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Summary:

In randomized studies involving severely ill patients, functional outcomes are often unobserved 

due to missed clinic visits, premature withdrawal or death. It is well known that if these 

unobserved functional outcomes are not handled properly, biased treatment comparisons can be 

produced. In this paper, we propose a procedure for comparing treatments that is based on a 

composite endpoint that combines information on both the functional outcome and survival. We 

further propose a missing data imputation scheme and sensitivity analysis strategy to handle the 

unobserved functional outcomes not due to death. Illustrations of the proposed method are given 

by analyzing data from a recent non-small cell lung cancer clinical trial and a recent trial of 

sedation interruption among mechanically ventilated patients.
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1. Introduction

Consider a randomized trial in which patients at high risk of death are scheduled to be 

clinically evaluated at pre-specified points in time after randomization. These clinical 

evaluations may be pre-empted due to death. Among living patients, clinical evaluations 

may be missing due to skipped visits or premature withdrawal from the study. There is a 

distinction between the two types of unobserved data. Data pre-empted due to death are 

generally considered undefined, whereas missing data are considered defined but 

uncollected. The question addressed in this paper is how to draw inference about the effect 

of treatment when clinical evaluation data may be unobserved due to death or missingness.
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The issue of “truncation due to death” is challenging even in the absence of missing data. A 

number of methods have been proposed for analyzing such data (Kurland et al., 2009). 

Broadly speaking, the methods can be categorized into four main groups: (1) conditional, (2) 

joint, (3) causal and (4) composite. In the conditional approach, treatment effects are 

evaluated by conditioning on survival at each follow-up time (Kurland and Heagerty, 2005; 

Shardell and Miller, 2008). This approach is problematic because survival is a post-

randomization factor and conditioning on a factor that may be affected by treatment can 

introduce bias (Rosenbaum, 1984). The joint approach introduces a common set of latent 

random effects for modeling both clinical evaluation endpoints and survival (Wulfsohn and 

Tsiatis, 1997; Tsiatis and Davidian, 2004; Ibrahim et al., 2010; Rizopoulos, 2012). In this 

approach, the model for the clinical evaluation endpoints allows trajectories of the functional 

endpoint after death, which is not scientifically meaningful. The causal inference approach 

frames the problem in terms of counterfactuals and seeks to estimate the “principal stratum” 

causal effect (Frangakis and Rubin, 2002; Hayden et al., 2005; Chiba and VanderWeele, 

2011). The issue with this approach is that the principal stratum is the cohort of patients who 

would survive to a particular point in time regardless of treatment assignment and a clinician 

cannot, at the time of the treatment decision, readily identify whether a patient is a member 

of this stratum or not. Nonetheless, this approach is useful for understanding the mechanistic 

effect of treatment on clinical outcomes. The fourth approach creates a composite outcome 

that mixes both the survival and functional evaluation endpoints (Diehr et al., 2001; Lachin, 

1999; Joshua Chen et al., 2005). The problem with this approach is that it requires that the 

outcomes for patients be ordered. Further, the composite outcome approach does not allow 

one to separately tease out the effect of treatment on survival and on the functional outcome. 

If patients can be ordered in a way that makes scientific sense, the simplicity of the 

composite outcome approach can be a useful way of globally assessing treatment effects that 

are causally interpretable.

In this paper, we consider the composite outcome approach and address how to handle 

missing clinical evaluation data among those alive at the assessment times. We develop and 

illustrate our methodology in the context of the Study HT-ANAM-302 (also known as 

ROMANA 2), a randomized trial among advance lung cancer patients with cachexia (Temel 

et al., 2016). A second example with a trial of sedation interruption among mechanically 

ventilated patients is included in Web Appendix A.

In Study HT-ANAM-302, patients were randomized 2:1 to receive either anamorelin (n = 

330) or Placebo (n = 165). Patients were scheduled to have their lean body mass (LBM) 

evaluated at baseline and at 6 and 12 weeks after randomization. Eight survivors from each 

treatment group were missing LBM at baseline and are excluded from our analysis. In Table 

1, we present treatment-specific summaries of death prior to week 12 and missingness of 

LBM among survivors. In this study, there was no statistically significant differences with 

respect to death prior to week 12 (15% vs. 17% for Placebo vs. anamorelin).
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2. Problem Formulation

2.1 Notation

We consider a two-arm randomized study design in which continuous functional measures 

are scheduled to be collected at baseline and K post-baseline assessment times t1, …, tK. Let 

Y0 denote the baseline measure and Yk (k = 1, …, K) denote the post-baseline measure 

scheduled to be collected at time tk. We use Yk to denote (Y1, Y2, …, Yk). Let X denote 

baseline covariates, excluding treatment assignment T. Let L denote the survival time and 

Ak = I(L > tk). Let Z = g(Y0, …, YK) be the study’s functional endpoint (i.e., an outcome 

measured on a living patient). We assume that Z is coded so that higher values denote better 

function. In the HT-ANAM-302 study, K = 2, Yk is LBM and Z = (Y1 + Y2)/2 − Y0 (the 

clinically meaningful endpoint defined in the protocol).

We consider the primary endpoint to be a finite-valued random variable U which assigns a 

score to each patient such that (1) each patient who dies prior to tK is assigned a score 

according to their survival time (L), with shorter survival times assigned lower scores and 

(2) each patient who survives past tK is assigned a score (higher than those who died prior to 

tK) according to their functional status (Z), with lower functional status assigned lower 

scores. More formally, U is a function of (AK, W) where W = L if AK = 0 and W = Z if AK 

= 1 and is defined such for all ω ∈ Ω (sample space), U(ω) < c (an arbitrary constant) when 

AK(ω) = 0 and for all ω, ω′ ∈ Ω

U(ω) < U ω′  if AK(ω) = AK ω′ , W(ω) < W ω′

U(ω) > U ω′  if AK(ω) = AK ω′ , W(ω) > W ω′

U(ω) = U ω′  if AK(ω) = AK ω′ , W(ω) = W ω′

U(ω) < U ω′  if AK(ω) = 0, AK ω′ = 1

U(ω) > U ω′  if AK(ω) = 1, AK ω′ = 0.

For our methods, only the ordering of U is important, not the actual score assignments. That 

is, given a sample of (AK, W)’s, the above conditions are sufficient for ranking the sample 

from worst to best; for any two subjects i and j, the conditions allow us to know whether Ui 

< Uj, Ui = Uj or Ui > Uj. This endpoint is a composite outcome in the sense that it is 

univariate and contains information on survival and, when measurable, functional status.

For a patient alive at assessment k (k ⩾ 1), their outcome may be missing. When Ak = 1, 

define Rk to be the indicator that Yk is observed. Thus, the observed data are:
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O = T , X, Y0, L, A1R1, A1R1Y1, …, AKRK, AKRKYK .

We have assumed that T, X, and Y0 are always observed and that L is observed when L < tK 

(i.e., no censoring before tK as is typical in well-designed clinical trials). For patients alive at 

tK (i.e., AK = 1), let S = (R1, …, RK) denote the missing data pattern; further, let 

Yobs
(s) = Yk: Rk = 1, k ⩾ 1, S = s  and Ymis

(s) = Yk: Rk = 0, k ⩾ 1, S = s  denote the observed and 

missing post-baseline functional outcomes. Note that Z is unobserved when S ≠ 1, where 1 
is a K-dimensional vector of 1’s. We assume that we observe n i.i.d. copies of O. When 

necessary, we will subscript random variables by i and j to denote data specific to individual 

i and j, respectively.

2.2 Treatment Effect Quantification

In the classic two-sample Mann-Whitney test (Mann and Whitney, 1947), the population 

distributions from which the independent samples are drawn are assumed to be absolutely 

continuous. This assumption obviates tied observations. The samples are used to estimate 

the probability (η) that the outcome for a random individual drawn from the first population 

is less than the outcome for a random individual drawn from the second population. Under 

the null hypothesis of equality of the population distributions, η = 0.5. If, however, the 

population distributions are not absolutely continuous, η may not be distribution-free under 

the null.

In our setting, we want to allow for treatment-specific population distributions of the 

composite outcome that may not be absolutely continuous. To address this issue, we define 

the treatment effect parameter θ to be the probability that the outcome for a random 

individual randomized to treatment T = 0 is less than the outcome of a random individual 

randomized to treatment T = 1 minus the probability that the outcome for a random 

individual randomized to treatment T = 0 is greater than the outcome of a random individual 

randomized to treatment T = 1. Values of θ > 0 and θ < 0 favor T = 1 and T = 0, 

respectively. Under the null hypothesis of no treatment effect, θ will be zero. Our goal is to 

draw inference about θ.

In the absence of missing data, we estimate θ by

θ = 1
n0n1

∑
i:Ti = 0

∑
j:T j = 1

I Ui < U j − I Ui > U j

Where n0 = Σi(1 − Ti) and n1 = ΣiTi.

In addition to estimating θ, quantiles of the treatment-specific distribution of the composite 

endpoint U can be calculated to help further characterize the treatment effect.
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2.3 Missing Data and Imputation Assumptions

In order to estimate θ in the presence of missing data, we need to know how to impute Z for 

patients alive at tK with s ≠ 1. It is sufficient to impute Y mis 
(s)  for these patients.

Assumptions are required in order to perform this imputation. We introduce the following 

class of untestable assumptions:

f Ymis
(s) AK = 1, Yobs

(s) , Y0, X, T , S = s ∝ exp βTZ f Ymis
(s) AK = 1, Yobs

(s) , Y0, X, T , S = 1 (1)

for all s ≠ 1, where βT is a treatment-specific sensitivity parameter. Note that Y mis 
(s)  and Y obs 

(s)

on the right hand side refer to the Yk’s with Rk = 0 and 1 in missing pattern S = s, 

respectively. Furthermore, note that setting βT = 0 (i.e., benchmark assumption in the class) 

reduces to the complete case missing value (CCMV) restrictions (Little, 1993) applied to the 

missing data patterns for patients alive at tK. It can be shown that CCMV is different from 

the missing at random (MAR) assumption. Because of the difficulty and subtlety of the 

MAR assumption in the presence of non-monotone missing data (Robins and Gill, 1997; 

Tsiatis, 2007), we have anchored the class of assumptions around CCMV.

To understand this class of assumptions, consider the case where K = 2 and, as in the HT-

ANAM-302 study, Z = (Y1 + Y2)/2 − Y0. In this case, (1) reduces to the following three 

assumptions, where βT′ = βT /2 (due to the definition of the functional endpoint Z):

Assumption 1:

f Y2 A2 = 1, Y1, Y0, X, T , S = (1, 0) ∝ exp βT′ Y2 f Y2 A2 = 1, Y1, Y0, X, T , S = 1
 Reference Distribution 

(2)

This assumption says that for subjects alive at t2, who are observed at time t1, who share the 

same functional measure at t1 and who share the same baseline factors, the distribution of Y2 

for those whose functional measure at t2 is missing is, when βT′ > 0 ( < 0), more heavily 

weighted toward higher (lower) values of Y2 than those whose functional measure at t2 is 

observed.

Assumption 2:

f Y1 A2 = 1, Y2, Y0, X, T , S = (0, 1) ∝ exp βT′ Y1 f Y1 A2 = 1, Y2, Y0, X, T , S = 1
 Reference Distribution 

(3)

This assumption says that for subjects alive at t2, who are observed at time t2, who share the 

same functional measure at t2 and who share the same baseline factors, the distribution of Y1 

for those whose functional measure at t1 is missing is, when βT′ > 0 ( < 0), more heavily 
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weighted toward higher (lower) values of Y1 than those whose functional measure at t1 is 

observed.

Assumption 3:

f Y1, Y2 A2 = 1, Y0, X, T , S = (0, 0) ∝ exp βT′ Y1 + Y2 f Y1, Y2 A2 = 1, Y0, X, T , S = 1
 Reference Distribution 

(4)

This assumption says that for subjects alive at t2 and who share the same baseline factors, 

the joint distribution of Y1 and Y2 for those whose functional measures at t1 and t2 are 

missing is, when βT′ > 0 ( < 0), more heavily weighted toward higher (lower) values of Y1 

and Y2 than those whose measures are fully observed.

When βT′ = 0 in above assumptions, there is no differential weighting. The differences 

between the distributions being contrasted in the above assumptions increases with βT′ . To 

better illustrate these assumptions, ignore conditioning on Y0 and X and suppose f(Y1, Y2|

A2 = 1, T, S = 1) is multivariate normal with mean (μT,1, μT,2) and variance-covariance 

matrix

ΣT =
σT , 1

2 ρTσT , 1σT , 2

ρTσT , 1σT , 2 σT , 2
2

Then, f(Y2|A2 = 1, Y1, T, S = (1, 0)) is normal with mean 

μT , 2 + βT′ 1 − ρT
2 σT , 2

2 + ρT
σT , 2
σT , 1

Y1 −μT , 1) and variance 1 − ρT
2 σT , 2

2 ; f(Y1|A2 = 1, Y2, T, S = 

(0, 1)) is normal with mean μT , 1 + βT′ 1 − ρT
2 σT , 1

2 + ρT
σT , 1
σT , 2

Y2 − μT , 2  and variance 

1 − ρT
2 σT , 1

2 ; and f(Y1, Y2|A2 = 1, Y1, T, S = (0, 0)) is multivariate normal with mean 

μT , 1 + βT′ σT , 1
2 + βT′ ρTσT , 1σT , 2, μT , 2 + βT′ σT , 2

2 + βT′ ρT , 1σT , 2  and variance-covariance matrix 

ΣT. If ρT > 0, then the above means increase linearly in βT′ ; βT′  has no impact on the above 

variances and covariances. Thus, βT′ > 0 βT′ < 0  implies that the distributions on the left 

hand sides of Equations (2), (3) and (4) have more (less) mass at higher values than their 

reference distributions.

2.4 Modeling and Inference

Our imputation approach requires specification of a model for f YK AK = 1, Y0, X, T , S =1 . In 

specifying this model, it is important to utilize an approach that respects bounds (possibly 
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population-specific) on the functional outcomes; failure to do so can result in nonsensical 

imputations.

To address this issue, we consider a data transformation of Yk (k = 1, …, K) by a 

transformation function

ϕ yk = log
yk − BL
BU − yk

,

where (BL, BU) denote the lower and upper bound. Let Yk
† = ϕ Yk  and Yk

† = Y1
†, …, Yk

† . 

Importantly, there is a one-to-one mapping between the conditional distributions 

h YK
† AK =1, Y0, X, T , S = 1  and f YK | AK = 1, Y0, X, T , S = 1 .

We construct a model for f YK | AK = 1, Y0, X, T , S = 1  by positing a model for 

h YK
† | AK = 1, Y0, X, T , S = 1 . To proceed, we write

h YK
† AK = 1, Y0, X, T , S = 1 = ∏

k = 1

K
h Yk

† AK = 1, Yk − 1
† , Y0, X, T , S = 1 (5)

and posit a model for each component of the product.

In our examples, we consider models of the form:

h Yk
† AK = 1, Yk − 1

† , Y0, X, T = t, S = 1 = hk, t Yk
† − μk, t Yk − 1

† , Y0, X; αk, t

where μk, t Yk − 1
† , Y0, X; αk, t  is a specified conditional mean function (depending on time k 

and treatment t) of Yk − 1
† , Y0, X and αk,t, αk,t is an unknown parameter vector and hk,t is an 

unspecified time/treatment-specific mean zero density function. The parameter vectors αk,t 

can be estimated by minimizing the least squares objective function

∑
i = 1

n
I Ti = t AK, i ∏

k = 1

K
Rk, i Yk, i

† − μk, t Yk − 1, i
† , Y0, i, Xi; αk, t

2

Let αk, t denote the least squares estimator of αk,t. The density function hk,t can be estimated 

by kernel density estimation based on the residuals 

Yk, i
† − μk, t Yk − 1, i

† , Y0, i, Xi; αk, t :T i = t, AK, i = 1, R1, i = …, RK, i = 1, i = 1, …, n  or estimated 

with parametric assumptions (e.g. normality) if the sample size is small. Let hk, t denote the 

kernel density estimator of hk,t. We then estimate f YK | AK = 1, Y0, X, T , S = 1  by
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f YK AK = 1, Y0, X, T , S = 1 = ∏
k = 1

K
hk, t Yk

† − μk, t Yk − 1
† , Y0, X; αk, t

dϕ Yk
dYk

.

For each individual i alive at tK and who is in a stratum s ≠ 1, we impute (see next section) 

the missing functional outcomes by drawing from the density that is proportional to 

exp βTZ f Ymis
(s) AK = 1, Yobs

(s) = Yobs, i, Y0 = Y0, i, X = Xi, T = T i, S = 1 . Note that the 

exponential tilting is on the original scale, even though the modeling has been performed on 

a transformed scale. For each such individual, we draw M copies of the missing functional 

outcomes to create M complete datasets. For each complete dataset m, we estimate θ by θm. 

Our overall estimator of θ is θ = 1
M ∑m = 1

M θm. Confidence intervals can be constructed by 

non-parametric bootstrap, where individuals are sampled with replacement within each 

treatment group.

2.5 Imputation

We propose the following Metropolis-Hastings algorithm to draw from

exp βTZ f Ymis
(s) AK = 1, Yobs

(s) , Y0, X, T , S = 1 .

For ease of notation, we suppress the superscript s for Ymis and Yobs in the following steps.

1. Set l = 0. Choose arbitrary initial values for Ymis, denoted by Ymis
(0) . Let Z(0) be the 

primary functional endpoint with data Yobs, Y mis 
(0) .

2. Set l = l + 1.

3. Generate Ymis′  from a (multivariate) Gaussian distribution with mean Ymis
(l − 1) and 

variance Λ.

4. Calculate the acceptance ratio as

a =
exp βTZ′ f Ymis′ , Yobs AK = 1, Y0, X, T , S = 1

exp βTZ(l − 1) f Ymis
(l − 1), Yobs AK = 1, Y0, X, T , S = 1

where Z′ and Z(l−1) are the primary functional endpoints with data Yobs, Ymis′

and Yobs, Ymis
(l − 1) , respectively.

5. Accept Ymis
(l) = Ymis′  with probability min(1, a) and Ymis

(l) = Ymis
(l − 1) with probability 

1 − min(1, a).

6. Repeat Steps 2–5 until the Markov chain converges.
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7.
Draw random samples from the set Ymis

l0 , Ymis
l0 + 1

, …  as the imputed missing 

values, where l0 corresponds to the burn-in number.

Note that out-of-boundary candidates Ymis′  are rejected at Step 5 since the acceptance ratio 

will be 0. The tuning parameter Λ in Step 3 affects the acceptance rate. In practice, 

calibration of Λ may be applied to achieve a desirable acceptance rate. Note a higher 

acceptance rate often corresponds to a slower convergence. Robert (1997) suggested an 

acceptance rate of 1/4 for models of high dimension and 1/2 for models of dimension 1 or 2. 

As an example of calibration, Muller (1991) proposed to successively modify Λ as the 

product of a scale factor and the variance of the available samples. The calibration process 

continues until the acceptance rate is close to 1/4 and the variance of the available samples 

stabilizes. Furthermore, various diagnostics such as Geweke diagnostic may be applied to 

evaluate the convergence of the Markov chain (Cowles and Carlin, 1996).

3. Simulation Study

We considered a study design in which two post-baseline functional assessments are 

scheduled (i.e., K = 2) to be collected at t1 and t2. We defined Z = (Y1+Y2)/2−Y0. For each 

simulation, we generate a dataset with n individuals - half assigned T = 0 and half assigned 

T = 1. For each individual, we simulated data according to the following algorithm:

• Draw Y0 from standard normal distribution.

• Given T and Y0, draw L1 from an exponential distribution with mean 1/

exp(λT,0+λT,1Y0). If L1 < t1, set L = L1 and stop.

• Given T and Y0, draw Y1 from a normal distribution with mean μT + γT Y0, and 

variance 1.

• Given T and Y1, draw L2 from an exponential distribution with mean 1/

exp(λT,0+λT,1Y1). If L2 < t2 − t1, set L = L2 + t1 and stop.

• Given T and Y1, draw Y2 from a normal distribution with mean μT + γT Y1 and 

variance 1.

• Given T and Y2, draw S from multinomial distribution with

P(S = s |T , Y2) =
exp μT , s′ + βTZ

1 + ∑s′ ≠ 1exp μT , s′′ + βTZ
, s ≠ 1

and

P(S = 1 |T , Y2) = 1
1 + ∑s′ ≠ 1exp μT , s′′ + βTZ

,
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where μT , s′  are parameters that control the missing pattern frequencies. Note that 

the data generation mechanism for S is equivalent to the exponential tilting class 

of assumptions posited by (1).

We considered two major scenarios in the simulation study. Scenario I is focused on 

evaluating the impact of survival and functional status among survivors on the treatment 

effect evaluation. In this scenario, we assumed there is no missing data among survivors in 

either arm (i.e., μT , s′ ≡ − ∞ for all T and s). Scenario II is focused on evaluating the impact 

of missing data and the proposed sensitivity analysis strategy on the treatment effect 

evaluation. In this scenario, we assumed there were no deaths in either arm (i.e., λT,0 = −∞ 
for all T). For all simulations, we set γ0 = γ1 ≡ 1 and μ0 ≡ 0. For assessing the performance 

of our estimation procedure for θ, we report mean squared error, coverage rate of 95% 

percentile-based bootstrap confidence intervals (1000 re-samples) and the null hypothesis 

rejection rate. In our simulation study, we considered sample sizes of 200 and 500. Each 

simulation was based on 500 replications. For missing data imputation, we set M = 1 and 

used a burn-in of 1000 iterations for each MCMC chain.

3.1 Scenario I

We set λ0,0 = λ1,0 = −0.5 and λ0,1 = 1. In varying the survival rate at the end of the study, 

we considered study lengths (i.e., t2) of 0.2 and 0.5 and set t1 = t2/2. Table 2 shows that, for 

all settings, θ is well estimated and the 95% bootstrap confidence interval covers the true 

value of θ with probability close to the nominal level. Under the null hypothesis H0 : θ = 0 

(i.e. λ1,1 = 1 and μ1 = 0), the type I error rate is well controlled and as expected the power to 

detect a treatment effect increases as the size of the study or |θ| increases.

3.2 Scenario II

We set μ1, s′ = − 2.5 and μ0, s′ = − ∞ (i.e., no missing data in arm T = 0) for all s ≠ 1. We set 

β1 = −2.0. We considered μ1 = −0.25, 0.00 and 0.25, yielding missing data rates in arm T = 1 

of 21%, 15% and 10%, respectively. Table 3 shows that when β1 is correctly specified (i.e., 

β1* = − 2.0), the multiple imputation procedure produces unbiased estimates of θ with 

nominal coverage probabilities. However, when β1 is mis-specified (i.e., β1* = 0), there is, as 

expected, bias in estimation of θ, poor confidence interval coverage and inflated type I error.

4. Data Analysis

For the analysis of the HT-ANAM-302 Study, the imputation of week 6 and week 12 LBM 

incorporated the following baseline covariates: Eastern Cooperative Oncology Group 

(ECOG) performance status (0 or 1 vs. 2), age (⩽ 65 vs. > 65), sex, body mass index (BMI) 

(under-weight, < 18.5, or not), and weight loss over the prior 6 months (WL) (⩽ 10% vs. > 

10%). In this example, we applied a data transformation setting the lower (BL) and upper 

(BU) bound of LBM to be 24 and 140, respectively. That is, we had 

Yk
† = log Yk − 24 / 140 − Yk  for k = 1, 2. We specified the following models for 

μk, t Yk − 1
† , Y0, X; αk, t :
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μ1, t Y0, X, α1, t = α1, t, 1 + α1, t, 2Y0 + α1, t, 3ECOG + α1, t, 4AGE + α1, t, 5SEX + α1, t, 6BMI + α1, t, 7WL

μ2, t Y1
†, Y0, X; α2, t = α2, t, 1 + α2, t, 2Y0 + α2, t, 3ECOG + α2, t, 4AGE + α2, t, 5SEX + α2, t, 6BMI

+ α2, t, 7WL + α2, t, 8Y1
†

To estimate θ, M = 10 imputed datasets were generated. A burn-in of 2000 iterations was 

used for each MCMC chain. After the burn-in, imputed data were drawn every 50 iterations. 

Trace plots of the MCMC chains for 5 randomly selected patients are reported in Web 

Appendix B. A total of 1000 bootstrap samples were used to compute standard errors and 

95% percentile-based confidence intervals; two-sided p-values were computed using a 

standard normal approximation to the Wald statistic (estimator divided by bootstrap standard 

error).

Under the benchmark assumptions (i.e., β0 = β1 = 0), θ = 0.30 (95% CI: 0.16 to 0.37, p < 

0.0001), which indicates that patients treated with anamorelin have a significantly higher 

probability of having a better clinical outcome, as described by the composite of survival 

and average change in LBM from baseline, than patients treated with Placebo. Figure 1 

displays the treatment-specific cumulative distribution functions of the composite endpoint 

U, where we have labeled the values of the composite endpoint according to the survival 

time L and functional endpoint Z among survivors. Note that the distribution of survival is 

similar across the treatment groups and differences in the distribution of the composite 

endpoint are being driven by differences in the functional endpoint among survivors. In the 

Placebo group, we estimate that more than half the patients will survive and have an average 

change in LBM from baseline greater than −0.98 kg (95% CI: −1.27 kg to −0.28 kg). In the 

anamorelin group, we estimate that more than half the patients will survive and have an 

average change in LBM from baseline greater than 0.69 kg (95% CI: 0.43 kg to 0.93 kg).

For the sensitivity analysis, we varied βT from −0.5 to 0.5. This range corresponds to an 

induced shift, relative to the benchmark imputation, of about 1.5 kg in the mean of the 

imputed average LBM change, which represents a clinically important change (Figure 2). 

Panel (A) of Figure 3 presents estimates of θ and its associated 95% confidence interval as a 

function of β0 (i.e., sensitivity analysis parameter in the Placebo arm), for two extreme 

values of β1 = −0.5, 0.5 (i.e., sensitivity analysis parameter in the anamorelin arm). For all 

the sensitivity scenarios, the lower bound of the 95% CI for θ is always greater than 0 

suggesting that the conclusions from the benchmark analysis are robust. Panel (B) of Figure 

3 presents the treatment-specific estimates (along with 95% confidence intervals) of the 

median of the composite endpoint and its 95% confidence interval as a function of βT for 

this study. Panel (C) of Figure 3 presents a contour plot of the p-values associated with 

testing the null hypothesis θ = 0 for each combination of β0 and β1 for this study. The 

figures shows that, for all combinations, the null hypothesis is rejected in favor of 

anamorelin. We conclude that anamorelin is superior to Placebo in terms of improving the 

composite endpoint, driven by improvements in LBM (as depicted in Figure 1).
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5. Discussion

In this paper, we proposed a global sensitivity analysis approach for randomized controlled 

clinical trials with death and intermittent missing data. Our method is based on the 

construction of a composite endpoint that combines both the survival and the functional 

outcome data. Complete case missing value constraints are considered as the benchmark 

assumption for intermittent missing data imputation. Sensitivity analysis is further 

conducted to evaluate the robustness of the findings through exponential tilting. The 

sensitivity analysis strategy differs from previous work in two important ways. First, it 

handles non-monotone missing data anchored at CCMV benchmark restrictions. With the 

exception of Minini and Chavance (2004) and Vansteelandt et al. (2007), previous work has 

focused on monotone missing data anchored at MAR-type assumptions (see, for example, 

Rotnitzky et al. (2001b); Little (1994); Rotnitzky et al. (1998); Scharfstein et al. (1999); 

Robins et al. (2000); Rotnitzky et al. (2001a); Birmingham et al. (2003); Daniels and Hogan 

(2008); National Research Council Panel on Handling Missing Data in Clinical Trials 

(2010); Scharfstein et al. (2014)). Furthermore, previous work has not been imputation-

based. Second, our proposal uses a parsimonious way to introduce sensitivity parameters, 

which is directly connected to the functional outcome.

The CCMV benchmark restrictions are untestable and may be considered unreasonable in 

some settings. Thus, the proposed sensitivity analysis strategy is critically important. Our 

proposal will fail in settings where there are very few survivors with complete functional 

outcome data, on which Z is defined.

We emphasize that there exists multiple approaches to address the “truncation by death” 

issue. Which approach is the “best” depends on the target of inference (Kurland et al., 2009). 

Provided that death and the functional outcome can be ordered in a scientifically meaningful 

way, the composite endpoint approach is desirable when the goal is to globally evaluate the 

efficacy and safety of a medical intervention under the intention to treat paradigm. Before 

utilizing the proposed method, researchers should employ mixed methods to confirm that the 

ordering is consistent with the health preferences of the patient population under 

investigation.

The ranking scheme we proposed is similar to the “untied worst-rank score analysis” in 

Lachin (1999). An alternative approach, the “worst-rank score analysis”, ranks all the 

patients who died (AK = 0) the same and is also commonly used. The proposed method can 

be easily extended to incorporate alternatives to death such as “unable to complete” the 

functional evaluation as may occur in studies similar to the trial of sedation interruption 

among mechanically ventilated patients. The principle for choosing the ranking scheme, 

nonetheless, is that the ranking orders should be clinically meaningful and closely related to 

the goal of evaluating the efficacy and safety of the treatment.

In the proposed approach, we assume that the survival status is always known and there is no 

censoring. Such an assumption is generally reasonable for well-controlled clinical trials with 

relatively short study duration. When this assumption does not hold, we need to extend the 

imputation strategy to first impute the survival time for censored subjects. Depending on the 
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imputed survival length, missing data may nor may not need to be imputed for these 

subjects.

In this paper, we have assumed complete information on baseline covariates, including the 

functional measure. The missing baseline functional measures could be imputed by 

extending the patterns of missingness to include this measure. With regards to other missing 

baseline covariates, we recommend, prior to implementation of our proposed methods, 

imputation using readily available software.

We proposed numerical sampling techniques, specifically the random-walk Metroplis 

Hastings algorithm, for sampling the missing outcomes. Alternatively, the slice sampling 

algorithm (Neal, 2003) can be applied to take into account the restricted ranges of the 

missing outcomes. The computation load may be reduced for special cases in which there is 

a closed form expression for the target distributions.

The proposed approach can handle randomized studies with more than two treatment arms 

by conducting pairwise treatment comparisons and adjusting for multiplicity. The proposed 

missing data imputation strategy may be applied without change since it is conducted 

separately for each arm.

Our sensitivity analysis approach is based on frequentist principles. Alternatively, one can 

build a Bayesian approach (see, for example, Scharfstein et al., 2003; Daniels and Hogan, 

2008) whereby informative priors on the sensitivity analysis parameters are elicited from 

subject matter experts. The Bayesian approach, however, will require more modeling 

assumptions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Cumulative distribution function of the composite endpoint for each treatment group based 

on the multiple imputation algorithm with the benchmark assumptions. The composite 

endpoint is labeled according to the survival time L among patients that die and the 

functional endpoint Z among patients that survive to 12 weeks.
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Figure 2: 
Treatment-specific densities of the imputed Z (average change in LBM from baseline) for 

different choices of the sensitivity parameters βT
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Figure 3: 
Sensitivity analysis: Panel (A) presents estimates of θ (with 95% confidence intervals) for 

various choices of the sensitivity analysis parameters. Note that β1 and β0 are the sensitivity 

analysis parameters for the anamorelin and Placebo groups, respectively. Panel (B) presents 

the treatment-specific estimates of the median (with 95% confidence intervals) of the 

composite endpoint for various choices of sensitivity analysis parameters. Panel (C) presents 

the contour plot of the p-values obtained by testing the null hypothesis of θ = 0 as function 

of treatment-specific sensitivity analysis parameters.
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Table 1:

Treatment-specific summaries of death prior to week 12, and missingness of LBM among survivors from the 

HT-ANAM-302 Study. †: Patients with AK = 0.

Placebo (n = 157) anamorelin (n = 322)

Died Prior to Week 12† 24 (15.3%) 54 (16.8%)

Survivors with complete data 93 (59.2%) 185 (57.5%)

Survivors missing only Week 6 3 (1.9%) 17 (5.3%)

Survivors missing only Week 12 17 (10.8%) 31 (9.6%)

Survivors missing both Weeks 6 and 12 20 (12.7%) 35 (10.9%)
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Table 2:

Results of simulation Scenario I evaluating the impact of treatment on survival and functional status among 

survivors. Each simulation generated 500 studies assuming no missing data among survivors. The Death Rates 

for T = 0 are 0.188 and 0.354 corresponding to the study length (t2) of 0.2 and 0.5, respectively. MSE*: mean 

squared error ×1000. Rej*: rejection rate for H0 : θ = 0. Cov*: bootstrap 95% confidence interval coverage 

rate.

Death Rate
True θ Sample Size

Estimation Rate

λ1,1 T = 0 T = 1 μ1 θ MSE* Rej* Cov*

1.3 0.188 0.230 0.0 −0.056 200 −0.060 5.5 0.092 0.978

500 −0.054 2.9 0.186 0.938

0.293 0.5 0.088 200 0.085 7.1 0.198 0.944

500 0.086 2.5 0.358 0.958

0.354 0.388 0.0 −0.051 200 −0.053 6.7 0.104 0.936

500 −0.046 2.7 0.154 0.956

0.463 0.5 0.007 200 0.007 7.6 0.072 0.928

500 0.006 2.6 0.042 0.960

1.0 0.188 0.188 0.0 0.000 200 0.002 6.9 0.050 0.952

500 0.004 2.7 0.048 0.958

0.236 0.5 0.178 200 0.181 7.5 0.602 0.932

500 0.177 2.7 0.934 0.946

0.354 0.354 0.0 0.000 200 −0.003 6.1 0.032 0.974

500 0.000 2.7 0.058 0.944

0.418 0.5 0.080 200 0.079 7.2 0.180 0.946

500 0.084 2.7 0.352 0.948

0.7 0.188 0.151 0.0 0.051 200 0.047 6.4 0.090 0.960

500 0.053 2.4 0.174 0.952

0.180 0.5 0.265 200 0.269 5.8 0.924 0.954

500 0.262 2.7 0.996 0.944

0.354 0.315 0.0 0.054 200 0.051 6.3 0.096 0.958

500 0.053 2.5 0.174 0.964

0.362 0.5 0.163 200 0.160 6.0 0.518 0.950

500 0.165 2.7 0.884 0.954
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Table 3:

Results of simulation Scenario II evaluating the impact of missing data and the proposed sensitivity analysis 

strategy on the treatment effect evaluation. Each simulation generated 500 studies with all patients surviving to 

t2 and 10% to 21% missing data. MSE*: mean squared error ×1000. Rej*: rejection rate for H0 : θ = 0. Cov*: 

bootstrap 95% confidence interval coverage rate. β1*: sensitivity parameter for T = 1. Missing rate*: overall 

functional endpoint missing rate that is determined by parameters μT , s′  in the data generation model for S.

Missing Rate* True θ Sample Size
Estimation Rate

β1* μ1 θ MSE* Rej* Cov*

0 0.21 −0.25 −0.186 200 −0.049 26.8 0.090 0.640

500 −0.045 23.5 0.146 0.268

0.15 0.00 0.000 200 0.104 18.4 0.236 0.780

500 0.110 15.1 0.516 0.476

0.10 0.25 0.186 200 0.275 14.4 0.906 0.810

500 0.271 9.5 1.000 0.614

−2 0.21 −0.25 −0.186 200 −0.192 7.1 0.612 0.952

500 −0.189 2.9 0.928 0.950

0.15 0.00 0.000 200 −0.014 7.6 0.054 0.952

500 −0.011 3.1 0.050 0.952

0.10 0.25 0.186 200 0.180 7.5 0.572 0.950

500 0.178 2.7 0.928 0.948
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