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INFERENCE IN LINEAR TIME SERIES MODELS WITH SOME 
UNIT ROOTS 

BY CHRISTOPHER A. SIMS, JAMWS H. STOCK, AND MARK W. WATSON1 

This paper considers estimation and hypothesis testing in linear time series models when 
some or all of the variables have unit roots. Our motivating example is a vector autoregres- 
sion with some unit roots in the companion matrix, which might include polynomials in 
time as regressors. In the general formulation, the variable might be integrated or 
cointegrated of arbitrary orders, and might have drifts as well. We show that parameters 
that can be written as coefficients on mean zero, nonintegrated regressors have jointly 
normal asymptotic distributions, converging at the rate T'/2. In general, the other 
coefficients (including the coefficients on polynomials in time) will have nonnormal 
asymptotic distributions. The results provide a formal characterization of which t or F 
tests-such as Granger causality tests-will be asymptotically valid, and which will have 
nonstandard limiting distributions. 

KEYwoRDs: Cointegration, error correction models, vector autoregressions. 

1. INTRODUCTION 

VECTOR AUTOREGRESSIONS have been used in an increasingly wide variety of 
econometric applications. In this paper, we investigate the distributions of least 
squares parameter estimators and Wald test statistics in linear time series models 
that might have unit roots. The general model includes several important special 
cases. For example, all the variables could be integrated of order zero (be 
"stationary"), possibly around a polynomial time trend. Alternatively, all the 
variables could be integrated of order one, with the number of unit roots in the 
multivariate representation equaling the number of variables, so that the vari- 
ables have a VAR representation in first differences. Another special case is that 
all the variables are integrated of the same order, but there are linear combina- 
tions of these variables that exhibit reduced orders of integration, so that the 
system is cointegrated in the sense of Engle and Granger (1987). In addition to 
VAR's, this model contains as special cases linear univariate time series models 
with unit roots as studied by White (1958), Fuller (1976), Dickey and Fuller 
(1979), Solo (1984), Phillips (1987), and others. 

The model and notation are presented in Section 2. Section 3 provides an 
asymptotic representation of the ordinary least squares (OLS) estimator of the 
coefficients in a regression model with "canonical" regressors that are a linear 
transformation of Y, the original regressors. An implication of this result is that 
the OLS estimator is consistent whether or not the VAR contains integrated 
components, as long as the innovations in the VAR have enough moments and a 
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revised version of two earlier papers, "Asymptotic Normality of Coefficients in a Vector Autoregres- 
sion with Unit Roots," March, 1986, by Sims, and "Wald Tests of Linear Restrictions in a Vector 
Autoregression with Unit Roots," June, 1986, by Stock and Watson. 
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zero mean, conditional on past values of Y,. When an intercept is included in a 
regression based on the canonical variables, the distribution of coefficients on the 
stationary canonical variates with mean zero is asymptotically normal with 
the usual covariance matrix, converging to its limit at the rate T1V2. In contrast, 
the estimated coefficients on nonstationary stochastic canonical variates are 
nonnormally distributed, converging at a faster rate. These results imply that 
estimators of coefficients in the original untransformed model have a joint 
nondegenerate asymptotic normal distribution if the model can be rewritten so 
that these original coefficients correspond in the transformed model to coeffi- 
cients on mean zero stationary canonical regressors. 

The limiting distribution of the Wald F statistic is obtained in Section 4. In 
general, the distribution of this statistic does not have a simple form. When all 
the restrictions being tested in the untransformed model correspond to restric- 
tions on the coefficients of mean zero stationary canonical regressors in the 
transformed model, then the test statistic has the usual limiting x2 distribution. 
In contrast, when the restrictions cannot be written solely in terms of coefficients 
on mean zero stationary canonical regressors and at least one of the canonical 
variates is dominated by a stochastic trend, then the test statistic has a limiting 
representation involving functionals of a multivariate Wiener process and in 
general has a nonstandard asymptotic distribution. 

As a special case, the results apply to a VAR with some roots equal to one but 
with fewer unit roots than variables, a case that has recently come to the fore as 
the class of cointegrated VAR models. Engle and Granger (1987) have pointed 
out that such models can be handled with a two-step procedure, in which the 
cointegrating vector is estimated first and used to form a reduced, stationary 
model. The asymptotic distribution theory for the reduced model is as if the 
cointegrating vector were known exactly. One implication of our results is that 
such two-step procedures are unnecessary, at least asymptotically: if the VAR is 
estimated on the original data, the asymptotic distribution for the coefficients 
normalized by T1l2 is a singular normal and is identical to that for a model in 
which the cointegrating vector is known exactly a priori. This result is important 
because the two-step procedures have so far been justified only by assuming that 
the number of cointegrating vectors is known. This paper shows that, at a 
minimum, as long as one is not interested in drawing inferences about intercepts 
or about linear combinations of coefficients that have degenerate limiting distri- 
butions when normalized by T1l2, it is possible to avoid such two-step proce- 
dures in large samples. However, when there are unit roots in the VAR, the 
coefficients on any intercepts or polynomials in time included in the regression 
and their associated t statistics will typically have nonstandard limiting distribu- 
tions. 

In Sections 5 and 6, these general results are applied to several examples. 
Section 5 considers a univariate AR(2) with a unit root with and without a drift; 
the Dickey-Fuller (1979) tests for a unit root in these models follow directly from 
the more general results. Section 6 examines two common tests of linear restric- 
tions performed in VAR's: a test for the number of lags that enter the true VAR 
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and a "causality" or predictability test that lagged values of one variable do not 
enter the equation for a second variable. These examples are developed for a 
trivariate system of integrated variables with drift. In the test for lag length, the F 
test has a chi-squared asymptotic distribution with the usual degrees of freedom. 
In the causality test, the statistic has a x2 asymptotic distribution if the process is 
cointegrated; otherwise, its asymptotic distribution is nonstandard and must be 
computed numerically. Some conclusions are summarized in Section 7. 

2. THE MODEL 

We consider linear time series models that can be written in first order form, 

(2.1) Yt = AYt- + G l212t (t = l9. . . T)q 

where Yt is a k-dimensional time series variable and A is a k x k matrix of 
coefficients. The N x 1 vector of disturbances { t) } is assumed to be a sequence 
of martingale differences with E t = 0 and E[qtq ' ---, = IN 
for t = 1, .. ., T. The N x N matrix Q1/2 is thought of as the square root of the 
covariance matrix of some "structural" errors Q1/2 qt- The k X N constant matrix 
G is thought of as known a priori, and typically contains ones and zeros 
indicating which errors enter which equations. Note that because N might be less 
than k, some of the elements of Y, (or more generally, some linear combinations 
of Yt) might be nonrandom. It is assumed that A has k1 eigenvalues with 
modulus less than one and that the remaining k - k1 eigenvalues exactly equal 
one. As is shown below, this formulation is sufficiently general to include a VAR 
of arbitrary finite order with arbitrary orders of integration, constants and finite 
order polynomials in t. The assumptions do not, however, allow complex unit 
roots so, for example, seasonal nonstationarity is not treated. 

The regressors Yt will in general consist of random variables with various 
orders of integration, of constants, and of polynomials in time. These compo- 
nents in general are of different orders in t. Often there will be linear combina- 
tions of Yt having a lower order in probability than the individual elements of Yt 
itself. Extending Engle and Granger's (1987) terminology, we refer to the vectors 
that form these linear combinations as generalized cointegrating vectors. As long 
as the system has some generalized cointegrating vectors, the calculations below 
demonstrate that T-PYYY' will converge to a singular (possibly random) limit, 
where p is a suitably chosen constant; that is, some elements of Yt will exhibit 
perfect multicolinearity, at least asymptotically. Thus we work with a transforma- 
tion of Yt, say Zt, that uses the generalized cointegrating vectors of Y, to isolate 
those components having different orders in probability. Specifically, let 

(2.2) Z,= DYt. 

(Note that in the dating convention of (2.1) the actual regressors are Yt> or, after 
transforming by D, Zt-1.) The nonsingular k x k matrix D is chosen in such a 
way that Zt has a simple representation in terms of the fundamental stochastic 
and nonstochastic components. Let {' = Et= 1% and let (j be defined recursively 
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by t/ = E=t ., so that V is the N-dimensional driftless random walk with 
innovations , and {, is the j-fold summation of ,. The transformation D is 
chosen so that 

(2.3) 

ztl Zt Z4 

zt2g 
z2g+l 

Fll(L) 0 0 0 ... 0 0 

F21(L) F22 0 0 ... 0 01 

F31(L) F32 F33 0 ... 0 0 
- | F41(L) F42 F43 F ... 0 0 t 

F2g,1(L) '2g,2 *2g,2g 0 
F2g+?1,1( L ) F2g+1,2 F2g+ 1,2g F2g+1,2g+1 Lt 

-F(L)v,t 
where L is the lag operator and v, = ... * ')'. Note that the stochastic and 
deterministic elements in v, alternate and that v, has dimension (g + 1)N + g. 
The variates v, will be referred to as the canonical regressors associated with Y,. 
In general, F(L) need not be square even though D will be. In addition, for 
specific models fitting in the general framework (2.1), some of the rows given in 
(2.3) will be absent altogether. 

The lag polynomial Fll(L) has dimension k, x N, and it is assumed that 
El OF,,jF,'lj is nonsingular. Without loss of generality, Fjj is assumed to have 
full row rank kj (possibly equal to zero) for j = 2,... ,2g + 1, so that k j=llkj. 
These assumptions ensure that, after appropriate rescaling, the moment matrix 
YZ,Z,' is (almost surely) invertible-i.e., no elements of Z, are perfectly multicol- 
inear asymptotically-so that the OLS estimator of AD` is unique. 

From (2.2) and (2.3), it is clear that D must be chosen so that its rows select 
linear combinations of Y, that are different orders in probability. Thus some of 
the rows of D can be thought of as generalizations of cointegrating vectors: 
partitioning D = [D,' D,g+1]', so that Z/ = DjY,, D, forms a linear combina- 
tion of Y, such that Z1 has mean zero and is Op(l); D2 forms a linear 
combination with mean F22 that is also Op(1). The linear combinations formed 
with D3 are Op(t1/2), those formed with D4 are Op(t), and so on. In this 
framework these linear combinations include first differences of the data, in 
addition to including cointegrating vectors in the sense of Engle and Granger 
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(1987). The row space of D1,..., D2g is the subspace of Ik spanned by the 
generalized cointegrating vectors of Y,. 

Derivation of (2.2) and (2.3) from the Jordan Form of A 

Specific examples of (2.2) and (2.3) are given at the end of this section and in 
Sections 5 and 6. As these examples demonstrate, D and F(L) in general are not 
unique, although the row spaces of D1, [D1I D2?]', etc. are. This poses no difficulty 
for the asymptotic analysis; indeed, it will be seen that only the blocks along the 
diagonal in F(L) enter into the asymptotic representation for the estimator and 
F statistic. This nonuniqueness means that in many cases a set of generalized 
cointegrating vectors can be deduced by inspection of the system, and that F(L) 
is then readily calculated. For completeness, however, we now sketch how (2.2) 
and (2.3) can be derived formally from the Jordan canonical form of A. 

Let A = B - 'JB be the Jordan decomposition of A, so that the matrix J is 
block diagonal with the eigenvalues of A on its diagonal. Suppose that the Jordan 
blocks are ordered so that the final block contains all the unit eigenvalues and no 
eigenvalues less than one in modulus. Let J4 denote the k, x k, block with 
eigenvalues less than one in modulus, let J2 denote the (k - kl) x (k - kl) block 
with unit eigenvalues, and partition B conformably with J so that B = (B1I B')'. 
The representation (2.2) and (2.3) can be constructed by considering the linear 
combinations of Y, formed using B. Let Z,1 = B1Y,. These definitions and (2.1) 
imply that 

(2.4) Zt = J1Ztl- 1 + BlGS2ll2,qt. 

Because the eigenvalues of J4 are less than one in modulus by construction, Zt' is 
integrated of order zero and the autoregressive representation (2.4) can be 
inverted to yield 

(2.5) Ztl = Fjj(L) 77, 

where Fll(L) = (I - JL)- 'BGQ1/2. Thus (2.5) provides the canonical represen- 
tation for the mean zero stationary elements of Zt. 

The representation for the integrated and deterministic terms comes from 
considering the final Jordan block, J2. This block in general has ones on the 
diagonal, zeros or ones on the first superdiagonal, and zeros elsewhere; the 
location of the ones above the diagonal determines the number and orders of 
the polynomials in time and integrated stochastic processes in the representation 
(2.3). The structure of this Jordan block makes it possible to solve recursively for 
each of the elements of B2Yt. Because J2 consists of only ones and zeros, each 
element of B2Y, will be a linear combination of polynomials in time and of 
partial sums of { ( }. Letting F denote the matrix of coefficients expressing these 
linear combinations, one obtains the representation for the remaining linear 
combinations of Y,: 

(2.6) B21=Fi, where ^t=(lft t2f ... {g, , 
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Elementary row and column operations need to be performed on (2.6) to put F 
into the lower reduced echelon form of (2.3). Let D be the (k - kl) x (k - kl) 
invertible matrix summarizing these row and column operations, so that 

7]2 [ ... 

(2.7) [t<D] = DB2I' - .i . tF+- 

z2g+ 1 F~~2g+ 1,2 * 2g+ 1,2g+l1 

The representation (2.2) and (2.3) obtains from (2.5) and (2.7). Let 

(2.8) D:= [ JB and F(L)== [F < ]' 

where vt= ( it)' as in (2.3). Combining (2.5), (2.7), and (2.8) yields 

(2.9) Z'= DYt= F(L)Pt, 

which is the desired result. 
This derivation warrants two remarks. First, when an intercept is included in 

the regression, D can always be chosen so that F21(L) =0 in (2.3). Because 
excluding an intercept is exceptional in applications, it is assumed throughout 
that F21(L) = 0 unless explicitly noted otherwise. Second, it turns out that 
whether Fjl(L) = 0 for j > 2 is inessential for our results; what matters is that 
these lag polynomials decay sufficiently rapidly. When D is obtained using the 
Jordan form, (2.8) indicates that these terms are zero. Because D is not unique, 
however, in practical applications (and indeed in the examples presented below) 
it is often convenient to use a transformation D for which some of these terms 
are nonzero. We therefore allow for nonzero Fjl(L) for j>2, subject to a 
summability condition stated in Section 3. 

Stacked Single Equation Form of (2.2) and (2.3) 

The first order representation (2.1) characterizes the properties of the regres- 
sors Yt. In practice, however, only some of the k equations in (2.1) might be 
estimated. For example, often some of the elements of Yt will be nonstochastic 
and some of the equations will be identities. We therefore consider only n S k 
regression equations, which can be represented as the regression of CYt against 
yt- 1, where C is a n x k matrix of constants (typically ones and zeros). With this 
notation, the n regression equations to be estimated are: 

(2.10) CYt = CAYtl> + CG2l/2'qt. 

Let S = CYt, A = CA, and 21/2= CGf21/2 (so that 21/2 is n x N). Then these 
regression equations can be written 

(2.11) St = t_1+ El/2t. 

The asymptotic analysis of the next two sections examines (2.11) in its stacked 
single equation form. Let S = [S2 S3 *.. ST], 1 = [2 13 ... 21Tl', X = 
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[Y1 Y2 ... YTT-1]" s = Vec(S), v = Vec(7q), and c3= Vec(A'), where Vec( ) de- 
notes the column-wise vectorization. Then (2.11) can be written 

(2.12) 5S= [In ( X]f + [21/2 IT]v 

The coefficient vector 8 corresponding to the transformed regressors Z = XD' is 
8 = (In ? D,' ')1. With this transformation, (2.12) becomes 

(2.13) S = [In ? Z] 8 + [21/2 IT_]V. 

Thus (2.13) represents the regression equations (2.10), written in terms of the 
transformed regressors Z,, in their stacked single-equation form. 

An Example 

The framework (2.1)-(2.3) is general enough to include many familiar linear 
econometric models. As an illustration, a univariate second order autoregression 
with a unit root is cast into this format, an example which will be taken up again 
in Section 5. Let the scalar time series variable x, evolve according to 

(2.14) x, = B0 + lxt-1 + 2xt2 +qt (t = 1, ..., T), 

where 7, is i.i.d. (0,1). Suppose that a constant is included in the regression of x, 
on its two lags, so that Y, is given by 

-x, - J1 i2 B0 -Xt- 1 -1 

(2.15) Yt xtl 1 0 i X][2 + [] 

Suppose that Bo = 0, f31 + ,2= 1, and 1 321 < 1, so that the autoregressive polyno- 
mial in (2.14) has a single unit root. Following Fuller (1976) and Dickey and 
Fuller (1979), because Po = 0 (2.14) can be rewritten 

(2.16) x, = (f31 + #2)x,t-1 - 2(xt1 - x-2) + 7 

so that, since ,1 + /2 = 1, xt has an AR(1) representation in its first difference: 

(2.17) Ax, = -32AX,t1 +qt, 

Although the transformation to Zt could be obtained by calculating the Jordan 
canonical form and eigenvectors of the companion matrix in (2.15), a suitable 
transformation is readily deduced by inspection of (2.16) and (2.17). Because x, 
is integrated and Ax, is stationary with mean zero, (2.16) suggests letting 
Ztl = Ax,, Zt2 = 1, and Zt3 = x,. Then k,=k2=k3=1 and (2.14) can be rewrit- 
ten 

(2.18) x = 81Z + 82 t7 1 + 83 Z,t1 +q t, 

where 81 =-2, 82 = Po, and 83 = #1 + /2- In the notation of (2.10), (2.18) is 
CYt = (CAD'-)Zt1 + 7,, where C = (1 0 0), 21/2 = 1 and A is the transition 
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matrix in (2.15). The transformed variables are Z, = DYE, where 

1 -1 0 
D= 0 0 1 

1 0 0 

The transformed coefficient vector is CAD1 = (81 82 83) = 8'; note that ,B-D'8. 
A straightforward way to verify that D is in fact a suitable transformation 

matrix is to obtain the representation of Z, in terms of vt. Write Ax, = 

O(L)'q,, where @(L) = (1 + /2L)1-, and use recursive substitution to express 
as xt= 0(1)41 + 0*(L)7qt, where 0j* = -E0=?101 (ie 0*(L) = 

(1-L)-1[O(L) - 0(1)]). Thus for this model (2.3) is: 

-ztl - (L) O o -i 

(2.19) z2= 0 1 0 1[1 
LZt3K [*(L) A 0(1) J: 

3. AN ASYMPTOTIC REPRESENTATION OF THE OLS ESTIMATOR 

We now turn to the behavior of the OLS estimator 8 of 8 in the stacked 
transformed regression model (2.13), 

(3.1) 8 = (In ? Z'Z) (In ? Z)5S 

The sample moments used to compute the estimator are analyzed in Lemmas 1 
and 2. The asymptotic representation of the estimator is then presented as 
Theorem 1. Some restrictions on the moments of 'q, and on the dependence 
embodied in the lag operator {Fjl(L)} are needed to assure convergence of the 
relevant random matrices. For the calculations in the proofs, it is convenient to 
write these latter restrictions as the assumption that { Fjl(L)} are g-summable as 
defined by Brillinger (1981). These restrictions are summarized by: 

CONDITION 1: (i) 3 some 4 < Xo such that E(qit) < t4, i = 1, ..., N. (ii) 
FJ=O jgl Fmljl < xo, m =1...,2g + 1. 

Condition 1(ii) is more general than necessary if (2.2) and (2.3) are obtained 
using the Jordan canonical form of A. Because Fll(L) in (2.3) is the inverse of a 
finite autoregressive lag operator with stable roots, (ii) holds for all finite g for 
m = 1; in addition, (ii) holds trivially for m > 1 when Zt is based on the Jordan 
canonical representation, since in this case Fml(L) = 0. Condition 1(ii) is useful 
when the transformation D is obtained by other means (for example by inspec- 
tion), which in general produce nonzero Fml(L). In the proofs, it is also assumed 
that { iq } = 0, s < 0. This assumption is a matter of technical convenience. For 
example, ZO, i = 1, 3,5,.. ., 2g + 1 could be treated as drawn from some distribu- 
tion without altering the asymptotic results. (For a discussion of various assump- 
tions on initial conditions in the univariate case, see Phillips (1987, Section 2).) 
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The first lemma concerns sample moments based on the components of the 
canonical regressors. Let W(t) denote a n-dimensional Wiener process, and let 
Wm(t) denote its (m - 1)-fold integral, recursively defined by Wm(t)= 

fo'Wml(s) ds for m > 1, with W1(t) W(t). Also let =o denote weak conver- 
gence of the associated probability measures in the sense of Billingsley (1968). 
Thus: 

LEMMA 1: Under Condition 1, the following converge jointly: 

(a) T-(m+P+J1/2)JTtmfP=foltmWP(t)'dt, m > O, p > 1, 

(b) T-W(m(+P)ET m P''*olWmt)WP(t) dt, m, p ? 1, 

(c) T (m+P+)Y,Ttm+p -4 (m +p + 1)-1, m, p > 0, 

(d) T-(P+ 'i I + 1 =* JolJtPdW(t), p > 0, 

(e) T-pyT-1p,',+?1 => foWP(t) dW(t), p > 1, 

()T- E(Fm1(L?),q(Fp1(L),1t)t P F=O Fm1jFp1jq 
m ,p = 19 . .. , 2g+ 1, 

(g) T-(P+ /2)tP(Fm1(L),qJ = ml(I)fotdW ) 
p=O,...,g;m=1,...,2g+1, 

(h) T-PE,T(,P(Fm1(L),qJ)t Kp + fo'WP(t) dW(t)tEm1(I) 
f 

p = I1,..., g; m =I 1...,92g+ 1; 

where Kp = Fml(l)' if p = I and Kp = O if p = 2, 3,. ..,g. 

Similar results for m, p < 2 or for N = 1 have been shown elsewhere (Phillips 
(1986, 1987), Phillips and Durlauf (1986), Solo (1984), and Stock (1987)). The 
proof of Lemma 1 for arbitrary m, p, N relies on results in Chan and Wei (1988) 
and is given in the Appendix. 

Lemma 1 indicates that the moments involving the different components of Z, 
converge at different rates. This is to be expected because of the different orders 
of these variables; for example, (tP is of order Op(tP-1/2) for p = 1,2,... To 
handle the resultant different orders of the moments of these canonical regres- 
sors, define the scaling matrix, 

T1/2Ik1 

T112Ik2 0 

o Tg-/TIk3 

TgIkg 
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In addition, let H denote the nk X nk "reordering" matrix such that 

In X 1 

H( In eI Z' ) 1 
In? Z2g+ 

where ZJ= XDj'. Using Lemma 1, we now have the following result about the 
limiting behavior of the moment matrices based on the transformed regressors, 
Zt. 

LEMMA 2: Under Condition 1, the following converge jointly: 
(a) r,-1Z'TZrT-1 V, where 

Vil = F-0 F1jF=o j 

V12 = V2F1 = Yj=OFlljF2lj 

V1P=VP,, = 0, P = 3F ..., 2g+ 1, 

V22 = F222F22 + EoYOF21jF21j9 

Vmp = Fmm JW(m -2)/2( t) W(p-1)/2(t) dtF,, 

m= 3,5,7,...,2g+ 1; p= 3,5,7,...,2g+ 1, 

V = F 1Ot(m-1l)/2W(p- 1)/2( tpp=Vt 

m = 2,4,6,...,2g; p = 3,5,7,...,2g+ 1, 

2 
VMP=p + m-2FmmFpp m = 2,4,6,...,2g; p = m + 2,...,2g. 

(b) H(In ? T- 1)(In ? Z')(21/2? IT1)V =k, where 'k= (444 4 * 2' t 
where 

5m = Vec [FmmJfW(m-)/2(t)d W(t) '1/2t] m = 3,5,7, ..., 2g + 1, 

Om = Vec [FmmJolt(m-2)/2 dW(t)'11/2I, m=4,6, ..., 2g, 

02= 21 + 229 where 422 = Vec [F22W(1) 21/2t] and 

[p21 -4 -N(O, I), where 'I= [ V T 
( V22-F22F) 

and where (41, 421) are independent of (422 k39 ... 9 *2g+1)* If F21(L) = 0, 42 = 422 
and 421 does not appear in the limiting representation. 
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The proof is given in the Appendix.2 
Lemma 2 makes the treatment of the OLS estimator straightforward. Let M 

be an arbitrary n x n matrix, and define the function 4I(M, V) by 

me@ V11 ... me Vl,2g+l 
5(M, V) = .M .V. 

Me V2g+l,l 
.. 

MeV2g+1,2g+l 

We now have the following theorem. 

THEOREM 1: Under Condition 1, H(In ? TT)(8 - 8) 8*, where 8* = 

'p (In' V) 
10 . 

PROOF: Use 8 = (In X Z'Z) '(In X Z')s and (2.13) to obtain 

H(In X TT)(8 -3) = H(In ? TT) (I ` n X TT) 

X (In g rTi )(In g Z) )(21/2 gs IT_-1) v 

= [H(In? [T-1(ZPZ)T-1])H-1]1 

x [H(In ? T )(In ? Zt)(1/ $ IT_1) V] 

=> [H(In 0 V) H-1] -10= O(In V) -lO 

where Lemma 2 ensures the convergence of the bracketed terms after the second 
equality. Q.E.D. 

This theorem highlights several important properties of time series regressions 
with unit roots. First, 8 is consistent when there are arbitrarily many unit roots 
and deterministic time trends, assuming the model to be correctly specified in the 
sense that the errors are martingale difference sequences. Because the OLS 
estimator of f in the untransformed system is ,B= (InX X'X)-<(I n X')s = 

(In 0 D') 3, ,8 is also consistent. 
Second, the estimated coefficients on the elements of Z, having different orders 

of probability converge at different rates. When some transformed regressors are 
dominated by stochastic trends, their joint limiting distribution will be nonnor- 
mal, as indicated by the corresponding random elements in V. This observation 
extends to the model (2.1) results already known in certain univariate and 
multivariate contexts; for example, Fuller (1976) used a similar rotation and 
scaling matrix to show that, in a univariate autoregression with one unit root 
and some stationary roots, the estimator of the unit root converges at rate T, 
while the estimator of the stationary roots converges at rate T112. In a somewhat 

2 In independent work, Tsay and Tiao (1990) present closely related results for a vector process 
with some unit roots but with no deterministic components. While our analysis allows for constants 
and polynomials in t, not considered in their work, their analysis allows for complex unit roots, not 
allowed in our model. 
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more general context, Sims (1978) showed that the estimators of the coefficients 
on the mean zero stationary variables have normal asymptotic distributions. 
When the regressions involve X, rather than Z, the rate of convergence of any 
individual element of ,B, say I,B1 is the slowest rate of any of the elements of 8 
comprising /Pi. 

Third, when there are no Z, regressors dominated by stochastic trends-i.e., 
k3= k5= *-=k2g+i =0-then 8 (and thus /3) has an asymptotically normal 
joint distribution: HI(I, X TT)(8 - 8) - N(O, S X V-1), where V is nonrandom 
because the terms involving the integrals Jf0WP(t)Wm(t)t dt and 

JfOWP(t) dWm(t)' are no longer present. In addition, V is consistently estimated 
by rT l- 'Zr 1, from which it follows that the asymptotic covariance matrix of /3 
is consistently estimated by the usual formula. There are several important cases 
in which k3 = k5 = ... = k2g+ ? = 0. For example, if the process is stationary 
around a nonzero mean or a polynomial time trend, this asymptotic normality is 
well known. Another example arises when there is a single stochastic trend, but 
this stochastic trend is dominated by a nonstochastic time trend. This situation is 
discussed by Dickey and Fuller (1979) for an AR(p) and is studied by West 
(1988) for a VAR, and we return to it as an example in Section 5. 

Fourth, Theorem 1 is also related to discussions of "spurious regressions" in 
econometrics, commonly taken to mean the regression of one independent 
random walk with zero drift on another. As Granger and Newbold (1974) 
discovered using Monte Carlo techniques and as Phillips (1986) showed using 
functional central limit theory, a regression of one independent random walk on 
another leads to nonnormal coefficient estimators. A related result obtains here 
for a single regression (n = 1) in a bivariate system (N = 2) of two random walks 
(k3 = 2) with no additional stationary components (k1 = 0) and, for simplicity, 
no intercept (k2 = 0). Then the regression (2.4) entails regressing one random 
walk against its own lag and the lag of the second random walk which, if Q = I2, 

would have uncorrelated innovations. The two estimated coefficients are consis- 
tent, converging jointly at a rate T to a nonnormal limiting distribution. 

4. AN ASYMPTOTIC REPRESENTATION FOR THE WALD TEST STATISTIC 

The Wald F statistic, used to test the q linear restrictions on , 

Ho: R1=r vs. H1: Rf 3 r 

is 

(4.1) F= (Rfi- r)'[R(.? (XX) 1)R'] (R - r)/q. 

In terms of the transformed regressors Zt the null and alternative hypotheses are 

Ho: P=r vs. H1: PS* r 

where P = R(I, X D') and 8 = (In X D'-1)/3. In terms of P, 8, and Z, the test 
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statistic (4.1) is 

(4.2) F= (PS-r)" [P(?O@(ZZ)l p,] (P-r)lq- 
The F statistics (4.1), computed using the regression (2.12), and (4.2), computed 
using the regression (2.13), are numerically equivalent. 

As in Section 3, it is conveiient to rearrange the restrictions from the 
equation-by-equation ordering implicit in P to an ordering based on the rates of 
convergence of the various estimators. Accordingly, let P = PH, where H is the 
reordering matrix defined in Section 3, so that P contains the restrictions on the 
reordered parameter vector HS. Without loss of generality, P can be chosen to 
be upper triangular, so that the (i, j) block of P, Pjj is zero for i >j, where 
i, j = 1, ... , 2g + 1. Let the dimension of Pii be qi x nkj, so that q1 is the number 
of restrictions being tested that involve the nk1 coefficients on the transformed 
variables Z,1; these restrictions can potentially involve coefficients on other 
transformed variables as well. Similarly, q2 is the number of restrictions involv- 
ing the nk2 coefficients on Z,2 (and perhaps also Z3,, . g+ 1), and so forth, so 
that q = j= 1qj- 

In the previous section, it was shown that the rates of convergence of the 
coefficients on the various elements of Z, differ, depending on the order in 
probability of the regressor. The implication of this result for the test statistic is 
that, if a restriction involves estimated coefficients that exhibit different rates of 
convergence, then the estimated coefficient with the slowest rate of convergence 
will dominate the test statistic. This is formalized in the next theorem. 

THEOREM 2: Under Condition 1, qF=> 8 * 'P*[P *P (T, V)-lP * lP * 8*, 

where 8 * is defined in Theorem 1 and 

1 12 o 
0 fi22: 

p*= g~~~P330 . 0~~~~~ 

0 PM 
i 0 Pmm 

PROOF: First note that, since P = PH by definition, P(I, , Tj1) = PH(In ? 
rTj') = P(T 1 ?In )H= TT*-'P *H, where T* is the q x q scaling matrix 

T112Iq 

T112Iq 

TIq3 0 

0 Tg- 1/2j 

L ~~~~~~~~~TgIq2gj - 
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and where { PT* is a sequence of q X nk nonstochastic matrices with the limit 
PT* P * as T oo, where P * is given in the statement of the theorem. (The 

matrix H reorders the coefficients, while (In ? T- 1) scales them; H(In ? T1) - 

(ST- 0 I )H states that these operators commute.) Thus, under the null hypothe- 
sis, 

F= [(IflrA )(Il?rT)p A1 x (P)-r) [ P()( X ?(Z/Z))P )j-r) 

[P(In (& TI,)( In TT)( 8)]1 

= [ P(In s ? T 1)(In TT)( - X) (ZI Z) (In 
X [P( 

0 
TTT (Inn 0 Tp)( Pt 

x [ TP H(IIn T T ) (I n)(T - 8)1 

=-[PlH(Ifl?TT)(T-8)A_ 

X [T*PH (z ? ( Tr T Z ̀Zr1))lHIPIT* -] 

[PTH(In ? T)(8 8)] 

X(P*8*)H[P*H(2 X vT1)H P*/1 (P*8*) 

where the last line uses Lemma 2, Theorem 1, PT P P *, and (where the 
consistency of 2 follows from the stated moment conditions). The result obtains 
by noting that H(2 X V-1)H' = H(2-1 X V)-1H' = J(Y-1, V)-1. Q.E.D. 

Before turning to specific examples, it is possible to make three general 
observations based on this result. First, in the discussion of Theorem 1 several 
cases were listed in which, after rescaling, the estimator 8 will have a nondegener- 
ate jointly normal distribution and V will be nonrandom. Under these condi- 
tions, qF will have the usual x2 asymptotic distribution. 

Second, suppose that only one restriction is being tested, so that q = 1. If the 
test involves estimators that converge at different rates, only that part of the 
restriction involving the most slowly converging estimator(s) will matter under 
the null hypothesis, at least asymptotically. This holds even if the limit of the 
moment matrix Z'Z is not block diagonal or the limiting distribution is nonnor- 
mal. This is the analogue in the testing problem of the observation made in the 
previous section that a linear combination of estimators that individually con: 
verge at different rates has a rate of convergence that is the slowest of the various 
constituent rates. In the proof of Theorem 2, this is an implication of the block 
diagonality of P *. 
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Third, there are some special cases in which the usual x2 theory applies to 
Wald tests of restrictions on coefficients on integrated regressors, say Zt. An 
example is when the true system is Yl, = PYlt-i + q ,, IPI < 1, and Yj, = Yjt-1 + ,jt, 
j = 2,..., k, where Eqtqq- = diag(F2, 222) In the regression of Yh on y0 + /31Y1,_1 
+ fl2Y2t-1 + *+fkYkt-1, (.2..., -*k) have a joint asymptotic distribution that 
is a random mixture of normals and the Wald test statistic has an asymptotic x2 
distribution; for more extensive discussions, see for example Johansen (1988) and 
Phillips (1988). The key condition is that the integrated regressors and partial 
sums of the regression error be asymptotically independent stochastic processes. 
This circumstance seems exceptional in conventional VAR applications and we 
do not pursue it here. 

5. UNIVARIATE AUTOREGRESSIONS WITH UNIT ROOTS 

Theorems 1 and 2 provide a simple derivation of the Fuller (1976) and 
Dickey-Fuller (1979) statistics used to test for unit roots in univariate autoregres- 
sions. These results are well known, but are presented here as a straightforward 
illustration of the more general theorems. We consider a univariate second order 
autoregression, first without and then with a drift. 

EXAMPLE 1-An AR(2) with One Unit Root: Suppose that x, is generated by 
(2.14) with one unit root (f,B +? 2= 1) and with no drift (Po = 0), the case 
described in the example concluding Section 2. Because a constant term is 
included in the regression, F21(L) = 0 and V is block diagonal. Combining the 
appropriate elements from Lemma 1 and using F(L) from (2.19), 

r(A_- 8) TT ( 

1F 1 0(1)fW(t)dt fdW(t) 

I 0( W(t) dt O(1)2fW(t)2dt .(l)fW(t) dW(t) 

where 8 N(0, V-j1), with V, = EJ.o9#2 = (1 -/22)-l and 0(1) = (1 + /12f1. 
Thus the coefficients on the stationary terms (Zlt and Z2t) converge at the rate 
T'/2, while ?3 converges at the rate T. In terms of the coefficients of the original 
regression, 2 = -81 and Il = 81 + 83. Since T1/2(83 -83) 4 0, both I) and A2 

have asymptotic4lly normal marginal distributions, converging at the rate T12; 
however, 4 and I2 have a degenerate joint distribution when standardized by 

T1/2 

While the marginal distribution of 81 is normal, the marginal distribution of 82 
(the intercept) is not, since the "denominator" matrix in the limiting representa- 
tion of (82, (3) is not diagonal and contains random elements, and since 
JW(t) dW(t) has a nonnormal distribution. Thus tests involving 81 or 81 in 
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combination with 83, will have the usual x2 distribution, while tests on any other 
coefficient (or combination of coefficients) will not. 

In the special case that Po = 0 is imposed, so that an intercept is not included 
in the regression, V is a diagonal 2 x 2 matrix (here F21(L) = 0 even though there 
is no intercept since AX, has mean zero). Thus, using Theorem 1, the limiting 
distribution of the OLS estimator of 83 has the particularly simple form 

T(- W)w(t) dW(t) [0(1) W(t)2 dt, 

which reduces to the standard formula when /P2 = 0, SO that 0(1) = 1. 
The limiting representation of the square of the Dickey-Fuller t ratio testing 

the hypothesis that xt has a unit root, when the drift is assumed to be zero, can 
be obtained from Theoremii 2. When there is no estimated intercept the F statistic 
testing the hypothesis that 83= 1 has the limit, 

(5.1) F [W(t) dW(t)] /W(t)2 dt. 

As Solo (1984) and Philips (1987) have shown, (5.1) is the Wiener process 
limiting representation of the square of the Dickey-Fuller "T" statistic, originally 
analyzed by Fuller (1976) using other techniques. 

EXAMPLE 2-AR(2) with One Unit Root and Nonzero Drift: Suppose that xt 
evolves according to (2.14), except that Po # 0. If Il + /P2 = 1 then the companion 
matrix A in (2.15) has 2 unit eigenvalues which appear in a single Jordan block. 
Again, D and F(L) are most easily obtained by rearranging (2.14), imposing the 
unit root, and solving for the representation of xt in terms of the canonical 
regressors. This yields 

xt= 1Z1-l + 82z-l + 84zU-l + t 

where Ztl = Axt _ 1, Z2 = 1, Z4 = Xt, 81 = 132 82 - - I2 and 4 = 1 + 2 
where i = f31/(l + fB2) iS the mean of A xt. In addition, 

0tl (L) 0 0 0 

Zt4 @*(L) O @0(1) t 

where 0(L) = (1 + /2L)-1 and 0*(L) = (1 - L)-1[(1 + 32L)-1 -(1 + /2)-1] 

so k1 = 1, k2 = 1, k3 = 0, and k4 = 1. Because there are rio elements of Zt 
dominated by a stochastic integrated process, 8 has an asymptotically normal 
distribution after appropriate scaling, from which it follows that ,B has an 
asymptotically normal distribution. 

If a time trend is included as a regressor, qualitatively different results obtain. 
Appropriately modifying the state vector and companion matrix in (2.15) to 
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include t, the transformed regressors become: 

Ztl a(L) 0 0 O 
Zt2 - 1 o o 1 

Zt3 a*(L) 0 6(1) 0 

z4 0 0 0 1 t 

In this case, 82, 83 and 84 have nonnormal distributions. The F statistic testing 
8 = 1 is the square of the Dickey-Fuller "fA" statistic testing the hypothesis that 
xt has a unit root, when it is maintained that xt is an AR(2) and allowance is 
made for a possible drift; its limiting representation is given by direct calculation 
using Theorem 2, which entails inverting the lower 3 x 3 diagonal block of V. 
The (nonstandard) limiting distribution of the F statistic testing the joint 
hypothesis that 83 = 1 and P = 0 can also be obtained directly using this 
framework. 

6. VAR'S WITH SOME UNIT ROOTS 

Many hypotheses of economic interest can be cast as linear restrictions on the 
parameters of VAR's. This section examines F tests of two such hypotheses. The 
first concerns the lag length in the VAR, and the second is a test for Granger 
causality. These tests are presented for a trivariate VAR in which each variable 
has a unit root with nonzero drift in its univariate representation. Four different 
cases are considered, depending on whether the variables are cointegrated and 
whether time is included as a regressor. We first present the transformation (2.2) 
and (2.3) for these different cases, then turn to the analysis of the two tests. 

Suppose that the 3 x 1 vector Xt obeys 

(6.1) Xt = yo + A(L)Xt1? +?7,t (t = 1, ... . T), 

where n = N = 3, where A(L) is a matrix polynomial of order p and where it is 
assumed that -yo is nonzero. When time is not included as a regressor, (6.1) 
constitutes the regression model as well as the true model assumed for Xt; when 
time is included as a regressor, the regression model is 

(6.2) Xt = yo + ylt + A(L)Xt-? +'qt 

where the true value of -y1 is zero. 
Suppose that there is at least one unit root in A(L) and that, taken individu- 

ally each element of Xt is integrated of order one. Then AX, is stationary and 
can be written, 

(6.3) A Xt = ,I + ? (L>) t 

where by assumption 1i i 0, i = 1, 2, 3. This implies that Xt has the representa- 
tion 

(6.4) X=,t + (1) + *(L)q1. 
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Thus each element of X, is dominated by a time trend. When time is not included 
as a regressor, Y, is obtained by stacking (X,', X,..., X p+1, 1); when time is 
included, this stacked vector is augmented by t. Note that, if X, is not cointe- 
grated, then 0(1) is nonsingular and A(L) contains 3 unit roots. However, if X, 
has a single cointegrating vector a (so that a-'It = a'0(1) = 0), then 0(1) does not 
have full rank and A(L) has only two unit roots. 

As in the previous examples, it is simplest to deduce a suitable transformation 
matrix D by inspection. If the regression equations do not include a time trend, 
then (6.1) can be written 

(6.5) Xt = A*(L)(dXt, - j) + [yo +A*(1)li] + A(1)Xt- + 7t, 

where AJ 4= - ,p f=,Ai, so that A*(L) has order p -1. If the regression 
contains a time trend, then (6.2) can be written as 

(6.6) Xt = A*(L)(Xt, - y) + [Yo + yl + A*(l)v] 
+ A (1) Xt- 1 + Y1l(t t-1) +71t - 

Note that, if Xt is not cointegrated, then A(1) = I, @(L) = [I- A*(L)L]-f, and 
,u = [I-A *(1)]-yo, while if Xt is cointegrated A(1) - I has rank 1. 

The part of the transformation from Yt to Z, involving Xt depends on whether 
the system is cointegrated and on whether a time trend is included in the 
regression. Using (6.5) and (6.6) as starting points, this transformation, the 
implied F(L) matrix, and the coefficients in the transformed system are now 
presented for each of the four cases. 

CASE 1-No Cointegration, Time Trend excluded from the Regression: Each 
element of X, is (from (6.4)) dominated by a deterministic rather than a 
stochastic time trend. However, because It is 3 x 1 there are two linear combina- 
tions of X, that are dominated not by a time trend, but rather by the stochastic 
trend component {t. Thus Zt4 can be chosen to be any single linear combination 
of Xt; any two linearly independent combinations of X, that are generalized 
cointegrating vectors with respect to the time trend can be used as a basis for Zt3. 
To be concrete, let: 

Z1[ AX-tt- 1 
AXt - I 

Axt-p+2 

Zt3 [Xit -(141/13) X3t ] Z,4 = X3t. 

Using (6.4), the two nonstationary components can be expressed as 

(6h7a) = [i/(1)e)ta+ e- (L/ e i= where 
(6 .7b) Zt4 = 113t + e 38 (1) {t' + e3 *(L)N 

where oi(l) = [ei - (Aill'eT]'O), 0-i*(L) = [ei - (,i/,u')e3]@( n hr 
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e1 denotes the jth 3-dimensional unit vector. The F(L) matrix is thus given by 

[zl [ Fl,(L) 0 0 0 lht 

Z12 0 1 0 0 11 
(6.8) | |=1 | ?*(L) 0 1) 0 ||4j 

[ zJ4 [ e3'O * (L) 0 e3'O (1) L3 J tJ 
where +*(L) = [+1*(L) +2*(L)]' and 4)(1) = [+1(l) 02(1)]', and where k, = 
3(p-1), k2=1, k3=2, and k4=l. 

To ascertain which coefficients in the original regression model (6.1) corre- 
spond to which block of Z,, it is convenient to let gt denote the transformed 
variables in (6.7), so that 

1 0 

(6.9) t = WXt, W= 0 1 I2iL 3]. 
-0 0 1 

Because A(1)Xt = A(1)W- %, the coefficients on Zt3 and Zt4 can be obtained by 
calculating A (1)W- . Upon doing so, the regression equation (6.5) becomes, 

(6-10) X, =A*(L)(AXt_l - A) + [-y0+A*(1)jt]Zt l + [A(l)el A(l)e2] Zt3l 

+ A(1)[( l/p3)el + (G2/13)e2 + e3] Zt4l + it 

which gives an explicit representation of the coefficients in the transformed 
regression model in terms of the coefficients in the original model (6.1). 

CASE 2-No Cointegration, Time Trend Included in the Regression: When 
time is included as a regressor, a natural choice for Z,4 is t; for F44 to have full 
rank, all elements of X, will appear, after a suitable transformation, in Zt3. Thus 
Ztl and Zt2 are the same as in Case 1, Zt= Xt-itt= ()it + *(L) qt, and 
Zt4= t so that 

[Ztl Fll(L) 1 0 ? Xt 

(6.11) L 1=Lo*(L 0 

LZt4J L ? 0 0 'J tJ 
In contrast to the previous case, now k3= 3 and k4= 1. Solving for the implied 
coefficients on the transformed variates as was done in Case 1, the regression 
equation (6.6) becomes 

(6.12) Xt = A *(L)(A Xt_- 1-y) + [ yo A *(1)jt] Zt-_ 

+ A(1)ZtL l + itZ t4 + nt 

CASE 3-Cointegration, Time Trend Excluded from the Regression: When Xt 
is cointegrated with a single cointegrating vector, the 2 x 3 matrix F33 = M(1) in 
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(6.8) no longer has full row rank, so an alternative representation must be 
developed. Informally, this can be seen by recognizing that, if X, is cointegrated 
and if there is a single cointegrating vector, then there can only be two distinct 
trend components since there is some linear combination of X, that has no 
stochastic or deterministic trend. Thus k3 + k4 will be reduced by one when there 
is a single cointegrating vector, relative to Case 1. A formal proof of this 
proposition proceeds by contradiction. Suppose that X, has a single cointegrating 
vector a (so that a'X, is stationary) and that k3 = 2. Let a = (1 a, a2)', so that 
a jA= 0 implies that a can be rewritten as a = [1 a1 (-alA2 - A1)/13] '. Now 
consider the linear combination of Z?3: 

13+ Z21. = [ X1, - (Il/tt3) X3t I + A[X2, - (A 2l/3) X3t] 

= [1At (-PA22- 1)/A3t3]XI= a'X, 

where al has been set to , in the final equality. Since a'Xt is stationary by 
assumption, Z3 + alZ23 is stationary; thus (1 a1)4(1) = 0. Since 4(1) = F3, this 
violates the condition that F3 must have full row rank. 

To obtain a valid transformation, W must be chosen so that ?,= WX, has one 
stationary element, one element dominated by the stochastic trend, and one 
element dominated by the time trend. To be concrete, let 

1 a1 a2 
W= 1 0 /y , 

0 0 

where it is assumed that a, 0 0 so that X2t enters the cointegrating relation. 
Accordingly, let 

glt = a'Xt = a'O * ( L ) 7t, 

t2t = Xlt- Gl1A3)X3t = [ el - (l13)e3] 0*(L),qt 

+ [el -(l3)e3] 0(Wt, 

3t = x t3t + e3O(1).{t + e3-O*(L)L ). 

Now let 

dXt- 

Ztl =d Xt- +2 - A Zt2 = , 4t3 
= 

t2t t4= ;3t 

D1t 

and use the notation ?*(L) and +1(l) from (6.7a) to obtain: 

Ztl Fll(L) ? ? 0 iF 
t 

(6.13) 
Z Ft2(L 

0 0 0 fl 

(6.13) [Zt3l Lr(L) 0 F(1) 0 L 

Zt4 e[`0 * (L) 0 e -O(1) 3 t 
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so that k1 = 3( p - 1) + 1, k2 = 1, k3 = 1, and k4 = 1. Expressed in terms of the 
transformed regressors, the regression equation becomes 

(6.14) Xt = A * (L )(AXt- 1- A) + A (1) (e 2/a ) Dlt - 1 + [ Yo + A *(1)] Zt-_ 

+ A (1)(el -e2al) ZtL 

+- ([a2 + (111/113)]/a1)e2 + e3] Zt1 + i1. 

The F(L) matrix in (6.13) and the transformed regression equation (6.14) have 
been derived under the assumption that there is only one cointegrating vector. If 
instead there are two cointegrating vectors, so that there is only one unit root in 
A(L), then k3 = 0 so that there is no Zt3 transformed regressor. In this case 
(studied in detail by West (1988)) all the coefficient estimators will be asymptoti- 
cally normally distributed, and all test statistics will have the usual asymptotic X2q 
distributions. 

CASE 4-Cointegration, Time Trend Included in the Regression: The repre- 
sentation for this case follows by modifying the representation for Case 3 to 
include a time trend. Let 

glt = a'Xt = a'O * (L)71%, 

'2t = Xlt- = eiO *(L) t + e'O(1)), 
;3t = X3t-u3t = e3O*(L)71t + e'O(1){t, 

and let 

Axt 
- 

Z 1=L A X,D+2 Zt2 1, Zt3 [ D] Zt t 

Dlt _ 

Letting X *(L) =[eO *(L) e3'6*(L)]I and r(1) =[e1'(1) e3'(1)]', one obtains: 

-Ztl0 Fll(L) ? 0 ? 17t1 
(6.15) z2 = 1 0 01 1 

Zt3 7 * ( o 0 T(1) oH0 

so that k1 = 3(p - 1) + 1, k2 = 1, k3 = 2, and k4 = 1. The transformed regres- 
sion equation is 

(6.16) XI = [A*(L)(dX,-1 - A) + A(1)(e2/a1)a1t1] 

+ [yo +A*(1)L] Zj_1 
+ [A(1)(el - e2/al)211 l +A(1)(-a2e2/al + e3)'3t -] 

+ A (1),Z 1 + 71 . 

These transformations facilitate the analysis of the two hypothesis tests. 
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EXAMPLE 1-Tests of Lag Length: A common problem in specifying VAR's is 
determining the correct lag length, i.e., the order p in (6.1). Consider the null 
hypothesis that A(L) has order m > 1 and the alternative that A(L) has order 
p > m: 

H,: Aj=0,j=m+1,...,p, vs. Kl: Ai 0, some j=m+L,...,p. 

The restrictions on the parameters of the transformed regression model could be 
obtained by applying the rotation form Y, to Z, as discussed in general in 
Section 4. However, in these examples the restrictions are readily deduced by 
comparing (6.10), (6.12), (6.14), and (6.16) with (6.5) and (6.6). By definition 
Aj+1 =AJ*1 -A and AP* = O; thus A = 0 for j > m + 1 implies and is implied 
by AJ = 0, j > m. In terms of the transformed regression model, H, and K1 
therefore become 

H1*: AJ.=0,j=m,...,p-1, vs. 

K1: A O,somej=m,...,p-1. 

In each of the four cases, the restrictions embodied in H,* are linear in the 
coefficients of the Z,1 regressors. Since the regression is assumed to include a 
constant term, F21(L) = 0 in each of the four cases. Thus in each case V is block 
diagonal, with the first block corresponding to the stationary mean zero regres- 
sors. It follows directly from Theorem 2 that (q times) the corresponding test 
statistic will have the usual X2(p-m) distribution. 

EXAMPLE 2-Granger Causality Tests: The second hypothesis considered is 
that lags of X2t do not help predict Xlt given lagged Xlt and X3t: 

H2: A12j 
= O, j=l,...,Ip, vs. K2: A12j *0, some j L P... 

In terms of the transformed regression models, this becomes 

H2*:A12(1)=O and Aj*=1=O,j=1,...,p-1, vs. 

K2*: Al) + 0or A* 0, some j =1,...,p-1. 

As in the previous example, the second set of restrictions in H2* are linear in 
the coefficients of the Zl regressors in each of the four cases. However, H2* also 
includes the restriction that A12(1) = 0. Thus whether the F statistic has a 
nonstandard distribution hinges on whether A12(1) can be written as a coefficient 
on a mean zero stationary regressor. 

In Case 1, A12(1) is the (1,2) element of the matrix of coefficients on Z?3 in 
(6.10), and it does not appear alone as a coefficient, or a linear combination of 
coefficients, on the stationary mean zero regressors. It follows that in Case 1 the 
restriction on A12(1) imparts a nonstandard distribution to the F statistic, even 
though the remaining restrictions involve coefficients on Zl. In Case 2, inspection 
of (6.12) leads to the same conclusion: A12(1) appears as a coefficient on Z?3, and 
A12(1) = 0 implies and is implied by the corresponding coefficient on Z?3 equaling 
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zero. Thus the test statistics will have a nonstandard limiting distribution. 
However, because F22, F33, and F44 differ between Cases 1 and 2, the distribu- 
tions of the F statistic will differ. 

In both Case 1 and Case 2, the distribution of the F test depends on nuisance 
parameters and thus cannot conveniently be tabulated. However, since these 
nuisance parameters can be estimated consistently, the limiting distribution of 
the test statistic can be computed numerically. Since V is block diagonal, in both 
cases the statistic takes on a relatively simple (but nonstandard) asymptotic form. 
Let V denote the (random) lower (k2 + k3 + k4) x (k2 + k3 + k4) block of V and 
let Pf and P3 denote the restrictions on the coefficients corresponding to the 
transformed regressors Z1 and Z3 in the stacked single-equation form, respec- 
tively, as detailed in Section 4. Then a straightforward calculation using Theorem 
2 shows that pF =*F1 + F2 where F1 = (Pfi1 )'[Pll(T X Vlj')P '1f'(Pll13 ) 

2 and = (P3 *)'[P33(', where the elements of F2 
consist in part of the functionals of Wiener processes given in Lemma 2 and 
where the block diagonality of V and Lemma 2(b) imply that F1 and F2 are 
independent. 

In Cases 3 and 4, X, is cointegrated and the situation changes. In both (6.14) 
and (6.16), A12(1) appears as a coefficient on D1t1 the "equilibrium error" formed 
by the cointegrating vector. Since g1t is stationary with mean zero, the estimator 
of A12(1) will thus be asymptotically normal, converging at the rate T1/2, and the 
F-test will have an asymptotic X2/P distribution.3 

At first glance, the asymptotic results seem to depend on the arbitrarily chosen 
transformations (6.8), (6.11), (6.13), and (6.15). This is, however, not so: while 
these transformations have been chosen to make the analysis simple, the same 
results would obtain for any other transformation of the form (2.2) and (2.3). 
One implication of this observation is that, since X1t, X2t, and X3t can be 
permuted arbitrarily in the definitions of gt used to construct D and F(L) in the 
four cases, the F statistic testing the exclusion of any one of the regressors and its 
lags will have the same properties as given here for X2,1 and its lags. 

The intuition behind these results is simple. Each element of Xt has a unit root 
-and thus a stochastic trend-in its univariate autoregressive representation. In 
Cases 1 and 2, these stochastic trends are not cointegrated and dominate the long 
run relation among the variables (after eliminating the effect of the deterministic 
time trend) so that a test of A12(1) = 0 is like a test of one of the coefficients in a 
regression of one random walk on two others and its lags. In contrast, when the 
system is cointegrated, there are only two nondegenerate stochastic trends. 
Including Xlt-l and X3,1 in the regression "controls for" these trends, so that a 
test of A12(1) = 0 (and the other Granger noncausality restrictions) behaves like a 
test of coefficients on mean zero stationary regressors. 

3This assumes that ao * 0, so that there is a linear combination involving X2, which is stationary. 
If a, = 0, there is no such linear combination, in which case the test statistic will have a nonstandard 
asymptotic distribution. 



136 CHRISTOPHER A. SIMS, JAMES H. STOCK AND MARK W. WATSON 

7. PRACTICAL IMPLICATIONS AND CONCLUSIONS 

Application of the theory developed in this paper clearly is computationally 
demanding. Application of the corresponding Bayesian theory, conditional on 
initial observations and Gaussian disturbances, can be simpler and in any case is 
quite different. Because the Bayesian approach is entirely based on the likelihood 
function, which has the same Gaussian shape regardless of the presence of 
nonstationarity, Bayesian inference need take no special account of nonstationar- 
ity. The authors of this paper do not have a consensus opinion on whether the 
Bayesian approach ought simply to replace classical inference in this application. 
But because in this application, unlike most econometric applications, big differ- 
ences between Bayesian and classical inference are possible, econometricians 
working in this area need to form an opinion as to why they take one approach 
or the other. 

This work shows that the common practice of attempting to transform models 
to stationary form by difference or cointegration operators whenever it appears 
likely that the data are integrated is in many cases unnecessary. Even with a 
classical approach, the issue is not whether the data are integrated, but rather 
whether the estimated coefficients or test statistics of interest have a distribution 
which is nonstandard if in fact the regressors are integrated. It will often be the 
case that the statistics of interest have distributions unaffected by the nonstation- 
arity, in which case the hypotheses can be tested without first transforming to 
stationary regressors. It remains true, of course, that the usual asymptotic 
distribution theory generally is not useful for testing hypotheses that cannot 
entirely be expressed as restrictions on the coefficients of mean zero stationary 
linear combinations of Y,. These "forbidden" linear combinations can thus be 
characterized as those which are orthogonal to the generalized cointegrating 
vectors comprising the row space of D1, i.e. to those generalized cointegrating 
vectors that reduce Y, to a stationary process with mean zero. In particular, 
individual coefficients in the estimated autoregressive equations are asymptoti- 
cally normal with the usual limiting variance, unless they are coefficients of a 
variable which is nonstationary and which does not appear in any of the system's 
stationary linear combinations. 

Whether to use a transformed model when the distribution of a test of the 
hypothesis of interest depends on the presence of nonstationarity is a difficult 
question. A Bayesian approach finds no reason ever to use a transformed model, 
except possibly for computational simplicity. Under a classical approach, if one 
has determined the form of the transformed model on the basis of preliminary 
tests for cointegration and unit roots, use of the untransformed model does not 
avoid pretest bias because the distribution theory for the test statistics will 
depend on the form of the transformation. One consideration is that tests based 
on the transformed model will be easier to compute. Tests based on the two 
versions of the model will, however, be different even asymptotically, and might 
have different power, small-sample accuracy, or degree of pretest bias. We regard 
comparison of classical tests based on the transformed and untransformed 
models as an interesting open problem. 
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To use classical procedures based on the asymptotic theory, one must address 
the discontinuity of the distribution theory. It can and will occur that a model 
has all its estimated roots less than one and the stationary asymptotic theory 
(appropriate if all roots are in fact less than one) rejects the null hypothesis of the 
maximal root being greater than, say, .98, yet the nonstationary asymptotic 
theory (appropriate if the maximal root is one) fails to reject the null hypothesis 
of a unit root. In practice it may be usual to treat something like the convex 
closure of the union of the stationary-theory confidence region and the unit root 
null hypothesis as if it were the actual confidence region. Is this a bad approxima- 
tion to the true confidence region based on exact distribution theory? We should 
know more than we do about this. 

When nonstationarity itself is not the center of interest or when the form and 
degree of nonstationarity is unknown, the discontinuity of the asymptotic theory 
raises serious problems of pretesting bias. As we have already noted, in order to 
test a null hypothesis of Granger causal priority with the classical theory one 
must first decide on whether nonstationarity is present and, if so, its nature. To 
the extent that the results of preliminary tests for nonstationarity and cointegra- 
tion are correlated with results of subsequent tests for causal priority, interpreta- 
tion of the final results is problematic. When the preliminary tests suggest a 
particular nonstationary form for the model but at a marginal p-value of, say, .10 
or .15, one could consider tests of the hypotheses of interest both under the 
integrated and nonintegrated maintained hypotheses. Results are likely often to 
differ, however, and this asymptotic theory offers no guidance as to how to 
resolve the differences with formal inference. 

This paper provides the asymptotic distribution theory for statistics from 
autoregressive models with unit roots. Now that these difficulties are resolved, it 
appears that a new set of issues-related to the logical foundations of inference 
and the handling of pretest bias-arise to preserve this area as an arena of 
controversy. 
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APPENDIX 

PROOFS OF LEMMAS 1 AND 2 

PROOF OF LEMMA 1: The proof of this lemma uses results developed in Chan and Wei (1988, 
Theorem 2.4), who consider the convergence of related terms to functionals of Wiener processes and 
to stochastic integrals based on Wiener processes. Throughout we condition on { m% = O}, s < 0. This 
is done for convenience, and could, for example, be weakened to permit the initial conditions for Zt 
to be drawn from a stationary distribution. 
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(a) First consider m = 0: 

T T t 

T-( F+,24P = T-(P+ ? p-l 
1 ,= ~~t1 s= 1 

T. 

= T-1 ?, T-(P- 1/2,) l .i 
t=l~~F s= 

Thus, if T-1P-/21E ~1tf'-. W"Qr), where r=lim(t/T), then 

(Al1) Th1P '/21 ? c'-. W"+'(') or T -(.l2),+ WP+'r) 
s=1 

by the Continuous Mapping Theorem (for the univariate case, see Hall and Heyde (1980, Appendix 
II); for the multivariate case, see Chan and Wei (1988)). Letting to 3, and using Chan and Wei's 
(1988) results, T- /2, = T- 1_2E 1ts W(T) so (A.1) follows by induction. 

For m> 0, 

T T 1 

T- (n+p + 1 /2) t tP = T-1 (t/T)'[T-(P- 1/2) f] TWP(T) dr. 
1 1 0 

T T 

(b) T- ("'+P) vtnP` = T- 1 ? T-(m - 1/2) tm)(T-(P- 1/2)(tp) 
1 1 

W"' Wn(T) WP(T)' dT 

where we use (a) for the convergence of T- (P- 
(c) Obtains by direct calculation. 

T T 

(d) T-(P P+1/2)? tPn1'+ =T- 1/2 (tlT)Pq1'+ tP dW(t) 
1 1 

T T 

(e)~~~~~~ T-P ?,'+1= -/2 (T-(P- l/2)tp,)n',+l WP (t) dW(t)' 

where the convergence follows using Theorem 2.4 (ii) of Chan and Wei (1988) for p= 1 and using 
their Theorem 2.4 (i) for p > 1. 

(f) This follows, using Chebyschev's inequality, from E I Fllj I < oo and bounded 4th moments. 
(g) The approach used to prove (g) and (h) extends the argument used in Solo (1984). (We thank 

an anonymous referee for substantially simplifying our earlier proofs of (g) and (h).) First consider 
the case p = 0. From Lemma l(d) and Condition 1(ii) it follows that: 

T 

(L) = Fml (1)(T- /2tT) + T- /2Fmj (L)11T =* Fml (1)jdW(t) 

where F = F ielding the desired result. 
The general case is proven by induction. Let H(L) be a matrix lag polynomial. Assume that if 

00 

F,jk Iffj I < oo (k=O... , p-1), 
0 

then 

T-( k + 1/2) ? t H( L)t H(1) tk dW(t) (k = 0 ., p - 1). 
1 0 
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Now note that FI2,1(L)%, = Fmj(1)%1 + Fm(L)A1,, so that the term in question can be written, 

(A.2) T- P 1/2) tPFjl( L)7 = Fmj(1) [T-(P +1/2) 
F,tP 7, + T- (P + 1/2) tpFm*l (L) A1 

= Fml (1) [T-(P +1/2) tPqt] + T / Fml ( L) 1T 

T-1 

+ T-(P- 1/2) tp t- (t + 1)P ] Fm*l (L) 7t 

T 

= Fml (1) [T-(P+ 1/2) tPqtj + T 1/2Fml ( L) nT 

p-l T-1 

+,E d&T(Pk) 17(k?d/2) E tkml (L) 1j 

where 
=O 1 

' 
1d k 

where (dk} are the constants from the binomial expansion, tP - (t + 1)P = ' d_ tk 
The first term in (A.2) has the desired limit by Lemma l(d). The second term in (A.2) vanishes in 

probability by condition 1(ii). The final p terms in (A.2) converge to zero by the inductive assumption 
if E0 ojk IFn I I < 00 for all k = 0, ..., p - 1. To verify this final condition, note that 

000 0 i-1 00 

(A.3) E ikIFn*l iEml < Ck+1 klEll 
j=O i=O j=O j=O 

where Ck + is a finite constant. The final expression in (A.3) is bounded by assumption (Condition 
1(ii)) so the result obtains under the inductive assumption. Since the inductive assumption is satisfied 
for p = 0, the result follows for p = 0,1. g. 

(h) We prove the lemma for Fll(L), showing the result first for p = 1. Following Stock (1987), 
write 

T T T-1 

T-1 Q,(F11j( L )11, )= H3-H4 +T-'1 E tt-irt, + H5 F, F11lJ 
1 1 

where 
T-1 T 

H3=T-j1 E pjF,'lj, pj= E(i,-C,_j)7,_j9 
O j+1 

T-1 T 

H4 = T-' Y, 0j l'l j '0= Y, t,n,, 
O T-j+1 

T 

H5 = T-' E n,. 
1 

Now, H5 - I and T- 'Tt,_-,' J fW(t) dW(t)'. In addition, Stock (1987) shows that H3 + 0 and 
H4 - 0 if ?IFllI < 0, which is true under Condition 1. Thus, for p = 1, 

T 

T ?1 ,(F1(L)%) F11(1) + j1W(t) dW(t) F11(1) , 

which is the desired result. 
The case of p > 2 is proven by induction. Let H(L) be a lag polynomial matrix with EY jI I Hj I< 0 

k = 1,..., p - 1, and assume that 
T 

T k jk(H(L)71t)' Kk + fWk (t) dW(t)'H(1)', k=1 p -i, 
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where Kk is given in the statement of the lemma withH(l) replacing Fm1(1). Now write 
T T T 

(A.4) T-P P 3t/[Fna(L)11,] = T-P P (F,iFm(1) + T-P P (t[ Fi (L)Ani] 
1 1 1 

where Fn *, = 

Consider the first term in (A.4). Noting that tP = ? E =lt', one obtains: 
T T T 

(A.5) T-P Et P F,1tF, (1) = TPP 2F tP lU'F.(1) + T-P 7 1,n1;F.(1)( 
1 1 1 

p-1 T 

+ E T-(P-k) T -k tk i' F., (1)'. 
k=1 1 

Since p > 2, Lemma l(e) and Condition 1(ii) ensure that all but the first terms in (A.5) vanish in 
probability. Applying Lemma l(e) to the first term in (A.5), one obtains (for p > 2): 

T 

T-P E? tP n)tF,,,j(1) I W( t) d W( t ) Fml (1l)'- 

All that remains is to show that the second term in (A.4) vanishes in probability. Now 
T T t 

(A.6) T-P E tP [ Fn*l ( L ),A ]= T-PE Et(P - 1[ Fm*l( L) nt ] 
I t=1 s=1 

s=1 s=1 

T T 

=T-P(1 /P-1] 

Fm*l ( 

L[),)n, 

s=1 t=s 

T T 

=T-P E tP [Fm*j(L))T1' T-TP E tsP-1[Fm*j(L)n7S-11 
s= s= 

T 

-T-P Fa t[ Fm*l (L) -t1- 1 
1 

p-1 T 

_ -(p-k) -k 1: tk l(F*lLttl 

k=1 t=, 

The first term in (A.6) vanishes by Lemma l(a), the inequality (A.3), and condition 1(ii). The second 
term vanishes by Chebyschev's inequality and Condition 1(ii). The remaining p - 1 terms in (A.6) 
vanish by the inductive assumption if Ej j I < 00, but this final condition is implied by (A.3) and 
Condition 1(ii). Since the inductive assumption was shown to hold for p = 1, the result for p > 2 
follows. 

PROOF OF LEMMA 2: We calculate the limits of the various blocks separately. The joint conver- 
gence of these blocks is assured by Theorem 2.4 of Chan and Wei (1988). 

(a) Consider (2T 'Z'ZTj ')P ) for 

(i) p=m=1, 

(ii) p=l, m=2,4,6,..., M, 

(iii) p=l, m=3,5,7,..., M-1, 

(iv) p =3,5,7,..., M- 1, m = 3,5,7,..., M-1, 

(v) p =2,4,6,..., M, m =3,5,7,..., M- 1, 

(vi) p =2,4,6,..., M, m =2,4,6,..., M, 

where M is an even integer. 
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(i) p=m=1: 

( Tj Z'ZrTj1)jj T lY(Fll (L),q,)(Fllj(L) 7,)' 
00 

F , F11J Fl' j V 1 byLemma1(f). 1 
0 

(ii) p =1, m = 2: 

(Wr z'zr )12 = T- E(F1I(L) ,)(F21(L),t + F22) 

= T-'E(F1j(L)7jt)(F21(L),qt) + T'EF11((L)F1'F' 
00 

E zF1 1 F2'1J1 2 
0 

by Lemma l(f) and (g), usingEl IF21lj < 0. 

p=, m=4,6,...,M: 

(A.7) (rT'Z'zTr')1, - T-m/2E( F_j(L)iit)( Fmmt(m2)/2 + Fmmitm2)/2 

+ *** +Fm2 + Fml(L)71T) 

- T(m2)/21 (Fi(L)1t)t(m 2)/2Fm 

+ T- (m - 2)/2 T- 1YE( Fl1 ( L ) qlt )t(m - 2)/2' Fmm - 

+ .T.m. +)T-(m-2)/2TT-( (Fll(L))1t)Fm2 

+ T-(m-2)/2T-lE(Fi(L) 1t)(Fmi(L) Lt) . 

Each of the terms in (A.7) converges to zero in probability by Lemma l(g), (h), and (f) (using 
EIF I < oo) respectively, for m> 2. That the omitted intermediate terms converge to zero in 
probafility follows by induction. Thus (T71Z'Z2T1)jm A 0, m = 4,6,8,..., M. 

(iii) p= 1, m = 3,5,7,..., M- 1: 

(A.8) (ri z'zrIT ) = T m/2Z( Zm 

T- 
m/2E(Fjj 

(L)it)( Fmmm -1)/2 + Fmm t(3)/2 

+ ? Fm2 + Fml(L) 1t) 

- T-1/2T-(m-1)/2E(Fij(L)nj) t(m 1)/2' Fmm 

1 T-l/2T-((m-3)/2+l)E(yF (L)'q,)t(m-3)/2Fm 

*... +T-(m -2)/2T- 1E( Fl ( L) qt) Fm2 

? T-(m-2)/2T-lE(Fij(L)7it)(Fmj(L)'qt) 

Each of the terms in (A.8) vanish asymptotically by application of Lemma 1(h), (g), and (f) (using 
EF,lj I < oo), for m > 3. By induction, the intermediate terms also vanish thus (Tj Z'Z Ti)im P 0, 
m=3,5,7,..., M-1. 

(iv) p, m= 3,5,7,..., M-1: 

(A.9) (iT1Z'ZrW1) ni T-(m-1)/2T-(P-1)/2Z,Z 

T-(m+P-2)/2E( Fmm 1(m-1)/2 + Fmm_lt(m-3)/2 ?** +Fmj(L),) 

X(Fpptt(p-l)/2 + F pl(-3)/2 + * * * + Fpl()). 

The leading term in (A.9) converges to a random variable: 

(A.10) F T_(m+p-2)/2E(m-1)/22(p-1)2FI = ' 
1 

W(m-1)/2(t)W(p-1)/2(t)' &F, 
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by Lemma l(b). We now argue that the remaining terms in (1.3) converge to zero in probability. First, 
it follows from (A.10) that the cross terms in (,,1)/2, I1)/2) 24 0 for i < m, j <p, and i +j < m 
+p. Second, the terms in (ti-1)/2, t(j-3)/2) and (t(i-3)/2, t(j-1)/2) vanish for i < m, j <p. For 
example, 

(n + p - 2)/2EF j(m-1)12t( p - 3)12F' T-nt t pp_1 

- F,,,~ T- 1/2 T(m1)/2 + (p - 3)/2 + 1/21m- 1)/2t(p - 3)/2F, 2 A 0 

by Lemma l(a). Finally, the cross terms of q(i-1)/2, Fpl (L) 1) and (t(i-3)/2, F1j(L)'qt), i ,< m, all 
converge in probability to zero using the arguments in (ii) and (iii) above. Thus, for p, m= 
3,5,7,..., M-1, 

( 

a^- lZtzr- 

1 
) 

lW(p-1l)12( t ) W(. 
- 1)/2 (t ), dtFmm.. 

(v) p =2,4,6,..., M; m = 3,5,7,..., M-1: 

(A.ll) (rj'z'zrjl) = mT-(p+m-2)/2E(F t22 + - 2)/2+ ...+pl(L)t) 

x ( Fmmt(m -1)/2 + Fmm_lt(m-3)2 + **... +Fml(L),qt)' 

= ~ -+- 2)/2?F t(P-2)/24t(m - )2'F ,,m + cross terms. 

The arguments in (ii)-(iv) imply that the cross terms in (A.11) converge to zero in proba- 
bility. Applying Lemma l(a) to the leading term in (A.11), (rTiZ'ZTi')pm 

Fp 1lt(p- 2)2W(tnt-1)12(t)'dtFM. 
(vi) p,m=2,4,6,...,M,m+p>4: 

(A.12) ( rT 'z'zri ' ) pn, = T-( P+ m - 2)/2E( F22t(Pt-2)/2 + F P-2)/2 + +F(L)) 

X(Fmmt(m-2)/2 + Fm i&m-2)/2 + ... +Fml(L) qt) 

T-(P+ m2)/2?F t(p2)/2?(m2)/2Fm + cross terms 

P [(p + m -4)/2+ l'JPPFmm = 2/(p + m - 2)FppFmm 

where the leading term in (A.12) converges nonstochastically using Lemma l(c) and the remaining 
cross terms A 0 by repeated application of Lemma 1, E I FmljI < 00, and the arguments in (ii)-(iv) 
above. The expression for V22 obtains directly. 

(b) Let V+= [Z12 ? IT-lIv and let M= 2g+ 1, so that 

T- 1/2 ( Z1')v+ 

H([,t@ tT )([t Z')+5 T- 1/2 (I. 
0 

Z2 ) V+ 

T M 1)/2 (I, ? Z;'4V+ 

where (e,, 0 Z,,)v+ = Vec(EZ,71, +iXl/2P). Thus consider: 

(i) TT-' -l)/2Zttnq7,+1Xl/2, m =3,5,7,... , M, 

(ii) T- - 1)/2EZtmq,+ 121/2, m =2,4,6,..., M-1, 

and T-/ (i ,0 Z1') V 

(i) m 3,5,7,...,M: 

(A.13) T-t- 12YZn; X1/2t - T-(m -)/2( Fmm( l)/2 + F _t(m 3)/2 

+ *- +Fml (L),qt) 711+ j'V/2, +~~~~~~~~~~~~ 
= FmmT-(m- 1)/2t(m- 1)/2, 2+jX1/2k 

+ Fm T- 1/27T- [(m-3)/2+ l/2lEt(m-3)/2,, 21sl/2k 

+ * + T-(m 3)/2T-1( Fm(L)1,t) 11. 21/2. 
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The leading term in (A.13) converges to a nondegenerate random variable by Lemma l(e), while the 
remaining terms vanish asymptotically by Lemma l(d), (e), and (f), and by induction. Thus, for 
m = 3, 5 7, ... M., 

T- -1 )/2y Ztnn t+ 1,s112t =:b, FmJ W(m - 1)/2 (t)d( ,12 T- ("' 
t ~ ~ mmjl 1/(t) dW( t)'X1/2'. 

(ii) m-4,6,... M-1: 

(AlA) ~~m - 
T(m21)/2y2(Fmmt(m-2)/2 + F__(m)/ (A.14) T- Y-/2Ztm-q1 l/2'12= T-(m-l/?imtt2/ M Fm t(m-)/2 

+ * +Fml(L)71t)..+ 1./2, 

= FpimT (m-l)/21:t(m-2)/2 i;+xlV/2' + cross terms 

=> mm t (m - 2)/2 d W( t )T1 /2, 

where the cross terms in (A.14) vanish using the result in (ii) above and the g-summability of Fml(L) 
for m = 4,6,..., M-1. 

For m = 2, the expression in (A.14) is: 

(A.15) T- 1/2XZ2, _1/2' - T- 1/2F(F21(L),) - _+ 121/2' + F22T 1/ 1+ 1 

Suppose that both terms in (A.15) have well-defined limits, so that Vec[T- /2EZ2 ,;+ /2'I = 
'21 + ?'221 where 021 and 022 correspond to the two terms in (A.15). Since the second term in (A.15) 
converges to F22W(1)'X112' Wy2 = Vec[F22W(1)'1/2']. Thus it remains only to examine 1)2 and 41. 

The first term in (A.15) has a limiting distribution that is jointly normal with the term for m =1. 
Using the CLT for stationary processes with finite fourth mnoments, 

vec [T- 1/2E( F, I ( L),t7 
) Xl,+ x /21[+ ~NO 

vec [T- 1/2y( F21 ( L ), ) 
'q+ 121/2, 

' 2, 

where 

T s?,F-JIJFI, X(&, zs jEll, F21j1 

l 0 s ?, F21y Flly 2 s ?, F21j F'21j 

[ & V,ll To V12 1 
Tx? V21 X? (V22-F22F22)f 

Theorem 2.2 of Chan and Wei (1988) implies that (01,P021) are independent Of ('22'43 '.3..2g+ 1) 
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