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Abstract

We investigate the behavior of various standard and modified F, LR and LM tests

in linear homoskedastic regressions, adapting an alternative asymptotic framework

where the number of regressors and possibly restrictions grows proportionately to

the sample size. When restrictions are not numerous, the rescaled classical test

statistics are asymptotically chi-squared irrespective of whether there are many

or few regressors. However, when restrictions are numerous, standard asymptotic

versions of classical tests are invalid. We propose and analyze asymptotically valid

versions of the classical tests, including those that are robust to the numerosity

of regressors and restrictions. The local power of all asymptotically valid tests

under consideration turns out to be equal. The “exact” F test that appeals to

critical values of the F distribution is also asymptotically valid and robust to the

numerosity of regressors and restrictions.
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1 Introduction

Often applied researchers run regressions where the number of regressors is large and

even comparable with the number of observations. Examples are cross-sectional growth

regressions, regressions run for few transition countries, predictive regressions with many

predictors, and so on. In such situations a researcher may be willing to test, for in-

stance, that a particular coefficient is zero by looking at individual t ratios, or to test

for joint significance of a big or small subset of regression parameters which often hap-

pens during general-to-specific model selection. When the set of potential regressors is

very wide, researchers may apply dimension reduction tools (e.g., Galbraith and Zinde-

Walsh, 2006), model selection tools adapted to possibly many regressors (e.g., Jensen and

Würtz, 2006), tools for identification of significant regressors in sparse environments (e.g.,

Huang, Horowitz, and Ma, 2008) or testing tools in underidentified models (e.g., Breusch,

1986), including Bayesian methods (e.g., Srivastavaa and Kubokawa, 2007). When the

situation is not that extreme, an applied researcher is likely to apply the standard set

of classical tools. An interesting question is whether the classical inference is distorted

by the presence of many regressors, and if yes, how one can achieve asymptotically valid

inference.

Even relatively early literature points at problems with classical tests when there are

many regressors and especially many restrictions in the null hypothesis. For example,

Berndt and Savin (1977, pp. 1273–1275) document huge conflicts among the classical

tests when the number of restrictions is comparable to the sample size. Evans and Savin

(1982, pp. 741 and 744–745) conclude that the conflict has large probability when the

ratio of the number of restrictions to a difference between the number of observations and

the number of parameters is large.1 Rothenberg (1984, pp. 916–917) notices a big error

in approximating the Wald statistic by a chi-squared distribution when the number of

restrictions is not a tiny fraction of the sample size, even after adjusting critical values

according to the higher-order Edgeworth expansion. Burnside and Eichenbaum (1996)

discover, although in a nonlinear model estimated by GMM, that the size of the Wald

test exceeds the intended size and increases sharply with number of moment restrictions.

In this paper, we investigate the behavior of the trinity of classical asymptotic tests

(F, LR and LM) in a linear regression model in such situations, employing an alterna-

1This ratio denoted by λ in Section 4 will be an important measure in our asymptotic analysis.
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tive asymptotic framework where the number of regressors grows proportionately to the

sample size. While the classical inference is still valid when the dimensionality of the

problem grows but no faster than some specified rate (e.g., Portnoy, 1985; Koenker and

Machado, 1999), it may or may not be valid when there is proportionality between the

number of regressors and sample size. When it is invalid, we propose modifications of the

classical tests that take into account the numerosity of regressors and possibly restrictions.

Our asymptotic framework is reminiscent of that for the many instrument asymptotics of

Bekker (1994), and similar to the asymptotics used in the theory of large random matrices

(e.g., Silverstein, 1995; Bai, 1999; Ledoit and Wolf, 2004). Most of the existing literature,

however, severely restrict the growth rate of the number of regressors or moment con-

ditions (e.g., de Jong and Bierens 1994; Hong and White, 1995; Koenker and Machado,

1999; Donald, Imbens and Newey, 2003; Newey and Windmeijer, 2009), which leads to

a relatively simpler asymptotic analysis and absence of some features in the asymptotic

limit. As a result, the resulting quality of approximation may be poorer when these ob-

jects are really high-dimensional. We stress that we are not concerned with parameter

estimation which is not consistent in our many regressors asymptotic framework, but we

analyze inference tools conventionally used by researchers in such circumstances all the

same.

It turns out that there are two distinct types of asymptotic behavior of classical

test statistics depending on whether few or many restrictions are assumed under the null

hypothesis. If the restrictions are not numerous compared to the sample size (e.g., in test-

ing for significance of one or few coefficients), the rescaled (with the scaling due to only

degrees-of-freedom adjustment) classical test statistics are asymptotically chi-squared ir-

respective of whether there are many or few regressors. If the restrictions are numerous

compared to the sample size (e.g., in testing for joint significance of a big set of poten-

tial predictors), each of the classical test statistics when appropriately recentered and

normalized is asymptotically standard normal, with different recentering and normaliza-

tion for different statistics. Interestingly, we establish that in this alternative asymptotic

framework the three classical tests are asymptotically wrongly sized, either moderately

(F) or severely (LR and LM), when there are many restrictions. However, it is possible to

correct the classical tests by shifting the quantiles of the chi-squared distribution used as

critical values, and additional scaling if necessary (for LR and LM). Most importantly, it

turns out that the corrected tests are robust to numerosity of regressors and restrictions
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and to the type of asymptotic framework, and hence may be applied “blindly”, without

verifying which asymptotic setup is most appropriate.

Along with the three classical asymptotic tests and our proposed alternatives, we

also study the “exact” F test that compares a value of F with critical values of the F

distribution, which is indeed exact under error normality. It turns out that the “ex-

act” F test is asymptotically valid under the many regressor and restriction asymptotics

and thus also robust to numerosity of regressors and restrictions. Further, we consider

modifications of the classical trio of statistics encountered in the previous literature, in

particular in Rothenberg (1977) and Evans and Savin (1982), motivated by Edgeworth

correction of higher order. It turns out that the tests modified in this way, although

are valid when there are many regressors but few restrictions, are asymptotically invalid

in our asymptotic framework when restrictions are many. Finally, it turns out that all

asymptotically valid tests under consideration are equally powerful against a sequence of

local alternatives. Thus, if one has to choose the most convenient test for a system of

many linear restrictions, one should probably use the “exact” F test as it is asymptotically

valid, robust to numerosity of regressors and restrictions, and most customary and hence

convenient.

The paper is structured as follows. In section 2 the setup is described. In section 3

we present the asymptotic theory and implications for the case of few restrictions, and

in Section 4 – for the case of many restrictions. We conclude in section 5. Appendices

contain more technical material and proofs.

2 Model, tests and assumptions

We consider the standard linear regression model

yi = z′iγ + ei, E [ei] = 0,

where zi and γ are m×1. The regressors zi will be treated as fixed constants throughout;

alternatively, all results can be viewed as conditional on the regressors. Suppose {ei}ni=1

are IID. For simplicity, we impose homoskedasticity: E [e2
i ] = σ2. In the matrix form, the

model then can be written as

Y = Zγ + e, E [e] = 0, E [ee′] = σ2In, (1)
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where Y = (y1, · · · , yn)′ , Z = (z1, · · · , zn)′ , e = (e1, · · · , en)′ . The matrix Z is assumed

to have full column rank m.

We are interested in testing a standard hypothesis containing r ≤ m linear restrictions

H0 : Rγ = q, (2)

where the vector q is r × 1, and the matrix R has full row rank r.

Let γ̂ be the OLS estimator of γ :

γ̂ = (Z ′Z)
−1
Z ′Y. (3)

Let us introduce the (degree-of-freedom adjusted) residual variance

σ̂2 =
(Y − Zγ̂)′ (Y − Zγ̂)

n−m
, (4)

as well as the restricted variance estimate

σ̃2 =
ẽ′ẽ

n
, (5)

where ẽ are restricted residuals:

ẽ = Y − Zγ̃,

where

γ̃ = γ̂ − (Z ′Z)
−1
R′
(
R (Z ′Z)

−1
R′
)−1

(Rγ̂ − q) .

These definitions are standard textbook ones; see, e.g., Greene (2000, sect. 6.3, 9.6).

We consider a standard trinity of asymptotic tests: the F test, the Likelihood ratio

(LR) test, and the Lagrange multiplier test (LM):

F =
(Rγ̂ − q)′

(
σ̂2R (Z ′Z)−1 R′

)−1
(Rγ̂ − q)

r
, (6)

LR = n ln

(
ẽ′ẽ

ê′ê

)
, (7)

LM = (Rγ̂ − q)′
(
σ̃2R (Z ′Z)

−1
R′
)−1

(Rγ̂ − q) . (8)

It is well known that under standard (conditionally homoskedastic) regression assump-

tions, rF, LR and LM are asymptotically equivalent and distributed as χ2(r). In the

situation when the number of regressors m is comparable to the sample size n, it is clear

that these statistics may no longer be asymptotically equivalent, because, for instance,
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the presence of the degrees of freedom adjustment in σ̂2 and its absence in σ̃2 lead to

asymptotically non-negligible difference between rF and LM . Note also that we do not

consider the Wald statistic

W =
nr

n−m
F,

as it is a scalar multiple of F, so the results concerning it can be obtained easily by

accordingly adjusting those for F.

It is helpful to recall the exact relationships among the three statistics

LR = n ln

(
1 +

r

n−m
F

)
, (9)

LM =
n

(n−m) (1 + rF/ (n−m))
rF, (10)

as well as the well-known inequality

W ≥ LR ≥ LM (11)

shown in Berndt and Savin (1977).

In addition, we consider the “exact” F test, let us call it EF, that compares the value

of the F statistic to a relevant quantile of the Fisher F distribution. That is, the size

α EF rejects when F > q
F (r,n−m)
α , where q

F (r,n−m)
α denotes the (1− α)-quantile of the

F (r, n−m) distribution. It is known that under standard regression assumptions and

normal errors the size of EF is exactly α, and under non-normal errors the size of EF

converges to α when m and r are fixed.

We adapt the following asymptotic framework.

Assumption 1 Asymptotically, as n → ∞, m/n = µ + o (1/
√
r) with 0 < µ < 1, and

either r is fixed or r/n = ρ+ o (1/
√
r) with 0 < ρ ≤ µ.

Assumption 1 is reminiscent of the classical many instruments asymptotic framework

of Bekker (1994), and of that used in the theory of large random matrices (e.g., Bai,

1999; Ledoit and Wolf, 2004). Assumption 1 rules out the classical case of few regressors

(so that m → ∞ and µ > 0 strictly), but allows for few (r is fixed so that ρ = 0) or

many (ρ > 0) restrictions. The cases of moderately many regressors (when m → ∞ but

m = o (n) so that µ = 0) or restrictions (when r → ∞ but r = o (n) so that ρ = 0) are

also excluded. It is critical for many results that follow that the number of regressors and

possibly restrictions grows proportionately with the sample size rather than slower than
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proportionately. However, we will discuss how our results relate to those with moderately

many regressors/restrictions available in the literature (e.g., Koenker and Machado, 1999;

Donald, Imbens and Newey, 2003). We do not consider frameworks with more regressors

than observations.

Assumption 2 The fourth raw moment of errors κ = E [e4
i ] exists and is finite.

Denote

ΞIm = (Z ′Z)
−1

and

ΞR = (Z ′Z)
−1
R′
(
R (Z ′Z)

−1
R′
)−1

R (Z ′Z)
−1
.

Assumption 3 Under the asymptotics of assumption 1, max1≤i≤n |z′iΞImzi − µ| → 0 and

max1≤i≤n |z′iΞRzi − ρ| → 0.

The conditions in assumption 3 are natural: when zi’s are generated under random

sampling, the means of z′iΞImzi and z′iΞRzi are equal to m/n and r/n converging, respec-

tively, to µ and ρ, and the variances must asymptotically vanish because the dimension-

ality of zi grows fast. Assumption 3 is discussed at more length in Appendix A. Recall

that the corresponding conditions for asymptotic normality of γ̂ and hence of asymp-

totic chi-squaredness of classical test statistics in the classical linear regression analysis

with fixed regressors are: E [e2
i ] is finite, limn→∞ n

−1Z ′Z exists, is finite and nonsingular

(e.g., Pötscher and Prucha, 2001, Section 4.1). Among the conditions for validity of the

conventional asymptotics in linear regressions with moderately many regressors is the re-

quirement max1≤i≤n |z′iΞImzi| → 0 (Koenker and Machado, 1999), which is a limiting case

of the first condition in assumption 3.

It turns out that qualitatively different asymptotic frameworks occur depending on

whether asymptotically the restrictions are few (r is fixed so that ρ = 0) or many (r grows

proportionately to n so that ρ > 0).

3 Asymptotic results: few restrictions

The first result is a direct extension of the classical textbook result on the trinity of tests.

The extension concerns the case when, for instance, one tests for exclusion restrictions
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regarding one or a small set of regressors in the face of many other regressors staying

included.

Theorem 1 Suppose assumptions 1–3 hold, and r is fixed. Then under H0

rF
d→ χ2(r),(

1− m

n

)
LR

d→ χ2(r),(
1− m

n

)
LM

d→ χ2(r).

If r = 1, the conventional t-statistic is asymptotically standard normal. In addition, the

EF test is asymptotically valid.

Previously, Koenker and Machado (1999) showed validity of the conventional asymp-

totics leading to χ2 test statistics when the number of regressors grows, but more slowly

than n1/3, i.e. when the regressors are moderately many. It turns out that when the

number of regressors grows much faster, proportionately to n, the adjusted for degrees-

of-freedom conventional test statistics are still χ2, even though coefficient estimation is

inconsistent. The “exact” F test accounts for many regressors automatically.

Although ruled out by assumption 1, the conventional case of few regressors (µ = 0)

may be mechanically viewed as a boundary point in the set of results of Theorem 1. In the

case of many regressors (µ > 0), the additional factor 1−m/n appears in the asymptotic

distribution of LR and LM statistics because of absence of degrees-of-freedom adjustments

of restricted variance estimate in the case of LM and of the statistic itself in the case of LR.

More importantly though, the asymptotic χ2 distribution results irrespective of whether

the number of regressors is small or large (i.e. whether µ = 0 or µ > 0). In the case of

many regressors not involved in the statement of the null hypothesis (implying in practice

that the number of non-zero columns of R is small), the noise caused by multiple nuisance

parameter estimation does not affect the asymptotic distribution.

Rescalings according to Theorem 1 or similar to them have been encountered in the

literature as adjustments that improve small sample properties of tests in face of an

appreciable number of regressors. In particular, Evans and Savin (1982, p. 742) list the

modified Wald statistic whose statistic coincides with rF , and the modified LR and LM
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statistics

LRM =

(
1− m− r/2 + 1

n

)
LR, (12)

LMM =

(
1− m− r

n

)
LM, (13)

which are asymptotically equivalent to the rescaled, according to Theorem 1, LR and LM

when restrictions are few.

4 Asymptotic results: many restrictions

In this section all results are related to the case of many restrictions (ρ > 0). This case is in

effect when, for instance, one tests for joint exclusion restrictions regarding a substantial

set of regressors, with some other regressors (or none, or only a constant term) staying

included.

Denote

λ =
ρ

1− µ
,

which is (asymptotically) the number of restrictions per degrees of freedom (rather than

per sample size). Note that since r ≤ m, λ does not exceed µ/ (1− µ) , but this value

can be quite large (in particular, much bigger than unity) if the number of regressors is

comparable to the sample size. Let also

λ̂ =
r

n−m
= λ+ o

(
1√
r

)
be a finite sample analog of λ.

4.1 Alternative tests

When the restrictions are many, the classical statistics are asymptotically normal after

normalization (if required) and recentering.

Theorem 2 Suppose assumptions 1–3 hold and ρ > 0. Then under H0

√
r (F − 1)

d→ N (0, 2 (1 + λ)) ,

√
r

(
LR

n
− ln (1 + λ)

)
d→ N

(
0,

2λ2

1 + λ

)
,

√
r

(
LM

n
− λ

1 + λ

)
d→ N

(
0,

2λ2

(1 + λ)3

)
.
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Perhaps surprisingly, no fourth moments of regression errors are appearing in the

asymptotic distribution, even though the formulas for the statistics themselves do con-

tain second powers of regression errors. More precisely, let us consider the asymptotic

expansion for
√
r (F − 1) from the proof of Theorem 2:

√
r (F − 1) =

1√
r

n∑
i=1

Ψ1i

(
e2
i

σ2
− 1

)
+

1√
r

∑
i6=j

Ψ2ij
eiej
σ2

+ op (1) , (14)

where the coefficients Ψ1i depend on ΞIm , ΞR and zi, and Ψ2ij depend on ΞIm , ΞR, zi and

zj. The structure of coefficients Ψ1i is such that max1≤i≤n |Ψ1i| → 0, which results in the

first term (that potentially was able to generate noise depending on fourth moments of

errors) being op(1). The second term in (14), having a form of a “jackknife” U-statistic,

yields asymptotic normality, its variance converging to 2 (1 + λ) .

The asymptotic normality result can be intuitively explained in the following way.

When r is fixed, the asymptotic distribution of, say, F is χ2(r)/r. This random variable

equals in distribution to an average of r independent squared standard normals. When

r is large, this average, when properly recentered and blown up by
√
r, behaves as a

normal random variable. Note however, that the asymptotic variance differs from 2, the

variance of a squared standard normal, by an additional factor 1 + λ, which reflects the

“aggregation uncertainty” in aggregating many restrictions. Alternatively, this factor may

be viewed as a “distortion” resulting from the finiteness of the number of observations

per restriction, asymptotically.

Previously, Donald, Imbens and Newey (2003) showed the asymptotic normality of

various conventionally χ2 test statistics in a more general (nonlinear model, GMM and

GEL estimators) setting but in the framework of moderately many moment restrictions,

i.e. when their number asymptotically grows but at a rate restricted from above by some

power of n ranging from 1
3

to 1
5
). Although not derived explicitly, for the F-statistic their

results would imply
√
r (F − 1)

d→ N (0, 2). The explanation for the higher variance in

our framework is, of course, inconsistency of implicit parameter estimation that creates

an additional uncertainty referenced above as the “aggregation uncertainty”. The distinct

feature of the moderately many restrictions case, in contrast to the many restrictions case,

is infinity of observations per restriction in the limit.

Note that the asymptotic distribution of the F statistic under moderately many re-

gressors and restrictions may be mechanically considered as a special case when λ = 0

of the first result in Theorem 2. However, it is problematic to consider these two cases
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within a unified framework: when the rate of growth of r is lower than n but higher than

the restriction imposed in Donald, Imbens and Newey (2003), it is not clear how the first

term in (14) behaves without further assumptions imposed (recall that under both many

and moderately many restrictions this term asymptotically disappears). This is why we

assume strict inequality λ > 0 and formulate the last two results in Theorem 2 for positive

λ only; they are useless for the case λ = 0.

Apart from Donald, Imbens and Newey (2003), asymptotically normal approxima-

tions that are χ2 in the classical asymptotic framework can be found in de Jong and

Bierens (1994), Hong and White (1995) and Ledoit and Wolf (2002). Donald, Imbens and

Newey (2003) note that they would favor the classical χ2 approximation over the normal

approximation. This is reasonable to expect under the “moderately large dimensionality”

assumption maintained in most studies. We will see later in subsection 4.3 that, when

restrictions are many, there is asymptotic equivalence between normal and corresponding

χ2 tests as long as both use proper corrections.

An important characteristic of the results in Theorem 2 is that the three statistics are

asymptotically pivotal, so that no additional estimation of unknown quantities is needed

for inference. It is easy to standardize the recentered statistics so that the asymptotic

distribution of alternative F, LR and LM statistics is standard normal.

Corollary 1 (alternative tests) Suppose assumptions 1–3 hold and ρ > 0. Then under

H0

AF ≡
√

r

2(1 + λ̂)
(F − 1)

d→ N (0, 1) ,

ALR ≡

√
(1 + λ̂)r

2λ̂
2

(
LR

n
− ln(1 + λ̂)

)
d→ N (0, 1) ,

ALM ≡

√
(1 + λ̂)3r

2λ̂
2

(
LM

n
− λ̂

1 + λ̂

)
d→ N (0, 1) .

Recall that the F, LR and LM statistics are positive by construction. Because a low

value of an F (or LR, or LM) statistic is an indicator of validity of the null hypothesis

while a big value results from its failure, the decision rule should reject the null when

the statistic is large, and the test should be one (right) sided. More precisely, the null is

rejected when the alternative test statistic on the left side is larger than the relevant right
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quantile of the standard normal. That is, the alternative F test rejects when

F > 1 +

√
2(1 + λ̂)

r
qN(0,1)
α , (15)

where q
N(0,1)
α is the (1− α)-quantile of the N (0, 1) distribution. Analogously, the alter-

native LR and LM tests reject when, respectively,

LR > n ln(1 + λ̂) + n

√√√√ 2λ̂
2

(1 + λ̂)r
qN(0,1)
α (16)

and

LM > n
λ̂

1 + λ̂
+ n

√√√√ 2λ̂
2

(1 + λ̂)3r
qN(0,1)
α . (17)

An immediate implication of Theorem 2 is the asymptotics for the regression R2 and

adjusted R2 when the regressors do not have any explanatory power. Recall that

F =
n−m
m− 1

R
2

1− R2
and R

2
= 1− n− 1

n−m
(
1− R2

)
,

where F is the F statistic for the null of exclusion restrictions for all regressors excluding

a constant term, which corresponds to ρ = µ. Then it is straightforward to see that under

assumptions 1–3

√
m
(
R

2 − µ
) d→ N

(
0, 2µ2 (1− µ)

)
and

√
mR

2 d→ N

(
0,

2µ2

1− µ

)
.

Thus, in large samples, when there are many regressors, the value of regression R2 makes

an impression of high explanatory power even when there is no explanatory power at all,

but the adjusted R2 is adequate in this sense.

4.2 Size of classical tests

It is interesting to know about the behavior of the classical asymptotic tests when one

neglects the presence of many regressors, and carries out testing in the conventional way,

i.e. rejects when T > q
χ2(r)
α , where T = rF, LR or LM, and q

χ2(r)
α is the (1− α)-quantile

of the χ2 (r) distribution. The following theorem describes the size of the classical tests

under the many regressor and restriction asymptotics. Denote by Φ (◦) the standard

normal cumulative distribution function, and by Φ−1 (◦) its quantile function. Let S (T)

stand for the size of the test T. Let the target test size satisfy α < 1
2
.
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Corollary 2 (classical tests) Suppose assumptions 1–3 hold and ρ > 0. Then under

H0

S (F)→ Φ

(
Φ−1 (α)√

1 + λ

)
,

while

S (LR) = Φ

(√
1 + λ

2λ2 (ln (1 + λ)− ρ)
√
r + o

(√
r
))

,

S (LM) = Φ

(√
1 + λ

2
(µ− ρ)

√
r + o

(√
r
))

.

Note that the asymptotic size of the F test is fixed and does not grow with r. This

means that under the many regressor and restriction asymptotics, the asymptotic size of

the F test is a fixed constant larger than α. Consequently, the F test will moderately

overreject in large samples. The F test may be quite reliable to use when λ� 1; this holds

when the number of restrictions is tiny relative to the number of degrees of freedom. Note

that the condition λ� 1 is equivalent to r+m� n which is essentially the requirement

of few regressors and few restrictions.

The sizes of the other two tests, LR and LM, do drift with r, and have little relation

to the target size. In the limit they equal unity because ln (1 + λ) > ρ and µ > ρ.2

Consequently, the LR and LM tests will exhibit severe size distortions in large samples.

The poor relation of the sizes of LR and LM tests to α is of no surprise, given that the

standard LR and LM statistics are not correctly sized even when restrictions are few,

but regressors are many (see Theorem 1). These phenomena are reflected in Evans and

Savin (1982) who conclude that the conflict among the classical asymptotic tests has large

probability when λ is large.

To summarize, in the environment characterized by many regressors and restrictions,

the conventional tests have asymptotically incorrect size, and the conclusions may be

(moderately at best) distorted.

4.3 Corrected tests and robust tests

From Corollary 2 the expression for an asymptotic size of the classical F test is avail-

able. An interesting possibility is correcting the conventional test in such a way that the

2The asymptotic size of the LM test in the special case µ = ρ depends on the composition of the

o (1/
√
r) term in assumption 1.
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asymptotic size matches the target size. Let α be the target size, as usual. The corrected

F (CF) test is characterized by rejecting when F > q
χ2(r)

αF
, where αF = g−1 (Φ−1 (α)) is

the “corrected significance level” and g is defined from S (F ) → Φ (g (α)) as given by

Corollary 2. So, the corrected F test (CF) rejects when

F >
1

r
q
χ2(r)

αF
, (18)

where

αF = Φ

(
Φ−1 (α)

√
1 + λ̂

)
.

For this strategy to work with the LR and LM tests, the corresponding statistics

require additional preliminary scaling, as the asymptotic sizes of the raw LR and LM

tests have little relation with α according to Corollary 2. We thus define the corrected

LR (CLR) and corrected LM (CLM) tests as those that reject when

LR >
n

r
ln(1 + λ̂)q

χ2(r)

αLR
, (19)

where

αLR = Φ

(
Φ−1 (α)√

1 + λ̂

λ̂

ln(1 + λ̂)

)
,

and

LM >
n

n−m+ r
q
χ2(r)

αLM
, (20)

where

αLM = Φ

(
Φ−1 (α)√

1 + λ̂

)
,

respectively. Note that the factor on the right side of (20) corresponds to its reciprocal

on the right side of the LMM statistic (13), but the same does not hold for factors in (19)

and in the LRM statistic (12), although these are close to being reciprocals of each other

when λ is small.

Corollary 3 (corrected tests) Suppose assumptions 1–3 hold and ρ > 0. Then under

H0

S (CF) , S (CLR) , S (CLM)→ α.

That is, under the many regressor and restriction asymptotics, the corrected F, LR

and LM tests are asymptotically valid. This implies that the corrected F, LR and LM tests

may also be used for correct asymptotic inference, along with the three alternative tests.
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The asymptotic equivalence of the corrected and alternative F tests is of no surprise, as

both tests reject for large values F, only using different critical values (15) and (18) which

are, however, asymptotically (under the many regressor asymptotics) equal. Indeed, from

Peiser (1943) q
χ2(r)
α = r +

√
2rΦ−1 (1− α) +O (1) as r →∞ and hence

1

r
q
χ2(r)

αF
= 1 +

√
2(1 + λ̂)

r
qN(0,1)
α + op (1) .

The corrected F, LR and LM tests have one significant additional advantage over their

alternative counterparts: they are robust to numerosity of restrictions and regressors.

Even though formally the case λ = 0 is not covered by Theorem 2, one can notice that

when r is fixed, the corrected F, LR and LM tests mechanically reduce to the rescaled

conventional ones3 which are robust to the numerosity of regressors (cf. Theorem 1).

Indeed, when restrictions are few, λ̂ ≈ 0 and hence CF, CLR and CLM reduce to rejection

when rF & q
χ2(r)
α , (1−m/n)LR & q

χ2(r)
α and (1−m/n)LM & q

χ2(r)
α , the decision rules

that are valid when restrictions are few, irrespective of whether regressors are few or many.

Unlike the corrected tests, the alternative tests are valid only when ρ > 0 and thus

are not robust. Under many restrictions, however, the alternative and corresponding

corrected tests essentially coincide, and their asymptotic power properties are the same,

with any differences in size and power properties revealing only in finite samples. For

example, because the critical value (18) exceeds that in (15),4 the CF test will exhibit

smaller size distortions than the AF test in case there is overrejection, and vice versa.

4.4 Edgeworth-modified classical tests

Let us have a look at modifications of the classical trio documented in the previous

literature. Consider the following LRE statistic and versions of the Wald and LM tests,

WE and LME:

LRE =
n−m+ r/2− 1

n
LR (21)

3In the case of CLR, λ/ ln (1 + λ) is interpreted as the limit equal to unity when λ→ 0.
4This directly follows from q

χ2(r)
α > r − Φ−1 (α)

√
2r for large r (Peiser, 1943).
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(cf. the modified LRM statistic (12)),

WE : reject if rF > qχ
2(r)

α

(
1 +

q
χ2(r)
α − r + 2

2 (n−m)

)
, (22)

LME : reject if
n−m+ r

n
LM > qχ

2(r)
α

(
1− q

χ2(r)
α − r − 2

2 (n−m)

)
, (23)

(cf. the modified LMM statistic (13)). As Evans and Savin (1982, p. 742 and 746) note,

the LRE, WE and LME tests use Edgeworth correction of order 1/n. The modified critical

values in (22)–(23) are derived in Rothenberg (1977). The Edgeworth modified tests seem

to improve the chi-squared approximation even when r/n is not too small (Rothenberg,

1984, p. 917), but Evans and Savin (1982, p. 746) still express dissatisfaction by the

modified tests and complain on the conflict among them when the ratio of r to n−m is

appreciable.

The modified tests (21)–(23) do good for test sizes for small values of λ, but do not

completely solve the problem. We summarize the properties of the modified tests in a

corollary and discussion following it.

Corollary 4 (Edgeworth-modified tests) Suppose assumptions 1–3 hold and ρ > 0.

Then the Edgeworth-modified Wald test WE and Lagrange multiplier test LME have

asymptotic sizes, respectively,

Φ
(

(1 + λ/2) /
√

1 + λΦ−1 (α)
)
< α

and

Φ
(√

1 + λ (1− λ/2) Φ−1 (α)
)
> α

(assuming that λ < 2). The Edgeworth-modified Likelihood ratio test LRE has asymptotic

size

Φ

(√
1 + λ

2

(
ln (1 + λ)

λ
− 1

1 + λ/2

)√
r + o

(√
r
))

.

It follows that the modified tests WE, LRE and LRE are asymptotically invalid un-

der the many regressor and restriction asymptotics. In finite samples, when there are

many regressors and restrictions, the Edgeworth-modified Wald test WE will underreject,

moderately for small λ or severely for large λ, while the Edgeworth-modified Lagrange

multiplier test LME will overreject, moderately for small λ or severely for large λ. The

Edgeworth-modified Likelihood ratio test LRE for sufficiently big r will severely overreject
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as its size converges to unity because ln (1 + λ) /λ > (1 + λ/2)−1 . The reason why the

size of the LRE test is trending while those of WE and LME are not is that the correction

factor used in (21) does not correspond to that in (19), in contrast to correction factors

in (22) and (23) that are in accordance with (18) and (20), respectively.

Thus, none of the modifications of the classical trio of statistics proposed in the litera-

ture is valid under the many regressor and restriction asymptotics and adequately accounts

for numerosity of restrictions. This does not mean, however, that the modifications will

work badly in finite samples, and in fact they may be quite reliable when λ is not too

large. The Edgeworth corrections used for the modifications rely on moderate number of

regressors and restrictions, i.e. tiny λ, and as λ→ 0, the sizes of the WE and LME tests

approach the nominal size. For small λ, the asymptotic sizes of the WE and LME tests,

for example, are approximately Φ
((

1 + λ2/8
)

Φ−1 (α)
)

and Φ
((

1− 3λ2/8
)

Φ−1 (α)
)
, re-

spectively, which are indeed close to α for small λ, closer than the asymptotic size of the

classical F test (see Corollary 2). Even for big enough λ, the factors (1 + λ/2) /
√

1 + λ

and
√

1 + λ (1− λ/2) are quite close to unity, for example, for λ = 1
2

they are 1.021 and

0.919, respectively, making the actual sizes equal 4.66% and 6.54% for the nominal size of

5%. Recall, however, that λ may take values much higher than 1 if there are very many

regressors, in which case the distortions of the WE and LME tests may be enormous.

To summarize, the Edgeworth corrections of higher order derived under the standard

asymptotics do not suffice to properly account for the numerosity of restrictions.

4.5 “Exact” F test

Now we consider the “exact” (also known as “finite sample”) F test EF, that compares the

value of the F statistic to a relevant quantile of the Fisher F (r, n−m) distribution. Under

the normality of errors, this test is valid in a sample of any size, with any relationship

between numbers of regressors and restrictions. When the regression errors are non-

normal, the EF test is wrongfully sized, but it is well known that it is asymptotically

valid in the conventional few regressors asymptotic framework. Recall also from the last

statement of Theorem 1 that the EF test is asymptotically valid when regressors are many

but restrictions are few.

The following theorem shows its asymptotic validity in the many regressor and re-

striction framework.
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Theorem 3 Suppose assumptions 1–3 hold and ρ > 0. Then under H0

S (EF)→ α.

That is, the use of quantiles of the F distribution with r and n − m degrees of

freedom is asymptotically justified even when the number of regressors and number of

restrictions jointly grow proportionately to the sample size. In a normal regression, this

is a consequence of exact fisherianity of the F statistic. Theorem 3 implies that in non-

normal regressions the size distortions resulting from non-fisherianity when there are many

regressors and restrictions are asymptotically negligible.

The relation of Theorem 3 to the first result of Theorem 2 can be seen heuristically as

follows. It is well known that an F (r, n−m) random variable is equal in distribution to

a ratio of independent χ2(r)/r and χ2(n−m)/ (n−m) random variables. Then, jointly

( √
r

(
χ2(r)

r
− 1

)
√
n−m

(
χ2(n−m)

n−m
− 1

)) d→ N

(0

0

)
,

 2 0

0 2

 .

Applying now the Delta method and recalling that
(
lim
√
r/
√
n−m

)2
= λ, one obtains

√
r

(
χ2(r)/r

χ2(n−m)/ (n−m)
− 1

)
d→ N (0, 2 (1 + λ)) ,

which conforms to the first result of Theorem 2.

Note an important property that because the asymptotic size of the EF test equals

the target size regardless of the asymptotic framework in use, it is also robust to the

numerosity of regressors and restrictions.

4.6 Power of asymptotically valid tests

Now a natural question arises: how do the asymptotically valid tests considered above

compare in power under the many regressor asymptotics? Let us fix δ, a m× 1 constant

vector not containing zeros, and assume the following.

Assumption 4 The quantity

∆ = lim
δ′R′

(
R (Z ′Z)−1 R′

)−1
Rδ

r2

exists and is finite.
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One division by r here is needed because of summation in Z ′Z, the other – due to the

expanding dimension of Rδ. For instance, in case R = Im,

∆ =
1

ρ
· lim 1

r
δ′
(
Z ′Z

n

)
δ.

Let us define a sequence of drifting DGPs

γ̃ = γ +
δ

r
3
4

. (24)

The rate of drifting is such that asymptotically the test statistics converge to non-central

normals. The local alternative corresponding to the drifting DGP (24) is

Hδ
A : Rγ = q +

Rδ

r
3
4

. (25)

The following result describes the local power of the asymptotically valid tests.

Theorem 4 Suppose assumptions 1–4 hold and ρ > 0. Then the local power again the

sequence of alternatives Hδ
A of the AF, ALR, ALM, CF, CLR, CLM, and EF tests equals

Φ

(
∆

σ2
√

2 (1 + λ)
− Φ−1 (1− α)

)
.

This theorem implies that under a sequence of local alternatives (25) the three alter-

native tests, three corrected tests and “exact” F test all have equal non-trivial asymptotic

power.

5 Concluding remarks

We have developed an alternative asymptotic theory for testing in linear regression mod-

els when the number of regressors is big and comparable with the sample size. In the

asymptotic framework where the number of regressors and possibly restrictions grows

proportionately to the sample size the statistics from the classical trinity of asymptotic

tests either behave as chi-squared (after proper rescaling), or need additional recentering

and normalization after which they behave as standard normal. Which of these cases

takes place depends on whether there are few or many restrictions in the null. We have

proposed and analyzed asymptotically valid versions of the classical tests that are robust

to numerosity of regressors and restrictions. The local power of all tests under consider-

ation turns out to be equal. The “exact” F test that appeals to critical values of the F
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distribution is also asymptotically valid and robust to the numerosity of regressors and

restrictions.

Several extensions are possible. One may consider linear instrumental variables models

where the number of endogenous regressors and number of moment restrictions grow

proportionately with the sample size, not necessarily being equal as in the problem of

focus in this paper. Another possibility is nonlinear models estimated by GMM where

the number of momemt restrictions is proportional to the sample size rather than grows

at a restricted rate which is typical in the existing literature. Generalization of the theory

to stationary time series data would also be interesting.
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A Appendix

We will use the general notation

ΞP = (Z ′Z)
−1
P ′
(
P (Z ′Z)

−1
P ′
)−1

P (Z ′Z)
−1

for a conformable matrix P of full row rank p ≤ m where p/n = π+ o (1/
√
r) asymptoti-

cally. In particular, ΞIm = (Z ′Z)−1 with p = m and π = µ, and ΞR with p = r and π = ρ.

We will repeatedly use the relation

n∑
i=1

z′iΞP zi =
n∑
i=1

tr (z′iΞP zi) = tr

(
n∑
i=1

z′iΞP zi

)
= tr

(
ΞP

n∑
i=1

ziz
′
i

)

= tr

(
(Z ′Z)

−1
P ′
(
P (Z ′Z)

−1
P ′
)−1

P

)
= tr (Ip) = p.
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A.1 Discussion of assumption 3

The simpler half of assumption 3 means that uniformly in i

z′iΞImzi → µ, (26)

and the other half means, analogously, that uniformly in i

z′iΞRzi → ρ. (27)

Although we treat elements of Z as fixed constants, the justification for these state-

ments comes from zi being independently drawn from some distribution. It is easy to see

that z′iΞImzi and z′iΞRzi are concentrated around µ and ρ: indeed, for P = Im, R, using

the symmetry in i and properties of a matrix trace,

E [z′iΞP zi] =
1

n

∑
i

E [tr (ziΞP z
′
i)] =

1

n
E

[
tr

(
ΞP

∑
i

ziz
′
i

)]

=
1

n
E

[
tr

(
(Z ′Z)

−1
P ′
(
P (Z ′Z)

−1
P ′
)−1

P

)]
=

1

n
E [tr (Ip)] =

p

n
→ π.

In effect, we require that in addition the variance of z′iΞP zi is zero, uniformly in i.

Let us first discuss (26). Intuitively, z′i (Z
′Z)−1 zi → µ must hold because

z′i (Z
′Z)
−1
zi =

z′iM
′
nΛnMnzi
n

,

where (Z ′Z/n)−1 = M ′
nΛnMn with Λn diagonal containing eigenvalues of (Z ′Z/n)−1 on

the main diagonal, and MnM
′
n = In. Hence,

z′i (Z
′Z)
−1
zi =

a′nan
n

= µ
1

m

m∑
j=1

[an]2j ,

where an = Λ
1/2
n Mnzi. By some law of large numbers, this scaled average has to converge

almost surely to the limit of its expectation limE
[
z′i (Z

′Z)−1 zi
]

= µ.

More formally, let us look at the case of normal regressors. Suppose that the elements

of zi are IID, and zi is m-variate standard normal (there is no loss of generality in stan-

dardization of the variance in view of the invariance with respect to the transformation

zi 7→ Czi). Then the matrix Z ′−iZ−i, where Z−i is Z with the ith row removed, follows
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the Wishart distribution with scale parameter Im and shape parameter n− 1, and is in-

dependent of zi. Using the literature on the moments of the Wishart distribution (Letac

and Massam, 2004, p.308) we obtain5

E
[
z′i
(
Z ′−iZ−i

)−1
zi

]
=

m

n−m− 2
→ 1

µ−1 − 1

and

var
[
z′i
(
Z ′−iZ−i

)−1
zi

]
= m

2n2 −m2 −mn− 8n+ 8

(n−m− 2)2(n−m− 4)(n−m− 3)
= O

(
1

n

)
→ 0.

Therefore, plim z′i
(
Z ′−iZ−i

)−1
zi = (µ−1 − 1)

−1
. Using the identity

z′i (Z
′Z)
−1
zi =

z′i
(
Z ′−iZ−i

)−1
zi

1 + z′i
(
Z ′−iZ−i

)−1
zi

we obtain

z′i (Z
′Z)
−1
zi

p→ (µ−1 − 1)
−1

1 + (µ−1 − 1)−1 = µ.

Now we present an informal argument why the convergence must hold uniformly in i.

It follows from the computations above and its structure that z′i
(
Z ′−iZ−i

)−1
zi for different

i behave, for large n, approximately as independent chi-squared random variables scaled

by some O (n−1) factor. From the distributional properties of chi-squared it follows that

the centered third moment is O (n−2). Then, using the Markov inequality, for any ε > 0,

Pr

{
n1/4 max

1≤i≤n
|z′i
(
Z ′−iZ−i

)−1
zi −

(
µ−1 − 1

)−1 | > ε

}
≈ 1−

(
1− Pr

{
|z′i
(
Z ′−iZ−i

)−1
zi −

(
µ−1 − 1

)−1 | > n−1/4ε
})n

≤ 1−

(
1−

n3/4E[|z′i
(
Z ′−iZ−i

)−1
zi − (µ−1 − 1)

−1 |3]

ε3

)n

= 1−

(
1−

O
(
n−5/4

)
ε3

)n

→ 0,

As a result,

max
1≤i≤n

|z′i
(
Z ′−iZ−i

)−1
zi −

(
µ−1 − 1

)−1 | → 0.

Then, also

max
1≤i≤n

|z′i (Z ′Z)
−1
zi − µ| ≤ (1− µ) max

1≤i≤n
|z′i
(
Z ′−iZ−i

)−1
zi −

(
µ−1 − 1

)−1 | → 0.

5The detailed derivations are available upon request.
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We conjecture that the normality assumption and requirement of IIDness of elements

in zi can be somewhat relaxed (Silverstein, 1995; Ledoit and Wolf, 2004).

The condition (27) is analogous as z′iΞRzi = s′i (S
′S)−1 si for r-vector si = RΞImzi

and correspondingly n × r matrix S = ZΞImR
′. For example, if R = (R1, 0) , where

R1 is r × r, then it is straightforward to see that for Z2 containing only last m − r

regressors, z′iΞRzi = z′i
(
ΞIm − (Z ′2Z2)−1) zi → µ−(µ− ρ) = ρ and max1≤i≤n |z′iΞRzi−ρ| ≤

max1≤i≤n |z′i (Z ′Z)−1 zi − µ|+ max1≤i≤n |z′i (Z ′2Z2)−1 zi − (µ− ρ) | → 0.

To get a feel for the quality of approximation and how it changes with sample size,

we carry out an experiment where we document average maximal discrepancy between

z′iΞImzi (or z′iΞRzi) and µ (or ρ). The matrix Z is filled with independent standard

normals in one case (“normal regressors”), and with standard uniform, standard normals,

chi-squared with one degree of freedom, standard exponential and standard lognormal in

equal proportions (“mixed regressors”). Throughout, m = µn (so that µ = 1
2
).

normal regressors mixed regressors

n 10 50 250 10 50 250

max1≤i≤n |z′iΞImzi − µ| 0.318 0.216 0.125 0.385 0.321 0.230

R = (1, 0, ..., 0), ρ = 0

max1≤i≤n |z′iΞRzi − ρ| 0.379 0.130 0.037 0.277 0.103 0.029

R = (1, 1, ..., 1), ρ = 0

max1≤i≤n |z′iΞRzi − ρ| 0.379 0.130 0.037 0.292 0.107 0.033

R = (Ir, Or×(m−r)), ρ = 2
5

max1≤i≤n |z′iΞRzi − ρ| 0.336 0.224 0.126 0.398 0.339 0.240

One can see that the maximal deviations do fall with the sample size, although quite

slowly in cases when π ≡ lim rk (ΞP ) /n > 0, more slowly for non-normal regressors.

However, the results of Theorem 2 use approximations of related, but other functions of

regressors. The following table documents the deviations of such functions from their

limit values. Throughout, m = µn (so that µ = 1
2
), R = (Ir, Or×(m−r)), r = ρn (so that
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ρ = 2
5
).

normal regressors mixed regressors

n 10 50 250 10 50 250

n−1
∑n

i=1 (z′iΞImzi)
2 − µ2 0.0420 0.0099 0.0020 0.0510 0.0172 0.0045

n−1
∑n

i=1 (z′iΞRzi)
2 − ρ2 0.0403 0.0092 0.0019 0.0487 0.0160 0.0042

n−1
∑n

i=1 (z′iΞRzi) (z′iΞImzi)− µρ 0.0336 0.0077 0.0016 0.0382 0.0121 0.0032

One can see that the approximation error is tiny even for small sample sizes.

Assumption 3 is may not hold in one of two situations. The first one is characterized

by heterogeneity in Z across rows indexed by i due to non-random sampling, for example,

when the number of seasonal dummies is proportional to the sample size. The second

situation arises when a significant portion of regressors has too heavy tails, for example,

is Cauchy distributed. If, on the other hand, the fraction of deterministic and/or heavy

tailed regressors is asymptotically negligible, this should not invalidate assumption 3.

A.2 Proofs

Lemma 1 Under assumptions 1–3, if p→∞ and p/n = π + o (1/
√
r) with π > 0,

e′ZΞPZ
′e

pσ2

p→ 1.

Moreover, if π > 0,
e′ZΞPZ

′e

pσ2
− 1

is Op

(
1/
√
p
)
.

Proof. The mean is

E

[
e′ZΞPZ

′e

pσ2

]
=

1

pσ2
E [tr (e′ZΞPZ

′e)] =
1

pσ2
tr (ΞPZ

′E [ee′]Z) =
1

p
tr (ΞPZ

′Z)

=
1

p
tr

(
(Z ′Z)

−1
P ′
(
P (Z ′Z)

−1
P ′
)−1

P

)
=

1

p
tr (Ip) = 1.

Next, when recentered,

e′ZΞPZ
′e

pσ2
− 1 =

1

p

n∑
i=1

n∑
j=1

z′iΞP zj
eiej
σ2
− 1 =

1

p

n∑
i=1

z′iΞP zi

(
e2
i

σ2
− 1

)
+

1

p

∑
i6=j

ziΞP z
′
j

eiej
σ2

= A1 + A2,
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say. By the IID and regression assumption, A1 and A2 are uncorrelated. The variances

of A1 and A2 are

var (A1) = (κ− 1)
1

p2

n∑
i=1

(z′iΞP zi)
2

= (κ− 1)
1

p

π2 + o (1)

π + o (1/
√
r)

= πO

(
1

p

)
,

as for all i, (z′iΞP zi)
2 = (π + z′iΞP zi − π)2 ≤ (π + |z′iΞP zi − π|)2 = π2 + o (1) using as-

sumption 3;

var (A2) =
1

p2
E

(∑
i6=j

z′iΞP zj
eiej
σ2

)2
 =

1

p2
E

[∑
i6=j

∑
k 6=l

z′iΞP zjz
′
kΞP zl

eiej
σ2

ekel
σ2

]

=
2

p2

n∑
i=1

n∑
j=1,j 6=i

(z′iΞP zj)
2

=
2

p2

n∑
i=1

z′iΞP

(
n∑

j=1,j 6=i

zjz
′
j

)
ΞP zi

=
2

p2

n∑
i=1

(
z′iΞP zi − (z′iΞP zi)

2
)
<

2

p
= O

(
1

p

)
,

as
∑n

i=1 z
′
iΞP zi = p and var (A2) > 0. So, the variance of A1 + A2 is of order O (1/p).

�

Lemma 2 Under assumptions 1–3,

σ̂2 p→ σ2.

Moreover,
σ̂2

σ2
− 1 = Op

(
1√
n

)
.

Proof. The residual variance σ̂2 is

σ̂2 =
e′(I − Z (Z ′Z)−1 Z ′)e

n−m
=

n

n−m

(
e′e

n
− m

n

e′ZΞImZ
′e

m

)
p→ 1

1− µ
(
σ2 − µσ2

)
= σ2,

where Lemma 1 is used with P = Im. Next, using the CLT and Lemma 1 again,

σ̂2 − σ2 =
n

n−m

(
e′e

n
− σ2 − m

n

(
e′ZΞImZ

′e

m
− σ2

))
=

1

1− µ+ o (1/
√
r)

(
Op

(
1√
n

)
−
(
µ+ o

(
1√
r

))
Op

(
1√
m

))
= Op

(
1√
n

)
.

�
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Proof of Theorem 1. Define Hn = (Z ′Z)−1/2 such that H ′nHn = (Z ′Z)−1 , and

ΥR = HnR
′
(
R (Z ′Z)

−1
R′
)−1

RH ′n.

Because ΥR is idempotent of rank r, we have ΥR = GnG
′
n, where Gn is m × r matrix of

rank r with the property G′nGn = Ir (Magnus and Neudecker, 1988, p.21). Now,

rF =
σ2

σ̂2 ζ
′
nζn,

where

ζn = G′nHnZ
′ e

σ
.

Consider the triangular array Πn = ZH ′nGn. Note that

lim Π′nΠn = limG′nHnZ
′ZH ′nGn = limG′nGn = Ir.

Denote by εj the jth r × 1 unit vector (i.e., with unity at the jth position and all other

entries equaling zero), and let ‖◦‖ denote the L2 vector norm. Obviously, ‖εj‖ = 1. By

the Cauchy–Schwarz inequality,∣∣∣[Πn]ij

∣∣∣ = |z′iH ′nGnεj| ≤ ‖G′nHnzi‖ ‖εj‖ =
√
z′iH

′
nΥRHnzi =

√
z′iΞRzi.

Then, by assumption 3 and the fact that ρ = 0,

max
1≤i≤n

∣∣∣[Πn]ij

∣∣∣ ≤√max
1≤i≤n

z′iΞRzi → 0.

Now by the central limit theorem for sums of independent heterogeneous sequences where

coefficients are elements of triangular arrays (Pötscher and Prucha, 2001, Theorem 30

and subsequent remark) we have

ζn = Π′n
e

σ

d→ N (0, Ir) .

By Lemma 2, σ2/σ̂2 p→ 1. Summarizing,

rF =
σ2

σ̂2 ζ
′
nζn

d→ χ2(r).

Using identities (9) and (10), one easily gets the two other conclusions.

Consider now the EF test. Note that

F (r, n−m)
d
=
n−m
r

χ2 (r)

χ2 (n−m)
d
=
χ2 (r)

r
,
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so we have for the quantile of F (r, n−m) distribution that

qF (r,n−m)
α =

q
χ2(r)
α

r
+ o (1) ,

and

S (EF) = Pr
{
F > qF (r,n−m)

α

}
= Pr

{
rF > rqF (r,n−m)

α

}
= Pr

{
qχ

2(r)
α + op (1) > rqF (r,n−m)

α

}
→ α.

�

Proof of Theorem 2. Using consistency of σ̂2 and Lemma 1 with P = R,

F =
σ2

σ̂2

e′ZΞRZ
′e

rσ2

p→ 1.

Next we will determine
√
r (F − 1) . Using the Taylor expansion and Lemma 2,

σ2

σ̂2 =

(
1 +

σ̂2

σ2
− 1

)−1

= 1−
(
σ̂2

σ2
− 1

)
+ op

(
1√
n

)
. (28)

From the proof of Lemma 2,

σ̂2

σ2
− 1 =

1

1−m/n

(
e′e

nσ2
− 1

)
− m/n

1−m/n

(
e′ZΞImZ

′e

mσ2
− 1

)
=

1

1− µ

(
e′e

nσ2
− 1

)
− µ

1− µ

(
e′ZΞImZ

′e

mσ2
− 1

)
+

(
1

1−m/n
− 1

1− µ

)(
e′e

nσ2
− 1

)
−
(

m/n

1−m/n
− µ

1− µ

)(
e′ZΞImZ

′e

mσ2
− 1

)
=

1

1− µ

(
e′e

nσ2
− 1

)
− µ

1− µ

(
e′ZΞImZ

′e

mσ2
− 1

)
+ op

(
1√
n

)
,

because

1

1−m/n
− 1

1− µ
=

1

1− µ+ o (1/
√
r)
− 1

1− µ
=

o (1/
√
r)

(1− µ+ o (1/
√
r)) (1− µ)

= o (1)

and similarly
m/n

1−m/n
− µ

1− µ
= o (1) ,

and because

e′e

nσ2
− 1 and

e′ZΞImZ
′e

mσ2
− 1 are Op

(
1√
n

)
by the CLT and Lemma 1.

This in turn implies using (28) that

σ2

σ̂2 − 1 = − 1

1− µ

(
e′e

nσ2
− 1

)
+

µ

1− µ

(
e′ZΞImZ

′e

mσ2
− 1

)
+ op

(
1√
n

)
.
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To summarize, we have the representation

√
r (F − 1) =

√
r

(
e′ZΞRZ

′e

rσ2
− 1

)
+
√
r

(
σ2

σ̂2 − 1

)
+
√
r

(
σ2

σ̂2 − 1

)(
e′ZΞRZ

′e

rσ2
− 1

)
= A+ op

(
1√
r

)
,

where

A =
√
r

((
e′ZΞRZ

′e

rσ2
− 1

)
− 1

1− µ

(
e′e

nσ2
− 1

)
+

µ

1− µ

(
e′ZΞImZ

′e

mσ2
− 1

))
is Op (1) . We will now show that A is asymptotically normal. This term is composed of

two main parts, apart from the remainder: A1 + A2 + op (1) , where

A1 =
n∑
i=1

1√
r

(z′iΞRzi + λ (z′iΞImzi − 1))

(
e2
i

σ2
− 1

)
,

A2 =
∑
i6=j

1√
r
z′i (ΞR + λΞIm) zj

eiej
σ2

,

and the remainder is due to deviations of m/n, r/n and r/ (n−m) from µ, ρ and λ,

respectively.

Consider first the term A1. Note that E [A1] = 0 and

var (A1) =
1

r

n∑
i=1

E

[
(z′iΞRzi + λ (z′iΞImzi − 1))

2

(
e2
i

σ2
− 1

)2
]

= (κ− 1)
1

r

n∑
i=1

(z′iΞRzi + λ (z′iΞImzi − 1))
2

= (κ− 1)
o (1)

ρ+ o (1/
√
r)

= o (1) ,

as for all i, z′iΞRzi + λ (z′iΞImzi − 1) = ρ+ o (1) + λ (µ+ o (1)− 1)→ 0 using assumption

3. To summarize, A1 = op(1).

Next, to derive the asymptotics for A2, we check the conditions for the central limit

theorem by Kelejian and Prucha (2001, Theorem 1) for linear quadratic forms where

bi,n ≡ 0, i.e. there is no linear part. Assumption 1 of this CLT is satisfied for εi,n ≡ ei/σ.

We check assumption 2 of this CLT for

aij,n ≡
1√
r
z′i (ΞR + λΞIm) zj.

First, aij,n is clearly symmetric. Second, by the triangular inequality,

n∑
i=1

|aij,n| ≤
1√
r

n∑
i=1

|z′iΞRzj|+ λ
1√
r

n∑
i=1

|z′iΞImzj| .
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But, using the Cauchy–Schwarz inequality,

1√
r

n∑
i=1

|z′iΞRzj| ≤
√
n

r

(
n∑
i=1

(z′iΞRzj)
2

)1/2

=

√
n

r

(
z′jΞRzj

)1/2 ≤
√

1

ρ

for sufficiently large n, where we used that z′jΞRzj = s′j (S ′S)−1 sj ≤ 1 for si = RΞImzi and

correspondingly S = ZΞImR
′. Similarly one can handle the second term. Consequently,

sup1≤j≤n,n≥1

∑n
i=1 |aij,n| <∞ in assumption 2 of this CLT of Kelejian and Prucha (2001,

Theorem 1) is satisfied. Next, in their assumption 3(a) sup1≤i≤n,n≥1 E
[
|εi,n|2+η] < ∞

holds by assumption 2.

The variance of A2 is n/r times

1

n
E

(∑
i6=j

z′i (ΞR + λΞIm) zj
eiej
σ2

)2


=
1

n
E

[∑
i6=j

∑
k 6=l

z′i (ΞR + λΞIm) zjz
′
k (ΞR + λΞIm) zl

eiej
σ2

ekel
σ2

]

=
2

n

n∑
i=1

n∑
j=1,j 6=i

(z′i (ΞR + λΞIm) zj)
2

=
2

n

n∑
i=1

z′i (ΞR + λΞIm)

(
n∑

j=1,j 6=i

zjz
′
j

)
(ΞR + λΞIm) zi

=
2

n

n∑
i=1

z′i (ΞR + λΞIm) (Z ′Z − ziz′i) (ΞR + λΞIm) zi

=
2

n

n∑
i=1

(
z′i
(
(1 + 2λ) ΞR + λ2ΞIm

)
zi − (z′i (ΞR + λΞIm) zi)

2
)

= 2
(
(1 + 2λ) ρ+ λ2µ

)
− 2

n

n∑
i=1

(z′i (ΞR + λΞIm) zi)
2
.

By assumption 3,

1

n

n∑
i=1

(z′i (ΞR + λΞIm) zi)
2

=
1

n

n∑
i=1

(
(z′iΞRzi)

2
+ 2λ (z′iΞRzi) (z′iΞImzi) + λ2 (z′iΞImzi)

2
)

→ ρ2 + 2λρµ+ λ2µ2,

so the variance is bounded from below for large enough n. In total, the variance of A2

converges to

1

ρ

(
2
(
(1 + 2λ) ρ+ λ2µ

)
− 2

(
ρ2 + 2λρµ+ λ2µ2

))
= 2 (1 + λ) .
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To summarize, the limit of
√
r (F − 1) in distribution is

√
r (F − 1)

d→ N (0, 2 (1 + λ)) .

Next, because F →p 1, we have using (9)

√
r

(
LR

n
− ln

(
1 +

r

n−m

))
=
√
r ln

(
1 +

(
1 +

r

n−m

)−1
r

n−m
(F − 1)

)

=
√
r

(
1 +

r

n−m

)−1
r

n−m
(F − 1) + op

(√
r (F − 1)

)
=

λ

1 + λ

√
r(F − 1) + op (1) ,

and also

√
r

(
LR

n
− ln (1 + λ)

)
=
√
r

(
LR

n
− ln

(
1 +

r

n−m

))
+
√
r

(
ln

(
1 +

r

n−m

)
− ln (1 + λ)

)
,

where the second term is op (1) by assumption 1, so the second result follows. Analogously,

we have using (10)

LM

n
− r/ (n−m)

1 + r/ (n−m)
=

LM

n
− r/ (n−m)

1 + rF/ (n−m)

− r2

(n−m)2

F − 1

(1 + r/ (n−m)) (1 + rF/ (n−m))

=
r/ (n−m)

1 + r/ (n−m)
(F − 1)− r2

(n−m)2

F − 1

(1 + r/ (n−m))2

+op (F − 1)

=
λ

1 + λ

(
1− λ

1 + λ

)
(F − 1) + op (F − 1) ,

so
√
r

(
LM

n
− r/ (n−m)

1 + r/ (n−m)

)
=

λ

(1 + λ)2

√
r(F − 1) + op

(√
r (F − 1)

)
.

and also

√
r

(
LM

n
− λ

1 + λ

)
=
√
r

(
LM

n
− λ

1 + λ

)
+
√
r

(
r/ (n−m)

1 + r/ (n−m)
− λ

1 + λ

)
,

where the second term is op (1) by assumption 1, so the third result follows.

�
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Proof of Corollary 1. Straightforward pivotization of
√
r (F − 1) yields asymptotic

standard normality for AF. The asymptotic standard normality for LR and LM follows

from the straightforward pivotization of LR/n − ln(1 + λ̂) and LM/n − λ̂/(1 + λ̂) and

asymptotic equivalence of these to LR/n− ln (1 + λ) and LM/n−λ/(1+λ), respectively,

shows in the proof of Theorem 2.

�

Proof of Corollary 2. The actual size of the F test is

S (F) = Pr
{
rF > qχ

2(r)
α

}
.

From Peiser (1943), we know that

qχ
2(r)

α = r + Φ−1 (1− α)
√

2r +O (1) , (29)

so
q
χ2(r)
α

r
− 1 = Φ−1 (1− α)

√
2

r
+O

(
1

r

)
.

Then, using the first result of Theorem 2,

S (F) = Pr

{√
r (F − 1)√
2 (1 + λ)

>

√
r

2 (1 + λ)

(
q
χ2(r)
α

r
− 1

)}

= Pr

{√
r (F − 1)√
2 (1 + λ)

>
Φ−1 (1− α)√

1 + λ
+O

(
1√
r

)}

→ 1− Φ

(
Φ−1 (1− α)√

1 + λ

)
.

The actual size of the LR test is

S (LR) = Pr
{
LR > qχ

2(r)
α

}
= Pr

{√
1 + λ

2λ2

√
r

(
LR

n
− ln (1 + λ)

)
>

√
(1 + λ) r

2λ2

(
q
χ2(r)
α

n
− ln (1 + λ)

)}

= 1− Φ

(√
(1 + λ) r

2λ2

(
q
χ2(r)
α

n
− ln (1 + λ)

)
+ op (1)

)
,

using the second result of Theorem 2. Using (29),

S (LR) = 1− Φ

(√
1 + λ

2

(
ρ+ o (1)− ln (1 + λ)

λ

)√
r+

ρ
√

1 + λ

λ
Φ−1 (1− α) +O

(
1√
r

)
+ op (1)

)
= 1− Φ

(√
1 + λ

2λ2 (ρ− ln (1 + λ))
√
r + o

(√
r
))

.
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Analogously, the actual size of the LM test is

S (LM) = Pr
{
LM > qχ

2(r)
α

}
= Pr

{√
(1 + λ) r

2

((
1 + λ−1

) LM
n
− 1

)

>

√
(1 + λ) r

2

(
(1 + ρ− µ+ o (1))

q
χ2(r)
α

r
− 1

)}

= 1− Φ

(√
(1 + λ) r

2

(
(1 + ρ− µ+ o (1))

q
χ2(r)
α

r
− 1

)
+ op (1)

)
,

using the third result of Theorem 2. Using (29),

S (LM) = 1− Φ

(√
1 + λ

2
(ρ− µ+ o (1))

√
r +

√
(1 + λ)3 (1− µ) Φ−1 (1− α)

+O

(
1√
r

)
+ op (1)

)
= 1− Φ

(√
1 + λ

2
(ρ− µ)

√
r + o

(√
r
))

.

�

Proof of Corollary 3. The actual size of the corrected F test (18) is, using the

expansion (29),

S (CF) = Pr
{
rF > q

χ2(r)

αF

}
= Pr

{√
r (F − 1)√
2 (1 + λ)

>

√
r

2 (1 + λ)

(
q
χ2(r)

αF

r
− 1

)}

= Pr

{√
r (F − 1)√
2 (1 + λ)

>
Φ−1

(
1− αF

)
√

1 + λ
+O

(
1√
r

)}

= Pr

{
N (0, 1) + op (1) > −Φ−1 (α) + o (1) +O

(
1√
r

)}
→ 1− Φ

(
−Φ−1 (α)

)
= α.
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Similarly, the actual size of the CLR test is

S (CLR) = Pr

LR >

n ln

(
1 +

r

n−m

)
r

q
χ2(r)

αLR


= Pr

{
LR

n
> ln

(
1 + λ+ o

(
1√
r

))
q
χ2(r)

αLR

r

}

= Pr

{√
(1 + λ) r

2λ2

(
LR

n
− ln

(
1 + λ+ o

(
1√
r

)))

>

√
(1 + λ) r

2

ln (1 + λ+ o (1/
√
r))

λ

(
q
χ2(r)

αLR

r
− 1

)}

= Pr

{√
(1 + λ) r

2λ2

(
LR

n
− ln (1 + λ)

)
+ o (1)

>
√

1 + λ

(
ln (1 + λ)

λ
+ o

(
1√
r

))(
Φ−1

(
1− αLR

)
+O

(
1√
r

))}
= Pr

{
N (0, 1) + op (1) > −Φ−1 (α) + o (1) +O

(
1√
r

)}
→ α.

Finally, the actual size of the CLM test is

S (CLM) = Pr

{
LM >

n

n−m+ r
q
χ2(r)

αLM

}
= Pr

{
LM

n
>

(
λ

1 + λ
+ o

(
1√
r

))
q
χ2(r)

αLM

r

}

= Pr


√

(1 + λ)3 r

2λ2

(
LM

n
− λ

1 + λ

)

>

√
(1 + λ)3 r

2λ2

(
λ

1 + λ
+ o

(
1√
r

))(
q
χ2(r)

αLM

r
− 1

)
= Pr


√

(1 + λ)3 r

2λ2

(
LM

n
− λ

1 + λ

)

>

√
(1 + λ)3

λ2

(
λ

1 + λ
+ o

(
1√
r

))(
Φ−1

(
1− αLM

)
+O

(
1√
r

))
= Pr

{
N (0, 1) + op (1) > −Φ−1 (α) + o (1) +O

(
1√
r

)}
→ α.

33



�

Proof of Corollary 4. The actual size of the modified Wald test WE is

S (WE) = Pr

{
rF > qχ

2(r)
α

(
1 +

q
χ2(r)
α − r + 2

2 (n−m)

)}

= Pr

{
AF >

√
r√

2 (1 + λ)

(
q
χ2(r)
α

r
− 1

)
+

q
χ2(r)
α√

r
√

2 (1 + λ)

q
χ2(r)
α − r + 2

2 (n−m)

}
.

Using (29) and the same technology as in the proof of Corollary 2,

S (WE) = Pr

{
AF >

Φ−1 (1− α)√
1 + λ

+O

(
1√
r

)
+

√
r +O (1)√
2 (1 + λ)

Φ−1 (1− α)
√

2r +O (1)

2 (n−m)

}

= Pr

{
N (0, 1) + op (1) >

Φ−1 (1− α)√
1 + λ

+
Φ−1 (1− α)λ

2
√

1 + λ
+O

(
1√
r

)}
→ Φ

(
1√

1 + λ

(
1 +

λ

2

)
Φ−1 (α)

)
.

The actual size of the LRE test is

S (LRE) = Pr

{
n−m+ r/2− 1

n
LR > qχ

2(r)
α

}
= Pr

{√
1 + λ

2λ2

√
r

(
LR

n
− ln (1 + λ)

)

>

√
(1 + λ) r

2λ2

(
q
χ2(r)
α

n (1− µ+ ρ/2 + o (1/
√
r))
− ln (1 + λ)

)}

= 1− Φ

(√
(1 + λ) r

2λ2

(
q
χ2(r)
α

n

1

1− µ+ ρ/2
− ln (1 + λ)

)
+ op (1)

)
,

using the second result of Theorem 2. Using (29) and the same technology as in the proof

of Corollary 2,

S (LRE) = 1− Φ

(√
1 + λ

2

(
ρ/ (1− µ+ ρ/2) + o (1)− ln (1 + λ)

λ

)√
r+

ρ
√

1 + λ

λ (1− µ+ ρ/2)
Φ−1 (1− α) +O

(
1√
r

)
+ op (1)

)
= 1− Φ

(√
1 + λ

2

(
λ/ (1 + λ/2)− ln (1 + λ)

λ

)√
r + o

(√
r
))

.

The actual size of the LME test is

S (LME) = Pr

{
n−m+ r

n
LM > qχ

2(r)
α

(
1− q

χ2(r)
α − r − 2

2 (n−m)

)}
.
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Using (29) and the same technology as before for WE, we get

S (LME)→ Φ

(√
1 + λ

(
1− λ

2

)
Φ−1 (α)

)
.

�

Proof of Theorem 3. Note that

F (r, n−m)
d
=
n−m
r

χ2 (r)

χ2 (n−m)
d
=

1 +
√

2/rζ1

1 +
√

2/ (n−m)ζ2

,

where ζ1 and ζ2 are independent standard normals. Next,

F (r, n−m)
d
=

(
1 +

√
2

r
ζ1

)(
1 +

√
2

n−m
ζ2

)−1

= 1 +

√
2

r
ζ1 −

√
2

n−m
ζ2 + od

(
1√
r

)
d
= 1 +N

(
0,

2

r
+

2

n−m

)
+ od

(
1√
r

)
,

so we have for the quantile of F (r, n−m) distribution that

qF (r,n−m)
α = 1 + Φ−1 (1− α)

√
2

r
+

2

n−m
+ o

(
1√
r

)
.

Then

S (EF) = Pr
{
F > qF (r,n−m)

α

}
= Pr

{
F > 1 + Φ−1 (1− α)

√
2

r
+

2

n−m
+ o

(
1√
r

)}

= Pr

{√
r (F − 1)√
2 (1 + λ)

> Φ−1 (1− α)

√
2 +

2r

n−m
1√

2 (1 + λ)
+ o (1)

}
→ 1− Φ

(
Φ−1 (1− α)

)
= α.

�

Proof of Theorem 4. Under Hδ
A,

√
r (F − 1) =

1

σ̂2

(
R (Z ′Z)−1 Z ′e+ r−

3
4Rδ

)′ (
R (Z ′Z)−1 R′

)−1
(
R (Z ′Z)−1 Z ′e+ r−

3
4Rδ

)
r

=
√
r

(
e′ZΞRZ

′e

rσ̂2 − 1

)
+

2

σ̂2

δ′R′
(
R (Z ′Z)−1 R′

)−1
R (Z ′Z)−1 Z ′e

r
5
4

+
1

σ̂2

δ′R′
(
R (Z ′Z)−1 R′

)−1
Rδ

r2
.
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Convergence of the first term to N (0, 2 (1 + λ)) is proved in Theorem 2. The second term,

apart from the preceding factor, has expectation zero and variance

1

r
5
2

E

[(
δ′R′

(
R (Z ′Z)

−1
R′
)−1

R (Z ′Z)
−1
Z ′e

)2
]

=
1

r
5
2

δ′R′
(
R (Z ′Z)

−1
R′
)−1

R (Z ′Z)
−1
Z ′E [ee′]Z (Z ′Z)

−1
R′
(
R (Z ′Z)

−1
R′
)−1

Rδ

=
σ2

r
5
2

δ′R′
(
R (Z ′Z)

−1
R′
)−1

Rδ =
σ2

√
r

(∆ + o (1))→ 0,

so it converges to zero.

Next, the third term

1

σ̂2

δ′R′
(
R (Z ′Z)−1 R′

)−1
Rδ

r2
=

∆ + o (1)

σ2 + o (1)
→ ∆

σ2
,

using assumption 4 and the consistency of σ̂2 from Lemma 2. In total,

√
r (F − 1)

d→ N

(
∆

σ2
, 2 (1 + λ)

)
,

or

AF
d→ N

(
∆

σ2
√

2 (1 + λ)
, 1

)
,

Then the local power of the AF test is

Pr
{
AF > qN(0,1)

α

}
= Pr

{
N (0, 1) +

∆

σ2
√

2 (1 + λ)
> qN(0,1)

α

}

= Φ

(
∆

σ2
√

2 (1 + λ)
− Φ−1 (1− α)

)
.

From the proof of Theorem 2 we know that

√
r

(
LR

n
− ln

(
1 +

r

n−m

))
=

λ

1 + λ

√
r(F − 1) + op (1) ,

so

ALR =

√
(n−m) (n−m+ r)

2r

(
LR

n
− ln

(
1 +

r

n−m

))
d→ 1√

2 (1 + λ)
N

(
∆

σ2
, 2 (1 + λ)

)
.

Analogously, from the proof of Theorem 2 we know that

√
r

(
LM

n
− r/ (n−m)

1 + r/ (n−m)

)
=

λ

(1 + λ)2

√
r(F − 1) + op (1) ,
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so

ALM =

√(
n−m+ r

n−m

)3
r

2

n−m
r

(
LM

n
− r/ (n−m)

1 + r/ (n−m)

)
d→ 1√

2 (1 + λ)
N

(
∆

σ2
, 2 (1 + λ)

)
.

Next, from the proof of Corollary 3,

Pr
{
rF > q

χ2(r)

αF

}
= Pr

{
AF > −Φ−1 (α) + op (1)

}
,

so the local power of the CF test is

lim Pr

{
N (0, 1) +

∆

σ2
√

2 (1 + λ)
> −Φ−1 (α) + op (1)

}

= Pr

{
N (0, 1) +

∆

σ2
√

2 (1 + λ)
> qN(0,1)

α

}
.

From the proof of Corollary 3 we know that

Pr
{
LR >

n

r
ln
(

1 + λ̂
)
q
χ2(r)

αLR

}
= Pr

{√
(1 + λ) r

2λ2

(
LR

n
− ln (1 + λ)

)
> −Φ−1 (α) + op (1)

}
,

and the proof of Theorem 2 that√
(1 + λ) r

2λ2

(
LR

n
− ln (1 + λ)

)
= AF + op (1) ,

so

Pr
{
LR >

n

r
ln
(

1 + λ̂
)
q
χ2(r)

αLR

}
= Pr

{
AF > qN(0,1)

α + op (1)
}

→ Φ

(
∆

σ2
√

2 (1 + λ)
− Φ−1 (1− α)

)
.

Analogously, from the proof of Corollary 3 we know that

Pr

{
LM >

n

n−m+ r
q
χ2(r)

αLM

}
= Pr


√

(1 + λ)3 r

2λ2

(
LM

n
− λ

1 + λ

)
> −Φ−1 (α) + op (1)

 ,

and the proof of Theorem 2 that√
(1 + λ)3 r

2λ2

(
LM

n
− λ

1 + λ

)
= AF + op (1) ,

37



so

Pr

{
LM >

n

n−m+ r
q
χ2(r)

αLM

}
= Pr

{
AF > qN(0,1)

α + op (1)
}

→ Φ

(
∆

σ2
√

2 (1 + λ)
− Φ−1 (1− α)

)
.

Finally, from the proof of Theorem 3,

Pr
{
F > qF (r,n−m)

α

}
= Pr

{
AF > Φ−1 (1− α)

√
1 + r/ (n−m)√

1 + λ
+ o (1)

}
,

so the local power of the EF test is

lim Pr

{
N (0, 1) +

∆

σ2
√

2 (1 + λ)
> Φ−1 (1− α)

√
1 + r/ (n−m)√

1 + λ
+ o (1)

}

= Pr

{
N (0, 1) +

∆

σ2
√

2 (1 + λ)
> qN(0,1)

α

}
.

�
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