above (coherence, set-membership, set-entailment)
are still very relevant when dealing with network theo
ries. Etherington has a nondeterministic procedure to
compute an extension of a default theory. If the the
ory is what he cadis an ordered network theory, then his
procedure is guaranteed to produce an extension.

In the sequel we will show a procedure that computes
all extensions for any prepositional network theory. In
fact, we deal with a superclass in which the prerequisite
of a default is a conjunction of literals rather than just
a single literal. We will assume, w.l.g., that W is con
sistent, since when W is inconsistent, the extension is
the inconsistent one. We also assume w.l.g. that each
default has a single literal as a consequent.

3 Definitions and preliminaries
We denote propoeitional symbols by upper case letters
P.Q,i2..., propoeitional literals (i.e. P,-^P)by lower case

letters p,q,r.... clauses by c.cj The number of lit
erals in the clause c is denoted by |c|.

The operator ^ over literals is defined as follows; If
P = ^Q. = Q, U p - Q then = ^Q. If ^ = q
J/y is a default, we define pre(^) = a. just(^) = i and
concl(5) = y.

Given a set of formulas 5 and a formulae. means
that wis provable from premises S, and S^w means thai
5 entailsw- i.e. that every model ofS satisfies was well.
For prepositional formulas, SVw iff 5^w, hence we wdl
use these notations interchangeably.

The logical closure of a set of formulas 5 is the set
{wjSVui}. We denote by TH{S) the logical closurt of a
set of formulas 5.

An extension of a default theory is a logically closed
set of formulas. How do we compute the logical closure
of a set ofclauses? Since the logical closure is an infinite
set, we will not be able to compute the closure in a finite
time. However, if the initial set of clauses is finite, we
can compute a set which will represent the logical clo
sure using the notion of pnme implicants as presented
by Reiter and de Kleer (Reitcr and de Kleer, 1987):
Definition 3.1 A pnme impltcant ofa set S ofclause*
IS a clause c such that

1. and

2. there ts no proper subset of c such that
Given a set of formulas 5, S+ will denote the set of its

prime implicants. As Reiter and de Kleer note, a brute
force method of computing S* is to repeatedly resolve
pairs of clauses of 5, add the resolvents to S, and delete
subsumed clauses, until a fixed point is reached^. There
are some improvemenU to that method, but it is clear
that the general problem is NP-Hard since it also solves
satisfiability. Nevertheless, for 8ize-2 clauses the prime
implicants can be computed in polynomial time since a
resolvent of two clauses of size < 2 is also of size < 2.

The following proposition suggests that for network
theories it is enough to consider extensions of a network
theory containing clauses ofsize one or two only:
Proposition 3.2 Lei E' be an eztenston of a network
theory, and lei E' = {cjc 6 EMc| < 2}. Then E'
contains all pnme implicants of E'. •

We say that a set of clauses E satisfies the precondi
tions of 6 if pre(j) € Th(£') and the negation ofiu8t(i)
is not in Th^E). We say that E satisfies a default 6 ifit
does not satisfy the preconditions of 6 or else, it satisfies
its preconditions and Th(£') contains its conclusion.

A proofof a clause c w.r.t. a givenset of clauses E and
a givennetwork theory A =s (D, W) is a sequence of rules
<5i,..., 5ni n > 0, such that the following three conditions
hold:

1. c€ Th(W(J{concl(5i) concl(6n)})
2. For all 1 < t < n, the negation of just(^,) is not in

Th(^).

3. For all 1 < t < n, pre(j,) is a subset of
Th(WU{concl(51),..., conci(ii_ i)} )•

^It is clear (hat this method will not generate all the tau
tologies, but it is easy to handle this exception.



The following lemma is instrumental throughout the pa
per:

Lemma 3.3 Th(E) is an ezienston of a network theory
A iff rA(£')is a logtcal closure of a set ofclauses E thai
satisfies:

1. WCE

2. E satisfies each rule in D.

I For each clause c e E, there ij a proof ofc in E.

We define the dependency graph Gfo W) ofa network
theory to be a directed graph constructed as follows:
Each literal p appearing in D or in W is associated with
a node, and an edge is directed from p to r iff there is
a default rule where p appears in its prerequisite and r
is its consequent or there is a clause p—r in W. An
acyclic network theory is one whose dependency graph is
acyclic, a property that can be tested linearly.

4 Compiling a network theory into a
propositionai theory

In this section we show how we can compile a given net
work theory A into a propositionai theory V\ such that

^ model iff A has an extension, antJvice-versa,
every model o(V^ has a corresponding extension for A.

The common approach for building an extension,
(used by Etherington [Etherington. 1987). Kauts and
Selman [Kautz and Selman, 199l], and others), is to in
crement W using rules from D. We make a declarative
account of this process by formulating the conditions of
lemma 3.3 as a set of constraints that the default theory
impose on the set of its extensions. This frees us from
worrying about ordering, however, it requires adding a
constraint guaranteeing that if a formula is in the exten
sion, then it has a non-circular proof. To enforce this
restriction, we associate an index variable with each lit
eral in the transformed language, and require that p is in
the extension only if it is the consequent of a rule whose
prerequisite's indexes are smaller. Elkan (Elkan, 1990]
used thesame technique to insure that thejustifications
supporting a node in a TMS are noncircular.

Let #p stand for the "index associated with p", and
let k be its number of values. These "multi-valued vari
ables" (as opposed to prepositional variables which are
bi-valued) can be expressed in propositionai logic using
additional 0{k^) clauses and literals (see [Ben-Eliyahu
and Dechter, 1991b]). For simplicity, however, we will
use the multi-variable notations, viewing them as abbre
viations to their propositionai counterparts.

Let C be the underlying propositionai language ofA.
For each prepositional symbol in C, we define two prepo
sitional symbols, Ip and I-^p. For each pair ofliterals p
and g in £ , we define the symbol /pv,. We get a new
^t of symbols : C = {Ip, Up\P € C}\J {/^v,|p.9 € C).
Intuitively, Ip stands for "P is in the extension", /-.p
stands for is in the extension", and /pv^ means that
p V^ is in the extension". For notational convenience

Ip and /pvp will stand for the same propositionai letter
(same for /^pv, and /p—.,).

Procedure translate-l(A)
1. Compute the set of prime implicant.s of W
2. For each c€ put I, into V^.
3. For each p g in Wadd Ip—/, into
4. For each •i3/p ^ D, add in(a) Acons{.i] — to

A- g
5. For each p^ do the following ; "

Let Cp = {[in(gi A^j...a a cons( J)1

I dd € D such that A= a q^... a q„ . J/p }
Let Lp = {[in(^) A < ^pj] |g—.p g
Let Sp = CpULp.
If Sp is not empty then add to Vk the formula

Else, ifSp = 0add ^Ip to P^.
6. For each pV, ^ p/ add into P_^

Figure 3; Algorithm to compile a network theory into a
propositionai theory

To further simplify the notation we use the notions of
in(w)^snd con«(w) that stand for "w is in the extension",
and w is consistent with the extension", respectively.
Formally, in(w) and con«(u/) are defined as follows:

• ifw= p then in(u/) = /p, con«(w) =
• ifw = pVg then in(u/) = /pv^.
• ifw = Pi Ap3A...Ap„, then in(w) = m(pi }A/»j(pn),^

... A m(p„), cons{i^) =
(Note that pi A... Ap„ is "consistent with the ex--
tension" iff-"(pi A...Ap„] is not in the extension ifil
(since all prime implicants are of size < 2) for ail
». J. --Pi V—p^ is not in the extension.)

Procedure translate*1 in figure 3 compiles any net
work theory over C into a propositionai theory over C"
This translation requires adding n index variables, n be
ing the number of literals in C, each having ai mosi
n values. Since expressing an tnequaltiy in proposi
tionai logic requires O(n') clauses, and since there ar.
at most n possible inequalities per default, the result
ing size of this transformation is bounded by 0(|0|n^)
propositionai sentences. Note also that the roinpl.-xiis
of generating is at most O(n^).

The following theorems summarize the properties of
our transformation. In all of them, is the set of ^n
tenccs resulting from translating a given network
A using translate-1.

Theorem 4.1 Let A be a network theory. Suppo%i T*
IS satisfiable and B is a model for V\, and hi h -
{c|^(/c) = true).
Then:

1. E contains all Us prime implicants.
S. Th(E) is an extension of A. •



Tbeorciii 4.2 Let Th(E)6e an extension for Then
there is a model Q for such that 9(1^) = true iff
c € Th(E) and |c| < 2. •

The above two theorems suggest a necess&ry and suffi-
cient condition for the coherence ofa network theory:
Corollary 4.3 A network theory has an extension iff

IS satisfiable. •

For the next corollaries, we define for each clause c a
formula prime(c) as follows: if c = pi Vp2 v ... v p„
pnme(c) = a)/p.vp,I
Corollary 4.4 A set of clauses, C, is contained in an
extension ofA iff there is a model for Vk which satisfies
the set {pmme{c)\c € C}.

Corollary 4.5 A clause c is in every extension ofa net
work theory iffV^^pnme{c). •

These theorems suggest that we can first translate
a given network theory A to and then answer
queries as follows: to test if A has an extension, we
test satisfiability of to sec if a set S of clauses
is a member in some extension, we test satisfiability

^AU{P'"'"*®(<^)k € 5}: and to see if 5 is included
in every extension, we test if entails the formula
[Ac65prime(c)].

Example 4.6

Consider again the network theory from example 2.3 to-
pther with theevidence that Flipper isa mammal (pred
icates are abbreviated by their initials; parameters are
omitted since Flipper is the only individual):

D = {Af : I A^D/L, D : ^L/^L)
W= {D M,M—m,M}
This is an acyclic network theory, thus no indices are
required. When translating A to we get:

= W\J{Wb, D—Wb}
^A= {

following step 2:
Ld —A/, Im —w*. Iwh, Im, lo—wh

following step 3:
Id—Im, iM^^Iwh, lo—^Iwh

following step 4:
Im a a ^Io a -^I-l^d—^Il,
Id a -'Il—*I->l

following step 5:
Il—*Im a -iUl a -^Id a -"/-.ivD.
I^l—'Id a -^Ii, "^Um, "'Id, "•/-.£>, "•/-.W4

followingstep 6:
—Wb,

D—Wb}]

This set of sentences has only one model in which all and
only the following literals are true:

lM,Iwh,lL, Id~~*m, Im—>wi, Id—••wi

which correspond to the extension

Th{{M, Wb, L, D~M, M—Wb})

Exsonple 4.7

Suppo« we add the information that Flipper is adolphin
to what we knew in the previous example. This amounts
to adding the proposition D to W. So we have to take
-/d out of P^and add Iq to Px. The model for P <
is: ^ -*

lo.lM.Iwi. Ul.Id—Im—wi. Id— wh
which corresponds to the extension

Th({D. M, Wb, ^L. D—.Vf, \f — ti'6})
which is the only extension.

4.1 An improved translation

Procedure translate-l can be improved. If a prerequi
site of a rule is not on a cycle with its consequent, we
do not need to index them, nor enforce the partial or
der among their indices. Thus, we need indices only for
literals which reside on cycles in the dependency graph
Furthermore, since we will never have to solve cyclicit)
between two literals that do not share a cycle, the range
of the index variables is bounded by the maximum num
ber of literals that share a common cycle In fact, we
show that the index variable's rauige can be bounded
by the maximal length of an acyclic path in any strongly
connected component in G(D.wy The strongly-connected
components of a directed grapn are a partition of its set
of nodes such that for each subset C in the partition,
and for each y € C, there are directed paths from t to
y and from y to x in G. This improvement is discussed
in detail in [Ben-Eliyahu and Dechter. I991b].

5 Tractable network default theories

Processing the network theory using our approach re
quires two steps: first, compile the default theory into
a prepositional theory, and then solve satisfiability. We
have shown that the first step is tractable. The second
step, however, is known to be NP-complete in general.
In this section we show how propositional satisfiability
can be regarded as a constraint satisfaction problem, and
how techniques borrowed from that field can be used to
solve satisfiability and to identify tractable subsets of
propositional and network theories.

In general, constraint satisfaction techniques exploit
the structure of the problem through the notion of a
'constraint graph'*. For a propositional theory, the con

straint graph (also called a "primal constraint graph")
associates a node with each propositional letter and con
nects any two nodes whose associated letters appear in
the same clause. Various graph parameters have been
shown as crucially related to solving the satisfiability
problem. These include the induced width, w'. the jui
of the cycle-cutset, the depth ofa depih-first-search jpan-
ning tree of this graph and the Jtr« of the non-separabU
components. It can be shown that the worse-case com
plexity of deciding consistency is polynomially hounded
by any one of these parameters.

Since these parameters can be bounded easily by sim
ple processing of the given graph, they can be used
for assessing tractability ahead of time. For itiMtance.



Figure 4: Interaction graph for the theory presented in
example 4.6

when the constraint graph is a tree, satisfiability can
be determined in linear time. In [Ben-Eliyahu and
Dechter, 1991a) we have demonstrated the potential of
this approach using one specific technique called Trtt-
CUsUnng [Dechter and Pearl, 1989], customized for
solving propositional satisfiability, and emphasized itsef
fectiveness for maintaining a default database. We have
also characterized the tractabilityof the default theories
as a function of the induced widih"^ u;*, of their interac
tion graph. We next generalize those results for network
theories:

The interaction graph of a network theory is an undi
rected graph where each literal in the theory isassociated
with a node, and for each p and for every 6= a : '3/p in
D. every ? € a and every such that r 6 there are
arcs connecting all of them into one clique with p. Also,
for each p—g in W, there is an arc between p and g.
Theorem 5.1 A network theory who$e interaction
graph has an induced width w* can decide existence,
membership and entaiiment in 0(n • when the
theory is acyclic andO(n"''+2) u,A«n tAe theory is cyclic.

Example 5.2

Consider the set generated in example 4,6. The in
teraction graph is as shown in figure 4 (isolated nodes
are omitted). This graph is already chordal, and if we
take the ordering ^D,^L,LM,D,Wwe see that xv' < 3,
and sothis network theory belongs to a class ofnetworks
for which the queries we posed can be answered in time
bounded by exp(4). According to Stillman's classifica
tion [Stillman, 1990] this network theory belongs to a
class whose membership problem is NP-complete. •

6 Summary and conclusions

We have presented a necessary and sufficient condition
for coherence of prepositional inheritance theories, pro-

The width ofa node in an ordered graph is the number
of edges connecting it to nodes lower in the ordering. The
width of an ordering is the maximum width of nodes in that
ordering, and the width of a graph U the minimal width of
ah Its ordenngs. The induced width is the width of the graph
after it was completed to be a chordal graph.

^A graph is chordal if every cycle of length at least four
has a chord.

v.ded a procadur. that computa. an axtenaion. and ,d.n-
t had tractable sub«ta of natworii default theona. The
algcntbrn hindlaa mambarabip and entaiiment queries
as well. Specifically, we have shown that network theo
ries whose topologies have bounded induced width can
be processed in polynomial time w.r.t. this parameter

Our approach is to compile a network theory into a
propositional theory such that the set of models of the'
latter coincides with the set of extensions of the for-
rner. Consequently, questions of coherence, member-
ship and entaiiment on the network theory are equiva
lent to propositional satisfiability. This brings problems
in non-monotonic reasoning into the familiar arenas of
both propositional satisfiability and constraint satisfac
tion problems. Although we use here a two-step transla
tion (from inheritance networks to default theories and
then to propositional theories), it is easy to see that
we can translate the inheritance network direrriv into
a propositional theory.

Our work adds to previous research on network the
ories and inheritance reasoning. Etherington [Ethering-
ton. 1987] has shown a sufficient condition for coherence
and printed aprocedure that computes an extension of
ordered network theories only. Stillman [Stillman, 1990]
has shown that the membership problem for proposi
tional network theories is NP-Complete and claimed to
have polynomial algorithms for solving membership of a
single literal in restricted subsets of network theories.

In the future we intend to extend our approach to han
dle preferred extensions, as formulated by Etherington
and Touretzky [Tourctzky. 1984], namely, to use only
norrnal default rules, and define a partial order on the
proof sequences. Using constraint network techniques
we hope to show that a most preferred extension can be
obtained with the same complexity as those for finding
an arbitrary one. In [Ben-Eliyahu and Dechter. I99lb]
we show how this approach can be applied to anv .lefault
theory.
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