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This article deals with the analysis of a hierarchical semiparametric model for dynamic binary longitudinal responses. The main complicat-
ing components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models
with these features are of O(N3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely
infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo
based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on
semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable
the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the
methods is illustrated with detailed studies involving simulated and real data.
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1. INTRODUCTION

This article discusses techniques for analyzing semiparamet-
ric models for dynamic binary longitudinal data. A hierarchical
Bayesian approach is adopted to combine the main regression
components: nonparametric functional form, dynamic depen-
dence through lags of the response variable and serial correla-
tion in the errors, and multidimensional heterogeneity. In this
context, we pursue several objectives. First, we propose new
computationally efficient estimation techniques to carry out the
analysis. Computational efficiency is key, because longitudinal
(panel) data pose special computational challenges compared
with cross-sectional or time series data, so that “brute force”
estimation becomes infeasible in many settings. Second, we ad-
dress the problem of model choice by computing marginal like-
lihoods and Bayes factors to determine the posterior probabili-
ties of competing models. This allows for the formal compari-
son of semiparametric versus parametric models, and addresses
the problems of variable selection and lag determination. Third,
we propose a simulation-based approach to calculate the aver-
age covariate effects, which provides interpretability of the esti-
mates despite the nonlinearity and intertemporal dependence in
the model. We examine the methods in a simulation study and
then apply them in the analysis of women’s labor force partici-
pation.

To illustrate the model, let yit be the binary response of inter-
est, where the indices i and t (i = 1, . . . ,n, t = 1, . . . ,Ti) refer to
units (e.g., individuals, firms, countries) and time. We consider
a dynamic partially linear binary choice model where yit de-
pends parametrically on the covariate vectors x̃it and wit (con-
taining two disjoint sets of covariates) and nonparametrically
on the covariate sit in the form

yit = 1
{
x̃′

itδ + w′
itβ i + g(sit)

+ φ1yi,t−1 + · · · + φJyi,t−J + εit > 0
}
, (1)

where 1{·} is an indicator function, δ and β i are vectors of com-
mon (fixed) and unit-specific (random) effects, φ1, . . . , φJ are
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lag coefficients, g(·) is an unknown function, and εit is a seri-
ally correlated error term. We assume that g(·) is a smooth but
otherwise unrestricted function that is estimated nonparametri-
cally. For this reason, x̃it does not contain an intercept or the
covariate sit, although those may be included in wit; identifica-
tion issues are discussed in Section 2.2. The model in (1) aims
to exploit the panel structure to distinguish among three impor-
tant sources of intertemporal dependence in the observations
( yi1, . . . , yiTi). One source is due to the lags yi,t−1, . . . , yi,t−J ,
which capture the notion of “state dependence,” where the prob-
ability of response may depend on past occurrences because of
altered preferences, trade-offs, or constraints. A second source
of dependence is the presence of serial correlation in the er-
rors (εi1, . . . , εiTi). Finally, the observations ( yi1, . . . , yiTi) can
also be correlated because of heterogeneity; these differences
are captured through the individual effects β i. Addressing the
differences among units is also essential in guarding against
the emergence of “spurious state dependence,” because tempo-
ral pseudodependence could occur due to the fact that history
may simply serve as a proxy for these unobserved differences
(Heckman 1981).

The presence of the nonparametric function in the binary
response model in (1) raises a number of challenges for es-
timation, because of the intractability of the likelihood func-
tion. Many of these problems have been largely overcome in
the Bayesian context by Wood and Kohn (1998) and Shively,
Kohn, and Wood (1999), based on the framework of Albert
and Chib (1993). One open problem, however, is the analy-
sis of semiparametric models with serially correlated errors.
This issue has been studied by Diggle and Hutchinson (1989),
Altman (1990), Smith, Wong, and Kohn (1998), Wang (1998),
and Opsomer, Wang, and Yang (2001). These studies conclude
that serial correlation, if ignored, poses fundamental problems
that can have substantial adverse consequences for estimation
of the nonparametric function. The ability to estimate models
with serial correlation is limited in practice, however, because
of the computational intensity of existing algorithms. In these
cases the estimation algorithms are O(N3), where N = ∑n

i=1 Ti
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is the total number of observations in the sample. This feature
renders nonparametric estimation infeasible in panel data set-
tings where sample sizes are generally large. Here we propose a
new O(N) algorithm for estimating the nonparametric function
when the errors are correlated, thus contributing to the growing
literature on static semiparametric and nonparametric mixed-
effects models for binary data (see, e.g., Lin and Zhang 1999;
Lin and Carroll 2001; Karcher and Wang 2001). As far as we
know, in the literature there are no O(N) estimators for (binary
or continuous) panel data with correlated errors.

A second open problem is the question of model compari-
son in the semiparametric setting. Because the marginal like-
lihood, which is used to compare two models on the basis
of their Bayes factor, is a large-dimensional integral, previous
work (e.g., DiMatteo, Genovese, and Kass 2001; Wood, Kohn,
Shively, and Jiang 2002; Hansen and Kooperberg 2002) has re-
lied on measures such as the Akaike information criterion (AIC)
and Bayes information criterion (BIC). However, computation
of these criteria is infeasible in our context. We extend that lit-
erature by describing an approach, based on Chib (1995), for
calculating marginal likelihoods and Bayes factors. We use this
approach in Section 7 to compare several competing parametric
and semiparametric models.

The article is organized as follows. Section 2 completes the
statistical model, and Section 3 presents the Markov chain
Monte Carlo (MCMC) fitting method. Section 4 shows how
the average effects of the covariates on the probability of re-
sponse are calculated, and Section 5 is concerned with model
comparison. Section 6 presents a detailed simulation study of
the performance of the estimation method. Section 7 studies
the intertemporal labor force participation of a panel of married
women. Finally, Section 8 presents concluding remarks.

2. HIERARCHICAL MODELING AND PRIORS

This section presents the hierarchical structure used in
modeling the regression components in (1). For simplicity,
and to keep the discussion focused on our main topics—
semiparametric estimation with correlated errors and Bayesian
model comparison—we present the model in detail only un-
der the assumptions of this section. A number of modifications,
extensions, and generalizations are possible, and we mention
some of them as we proceed.

2.1 The Smoothness Prior on g(·)
Suppose that the N observations in the covariate vector s,

whose effect is modeled nonparametrically, determine the
m × 1 design point vector v, m ≤ N, with entries equal to
the unique ordered values of s with v1 < · · · < vm and with
g = (g(v1), . . . ,g(vm))′ = (g1, . . . ,gm)′ as the corresponding
function evaluations. The idea is to model the function evalu-
ations as a stochastic process that controls the degree of local
variation between neighboring states in g to strike a balance
between a good fit and a smooth regression function (Whittaker
1923). Following Fahrmeir and Lang (2001), we model the
function evaluations as resulting from the realization of a
second-order Markov process, with the specification aimed at
penalizing rough functions g(·). A range of similar smoothness
priors, with some discussion and comparisons, can be found in

the literature on nonparametric modeling (for some specific ex-
amples, see Wahba 1978; Shiller 1984; Silverman 1985; Besag,
Green, Higdon, and Mengersen 1995; Koop and Poirier 2004).

Defining ht = vt − vt−1, the second-order random-walk spec-
ification is given by

gt =
(

1 + ht

ht−1

)
gt−1 − ht

ht−1
gt−2 + ut, ut ∼ N (0, τ 2ht),

(2)

where τ 2 is a smoothness parameter. Small values of τ 2 pro-
duce smoother functions, whereas larger values allow the func-
tion to be more flexible and interpolate the data more closely.
The weight ht adjusts the variance to account for possibly ir-
regular spacing between consecutive points in the design point
vector. Other possibilities are conceivable for the weights (see,
e.g., Shiller 1984; Besag et al. 1995; Fahrmeir and Lang 2001);
the one given here implies that the variance grows linearly with
the distance ht, a property satisfied by random walks. This lin-
earity is appealing because it implies that conditional on gt−1

and gt−2, the variance of gt+k, k ≥ 0, will depend only on the
distance vt+k − vt−1, but not on the number of points k that lie
in between.

We now deviate from the prior of Fahrmeir and Lang (2001),
and, in fact, from much of the literature on nonparametric func-
tional modeling, by working with a version of the prior in (2)
that is proper. The prior in (2) is improper because it incorpo-
rates information only about deviations from linearity, but says
nothing about the linearity itself. To rectify this problem, we
complete the specification of the smoothness prior by providing
a distribution for the initial states of the random-walk process,

(
g1
g2

)∣∣τ 2 ∼ N
((

g10
g20

)
, τ 2G0

)
, (3)

where G0 is a 2 × 2 symmetric positive definite matrix. The
prior on the initial conditions (3) induces a prior on linear func-
tions of v that is equivalent to the usual priors placed on the
intercept and slope parameters in univariate linear regression.
This can be seen more precisely by iterating (2) in expectation
(to eliminate ut which is the source of the nonlinearity), start-
ing with initial states as specified in (3). Thus, conditional on
g1 and g2, the mean of the Markov process in (2) is a straight
line that goes through g1 and g2. As a consequence, the inter-
cept and slope of that line will have a distribution directly re-
lated to the distribution in (3) in a one-to-one mapping. This
is useful in setting the prior parameters g10, g20, and G0 based
on the same information that would be used in a corresponding
linear model.

The directed Markovian structure in (2) and (3) implies a
joint density for the elements of g, which can be obtained by
rewriting the Markov process in a random field form. After
defining

H =






1
1

h3
h2

−(1 + h3
h2

) 1

. . .
. . .

. . .

hm
hm−1

−(1 + hm
hm−1

) 1





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and

� =






G0
h3

. . .

hm




 ,

where the off-diagonal 0’s in H and � have been suppressed in
the notation, the prior on g, which is equivalent to the second-
order Markov process prior in (2) and (3), becomes

g|τ 2 ∼ N (g0, τ
2K−1), (4)

where g0 = H−1g̃, with g̃ = (g10,g20,0, . . . ,0)′, and the
penalty matrix K is given by K = H′�−1H. Equivalently,
g0 can be derived by taking recursive expectations of (2) start-
ing with the mean in (3), and as argued earlier, the points in g0
will form a straight line.

Several points deserve emphasis. First, a key feature of the
prior in (4), due to the information in (3), is that it is proper. In
contrast, priors in the literature are generally specified with a
reduced-rank penalty matrix K and thus are improper. Because
improper priors preclude the possibility of formal finite-sample
model comparison using marginal likelihoods and Bayes fac-
tors (O’Hagan 1994, chap. 7; Kass and Raftery 1995), our prior
removes an important impediment to Bayesian model selection.
Second, it is important to note that the m × m penalty matrix K
is banded, which has considerable practical value because ma-
nipulations involving banded matrices take O(m) operations,
rather than O(m3) for inversions or O(m2) for multiplication
by a vector (and m may be as large as the total number of
data points N). Third, Markov process priors are conceptu-
ally simple and adaptable to different orders, so as to meet
problem-specific tasks (Besag et al. 1995; Fahrmeir and Lang
2001). For example, a first-order prior gt = gt−1 + ut penalizes
abrupt jumps between successive states of the Markov process,
whereas higher-order priors embody more subtle notions of
“smoothness” related to the rates of change in the function.

Because the prior on g is defined conditional on the hyper-
parameter τ 2, in the next level of the hierarchy we specify the
prior distribution τ 2 ∼ IG(ν0/2, δ0/2). In setting the parame-
ters ν0 and δ0, it is helpful to use the well-known mapping be-
tween the mean and variance of the inverse gamma distribution
and the parameters ν0 and δ0 (e.g., Gelman, Carlin, Stern, and
Rubin 1995, app. A). The choice of these parameters will af-
fect the estimated g depending on the other sources of variance
in the model. Some intuition can be gained by considering the
sampling algorithm that we present in the next section, where
in the sampling of g, the inverse of τ 2 weighs the components
of the smoothness prior K and g0 and competes with the in-
verse of the error variance, which weighs the function g that
maximizes the fit in the likelihood.

2.2 Priors on the Linear Effects and
Dynamic Parameters

Turning attention to the parametric facets of the model, and
in anticipation of the subsequent estimation of the model by the
approach of Albert and Chib (1993), we begin by rewriting the
model in (1) in terms of the latent variables {zit} as

zit = x̃′
itδ + w′

itβ i + g(sit)

+ φ11{zi,t−1 > 0} + · · · + φJ1{zi,t−J > 0} + εit,

where yit = 1{zit > 0}. [In the presample (t = −J + 1, . . . ,0),
the latent data {zit} are not modeled and for our purposes can
simply be taken to equal the presample {yit}.] Suppose that εit is
a serially correlated error term that follows a mean-0 station-
ary pth-order autoregressive [AR( p)] process parameterized in
terms of ρ = (ρ1, . . . , ρp)

′, that is,

εit = ρ1εi,t−1 + · · · + ρpεi,t−p + vit, (5)

where vit are independent N (0,1). We can express the process
in (5) in terms of a polynomial in the backshift operator L as
ρ(L)εit = vit, where ρ(L) = 1 − ρ1L − · · · − ρpLp and station-
arity is maintained by requiring that all roots of ρ(L) lie outside
the unit circle. Estimation with this and several other correlation
structures is discussed in Section 3.

Stacking the data for each cluster, let yi ≡ ( yi1, . . . , yiTi)
′ de-

note the Ti observations in the ith cluster, and similarly define
the lag vectors

yi,−j ≡ (
yi,1−j, . . . , yi,Ti−j

)′

= (
1{zi,1−j > 0}, . . . ,1{

zi,Ti−j > 0
})′

, j = 1, . . . , J.

Then, for the observations in the ith cluster, we have that

zi = X̃iδ + Wiβ i + gi + Liφ + εi, (6)

where zi = (zi1, . . . , ziTi)
′, X̃i = (x̃i1, . . . , x̃iTi)

′, Wi = (wi1, . . . ,

wiTi)
′, gi = (g(si1), . . . ,g(siTi))

′, si = (si1, . . . , siTi)
′, Li =

(yi,−1, . . . ,yi,−J), φ = (φ1, . . . , φJ)
′, and the errors εi = (εi1,

. . . , εiTi)
′ follow the distribution εi ∼ N (0,�i). The covari-

ance matrix �i is the Ti × Ti Toeplitz matrix implied by the
AR process, the construction of which we will discuss later in
this article. But first consider the modeling of the unobserved
effects.

In the spirit of Mundlak (1978), we assume that the distribu-
tion of the q-vector β i is Gaussian with mean value depending
on the initial observations yi0 ≡ (yi,−J+1, . . . , yi0)

′ and the co-
variates for subject i. In particular, we let

β i|yi0, X̃i,Wi, si,γ ,D ∼ N (Aiγ ,D), i = 1, . . . ,n, (7)

or equivalently,

β i = Aiγ + bi, bi ∼ N (0,D), i = 1, . . . ,n, (8)

where the matrix Ai can be defined quite flexibly, given the
specifics of the problem at hand.

In the simplest case in which Wi does not include an inter-
cept and β i is independent of the covariates, a parsimonious
way to model the dependence of β i on yi0 is to let Ai be a q×2q
matrix given by Ai = I ⊗ (1, ȳi0), where ȳi0 is the mean of the
entries in yi0. [More generally, but less parsimoniously, Ai can
also be given by I ⊗ (1,y′

i0).] Moreover, Ai also may contain
within-cluster means (or entire covariate sequences) of a sub-
set of covariates—those suspected of being correlated with the
random effects for each cluster. If r̄ij ( j = 1, . . . ,q) denotes the
vector of such covariate means (or entire sequence of covari-
ates), then Ai may be written as

Ai =





1 ȳi0 r̄′
i1

. . .

1 ȳi0 r̄′
iq




 .
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We later adjust this specification for the case when a random
intercept is present. An example of the matrix Ai is illustrated
in the application of Section 7.

Using (8), equation (6) can be equivalently expressed as

zi = Xiβ + gi + Wibi + εi, (9)

with

Xi = ( X̃i WiAi Li ) and β = ( δ′ γ ′ φ′ )′ .

The presence of the individual effects, bi, induces correlation
among the observations in a cluster, but the clusters are mod-
eled as independent. Therefore, even though the columns of Wi

can form a subset of the columns of Xi (as is usual in para-
metric longitudinal models) and Wi can contain the covariate s
whose effect is modeled through g(s), the parameters of the
model are likelihood-identified through the presence of inter-
cluster and intracluster sources of variation. However, there is
an important caveat for the semiparametric model considered
here. We note that neither si nor an intercept should be present
in the matrix Xi, even though they can be in order to resolve
the identification problem that would otherwise emerge under
a general, unrestricted g(s). Hence, in more general specifica-
tions containing a random intercept in the model, one must ad-
just Ai for identification purposes. If the random intercept is
the ith column of Wi, then the column of Ai that is an ith unit
vector should be dropped, so that WiAi does not include an in-
tercept. Similarly, if si is the jth column of Wi, then the column
of Ai that is a jth unit vector should be dropped, so that the
product WiAi does not contain si. It should also be noted that
the presence of an unrestricted g(·) does not prevent the inclu-
sion of temporally invariant covariates (e.g., gender, race, vari-
ous dummies) in either X̃i or Wi, as long as these vary among
clusters. One should be aware, however, that their simultaneous
inclusion into Ai to model correlation with a random intercept
leaves the likelihood unidentified (because WiAi will cause Xi

to contain two or more identical columns across all i).
The hierarchical structure of the model is completed by the

introduction of (semiconjugate) prior densities for the model
parameters β , ρ, and D. Gaussian priors are used to sum-
marize the prior information about the k-vector β , whereas
a Wishart prior is used for the q × q matrix D−1, namely
β ∼ N (β0,B0) and D−1 ∼ W(r0,R0). The prior on ρ is spec-
ified as ρ ∼ N (ρ0,P0)ISρ , where ISρ is an indicator of the set
Sρ containing the ρ that satisfy stationarity. We clarify that, in
contrast with the serially correlated errors, stationarity is not
an issue for the state-dependence coefficients φ (which are part
of β), because these multiply the binary lags and thus serve
simply as intercept shifts. The foregoing semiconjugate priors
are useful for computational reasons, but the analysis of models
with other general priors can be conducted by weighted resam-
pling of the MCMC draws obtained from a model using the
priors mentioned here.

3. ESTIMATION

This section presents a new estimation method for longitu-
dinal models with unobserved heterogeneity and serial correla-
tion in the errors. As far as we know, other O(N) methods for
estimating this model are not yet available. A main difficulty is
that even a single evaluation of the likelihood function requires

evaluation of a multiple integral, and hence penalized likelihood
estimation is impractical. Moreover, because m, the number of
unique values of s, can be as large as the sample size N, any
maximization over the values g can be extremely difficult to ap-
ply. Of course, any such maximization needs to be conditioned
on a smoothness parameter, but determining that parameter is
problematic by current methods such as cross-validation, which
are designed for continuous data, but not for the case of longi-
tudinal binary data.

Our estimation algorithm takes advantage of the approach
of Albert and Chib (1993) to simplify simulation of the pos-
terior distribution by MCMC methods. In the longitudinal
data setup, the latent data representation of the model with
AR( p) serial correlation was given in (9), where the errors
εi = (εi1, . . . , εiTi)

′ follow the distribution εi ∼ N (0,�i) and
�i is the Ti × Ti Toeplitz matrix implied by the AR process.
For the general AR( p) case, the matrix �i can be determined as
follows. Let ϕj = E(εitεi,t−j) be the jth autocovariance (satisfy-
ing ϕj = ϕ−j). It can be shown (cf. Hamilton 1994, sec. 3.4) that
the autocovariances follow the same pth-order difference equa-
tion as the process itself, that is, ϕj = ρ1ϕj−1 + · · · + ρpϕj−p.
The first p values (ϕ0, ϕ1, . . . , ϕp−1) are given by the first p el-
ements of the first column of the p2 × p2 matrix [I − F ⊗ F]−1,
where ⊗ denotes the Kronecker product and F is the p × p ma-
trix

F ≡
[

ρ′
Ip−1 0(p−1)×1

]
.

Using the sequence of autocovariances ϕj obtained in this way,
the matrix �i can be constructed using �i[j, k] = ϕj−k. For ex-
ample, in the AR(1) case, we have �i[j, k] = ρ| j−k|/(1 − ρ2).

After marginalizing bi using the distribution of the random
effects, the latent zi can be expressed as

zi = Xiβ + gi + ui, (10)

where the error vector is normal with variance matrix Vi = �i +
WiDW′

i. This implies that the contribution of the ith cluster to
the likelihood function (conditioned on gi),

Pr(yi|β,gi,D,ρ) =
∫

BiTi

· · ·
∫

Bi1

N (zi|Xiβ + gi,Vi)dzi, (11)

where Bit is the interval (0,∞) if yit = 1 or the interval (−∞,0]
if yit = 0 is, in general, difficult to calculate. This is true even
in the case of uncorrelated errors when Vi = I + WiDW′

i, mak-
ing it impractical to obtain smoothness parameter estimates by
cross-validation and to subsequently use penalized likelihood
estimation to obtain estimates of g in generalized mixed-effects
models.

Previous studies by Diggle and Hutchinson (1989), Altman
(1990), and Smith et al. (1998) have drawn attention to the fact
that when the errors are treated as independent when they are
not, the correlation in the errors can adversely affect the non-
parametric estimate of the regression function. For example,
when the covariate s is in temporal order, the unknown function
g(s) can be confounded with the autocorrelated error process,
because both are stochastic processes in time. If the serial cor-
relation in the errors is ignored, then the estimate of g(s) can
become too rough as it attempts to mimic the errors. The un-
dersmoothing can be visible even for mild serial correlation.
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Smith et al. (1998) pointed out that even if the independent vari-
able is not time, modeling the autocorrelation in the errors gives
more efficient nonparametric estimates, because it reduces the
effective error variance similarly to the case of parametric re-
gression.

To describe the approach, we stack the observations in (9) for
all n clusters and write

z = Xβ + Qg + Wb + ε, ε ∼ N (0,�), (12)

after defining the vectors z = (z′
1, . . . , z′

n)
′ and b = (b′

1, . . . ,b′
n)

′
and the matrices

X =



X1
...

Xn



 , W =



W1

. . .

Wn



 , and

� =



�1

. . .

�n



 .

In the foregoing, Q is an incidence matrix of dimension N × m,
with entries Qij = 1 if si = vj and 0 otherwise. In other words,
the ith row of Q contains a 1 in the position where the obser-
vation on s for that row matches the design point from the vec-
tor v, with all remaining elements 0’s, so that s = Qv. The fact
that the errors are not orthogonal (and � is not diagonal) re-
quires only minor adjustments to the sampling of β , z, D, τ 2,
and b; standard Bayes updates for models with serial correla-
tion can be applied to obtain and simulate the posterior densities
(given in Algorithm 1 later in this section). But the sampling
of g is problematic.

To understand the difficulty, note that with uncorrelated er-
rors (i.e., when � = I), we have the following full-conditional
distribution: g|y,β,b, τ 2, z ∼ N (ĝ,G). In this case, G =
(K/τ 2 + Q′Q)−1 and ĝ = G(Kg0/τ

2 + Q′(z − Xβ − Wb)).
Remark 1 presents a computationally efficient method for sam-
pling this density.

Remark 1. In sampling g, one should note that Q′Q is a di-
agonal matrix with a jth diagonal entry equal to the number of
values in s corresponding to the design point vj. Because K and
Q′Q are banded, G−1 is banded as well. Thus sampling of g
need not include an inversion to obtain G and ĝ. The mean ĝ
can be found instead by solving G−1ĝ = (Kg0/τ

2 + Q′(z −
Xβ − Wb)), which is done in O(m) operations by back substi-
tution. Also, let P′P = G−1, where P is the Cholesky decompo-
sition of G−1 and is also banded. To efficiently obtain a random
draw from N (ĝ,G), sample u ∼ N (0, I), and solve Px = u for
x by back substitution. It follows that x ∼ N (0,G). Adding the
mean ĝ to x, yields a draw g ∼ N (ĝ,G).

Unfortunately, after accounting for the autocorrelated errors,
the full-conditional distribution g|y,β,b, τ 2, z,� ∼ N (ĝ,G)

will involve the matrix G−1 = (K/τ 2 + Q′�−1Q), which is no
longer banded (even though �−1 is banded). Hence the com-
putational shortcuts discussed in Remark 1 are inapplicable. In-
tuitively, bandedness fails because serial correlation introduces
dependence between observations that are neighbors on the ba-
sis of the ordering of the covariate s, whereas the function eval-
uations g depend on neighbors determined according to the
ordering in v, the vector of unique and ordered values of s (with
s = Qv).

Diggle and Hutchinson (1989) and Altman (1990) consid-
ered a special case that can still result in O(N) estimation. In
this case, attention was restricted to univariate models for non-
clustered data where the independent variable is time. Then,
because the elements in s are already unique and ordered,
we have v = s or, in other words, Q = I. This implies that
G−1 = (K/τ 2 + Q′�−1Q) = (K/τ 2 + �−1) is banded, and es-
timation can be done in O(N) operations as outlined in Re-
mark 1. Unfortunately, in panel data settings Q is unlikely to be
an identity matrix even when s is time, because repeating values
in s will tend to emerge across clusters. Even when all values
in s are unique, Q will be some permutation (not necessarily an
identity) matrix, because the ordering of s need not be consis-
tent with the cluster structure. The general case where s is al-
lowed to be any covariate (not necessarily time) was considered
by Smith et al. (1998), but their algorithm was O(N3), which
works with the nonbanded matrix G−1. Thus the applicability
of that method is limited to only small datasets and is infeasi-
ble in panel data settings, where the sample size N can run into
the thousands. Finally, we note that the method of orthogonal-
izing the errors by working with the transformed data ρ(L)zit,
ρ(L)xit, ρ(L)g(sit), and ρ(L)wit (cf. Harvey 1981, chap. 6; Chib
1993) works well in parametric models but is not a solution
here, because it is equivalent to premultiplying the matrices X,
W, and Q by the Cholesky decomposition of �−1, which still
leaves G−1 nonbanded.

Here we propose a different approach to orthogonalizing the
errors that exploits the longitudinal nature of the data. In partic-
ular, the idea is to decompose the errors into a correlated and an
orthogonal parts, and to deal with the correlated part in much
the same way in which we deal with the random effects. Once
the correlated part is given, the nonparametric estimation of g
can proceed as efficiently as before. To illustrate, decompose
the matrix �i = Ri + κI, where Ri is a symmetric positive def-
inite matrix and κI is a diagonal matrix with κ > 0. Further-
more, let Ci be the Cholesky decomposition of Ri such that
C′

iCi = Ri. Then �i = C′
iCi + κI, and the model can be rewrit-

ten as

zi = Xiβ + Wibi + gi + εi

= Xiβ + Wibi + gi + C′
iui + ξ i, (13)

where ui ∼ N (0, I) and ξi ∼ N (0, κI) are mutually indepen-
dent. Stacking the observations in (13) for all n clusters, in anal-
ogy with (12), we have

z = Xβ + Qg + Wb + C′u + ξ , ξ ∼ N (0, κI), (14)

where u =(u′
1, . . . ,u′

n)
′ and C is given by

C =



C1

. . .

Cn



 .

Because the covariance matrix of ξ is diagonal, conditional
on C′u, we have obtained an orthogonalization of the serially
correlated errors that can be used to sample g efficiently. It now
remains to prove that a decomposition of �i into the sum of a
symmetric positive definite matrix Ri and a (positive definite)
diagonal matrix κI exists, and to show how it can be found. The
details are formalized here and rely on results given by Ortega
(1987, pp. 31–32).
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Theorem 1. Let the matrix A have eigenvalues {λi}, and let
p(Z) ≡ κ0I + κ1Z + κ2Z2 + · · · + κmZm be some (scalar- or
matrix-valued) polynomial of degree m. Then {p(λi)} are eigen-
values of the matrix p(A), and A and p(A) have the same eigen-
vectors.

The proof follows from first principles by writing the matri-
ces in the polynomial in terms of their spectral decomposition
and collecting terms. The result that we originally sought to
show can now be derived using a special case of the polyno-
mial in the theorem, that is, p(Z) = Z − κI.

Lemma 1. A Ti × Ti symmetric positive definite matrix �i
can always be written as the sum of a symmetric positive defi-
nite matrix Ri and a positive definite diagonal matrix κI.

Proof. Let p(�i) = �i − κI, which is the definition of Ri.
Then, if the eigenvalues of �i are {λij}Ti

j=1, which are strictly
positive and real because �i is symmetric and positive definite,
it follows from Theorem 1 that the eigenvalues of Ri will be
{λij −κ}Ti

j=1. Then, choosing κ such that min{λij} > κ > 0 guar-
antees that Lemma 1 holds.

Because the previous decomposition is not unique, various
values of κ will correspond to the same model and the same
dynamics. Therefore, in practice the choice of κ will be based
on convenience and numerical stability. One simple choice that
has performed well in our simulations is to set κ = min{λij}/2.
Also note that �i depends only on ρ and not on the data, so the
decomposition need not be performed for every i.

Based on the preceding discussion, we present the estimation
algorithm. For the sampling of the vector of AR coefficients
ρ = (ρ1, . . . , ρp)

′, it is useful to define the following quanti-
ties. Let eit = zit − x′

itβ − w′
itbi − g(sit), ei = (ei,p+1, . . . , ei,Ti)

′,
e = (e′

1, . . . , e′
n)

′, and E denote the (N − np) × p matrix with
rows containing p lags of eit (i = 1, . . . ,Ti, t ≥ p + 1), that is,
(ei,t−1, . . . , ei,t−p). Finally, let the initial p values of eit in each
cluster be given by ei1 = (ei1, . . . , eip)

′, and let �p be the p × p
stationary covariance matrix of the AR( p) error process, which
is a function of ρ and is constructed identically to {�i}. Sim-
ulation of ρ is by the Metropolis–Hastings (M–H) algorithm
(Hastings 1970; Tierney 1994; Chib and Greenberg 1995).

Algorithm 1: Model with state dependence and AR(p) serial
correlation.

1. Sample {zi}|y,D,g,β , and ρ marginal of {bi} by drawing,
for i ≤ n, t ≤ Ti

zit ∼
{
T N (0,∞)(µit, vit) if yit = 1
T N (−∞,0](µit, vit) if yit = 0,

where T N (a,b)(µit, vit) is a normal distribution truncated
to the interval (a,b) with mean µit = E(zit|zi\t,β,gi,Vi)

and variance vit = var(zit|zi\t,β,gi,Vi), with Vi = �i +
WiDW′

i, and �i determined by ρ as discussed earlier.
2. Sample β, {bi}, {ui}|y,D, {zit},gi, and ρ in one block by

drawing the following:
(a) β|y,D, {zit},g,ρ ∼ N (β̂,B), where β̂ = B(B−1

0 β0 +
∑n

i=1 X′
iV

−1
i (zi −gi)) and B = (B−1

0 +∑n
i=1 X′

iV
−1
i ×

Xi)
−1

(b) bi|y,D, {zit},β,g,ρ ∼ N (b̂i,Bi) with b̂i = BiW′
i ×

�−1
i (zi − Xiβ − gi) and Bi = (D−1 + W′

i�
−1
i Wi)

−1

for i = 1, . . . ,n

(c) ui|y, {zit}, {bi},β,g,ρ ∼ N (ûi,Ui), where ûi =
UiCi(zi − Xiβ − gi − Wibi)/κ and Ui = (I + CiC′

i/

κ)−1 for i = 1, . . . ,n.
3. Sample D−1|{bi} ∼ Wp{r0 + n, (R−1

0 + ∑n
i=1 bib′

i)
−1}.

4. Sample g|y,β, {bi}, τ 2, {zit}, {ui1} ∼ N (ĝ,G), where
G = (K/τ 2 + Q′Q/κ)−1 and ĝ = G(Kg0/τ

2 + Q′(z −
Xβ − Wb − C′u)/κ). Because G−1 is banded, estimation
can proceed efficiently as discussed in Remark 1.

5. Sample τ 2|g ∼ IG(
ν0+m

2 ,
δ0+(g−g0)

′K(g−g0)
2 ).

6. Sample ρ|y,g,β, {bi}, {zit} ∝ �(ρ) × N (ρ̂,P) × ISρ ,

where ρ̂ = P(P−1
0 ρ0 + E′e), P = (P−1

0 + E′E)−1, and
�(ρ) = |�p|−n/2 exp(− 1

2

∑n
i=1 e′

i1�
−1
p ei1).

In the M–H step of Algorithm 1, a proposal draw ρ′ is gener-
ated from the density N (ρ̂,P)ISρ and is subsequently accepted
as the next sample value with probability min{�(ρ′)/�(ρ),1}
(see Chib and Greenberg 1994). If the candidate value ρ′ is re-
jected, then the current value ρ is repeated as the next value of
the MCMC sample.

We note several aspects of this algorithm. First, because β ,
{bi}, and {ui} are correlated by construction, they are sampled
in one block to speed up mixing of the chain. This is done by
using (10) to sample β from a conditional density that does not
depend on {bi} and {ui}, followed by drawing {bi} from a con-
ditional density that depends on β but not on {ui}, and finally
drawing {ui} from its full-conditional density (Chib and Carlin
1999). Second, the MCMC approach to estimating τ 2 in this hi-
erarchical model is an alternative to cross-validation that can be
applied to both continuous and discrete data and fully accounts
for parameter uncertainty, unlike plug-in approaches, which do
not account for the variability due to estimating the smooth-
ing parameter. An important alternative to the these methods is
the maximum integrated likelihood approach to determining τ 2

(Kohn, Ansley, and Tharm 1991), but this is not feasible in this
binary data setting, because of the N-dimensional integration
that would be required.

Several extensions are possible. The approach for deal-
ing with dependent errors can accommodate other correlation
structures, such as exponentially correlated error sequences
�i[t, s] = exp{−α|t − s|r} for scalars α and r (e.g., Diggle and
Hutchinson 1989). The method can also handle estimation of
non-Toeplitz �i using the algorithms of Chib and Greenberg
(1998). Yet other extensions can be pursued in the latent vari-
able step; for example, the methods can be adapted to models
for polychotomous data and models with t-links (Albert and
Chib 1993) or to mixture-of-normals link functions, including
an approximation to the logit link (Wood and Kohn 1998). Of
course, Algorithm 1 subsumes an algorithm for the estimation
of a simpler, fully parametric version of the model. Applica-
tions to continuous-data settings are also immediate.

4. AVERAGE COVARIATE EFFECTS

We now turn to the question of finding the effect of a change
in a given covariate xj. This is important for understanding the
model and for determining the impact of an intervention on one
or more of the covariates. However, a change in a covariate af-
fects both the contemporaneous response and its future values.
This effect also depends on all other covariates and model para-
meters. The impact is quite complex and nonlinear because of
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the nonlinear link function, the state dependence, the serial cor-
relation, the unknown function, and the random effects. Hence
it is calculated marginalized over the remaining covariates and
the parameters.

Suppose that the model for a new individual i is given by

zit = x′
itβ + w′

itbi + g(sit) + εit,

where the definitions of xit and β are as in Sections 2 and 3,
and we are interested in the effect of a particular x, say x1, on
contemporaneous and future yit. Splitting x′

it and β accordingly,
we rewrite the foregoing model as

zit = x1itβ1 + x′
2itβ2 + w′

itbi + g(sit) + εit.

The average covariate effect can then be analyzed from a pre-
dictive perspective applied to this new individual i. Given the
specific context, we may consider various scenarios of inter-
est; examples of economic policy interventions may include
increasing or decreasing income by some percentage, and im-
posing an additional year of education. These interventions may
affect the covariate values in a single period (e.g., a one-time
tax break) or in multiple periods (e.g., a permanent tax reduc-
tion or increasing the minimum mandatory level of education).
For specificity, suppose that one thinks of setting {x1it}Ti

t=1 to
the values {x†

1it}Ti
t=1. (Again, only a subset of these values could

be affected by the intervention, whereas the others can remain
unchanged.) For a predictive horizon of t = 1,2, . . . ,Ti (where
Ti is the smallest of the cluster sizes in the observed data), one is
now interested in the distribution of yi1, yi2, . . . , yiTi marginal-
ized over {x2it}, bi, and θ = (β,φ,g,D, τ 2,ρ) given the current
data y = (y1, . . . ,yn). A practical procedure is to marginalize
out the covariates as a Monte Carlo average using their empir-
ical distribution, while also integrating out θ with respect to
the posterior distribution π(θ |y). Of course, bi is independent
of y and hence can be integrated out of the joint distribution of
{zi1, . . . , ziTi} analytically using the distribution N (0,D), with-
out recourse to Monte Carlo. Therefore, the goal is to obtain a
sample of draws from the distribution

[
zi1, . . . , ziTi |y, {x†

1it}
]

=
∫ [

zi1, . . . , ziTi |y, {x†
1it}, {x2it}, {wit}, {sit}, θ

]

× π({x2it}, {wit}, {sit})π(θ |y)d{xit}d{wit}d{sit}dθ .

A sample from this predictive distribution can be obtained by
the method of composition applied in the following way. Ran-
domly draw an individual and extract the sequence of covariate
values. Sample a value for θ from the posterior density, and
sample {zi1, . . . , ziTi} jointly from [zi1, . . . , ziTi |y, {x†

1it}, {x2it},
{wit}, {sit}, θ ], constructing the {yit} in the usual way. Repeat
this for other individuals and other draws from the posterior
distribution to obtain the predictive probability mass function
of ( yi1, . . . , yiTi). Repeat this analysis for a different {x1it}, say
{x‡

1it}. The difference in the computed pointwise probabilities

then gives the effect of x1 as the values {x†
1it} are changed

to {x‡
1it}.

This approach can be similarly applied to other elements of
xit and wit. Quite significantly, it can be applied in determining

the effect of the nonparametric component g(s) because the er-
ror bands that are usually reported in the estimation of g(·) are
pointwise, not joint, and do not provide sufficient information
on which to make probabilistic statements about the functional
shape (Hastie and Tibshirani 1990, p. 62), differences such as
g(s†)− g(s‡), and the effect of s on the probability of response.
In addition, we can condition on certain variables (gender, race,
and specific initial conditions) that might determine a particular
subsample of interest, in which case our procedures are applied
only to observations in the subsample. An application of the
techniques is considered in Section 7, where Figure 8 shows
the estimated average covariate effects for husband’s income
and two child variables and Figure 9 shows these effects for
two specific subsamples.

5. MODEL COMPARISON

A central issue in the analysis of statistical data is model for-
mulation, because the appropriate specification is rarely known
and is subject to uncertainty. Among other considerations, the
uncertainty may be due to the problem of variable selection
(i.e., the specific covariates and lags to be included in the
model), the functional specification (a parametric model vs.
a semiparametric model), or the distributional assumptions.
In general, given the data y, interest centers on a collection
of models {M1, . . . ,ML} representing competing hypothe-
ses about y. Each model Ml is characterized by a model-
specific parameter vector θ l and sampling density f (y|Ml, θ l).
Bayesian model selection proceeds by comparing the models
in {Ml} through their posterior odds ratio, which for any two
models Mi and Mj is written as

Pr(Mi|y)

Pr(Mj|y)
= Pr(Mi)

Pr(Mj)
× m(y|Mi)

m(y|Mj)
, (15)

where m(y|Ml) = ∫
f (y|Ml, θ l)πl(θ l|Ml)dθ l is the marginal

likelihood of Ml. The first fraction on the right side of (15)
is known as the prior odds; the second is known as the Bayes
factor.

To date, model comparisons in the semiparametric context
have been based on such criteria as the AIC and BIC (e.g.,
Shively et al. 1999; Wood et al. 2002; DiMatteo et al. 2001;
Hansen and Kooperberg 2002), because direct evaluation of the
integral defining m(y|Ml) is generally infeasible. But the AIC
and BIC cannot be computed for the model in this article be-
cause of the difficulty (discussed in Sec. 3) of maximizing the
likelihood in the semiparametric binary panel setting, whereas
both the AIC and the BIC require the maximized value of the
likelihood as input. Here we revisit the question of calculating
the marginal likelihood of the semiparametric model and show
that it can be managed through careful application of existing
methods.

In particular, Chib (1995) provided a method based on the
recognition that the marginal likelihood can be expressed as
m(y|Ml) = f (y|Ml, θ l)π(θ l|Ml)/π(θ l|y,Ml). This identity
holds for any point θ l, so that calculation of the marginal likeli-
hood is reduced to finding an estimate of the posterior ordinate
π(θ∗

l |y,Ml) at a single point θ∗
l . In what follows, we suppress

the model index for notational convenience. Suppose that the
parameter vector θ is split into B conveniently specified compo-
nents or blocks (usually done on the basis of the natural group-
ings that emerge in constructing the MCMC sampler), so that
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θ = (θ1, . . . , θB). Let ψ∗
i = (θ∗

1, . . . , θ
∗
i ) denote the blocks up

to i, fixed at their values in θ∗, and let ψ i+1 = (θ i+1, . . . , θB)

denote the blocks beyond i. Then, by the law of total probabil-
ity, we have

π(θ∗
1, . . . , θ

∗
B|y) =

B∏

i=1

π(θ∗
i |y, θ∗

1, . . . , θ
∗
i−1)

=
B∏

i=1

π(θ∗
i |y,ψ∗

i−1).

When the full-conditional densities are known, each ordi-
nate π(θ∗

i |y,ψ∗
i−1) can be estimated by Rao–Blackwellization

as π(θ∗
i |y,ψ∗

i−1) ≈ J−1 ∑J
j=1 π(θ∗

i |y,ψ∗
i−1,ψ

i+1,( j)), where

ψ i,( j) ∼ π(ψ i|y,ψ∗
i−1), j = 1, . . . , J, come from a reduced run

for 1 < i < B, where sampling is only over ψ i, with the blocks
ψ∗

i−1 held fixed. The ordinate π(θ∗
1|y) for the first block of pa-

rameters θ1 is estimated with draws θ ∼ π(θ |y) from the main
MCMC run, whereas the ordinate π(θ∗

B|y,ψ∗
B−1) is available

directly.
When one or more of the full conditional densities are not

of a standard form and sampling requires the M–H algorithm,
Chib and Jeliazkov (2001) used the local reversibility of the
M–H chain to show that

π(θ∗
i |y,ψ∗

i−1)

= E1{α(θ i, θ
∗
i |y,ψ∗

i−1,ψ
i+1)q(θ i, θ

∗
i |y,ψ∗

i−1,ψ
i+1)}

E2{α(θ∗
i , θ i|y,ψ∗

i−1,ψ
i+1)} ,

(16)

where E1 is the expectation with respect to conditional poste-
rior π(ψ i|y,ψ∗

i−1) and E2 is that with respect to the conditional
product measure π(ψ i+1|y,ψ∗

i )q(θ∗
i , θ i|y,ψ∗

i−1,ψ
i+1). In the

preceding, q(θ , θ ′|y) denotes the candidate generating density
of the M–H chain for moving from the current value θ to a pro-
posed value θ ′, and α(θ i, θ

′
i|y,ψ∗

i−1,ψ
i+1) denotes the M–H

probability of moving from θ to θ ′. Each of these expectations
can be computed from the output of appropriately chosen re-
duced runs.

Three new and important considerations emerge when apply-
ing these methods to the model considered in this article. Our
implementation, using Algorithm 1 to simulate the blocks {zi},
β , {bi}, {ui}, D, g, τ 2, and ρ, is based on the following poste-
rior decomposition (marginalized over the latent data {zi}, {bi},
{ui}):
π(D∗, τ 2∗|y)π(β∗|y,D∗, τ 2∗)

× π(ρ∗|y,D∗, τ 2∗,β∗)π(g∗|y,D∗, τ 2∗,β∗,ρ∗).
The first consideration is that the ordinate of g is estimated last,
because this tends to improve the efficiency of the ordinate es-
timation in the Rao–Blackwellization step, where

π(g∗|y,D∗, τ 2∗,β∗,ρ∗)

≈ J−1
J∑

j=1

π
(
g∗|y,D∗, τ 2∗,β∗,ρ∗, {zi}( j), {bi}( j), {ui}( j)),

so that marginalization is only with respect to the condi-
tional distribution of the latent data π({zi}, {bi}, {ui}|y,D∗, τ 2∗,

β∗,ρ∗), with all parameter blocks in the conditioning set fixed.
Because the simulation algorithm for g is O(m), this partic-
ular choice comes at a manageable computational cost (from
having to simulate g in all of the preceding reduced runs),
whereas the statistical efficiency benefits may be substantial
when m is large. Second, it should also be noted that the or-
dinate π(D∗, τ 2∗|y) can be estimated jointly because, condi-
tional on {bi} and g, the full conditional densities of D and τ 2

are independent. This observation saves a reduced run. Third,
in Algorithm 1 the proposal density q(ρ,ρ′|y, ·) = q(ρ′|y, ·) is
a truncated normal density with an unknown normalizing con-
stant except in the AR(1) case. Specifically, over the region of
stationarity Sρ , we have q(ρ|y, ·) = h(ρ|y, ·)/ ∫

sρ
h(ρ|y, ·)dρ,

where h(ρ|y, ·) is an unrestricted normal density for ρ. We
avoid the need to compute this unknown constant of integra-
tion by noting that when the reversibility condition used by
Chib and Jeliazkov (2001) to obtain (16) is written in terms
of q(ρ|y, ·), its unknown normalizing constant (being the same
on both sides) will cancel out, so that, on integration, we have

π(ρ∗|y,ψ∗
i−1)

= E1{α(ρ,ρ∗|y,ψ∗
i−1,ψ

i+1)h(ρ∗|y,ψ∗
i−1,ψ

i+1)}
E2{α(ρ∗

i ,ρi|y,ψ∗
i−1,ψ

i+1)} ,

where ψ∗
i−1 = (D∗, τ 2∗,β∗), ψ i+1 = (g, {zi}, {bi}, {ui}), E1 is

the expectation with respect to π(ρ,ψ i+1|y,ψ∗
i−1), and E2 is

the expectation with respect to π(ψ i+1|y,ψ∗
i )h(ρ|y,ψ∗

i−1,

ψ i+1). It is also useful to note that because h(ρ′|y, ·) does not
depend on the current value of ρ in the sampler, estimating
the denominator quantity is done with draws available from the
same run in which the numerator is estimated.

Implementing these methods requires the likelihood ordinate
f (y|D∗,β∗,g∗,ρ∗), which we obtain by the method of Geweke,
Hajivassiliou, and Keane (GHK) (Geweke 1991; Börsch-Supan
and Hajivassiliou 1993; Keane 1994), using 10,000 Monte
Carlo iterations.

6. SIMULATION STUDY

We carried out a simulation study to examine the perfor-
mance of the techniques proposed in Algorithm 1. For the es-
timates of the nonparametric function, we report mean squared
errors (MSEs) for several designs. The posterior mean estimates
E{g(v)|y}, are found from MCMC runs of length 5,000 after
burn-ins of 1,000 cycles. For the parametric components of
the model, we report the autocorrelations and inefficiency fac-
tors under alternative specifications and sample sizes. We find
that the overall performance of the MCMC algorithm improves
with larger sample sizes (increasing either the number of clus-
ters n or the cluster sizes {Ti}), and that the random effects are
simulated better when the increase in sample size comes from
larger {Ti}.

Data are simulated from the model in (1) and (7), without ser-
ial correlation, using one, two, and three state-dependence lags,
a single fixed-effect covariate X̃, and one or two individual-
effect covariates W (including a random intercept) that are cor-
related with (the average of) the initial conditions. X̃ and W
contain independent standard normal random variables, and we
use δ = 1, γ = 1, φ = .5 × 1, and D = .2 × I. We generate



Chib and Jeliazkov: Inference in Semiparametric Dynamic Models 693

panels with 250, 500, and 1,000 clusters and with 10 time pe-
riods, using only the last 7 for estimation (Ti = 7, i = 1, . . . ,n),
because our largest models contain 3 lags. We consider three
functional forms for g(s), presented in Figure 1, which capture
a range of possible specifications in the literature. For the sim-
ulations, each function is evaluated on a regular grid of m = 51
points.

We gauge the performance of the method in fitting these
functions using MSE = 1

m

∑m
j=1{ĝ(vj) − g(vj)}2. The average

MSE, together with the standard errors based on 20 data sam-
ples, is reported in Table 1 for alternative designs and sam-
ple sizes. In all cases, we have used comparable mild priors
β ∼ N (0,10I), (g1,g2)

′|τ 2 ∼ N (0, τ 2100 × I), D−1 ∼ W(q +
4,1.67 × Iq), and τ 2 ∼ IG(3, .1); the priors on the variance pa-
rameters imply that E(D) = .2 × I, SD(diag(D)) = .283 × 1,
E(τ 2) = .05, SD(τ 2) = .05, and Eτ 2(var((g1,g2)

′)) = 5 × I.
(We discuss the role of the smoothness prior in more detail
later.) Table 1 also shows that as the sample size grows, the
functions are estimated more precisely, as expected. Also, in
line with conventional wisdom, the general trend seems to be
that fitting models with fewer parameters results in lower MSE
estimates. We clarify that under this setup, increasing the num-
ber of lags J affects the simulation study in two ways: first,
the dimension of the parameter space increases, and second, it
affects the proportion of 1’s among the responses (because all
elements in φ are positive). It is well known that the degree of
asymmetry in the proportion of the responses affects the esti-
mation precision. The proportion of 1’s is between .62 and .67
across the three functional specifications for our one-lag mod-
els, between .67 and .72 for the two-lag models, and between
.71 and .76 for the three-lag models. As Table 1 shows, how-
ever, the method recovers the true functions well despite this
asymmetry. The computational cost per 1,000 MCMC draws is
approximately 16 seconds in the simplest case (n = 250, J = 1,
q = 1). Adding more fixed effects (e.g., lags) does not increase
the costs by more than 1/10 of a second. However, adding an
additional random effect increases the computational cost to

Figure 1. The Three Functions Used in Generating Data for the Sim-
ulation Study: g(s) = sin(2πs), s ∈ [.6, 1.4]; g(s) = −1 + s + 1.6s2 +
sin(5s), s ∈ [0, 1.1]; g(s) = −.8 + s + exp{ −30(s − .5)2 }, s ∈ [0, 1].

Table 1. Average Mean Squared Errors (with estimated standard
errors in parentheses)

Random
effects

Average MSE (×10−2)

Clusters Lags g1 g2 g3

n = 250 J = 1 q = 1 1.60(.24) 1.40(.14) 1.77(.32)
q = 2 1.92(.26) 1.85(.23) 1.41(.19)

J = 2 q = 1 2.21(.43) 1.61(.21) 1.78(.37)
q = 2 2.72(.48) 2.82(.40) 2.62(.48)

J = 3 q = 1 2.89(.99) 1.98(.54) 2.93(.41)
q = 2 3.42(.67) 2.12(.60) 3.02(.75)

n = 500 J = 1 q = 1 .68(.08) .88(.14) 1.04(.21)
q = 2 .98(.15) 1.16(.13) .98(.09)

J = 2 q = 1 .96(.15) .91(.23) 1.05(.18)
q = 2 1.43(.17) 1.69(.28) 1.57(.25)

J = 3 q = 1 2.57(.41) 1.65(.38) 1.81(.26)
q = 2 1.82(.31) 2.49(.58) 1.76(.22)

n = 1,000 J = 1 q = 1 .64(.12) .63(.11) .60(.10)
q = 2 .56(.07) .58(.08) .68(.10)

J = 2 q = 1 .83(.13) .52(.09) .72(.11)
q = 2 .71(.11) .69(.17) .57(.08)

J = 3 q = 1 1.27(.29) .60(.09) .65(.11)
q = 2 .94(.19) 1.19(.28) .84(.12)

NOTE: The three functions used in generating data for the simulation study were g1(s) =
sin(2πs), s ∈ [.6, 1.4]; g2(s) = −1 + s + 1.6s2 + sin(5s), s ∈ [0, 1.1]; g3(s) = −.8 + s +
exp{−30(s − .5)2}, s ∈ [0, 1].

58 seconds per 1,000 draws, because of the expense of simulat-
ing a larger random-effects vector in each cluster. Finally, the
computational times increased linearly in relation to the sam-
ple size n. Figure 2 presents three particular function fits for the
case (n = 500, J = 2, q = 1).

We now comment on the influence of the prior on our func-
tion estimates. The model as a whole has three important vari-
ance structures, and the relative informativeness of the priors
for each of these structures should be viewed in the context of
the other two structures, not in isolation. As already discussed,
the variance of the errors and the variance τ 2 of the Markov
process prior determine the trade-off between a good fit and a
smooth function g(·). Similarly, the variance of the errors and

Figure 2. Simulation Study. Three examples of estimated functions
( —–), true functions ( -·-·-), and 95% pointwise confidence bands ( - - - -).
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(a) (b)

(c) (d)

Figure 3. Effect of τ 2 on the Estimates of g: n = 250 [(a) and (c)]
and n = 1,000 [(b) and (d)]. A larger τ 2 is used in (a) and (b) than in
(c) and (d). The dashed lines represent pointwise confidence bands.

the variance of the random effects D determine a balance be-
tween intracluster and intercluster variation. Whereas in large
samples the effects of the assumed priors on the parameter es-
timates is small (vanishing asymptotically), informative priors

do matter in small samples. Figure 3 illustrates this point by us-
ing two exaggeratedly different informative priors on τ 2. In one
case the prior on τ 2 is such that E(τ 2) = .5 and SD(τ 2) = .1;
in the second case E(τ 2) = .001 and SD(τ 2) = .001. Figure 3
illustrates that the first prior leads to a function that becomes
more wiggly as it curves to interpolate the data more closely,
whereas the second prior leads to oversmoothing. When the
sample size is increased from n = 250 to n = 1,000, the dif-
ference in the function estimates becomes smaller.

Next we consider the performance of the MCMC algorithm
in fitting the parametric part of the model. For example, the
case where n = 500 (with Ti = 7) is illustrated in Figure 4,
which shows histograms and kernel-smoothed marginal poste-
rior densities of the parameters together with the corresponding
autocorrelations from the sampled output. The linear effects,
together with τ 2, appear to be estimated well and the output
is characterized by low autocorrelations. Although it can be
seen that D is estimated well, its higher autocorrelation indi-
cates slower mixing than that of the remaining parameters, so
that longer MCMC runs may be needed to accurately describe
the marginal posterior density of D. The slower mixing occurs
because D is a parameter at the second level of the model-
ing hierarchy and depends on the data only indirectly through
{bi}. Because the {bi} are not well identified in smaller clus-
ters, when only a few observations are available to identify
the cluster-specific effects, and because learning about D oc-
curs from the intercluster variation of {bi}, D also suffers from
weak identification when cluster sizes are small. To measure
the efficiency of the MCMC parameter sampling scheme, we
use the measures [1 + 2

∑L
k=1 ρk(l)], where ρk(l) is the sample

Figure 4. Posterior Samples and Autocorrelations for the Parameters of a Semiparametric Model With One Fixed Effect, One Random Effect,
and One Lag (Ti = 7, i = 1, . . . , n).
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Table 2. Examples of Estimated Inefficiency Factors (autocorrelation
times) for the Parameters of a Model With One Lag, One Random

Effect, and One Fixed Effect for n = 500

Inefficiency factor

Parameter Ti = 7 Ti = 12 Ti = 17

δ 13.68 10.18 12.55
γ 9.62 6.16 7.25
φ 12.11 8.31 9.03
D 24.00 13.28 9.41
τ 2 10.65 5.26 8.74

autocorrelation at lag l for the kth parameter in the sampling
with the summation truncated at values L at which the correla-
tions taper off. The latter quantity, called the inefficiency factor,
may be interpreted as the ratio of the numerical variance of the
posterior mean from the MCMC chain to the variance of the
posterior mean from hypothetical independent draws. Table 2
gives the inefficiency factors corresponding to the parameters
for the same model as before, but now with different cluster
sizes (7, 12, and 17 observations per cluster). In this setup the
larger cluster sizes serve to identify {bi} better, allowing more
precise capture of intercluster variation. Table 2 shows that the
inefficiency factor for D drops considerably (but the other inef-
ficiency factors stay within a similar range). The improved sam-
pling of D becomes evident from comparing Figures 4 and 5,
with the latter summarizing the MCMC output when Ti = 17.

Similar to the cases given in Table 2, Table 3 presents results
for the inefficiency factors for a model with two lags and two
random effects. Because now not one, but two, random effects
are estimated from the limited observations in each cluster, the

elements of D are sampled with somewhat higher inefficiency
factors. Here again, however, Table 3 shows that as the cluster
sizes increase, resulting in better identification of {bi}, the inef-
ficiency factors for the elements of the heterogeneity matrix D
drop noticeably.

In the rest of this section, we report results from experi-
ments involving a model with AR(1) correlated errors. Table 4
presents the inefficiency factors for three cluster sizes and two
values of ρ. The parameters ρ and D are sampled well in all
cases, but it is interesting to see that when ρ is positive, both
ρ and D have higher inefficiency factors than otherwise. This
is because both are estimated from the covariance of the er-
rors, and decomposing that matrix into an equicorrelated part
(with positive elements implied by the random intercept) and a
Toeplitz part [implied by the AR(1) part, which also has posi-
tive elements when ρ > 0] is difficult in small samples. As the
cluster sizes increase, D is identified better, so both ρ and D
are estimated better. This does not appear to be a problem when
ρ < 0, because then the two correlation structures implied by
ρ and D are quite different. For the samplers and values of ρ

considered here, the M–H acceptance rate in the sampling of ρ

is in the range of (.87, .98).
These results show how serial correlation in the errors affects

the performance of the sampler, but it is also of interest to note
that misspecifying the correlation structure has definite impact
on the remaining components of the model. As mentioned ear-
lier, several studies, including those of Diggle and Hutchinson
(1989), Altman (1990), and Smith et al. (1998), have pointed
out that serial correlation, if incorrectly ignored, can have sub-
stantial adverse consequences for the estimation of the nonpara-
metric function. What is interesting in the context of panel data

Figure 5. Posterior Samples and Autocorrelations for the Parameters of a Semiparametric Model With One Fixed Effect, One Random Effect,
and One Lag (Ti = 17, i = 1, . . . , n).
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Table 3. Examples of Estimated Inefficiency Factors for the Parameters of a Model With Two Lags,
Two Random Effects, and One Fixed Effect

Inefficiency factor

n = 250 n = 500 n = 1,000

Parameter Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17

δ 21.16 18.09 18.88 19.89 16.07 14.72 20.79 22.46 20.65
γ1 12.19 12.20 11.51 14.73 13.00 12.82 12.16 13.57 12.34
γ2 11.40 8.48 9.61 15.64 8.84 7.33 14.64 10.07 9.56
γ3 9.06 10.36 8.41 11.75 10.48 9.19 12.59 12.90 8.44
φ1 9.29 9.12 8.00 7.01 10.96 11.07 14.36 10.23 10.81
φ2 8.39 7.60 10.14 7.69 7.52 8.48 9.15 11.14 10.01
D11 27.01 22.46 18.87 31.56 23.88 18.72 34.10 25.95 18.08
D12 29.73 23.16 18.16 29.88 25.81 14.91 26.31 20.25 18.38
D22 26.24 26.37 17.63 34.72 27.87 18.09 34.56 24.67 21.80
τ 2 10.58 12.45 10.17 14.74 9.47 7.80 8.02 6.05 6.02

is that ignoring the serial correlation can lead to biases in the
estimates of the heterogeneity matrix D. In line with the dis-
cussion in the foregoing paragraph, we have found that ignor-
ing the serial correlation distorts the estimates of D, especially
with smaller cluster sizes or positive and high serial correla-
tion. Ignoring the serial correlation in the errors also produces
estimates of the lag coefficients φ that differ widely from the
true values used in generating the data (and in some settings
having the opposite sign). One should also keep in mind that
differences also can occur because of the usual identification
restriction in binary data models, namely that the error variance
is fixed. For example, if the errors follow the AR(1) process
εit = ρεi,t−1 + vit with var(vit) = 1, then the unconditional vari-
ance of εit is inflated to 1/(1 − ρ2). This is one of the points
raised by Smith et al. (1998) in the context of a continuous-data
model, where this larger error variance was shown to produce
less efficient nonparametric function estimates. In the context
of a binary data problem, ignoring serial correlation and setting
var(εit) = 1 then corresponds to implicitly rescaling the regres-
sion parameters by a factor of

√
1 − ρ2. We take all of these

results together as a strong signal not to ignore the modeling
of the three causes of intertemporal dependence discussed in
Section 1—state dependence due to lags of the dependent vari-
able, serial correlation in the errors, and heterogeneity among
clusters.

In terms of computational intensity, our method was quite
efficient. For example, in one of our smaller datasets (n = 250,
q = 1, J = 1, and Ti = 7, i = 1, . . . ,n), Algorithm 1 took ap-
proximately 22 seconds to produce 1,000 MCMC draws, vary-
ing by less than .2 second as we increased the dimension of g
from m = 50 to m = 200. For comparison, we also tried a

Table 4. Examples of Estimated Inefficiency Factors for the
Parameters of the Model With One Lag, One Random Effect,

One Fixed Effect, and AR(1) Serial Correlation for n = 500

Inefficiency factor (ρ = −.5) Inefficiency factor (ρ = .5)

Parameter Ti = 7 Ti = 12 Ti = 17 Ti = 7 Ti = 12 Ti = 17

δ 19.06 17.43 20.19 20.75 14.06 17.72
γ 9.34 7.30 7.86 11.42 11.30 12.05
φ 23.05 25.63 18.24 17.00 20.24 20.11
D 21.48 16.21 12.75 39.47 28.02 15.19
τ 2 9.68 7.08 6.01 11.84 7.97 7.97
ρ 20.50 21.35 20.28 32.40 27.12 26.45

“brute-force” algorithm that did not exploit banded matrices
or our approach for dealing with correlated errors. In this case
the computational cost of 1,000 MCMC draws was 35 sec-
onds for m = 50, 103 seconds for m = 100, and 405 seconds
for m = 200. We suspect that the brute-force algorithm would
become largely infeasible in even higher-dimensional prob-
lems because of its computational intensity and storage require-
ments.

To summarize, the results suggest that the MCMC algorithm
performs well, and that the estimation method recovers the pa-
rameters and functions used to generate the data. The perfor-
mance of the method in recovering the nonparametric function
g(·) and the model parameters improves with the sample size,
when the model is better identified. Most noticeably, the sam-
pling of D benefits strongly from larger cluster sizes.

7. INTERTEMPORAL LABOR FORCE PARTICIPATION
OF MARRIED WOMEN

In this section we consider an application to the annual labor
force participation decisions of 1,545 married women in the
age range 17–66. The dataset, obtained from the PSID, is based
on the work of Hyslop (1999) and contains a panel of women’s
working status indicators (1, working during the year; 0, not
working) over a 7-year period (1979–1985), together with a
set of seven covariates given in Table 5. The sample consists
of continuously married couples where the husband is a labor
force participant (reporting both positive earnings and hours
worked) in each of the sample years. Similar data have been
analyzed by Chib and Greenberg (1998), Avery, Hansen, and
Hotz (1983), and Hyslop (1999) using other models and esti-
mation techniques.

A key feature of our modeling is that the effect of age
on the conditional probability of working is specified non-
parametrically. There are compelling reasons for doing this.
Nonlinearities arise because of changes in tastes, trade-offs, and
age-related health over a woman’s life cycle; due to the fact that
age is indicative of the expected timing of events (e.g., gradu-
ation from school or college, planning for children); and be-
cause age may be revealing of social values and education type
(cohort effect) or experience as a homemaker and in the labor
market (productivity effect).

To account for model uncertainty, we evaluated several
competing models that differ in their state dependence, ser-
ial correlation, and heterogeneity using the following baseline
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Table 5. Variables in the Women’s Labor Force Participation Application

Variable Explanation Mean SD

WORK Wife’s labor force status (1, working; 0, not working) .7097 .4539
INT An intercept term (a column of 1’s)
AGE The woman’s age in years 36.0262 9.7737
RACE 1 if black, 0 otherwise .1974 .3981
EDU Attained education (in years) at time of survey 12.4858 2.1105
CH2 Number of children age 0–2 in that year .2655 .4981
CH5 Number of children age 3–5 in that year .3120 .5329
INC Total annual labor income of head of household 31.7931 22.6417

NOTE: INC (in thousands of dollars) is measured as nominal earnings adjusted by the Consumer Price Index (base
year 1987).

specification:

yit = 1
{
x̃′

itδ + w′
itβ i + g(sit)

+ φ1yi,t−1 + · · · + φJyi,t−J + εit > 0
}
,

β i = Aiγ + bi, bi ∼ N3(0,D),

where yit = WORKit, x̃′
it = (RACEi,EDUit, ln(INCit)), sit =

AGEit, w′
it = (1,CH2it,CH5it), εit are potentially serially cor-

related, and the effects of CH2 and CH5 are allowed to depend
on husbands’ earnings and the initial conditions through

Ai =
( ȳi0

1 ȳi0 ln(INCi)

1 ȳi0 ln(INCi)

)

.

Such issues as variable selection, lag determination, and corre-
lation between the unobserved effects and covariates are han-
dled as model selection problems by computing the marginal
likelihoods of competing models. The semiparametric mod-
els are also compared against two parametric alternatives. The
more important competing models are presented in Table 6.

Models M1–M4 have differing dynamics. Table 6 shows
that allowing for AR(1) errors improves the performance of the
one-lag state dependence model; serial correlation is present
in the errors of that model (with ρ estimated as −.288, with
a posterior standard deviation of .048). However, the data in
this application strongly favor a model in which state de-
pendence is incorporated through two lags of the dependent

variable. Single-lag models (M1 and M2) have marginal like-
lihoods much lower than the corresponding two-lag versions
(M3 and M4). We also see that inclusion of the second lag
removes the serial correlation in the errors and results in a mar-
ginal likelihood of M3 that is highest among the models con-
sidered in Table 6. For model M4, the estimated value of ρ

is −.047 with a 95% confidence interval (−.224, .113). Mod-
els with higher-order dynamic dependence were considered, but
received less support than M3. Regarding the heterogeneity in
the model, we see from Table 6 that the single unobserved effect
model (M5) is decisively less supported than M3.

We now discuss models M5 and M6 in the context of the es-
timate of the nonparametric function g(AGE) from model M3.
Figure 6 shows that the estimated effect of age departs no-
tably from linearity. To examine whether a parametric model
can adequately fit the data, we consider two parametric mod-
els (M5 and M6), where g(AGE) is restricted to be linear or
quadratic. [Because now g(·) is not general, Ai is not restricted
for identification purposes.] The comparisons are shown in
Figure 7. The estimates suggest that the linear model can
be deceiving, because it produced a negative coefficient esti-
mate for age of −.0105 with 95% credibility region given by
(−.018,−.003). The quadratic model comes closer to the semi-
parametric fit, but still leaves some excess nonlinearity unde-
tected. Both parametric models miss the large increase in the
probability of working in the early twenties and the nonlinear-
ity around age 30. The marginal likelihood of the parametric

Table 6. Log Marginal Likelihoods for Alternative Models in the Women’s Labor Force Participation
Application (estimated from MCMC runs of length 15,000)

Model Fixed effect Random effect Nonzero elements in Ai ln(marginal likelihood)

Model with 1-lag state dependence and independent errors:
M1 x̃it , y i,t−1 wit (ȳi0; 1, ȳi0, ln (INCi ); −2,610.7

1, ȳi0, ln (INCi ) )

Model with 1-lag state dependence and AR(1) errors:
M2 x̃it , y i,t−1 wit Ai as in M1 −2,595.5

Model with 2-lag state dependence and independent errors:
M3 x̃it , y i,t−1, y i,t−2 wit Ai as in M1 −2,563.8

Model with 2-lag state dependence and AR(1) errors:
M4 x̃it , y i,t−1, y i,t−2 wit Ai as in M1 −2,579.6

Model with random intercept only:
M5 x̃it , y i,t−1, y i,t−2 1 (ȳi0) −2,580.1

Parametric versions of M3:
M6 x̃it , y i,t−1, y i,t−2, wit (1, ȳi0; 1, ȳi0, ln (INCi ); −2,581.2

AGEit 1, ȳi0, ln (INCi ) )
M7 x̃it , y i,t−1, y i,t−2, wit Ai as in M6 −2,574.6

AGEit , AGE2
it
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Figure 6. The Effect of Age on the Probability of Working: Nonpara-
metric Estimate and Pointwise Confidence Bands ( E{g(AGE)|y};
upper; lower).

models, especially that of the linear model, are lower confirm-
ing the conjecture from Figure 7 that these models do not fully
account for the nonlinear effect of age.

Table 7 contains the parameter estimates of the best-fitting
model (M3). We see that, conditional on the covariates, black
women, better-educated women, and women whose husbands
have low earnings are more likely to work. The results also indi-
cate the strong state dependence on two lags of a woman’s em-
ployment status. After controlling for state dependence and the
remaining covariates, we see that the presence of children has a
larger effect on the probability of working when the husband’s
earnings increase. Finally, the positive correlation between the
random intercept and the initial conditions is consistent with the
notion that the initial observations are indicative of a woman’s
tastes and human capital. The inefficiency factors in Table 7
(defined in Sec. 6) indicate a good overall performance of the
MCMC sampler. But because of the large number of random

Figure 7. Comparison of the Linear ( ), Quadratic ( ), and Non-
parametric ( ) Estimates of g(AGE), With Pointwise Confidence Bands
( ).

effects and small cluster sizes, the elements of D are sampled
less efficiently than the other parameters.

Interpretation of the estimates beyond the broad direction
of impact, however, is complicated by the nonlinearity in the
model and the interactions between the covariates. For exam-
ple, the income and child variables enter the model in such a
way as to make it difficult to disentangle and evaluate their ef-
fects. For this reason, Figure 8 presents the average effects for
certain changes in the child and income covariates. More specif-
ically, the figure presents the average effects of three hypothet-
ical scenarios: first, the effect of an additional birth in period 1
(i.e., having an additional child age 0–2 in periods 1–3, who
grows to become a child age 3–5 in periods 4 and 5), second,
the effect of an additional child age 3–5 in periods 1–3, and
third, doubling of the husband’s earnings. Figure 8 shows that
there is a negative overall effect of preschool children on labor
supply, which is noticeably stronger for children age 0–2 than

Table 7. Parameter Estimates for Model M3 , Along With 95% Confidence Intervals
and Inefficiency Factors From 15,000 MCMC Iterations

Parameter Covariate Mean SD Median Lower Upper Ineff

δ RACE .170 .080 .169 .014 .329 7.012
EDU .087 .015 .086 .057 .117 23.189

ln(INC) −.190 .048 −.189 −.286 −.098 16.484
γ ȳi0 1.371 .173 1.365 1.047 1.724 27.802

CH2 .142 .312 .144 −.479 .747 5.414
(CH2) (ȳi0) −.245 .161 −.248 −.556 .077 19.356

(CH2) ( ln (INCi ) ) −.135 .093 −.135 −.318 .046 6.230
CH5 .868 .273 .867 .339 1.416 8.358

(CH5) (ȳi0) −.351 .127 −.350 −.606 −.103 14.530

(CH5) ( ln (INCi ) ) −.221 .081 −.221 −.380 −.063 8.139
φ yi,t−1 1.213 .071 1.213 1.072 1.348 15.863

yi,t−2 .445 .071 .445 .308 .581 11.470
vech(D) .540 .129 .528 .319 .828 38.481

−.043 .096 −.043 −.243 .133 45.999
.137 .071 .119 .046 .319 45.617

−.151 .085 −.138 −.347 −.019 43.454
.017 .049 .011 −.066 .136 45.551
.158 .086 .135 .047 .366 46.355

τ 2 .017 .006 .016 .009 .030 5.473
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(a) (b) (c)

Figure 8. The Average Effect of (a) Doubling a Husband’s Permanent Income, (b) Having an Additional Child Age 0–2 in Periods 1–3 and
Age 3–5 in Periods 4 and 5, and (c) an Additional Child Age 3–5 in Periods 1–3 (c).

for children age 3–5 (cf. Hyslop 1999). The figure also shows
that although husband’s earnings affect a woman’s probability
of employment in a theoretically predicable direction, increases
in earnings must be quite large to induce any economically sig-
nificant reduction in participation. In some situations, we are
interested in the effect of a given policy intervention on differ-
ent segments of the population. To explore this issue, we can
compute and compare the average covariate effects for various
subsamples, as discussed in Section 4. Figure 9 shows the av-
erage covariate effects for two subsamples based on their initial
conditions: women who have worked in both presample peri-
ods and women who have worked in the first, but not the sec-
ond presample period (the other two categories are not shown).
The figure reveals considerable differences in the impact of the
covariates on labor force choices in these two groups and raises
some interesting questions for future research.

8. CONCLUDING REMARKS

This article has considered the Bayesian analysis of hierar-
chical semiparametric models for binary panel data with state
dependence, serially correlated errors, and multidimensional

heterogeneity correlated with the covariates and initial condi-
tions. New, computationally efficient MCMC algorithms have
been developed for simulating the posterior distribution, esti-
mating the marginal likelihood, and evaluating the average co-
variate effects. The techniques rely on the framework of Albert
and Chib (1993) and a proper Markov process smoothness prior
on the unknown function. A simulation study has shown that
the methods performs well. An application involving a dy-
namic semiparametric model of women’s labor force partici-
pation illustrated that the model and the estimation methods are
practical and can uncover interesting features in the data. For-
mal Bayesian model choice methods allowed us to distinguish
among the effects of state dependence, serial correlation, and
heterogeneity, and to compare parametric and semiparametric
models.

One benefit of the model considered herein is that it can be
inserted as a component in a larger hierarchical model (e.g.,
a treatment model or a model with incidental truncation). The
general method is also applicable to panels of continuous and
censored data. We intend to explore the effectiveness of such
approaches in future work.

[Received November 2004. Revised June 2005.]

Figure 9. Average Covariate Effects for Two Subsamples: Women Who Worked in Both Presample Periods (first row) and Women Who Worked
in the First, but Not the Second, Presample Period (second row).
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