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Abstract The Markov and Conditional random fields
(CRFs) used in computer vision typically model only local
interactions between variables, as this is generally thought
to be the only case that is computationally tractable. In this
paper we consider a class of global potentials defined over
all variables in the CRF. We show how they can be readily
optimised using standard graph cut algorithms at little extra
expense compared to a standard pairwise field. This result can
be directly used for the problem of class based image seg-
mentation which has seen increasing recent interest within
computer vision. Here the aim is to assign a label to each pixel
of a given image from a set of possible object classes. Typi-
cally these methods use random fields to model local inter-
actions between pixels or super-pixels. One of the cues that
helps recognition is global object co-occurrence statistics, a
measure of which classes (such as chair or motorbike) are
likely to occur in the same image together. There have been
several approaches proposed to exploit this property, but all
of them suffer from different limitations and typically carry a
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high computational cost, preventing their application on large
images. We find that the new model we propose produces a
significant improvement in the labelling compared to just
using a pairwise model and that this improvement increases
as the number of labels increases.

Keywords Conditional random fields · Object class
segmentation · Optimization

1 Introduction

Class based image segmentation is a highly active area of
computer vision research as shown by a spate of recent pub-
lications (Heitz and Koller 2008; Rabinovich et al. 2007;
Shotton et al. 2006; Torralba et al. 2003; Yang et al. 2007).
In this problem, every pixel of the image is assigned a choice
of object class label, such as grass, person, or dining table.
Formulating this problem probabilistically, in order to per-
form inference, is a difficult problem, as the cost or energy
associated with any labelling of the image should take into
account a variety of cues at different scales. A good labelling
should take account of: low-level cues such as colour or tex-
ture (Shotton et al. 2006), that govern the labelling of single
pixels; mid-level cues such as region continuity, symmetry
(Ren et al. 2005) or shape (Borenstein and Malik 2006) that
govern the assignment of regions within the image; and high-
level statistics that encode inter-object relationships, such as
which objects can occur together in a scene. This combi-
nation of cues makes for a multi-scale cost function that is
difficult to optimise.

Current state of the art low-level approaches typically fol-
low the methodology proposed in Texton-boost (Shotton et al.
2006), in which weakly predictive features such as colour,
location, and texton response are used to learn a classifier
which provides costs for a single pixel taking a particular

123



214 Int J Comput Vis (2013) 103:213–225

Fig. 1 Best viewed in colour. Qualitative results of object co-
occurrence statistics. a Typical images taken from the MSRC data set
(Shotton et al. 2006). b A labelling based upon a pixel based random
field model (Ladicky et al. 2009) that does not take into account co-
occurrence. c A labelling of the same model using co-occurrence sta-
tistics. The use of co-occurrence statistics to guide the segmentation

results in a labelling that is more parsimonious and more likely to be
correct. These co-occurrence statistics suppress the appearance of small
unexpected classes in the labelling. Top left a mistaken hypothesis of
a cow is suppressed Top right Many small classes are suppressed in
the image of a building. Note that the use of co-occurrence typically
changes labels, but does not alter silhouettes

label. These costs are combined in a contrast sensitive con-
ditional random field (CRF) (Lafferty et al. 2001).

The majority of mid-level inference schemes (Russell
et al. 2006; Larlus and Jurie 2008) do not consider pix-
els directly, rather they assume that the image has been
segmented into super-pixels (Comaniciu and Meer 2002;
Felzenszwalb and Huttenlocher 2004; Shi and Malik 2000).
A labelling problem is then defined over the set of regions.
A significant disadvantage of such approaches is that mis-
takes in the initial over-segmentation, in which regions span
multiple object classes, cannot be recovered from. To over-
come this Gould et al. (2009) proposed a method of reshaping
super-pixels to recover from the errors, while works of (Kohli
et al. 2008; Ladicky et al. 2009) proposed a novel framework
which allowed for the integration of multiple region-based
CRFs with a low-level pixel based CRF, and the elimination
of inconsistent regions.

These approaches can be improved by the inclusion of
costs based on high level statistics, including object class
co-occurrence, which capture knowledge of scene semantics
that humans often take for granted: for example the knowl-
edge that cows and crocodiles are not kept together and less
likely to appear in the same image; or that motorbikes are
unlikely to occur near televisions. In this paper we consider
object class co-occurrence to be a measure of how likely it is
for a given set of object classes to occur together in an image.
They can also be used to encode scene specific information
such as the facts that computer monitors and stationary are
more likely to occur in offices, or that trees and grass occur
outside. The use of such costs can help prevent some of the
most glaring failures in object class segmentation, such as
the labelling of a boat surrounded by water mislabelled as a
book.

As well as penalising strange combinations of object
class labels appearing in an image, co-occurrence potentials
can also be used to impose an minimum description length
(MDL) prior, that encourages a parsimonious description of
an image using fewer labels. As discussed eloquently in the
recent work (Choi et al. 2010), the need for a bias towards
parsimony becomes increasingly important as the number of
classes to be considered increases. Figure 1 illustrates the
importance of co-occurrence statistics in image labelling.

The promise of co-occurrence statistics has not been
ignored by the vision community. Rabinovich et al. (2007)
proposed the integration of such co-occurrence costs that
characterise the relationship between two classes. Simi-
larly Torralba et al. (2003) proposed scene-based costs that
penalised the existence of particular classes in a context
dependent manner. We shall discuss these approaches, and
some problems with them in the next section.

2 CRFs and Co-occurrence

A conventional CRF is defined over a set of random variables
V = {1, 2, 3, . . . , n} where each variable takes a value from
the label set L = {l1, l2, . . . , lk} corresponding to the set of
object classes. An assignment of labels to the set of random
variables will be referred to as a labelling, and denoted as
x ∈ L|V |. We define a cost function E(x) over the CRF of
the form:

E(x) =
∑

c∈C
ψc(xc) (1)

where the potentialψc is a cost function defined over a set of
variables (called a clique) c, and xc is the state of the set of
random variables that lie within c. The set C of cliques is a
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subset of the power set of V, i.e. C ⊆ P(V). In the majority
of vision problems, the potentials are defined over a clique of
size at most 2. Unary potentials are defined over a clique of
size one, and typically based upon classifier responses [such
as ada-boost (Shotton et al. 2006) or kernel SVMs (Schölkopf
and Smola 2001)], while pairwise potentials are defined over
cliques of size two and model the correlation between pairs
of random variables.

2.1 Incorporating Co-occurrence Potentials

To model object class co-occurrence statistics a new term
K (x) is added to the energy:

E(x) =
∑

ψc(xc)+ K (x). (2)

The question naturally arises as to what form an energy
involving co-occurrence terms should take. We now list
a set of desiderata that we believe are intuitive for any
co-occurrence cost.

(i) Global Energy We would like a formulation of
co-occurrence that allows us to estimate the segmentation
using all the data directly, by minimising a single cost func-
tion of the form (2). Rather than any sort of two stage process
in which a hard decision is made of which objects are present
in the scene a priori as in (Torralba et al. 2003).

(ii) Invariance The co-occurrence cost should depend only
on the labels present in an image, it should be invariant to the
number and location of pixels that object occupies. To reuse
an example from (Toyoda and Hasegawa 2008), the surprise
at seeing a polar bear in a street scene should not not vary
with the number of pixels that represent the bear in the image.

(iii) Efficiency Inference should be tractable, i.e. the use of
co-occurrence should not be the bottle-neck preventing infer-
ence. As the memory requirements of any conventional infer-
ence algorithm (Szeliski et al. 2006) is typically O(|V|) for
vision problems, the memory requirements of a formulation
incorporatingco-occurrencepotentialsshouldalsobe O(|V|).

(iv) Parsimony The cost should follow the principle of par-
simony in the following way: if several solutions are almost
equally likely then the solution that can describe the image
using the fewest distinct labels should be chosen. Whilst this
might not seem important when classifying pixels into a few
classes, as the set of putative labels for an image increases the
chance of speckle noise due to misclassification will increase
unless a parsimonious solution is encouraged.

While these properties seem uncontroversial, no prior
work exhibits property (ii). Similarly, no approaches satisfy
properties (i) and (iii) simultaneously. In order to satisfy con-
dition (ii) the co-occurrence cost K (x) defined over x must
be a function defined on the set of labels L(x) = {l ∈ L :
∃xi = l} present in the labelling x; this guarantees invariance
to the size of an object:

K (x) = C(L(x)) (3)

Adding the co-occurrence term to the CRF cost function (1),
we have:

E(x) =
∑

c∈C
ψc(xc)+ C(L(x)). (4)

To satisfy the parsimony condition (iv) potentials must
act to penalise the unexpected appearance of combinations
of labels in a labelling. This observation can be formalised as
the statement that the cost C(L) is monotonically increasing
with respect to the label set L i.e.:

L1 ⊂ L2 �⇒ C(L1) ≤ C(L2). (5)

The new potential C(L(x)) can be seen as a particular higher
order potential defined over a clique which includes the whole
of V, i.e. ψV (x).

2.2 Prior Work

There are two existing approaches to co-occurrence poten-
tials, neither of which use potentials defined over a clique
of size greater than two. The first makes an initial hard esti-
mate of the type of scene, and updates the unary potentials
associated with each pixel to encourage or discourage par-
ticular choices of label, on the basis of how likely they are
to occur in the scene. The second approach models object
co-occurrence as a pairwise potential between regions of the
image.

Torralba et al. (2003) proposed the use of additional unary
potentials to capture scene based occurrence priors. Their
costs took the form:

K (x) =
∑

i∈V
φ(xi ). (6)

While the complexity of inference over such potentials scales
linearly with the size of the graph, they are prone to over
counting costs, violating (ii), and require an initial hard deci-
sion of scene type before inference, which violates (i). As it
encourages the appearance of all labels which are common
to a scene, it does not necessarily encourage parsimony (iv).

A similar approach was seen in the Pascal VOC2008
object segmentation challenge, where the best performing
method, by (Csurka and Perronnin 2008), worked in two
stages. Initially the set of object labels present in the image
was estimated, and in the second stage, a label from the esti-
mated label set was assigned to each image pixel. As no cost
function K (·)was proposed, it is open to debate if it satisfied
(ii) or (iv).

Rabinovich et al. (2007); Galleguillos et al. (2008),
and independently Toyoda and Hasegawa (2008), proposed
co-occurrence as a soft constraint that approximated C(L(x))
as a pairwise cost defined over a fully connected graph that
took the form:
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Table 1 A comparison of the
capabilities of existing image
co-occurrence formulations
against our new approach

See Sect. 2.2 for details

Method Global energy Invariance Efficiency Parsimony
(i) (ii) (iii) (iv)

Unary (Torralba et al. 2003) � × � ×
Pairwise (Rabinovich et al. 2007;

Galleguillos et al. 2008;
Toyoda and Hasegawa 2008)

� × × ×

Hard decisions (Csurka and Perronnin
2008)

× — � —

Our approach � � � �

K (x) =
∑

i, j∈V
φ(xi , x j ), (7)

where φ was some potential which penalised labels that
should not occur together in an image. Unlike our model (4)
the penalty cost for the presence of pairs of labels, that rarely
occur together, appearing in the same image grows with the
number of random variables taking these labels, violating
assumption (ii). While this serves as a functional penalty
that prevents the occurrence of many classes in the same
labelling, it does not accurately model the co-occurrence
costs we described earlier. The memory requirements of
inference scales badly with the size of a fully connected
graph. It grows with complexity O(|V|2) rather than O(|V|)
with the size of the graph, violating constraint (iii). Providing
the pairwise potentials are semi-metric (Boykov et al. 2001),
it does satisfy the parsimony condition (iv).

To minimise these difficulties, previous approaches defined
variables over segments rather than pixels. Such segment
based methods work under the assumption that some seg-
ments share boundaries with objects in the image. This is not
always the case, and this assumption may result in dramatic
errors in the labelling. The relationship between previous
approaches and the desiderata can be seen in Table 1.

Two efficient schemes (Delong et al. 2010; Hoiem et al.
2007) have been proposed for the minimisation of the number
of classes or objects present in a scene. While neither of them
directly models class based co-occurrence relationships, their
optimisation approaches satisfy the desiderata proposed in
Sect. 2.1.

Hoiem et al. (2007), proposed a cost based on the number
of objects in the scene, in which the presence of any instance
of any object incurs a uniform penalty cost. For example, the
presence of both a motorbike and a bus in a single image is
penalised as much as the presence of two buses. Minimis-
ing the number of objects in a scene is a good method of
encouraging consistent labellings, but does not capture any
co-occurrence relationship between object classes.

If we view Hoiem’s work as assigning a different label to
every instance of an object class, their label set costs take the
form:

C(L(x)) = k||L(x)|| (8)

In a recent work, independently appearing at the same time
as ours, Delong et al. (2010) also proposed the use of a cost
over the number of labels present. In general their approach
allowed a penalty cost to be from certain subset is present in
an image. They proposed an ingenious use of this cost to com-
bine probabilistic formulations such as Akaike’s information
criteria, or the Bayesian Information Criteria to efficiently
solve a long standing problem in motion segmentation (See
also Torr (1998) for discussion of this problem). The general
form of their costs is:

C(L(x)) =
∑

L⊆L
kLδ(L(x) ∩ L 
= ∅), (9)

where δ( ) is the Kronecker indicator function.
Note that the costs of Delong et al. (2010) and Hoiem et al.

(2007) both satisfy the inequality:

C(L1 ∪ L2) ≤ C(L1)+ C(L2), (10)

where L1 and L2 are any subsets of labels of L. Consequen-
tially, their models are unable to express to co-occurrence
potentials which say that certain classes, such as the previ-
ously mentioned example of polar bear and street, are less
likely to occur together than in separate images.

3 Inference on Global Co-occurrence Potentials

Consider the energy (4) defined in Sect. 2.1. The inference
problem becomes:

x∗ = arg minx∈L|V|
∑

c∈C ψc(xc)+ C(L(x))

s.t. x ∈ L|V |, L(x) = {l ∈ L : ∃xi = l}. (11)

In this section we show that the problem of minimising this
energy can be reformulated as an integer program and solved
using LP-relaxation. We will also show how it can be trans-
formed into pairwise energy by adding one auxiliary vari-
able connected to all pixels in the image and solved using
Belief Propagation (Weiss and Freeman 2001) or TRW-S
(Kolmogorov 2006). However, reparameterisation methods
such as these perform badly on densely connected graphs
(Kolmogorov and Rother 2006; Russell et al. 2010). Then we
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show that the problem can be solved efficiently using move-
making αβ-swap and α-expansion moves (Boykov et al.
2001), where the number of additional edges of the graph
grows linearly with the number of variables in the graph. In
contrast to (Rabinovich et al. 2007), these algorithms can be
applied to large graphs with more than 200,000 variables.

3.1 The Integer Programming Formulation,
and Its Linear Relaxation

In the following two subsections, we make the simplifying
assumption that the cost (1) is currently represented as a pair-
wise energy. The minimisation of the energy function (4)
can be formulated as an Integer Program (IP) (Wainwright
et al. 2002; Schlesinger 1976). A vector z of binary indica-
tor variables is used to represent the assignment of labels.
z is composed of zi;a∀a ∈ L,∀i ∈ V, and, zi j;ab∀a, b ∈
L, (i, j) ∈ E where E is the set of edges, to represent the
state of variables xi , x j such that:

zi;a =
{

1 if xi = a

0 otherwise
,

(12)

zi j;ab =
{

1 if xi = a and x j = b

0 otherwise.

In addition z is composed of zL , there are indicator variables
that show which subset of labels L(x) is used for the assign-
ment. There are 2|L| such variables in total, one variable zL

for every L ⊆ L. We write:

zL =
{

1 if L = L(x)

0 otherwise.
(13)

Thus, z is a binary vector of length |V| · |L|+|E | · |L|2 +2|L|.
The resulting IP can be written as:

min
z

∑

i∈V,a∈L
ψi (a)zi;a +

∑

(i, j)∈E,
a,b∈L

ψi, j (a, b)zi j;ab

+
∑

L⊆L
C(L)zL (14)

such that:
∑

a
zi j;ab = z j;b, ∀(i, j) ∈ E, b ∈ L, (15)

∑
b

zi j;ab = zi;a, ∀(i, j) ∈ E, a ∈ L, (16)
∑

a
zi;a = 1, ∀i ∈ V, (17)

∑
L�a

zL ≥ zi;a, ∀i ∈ V, a ∈ L, L ⊆ L (18)
∑

L⊆L zL = 1, (19)

zi;a, zi j;ab, zL ∈ {0, 1} ∀i ∈ V,∀(i, j) ∈ E,
∀a, b ∈ L, ∀L ⊆ L. (20)

The marginal consistency and uniqueness constraints (15–
17) are well-known and used in the standard IP formulation
of the labelling problem (Komodakis et al. 2007; Kumar and
Torr 2008; Wainwright et al. 2005; Werner 2007). To enforce
the consistency between labelling and the label set indicator
variables zL (13), two new properties which we refer to as
“inclusion” and “exclusion” properties must be satisfied. The
exclusion property which ensures that if zL = 1, no variable
takes a label not present in L , is enforced by the exclusion
constraints (18). While, the inclusion property guarantees
that if zL = 1, then for each label l ∈ L there exists at least
one variable zi;l such that zi;l = 1, is enforced by parsimony.
To see why this is the case, consider a contrapositive solution
where there is a label l ∈ L not present in the solution. In this
case, the solution z altered by zL = 0 and zL\{l} = 1 would
also satisfy all constraints (15–18) and due to the parsimony
property would have the same or lower cost function (14).
Thus, there exists a global optima satisfying zL = 1 such
that L(x) = L . The constraint (19) guarantees that there is
exactly one zL such that zL = 1. The final constraints (20)
ensure that all indicator variables are binary.

The inclusion property can also be explicitly enforced by
the set of constraints:
∑

i∈V zi;a ≥ zL , ∀a ∈ L ⊆ L. (21)

In that case the formulation would be applicable also to
co-occurrence potentials not satisfying the parsimony prop-
erty. However, this would encourage degenerate solutions in
which only one pixel takes a particular label.

The IP can be converted to a linear program (LP) by relax-
ing the integral constraints (20) to

zi;a, zi j;ab, zL ∈ [0, 1] ∀i ∈ V,∀(i, j) ∈ E,
∀a, b ∈ L, ∀L ⊆ L. (22)

The resulting linear program can be solved using any general
purpose LP solver, and an integer solution, can be induced
using rounding schemes such as those of Kleinberg and
Tardos (2002). While this approach allows co-occurrence to
be computed effectively for small images, over large images
the memory and time requirements of standard LP solvers
make this approach infeasible.

In many practical cases the co-occurrence cost C(L) is
defined as the sum over costs kL for co-occurrence of subsets
of labels, for example all pairs of labels. The cost kL for each
subset is taken if all the labels L are present in an image:

C(L) =
∑

B⊆L

kB, (23)

where kB ≥ 0. In general any cost C(L) can be decomposed
uniquely into the sum over subsets recursively as:

kB = C(B)−
∑

B′⊂B

kB′ , (24)
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however some coefficients kB may become negative. The
positivity constraint kB > 0 did not need to be satisfied for
the linear program (15–20). We show, that in the case of the
co-occurrence cost defined as a sum over non-negative costs
for low-order subset of labels, we can remove the exponential
complexity of the linear program (exponential in the number
of labels). In this case we will need one variable zL for each
subset, which is either of the cardinality 1 or has a nonzero
cost kL > 0. Unlike in (13), zL = 1 if L is the subset of
labels present in an image:

zL =
{

1 if L ⊆ L(x)

0 otherwise.
(25)

In this case, the linear program becomes:

min
z

∑

i∈V,a∈L
ψi (a)zi;a +

∑

(i, j)∈E,
a,b∈L

ψi, j (a, b)zi j;ab

+
∑

a∈L
k({a})z{a} +

∑

L⊆L
|L|≥2

k(L)zL (26)

such that:
∑

a

zi j;ab = z j;b, ∀(i, j) ∈ E, b ∈ L, (27)

∑

b

zi j;ab = zi;a, ∀(i, j) ∈ E, a ∈ L, (28)

∑

a

zi;a = 1, ∀i ∈ V, (29)

z{a} ≥ zi;a, ∀i ∈ V, a ∈ L (30)

zL ≥
∑

a∈L

z{a} − |L| + 1, ∀L ⊆ L, |L| ≥ 2 (31)

zi;a, zi j;ab, zL ∈ {0, 1} ∀i ∈ V,∀(i, j) ∈ E,
∀a, b ∈ L, ∀L ⊆ L. (32)

The constraints (30) guarantee that z{a} = 1 if the label a is
present in an image. The constraints (31) enforce that for all
L with the cardinality larger than two, zL = 1 if all labels
in L are present in an image. In many practical cases, when
the cost is defined as a sum over costs for each label as in
(Delong et al. 2010), or each pair of labels, this LP program
becomes feasible for standard LP solvers.

We next show that, the higher order energy (1) can be
transformed into a pairwise energy function with the addition
of a single auxiliary variable L that takes 2|L| states.

3.2 Pairwise Representation of Co-occurrence Potentials

The optimization of the energy (4) is equivalent to the pair-
wise energy function with co-occurrence cost represented
using one auxiliary variable z that takes a label from the set
of subsets z ∈ 2L. The unary potential for this auxiliary
variable is equal to the corresponding co-occurrence cost:

ψu(z) = C(z) ∀z ∈ 2L. (33)

The exclusion property is enforced by using a sufficiently
large pairwise cost K → ∞ for each pair of inconsistent
labelling of pixel xi ∈ x and z as:

ψp(xi , z) = K δ(xi /∈ z) ∀xi ∈ x. (34)

The inclusion property is implicitly encoded in a similar way
to the IP formulation as it arises naturally in the usual solu-
tions due to the parsimony. If z = L and there was a label
l ∈ L such that ∀xi ∈ x : xi 
= l, then the solution with
z = L \ {l} would have the same or lower cost E(x)).

This formulation allows us to use any approach from the
wide body of standard inference techniques (Boykov et al.
2001; Kolmogorov 2006; Szeliski et al. 2006) to minimize
this function. However, the complexity grows exponentially
with the size of the label set. In the case where the costs can
also be decomposed into the sum of positive co-occurrence
costs for low-order subsets, the exponential dependency on
the size of label set can be removed. The new pairwise formu-
lation contains one variable zL for each subset with non-zero
cost kL > 0. It takes the label l ∈ L , which is currently not
present in an image, or label ∅ if all labels l ∈ L are present
in an image. The unary potential for all auxiliary variables is
equal to the corresponding co-occurrence cost, if all labels
l ∈ L are present in an image:

ψu(zL) = k(L)δ(zL = ∅) ∀L ∈ 2L. (35)

The consistency of the state of zL with the labelling on an
image is enforced by using a sufficiently large pairwise cost
K → ∞ for each pair of inconsistent labelling of pixel xi ∈ x
and zL as:

ψp(xi , zL) = K δ(zL = l)δ(xi = l) ∀xi ∈ x, L ∈ L. (36)

Inference can be performed on this graph using most of the
message passing algorithms designed for general pairwise
graphs, however in our experiments (explained in Sect. 4)
such message passing algorithms were much slower than the
graph cut based algorithm, even though the method led to the
same solution for every test image.

3.3 αβ-Swap Moves

Move making algorithms iteratively project the problem into
a smaller subspace of possible solutions containing current
solution. Solving this sub-problem proposes optimal moves
which guarantee that the energy decreases after each move
and must eventually converge. The performance of move
making algorithms depends dramatically on the size of the
move space. The expansion and swap move algorithms we
consider project the problem into two label sub-problem and
under the assumption that the projected energy is pairwise
and submodular, it can be solved using graph cuts. We derive
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graph constructions only for term C(L(x)). The final graph
is the merger of the graph for optimising the standard CRF
(Boykov et al. 2001) and the derived graph construction for
the co-occurrence term.

The swap and expansion move algorithms can be encoded
as a vector of binary variables t = {ti ,∀i ∈ V}. The transfor-
mation function T (xp, t) of a move algorithm takes the cur-
rent labelling xp and a move t and returns the new labelling
x induced by the move.

In an αβ-swap move every random variable xi whose
current label is α or β can transition to a new label of α or β.
One iteration of the algorithm involves making moves for all
pairs (α, β) in L2 successively. The transformation function
Tαβ(xi , ti ) for an αβ-swap transforms the label of a random
variable xi as:

Tαβ(xi , ti ) =
{
α if xi ∈ {α, β} and ti = 0,
β if xi ∈ {α, β} and ti = 1.

(37)

Consider a swap move over the labels α and β, starting
from an initial label set L(x). We assume that either α or β
is present in the image. Then, after a swap move, the labels
present must be an element of S which we define as:

S = {L(x) ∪ {α} \ {β}, L(x) ∪ {β} \ {α}, L(x) ∪ {α, β}} .
(38)

Let Vαβ be the set of variables currently taking label α or β.
The move energy for C(L(x)) is:

E(t)=
⎧
⎨

⎩

Cα = C(L(x) ∪ {α} \ {β}) if ∀i ∈ Vαβ, ti = 0,
Cβ = C(L(x) ∪ {β} \ {α}) if ∀i ∈ Vαβ, ti = 1,
Cαβ = C(L(x) ∪ {α, β}) otherwise.

(39)

Note that, if C(L) is monotonically increasing with respect
to L then, by definition, Cα ≤ Cαβ and Cβ ≤ Cαβ.

Let t′ = arg mint E ′(t) be the optimal move for the stan-
dard pairwise move energy E ′(t) without the co-occurrence
term. Let us first consider the case where this solution con-
tains both 0 s and 1 s. Because the co-occurrence term is the
same for all mixed solutions, this move is better than any
other mixed solution also including the co-occurrence term.
Thus, the optimal move with co-occurrence term is either
homogenous or the same as the optimal move if we did not
have a co-occurrence term, and can be found as:

t∗ = arg min
t
(E ′(t′)+ Cαβ, E ′(0)+ Cα, E ′(1)+ Cβ), (40)

where 0 and 1 are uniform vectors composed entirely of
0 or 1 respectively. In case the optimal solution without
co-occurrence is homogenous, due to the parsimony
condition

∀t : E(t′) ≤ E(t) �⇒ E ′(t′)+ Cα ≤ E ′(t)+ Cαβ (41)

and thus the optimal move is the minimum of the homoge-
nous moves. Note, that this approach can be used only if the
parsimony condition is satisfied.

Even though there exist an efficient solution (as described
above) similar to the one in (Delong et al. 2010) to find
the optimal αβ-swap move for energies with co-occurrence,
for illustration we also derive its graph construction directly
solvable using graph cuts. It will give us an intuition about
the construction of the α-expansion move.

Lemma 1 For a function C(L), monotonically increasing
with respect to L , the move energy can be represented as
a binary submodular pairwise cost with two auxiliary vari-
ables zα and zβ as:

E(t) = Cα + Cβ − Cαβ + min
zα,zβ

[
(Cαβ − Cα)zβ

+ (Cαβ−Cβ)(1−zα)+
∑

i∈Vαβ
(Cα,β−Cα)ti (1−zβ)

+
∑

i∈Vαβ
(Cαβ − Cβ)(1 − ti )zα)

]
. (42)

Lemma 1 Proof See appendix. This binary function is pair-
wise submodular and thus can be solved efficiently using
graph cuts.

3.4 α-Expansion Moves

In an α-expansion move every random variable may either
retain its current label or transition to label α. One itera-
tion of the algorithm involves making moves for all α in L
successively. The transformation function Tα(xi , ti ) for an
α-expansion move transforms the label of a random variable
xi as:

Tα(xi , ti ) =
{
α if ti = 0
xi if ti = 1.

(43)

To derive a graph-construction that approximates the true
cost of an α-expansion move we use the decomposition (23),
which will allow us to decompose the move energy into the
part depending only on the presence of the label α and the
part depending only on the presence of all other labels after
the move. We do not assume all costs kB are non-negative.

As a simplifying assumption, let us first assume there is
no variable currently taking label α. Let A be set of labels
currently present in the image and δl(t) be set to 1 if label l
is present in the image after the move and 0 otherwise. Then:

δα(t) =
{

1 if ∃i ∈ V s.t. ti = 0,
0 otherwise.

(44)

∀l ∈ A, δl(t) =
{

1 if ∃i ∈ Vl s.t.ti = 1,
0 otherwise.

(45)
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The α-expansion move energy of C(L(x)) can be written as:

E(t) = Enew(t)− Eold

=
∑

B⊆A∪{α}
kB

∏

l∈B

δl(t)− C(A). (46)

Ignoring the constant term and decomposing the sum into
parts with and without terms dependent on α we have:

E(t) =
∑

B⊆A

kB

∏

l∈B

δl(t)+
∑

B⊆A

kB∪{α}δα(t)
∏

l∈B

δl(t). (47)

As either α or all subsets B ⊆ A are present after any move,
the following statement holds:

δα(t)
∏

l∈B

δl(t) = δα(t)+
∏

l∈B

δl(t)− 1. (48)

This equality can be checked for all three cases, where either
δα(t) or

∏
l∈B δl(t) or both are equal to 1. Replacing the

term δα(t)
∏

l∈B δl(t) and disregarding new constant terms,
equation (46) becomes:

E(t) =
∑

B⊆A

kB∪{α}δα(t)+
∑

B⊆A

(kB + kB∪{α})
∏

l∈B

δl(t)

= k′
αδα(t)+

∑

B⊆A

k′
B

∏

l∈B

δl(t), (49)

where k′
α = ∑

B⊆A kB∪{α} = C(B ∪ {α})− C(B) and k′
B =

kB + kB∪{α}.
E(t) is, in general, a higher-order non-submodular energy,

and intractable. However, when proposing moves we can use
the procedure described in (Narasimhan and Bilmes 2005;
Rother et al. 2005; Kumar et al. 2011) and over-estimate the
higher order components K (A, t) = ∑

B⊆A k′
B

∏
l∈B δl(t)

of the cost of moving from the current solution. Let k′(0)
B = k′

B
and K (0)(A, t) = K (A, t). For any l ′ ∈ A:

K (i)(A, t) =
∑

B⊆A

k′(i)
B

∏

l∈B

δl(t)

=
∑

B⊆A\{l ′}
(k′(i)

B + k′(i)
B∪{l ′}δl ′(t))

∏

l∈B

δl(t)

=
∑

B⊆A\{l ′}
(k′(i)

B + k′(i)
B∪{l ′})

∏

l∈B

δl(t)

−(1 − δl ′(t))
∑

B⊆A\{l ′}
k′(i)

B∪{l ′}
∏

l∈B

δl(t)

≤
∑

B⊆A\{l ′}
(k′(i)

B + k′(i)
B∪{l ′})

∏

l∈B

δl(t)

−(1 − δl ′(t)) min
S⊆A\{l ′}

∑

B⊆S

k′(i)
B∪{l ′}

= K (i+1)(A \ {l ′}, t)− k′′
l ′ + k′′

l ′δl ′(t), (50)

where k′′
l ′ = minS⊆A\{l ′}

∑
B⊆S k′(i)

B∪{l ′} and k′(i+1)
B = k′(i)

B +
k′(i)

B∪{l ′}. Coefficients k′′
l ′ are always non-negative for all C(L)

that are monotonically increasing with respect to L . By

applying this decomposition iteratively for any ordering of
labels l ′ ∈ A we obtain:

K (A, t) ≤ K +
∑

l∈A

k′′
l δl(t). (51)

The constant term K can be ignored, as it does not affect
the location of the optimal move. Heuristically, we pick l ′ in
each iteration as:

l ′ = arg min
l∈A

min
S⊆A\{l}

∑

B⊆S

k′(i)
B∪{l}. (52)

The over-estimation is tight for current solution correspond-
ing to t = 1.

In many practical cases the co-occurrence costs is defined
as the sum of positive costs of subsets of L , for example all
pairs of labels, as:

C(L) =
∑

B⊆L

kB, s.t. kB ≥ 0. (53)

In the case that k′
B stay non-negative for all B ∈ L , the

over-estimation can be done as:

EB(t) = k′
B

∏

l∈B

δl(t) ≤ k′
B

∑

l∈B

ρB
l δl(t), (54)

where ρB
l ≥ 0 and

∑
l∈B ρ

B
l = 1. In practice, to obtain a

symmetrical over-estimation of energy, we set ρB
l = 1/|B|.

The moves for the first order occurrence costs (Delong et
al. 2010) are exact. For second order co-occurrence between
labels currently present in the image, the moves removing
one of the labels of each pair are over-estimated by a fac-
tor of 2. This gives us an intuition why our approximation
is appropriate and, in practice, the solution often contains
the same label set as in the globally optimal solution (see
Sect. 4).

Lemma 2 For all C(L) monotonically increasing with
respect to L the over-estimated move energy can be rep-
resented as a binary pairwise graph with |A| auxiliary vari-
ables z as:

E ′(t) = min
z

[
k′
α(1 − zα)+

∑

l∈A

k′′
l zl +

∑

i∈V
k′
α(1 − ti )zα

+
∑

l∈A

∑

i∈Vl

k′′
l ti (1 − zl)

]
, (55)

where Vl is the set of pixels currently taking label l.

Proof See appendix. This binary function is pairwise sub-
modular and thus can be solved efficiently using graph
cuts. ��

For co-occurrence potentials monotonically increasing
with respect to L(x) the problem can be modelled using one
binary variable zl per class indicating the presence of pix-
els of that class in the labelling, infinite edges for xi = l
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and zl = 0 and hyper-graph over all zl modelling C(L(x)).
The derived α-expansion construction can be seen as a graph
taking into account costs over all auxiliary variables zl for
each move and over-estimating the hyper-graph energy using
unary potentials. Consequentially, the only effect our approx-
imation can have on the final labelling is to over estimate the
number of classes present in an image. In practice the solu-
tions found by expansion were generally local optima of the
exact swap moves.

Similarly toαβ-swap moves there exists a slightly simpler
solution Delong et al. (2010) for the optimisation of binary
over-estimated move energy (46). The problem can be solved
without the part of move energy k′

αδα(t) corresponding to the
cost taken, if label α is introduced to an image after the move,
and then the energy after the move is compared the the origi-
nal energy and the move accepted if the energy has decreased.
The proof of equivalence of this approach is similar to the
one in Delong et al. (2010).

4 Experiments

We performed a controlled test evaluating the performance of
CRF models both with and without co-occurrence potentials.
As a base line we used the segment-based CRF and the asso-
ciative hierarchical random field (AHRF) model proposed in
(Ladicky et al. 2009) and the inference method (Russell et al.
2010), which currently offers state of the art performance on
the MSRC data set (Shotton et al. 2006). On the VOC data
set, the baseline also makes use of the detector potentials of
(Ladicky et al. 2010) Figs. 2 and 3.

The costs C(L) for the MSRC data set were created from
the training set as follows: let M be the number of images,
x(m) the ground truth labelling of an image m and

z(m)l = δ(l ∈ L(x(m))) (56)

an indicator function for label l appearing in an image m.
The associated cost was trained as:

C(L) = −w log
1

M

(
1 +

M∑

m=1

∏

l∈L

z(m)l

)
, (57)

where w is the weight of the co-occurrence potential. The
form guarantees, that C(L) is monotonically increasing with
respect to L . To avoid over-fitting we approximated the
potential C(L) as a second order function:

C ′(L) =
∑

l∈L

cl +
∑

k,l∈L ,k<l

ckl , (58)

where cl and clk minimise the mean-squared error between
C(L) and C ′(L) up to the degree |L| ≤ 3, such that ∀l, k :
cl ≥ 0, cl + clk ≥ 0.

On the MSRC data set we observed a 3 % overall and
4 % average per class increase in the recall and 6 % in the
intersection versus union measure with the of the segment-
based CRF and a 1 % overall, 2 % average per class and 2 %
in the intersection versus union measure with the AHRF.

On the VOC data set, due to the fact that the data set is
unbalanced (all images contain the class background, and
22 % contain the class person, while only 2.8 % contain the
class train) and a different performance criterium, the cost
C(L) was learnt as a sum of costs for each pair of classes, if
they appeared together in the solution as:

Fig. 2 Graph construction for
αβ-swap and α-expansion
move. In αβ-swap variable xi
will take the label α if
corresponding ti are tied to the
sink after the st-mincut and β
otherwise. In α-expansion
variable xi changes the label to
α if it is tied to the sink after the
st-mincut and remains the same
otherwise. Colours represent the
label of the variables before the
move
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Fig. 3 Best viewed in colour. a Typical images taken from the VOC-
2009 data set (Shotton et al. 2006). b A labelling based upon a pixel
based random field model (Ladicky et al. 2009) that does not take
into account co-occurrence. c A labelling of the same model using co-
occurrence statistics. Note that the co-occurrence potentials perform in

a similar way across different data sets, suppressing the smaller classes
(see also Fig. 1) if they appear together in an uncommon combination
with other classes such as a car with a monitor, a train with a chair or
a dog with a bird. This results in a qualitative rather than quantitative
difference

C(L) = −w
∑

k<l∈L
ckl , (59)

where ckl were learnt as:

ckl = min(− log(P(k|l) ∨ P(l|k)), T )

= min(− log(P(k|l)+ P(l|k)− P(k|l)P(l|k)), T ), (60)

P(k|l) = P({k,l})
P({l}) , P(L) =

∑M
m=1

∏
l∈L z(m)l

M and T is the thresh-
old for the maximum cost.

This heuristically motivated cost ensures that if one class
only occurs when another is present, as for example, cow
only occurs when grass is present in the image, then the
second order co-occurence cost between these classes will
be 0. Furthermore it allows simpler LP (26) and pairwise
(35) formulations. The comparison on the VOC2009 data
set was performed on the validation set, as the test set is
not published and the number of permitted submissions is
limited. Performance improved by 3.5 % in the intersection
versus union measure used in the challenge. We also report
the performance on the test set, which is comparable with
current state-of-the-art methods. Results for both data sets
are given in Tables 2 and 3.

By adding a co-occurrence cost to the CRF we observe
constant improvement in pixel classification for almost all
classes in all measures. In accordance with desiderata (iv), the
co-occurrence potentials tend to suppress uncommon com-
bination of classes and produce more coherent images in the

labels space. This results in a qualitative rather than quantita-
tive difference. Although the unary potentials already capture
textural context (Shotton et al. 2006), the incorporation of
co-occurrence potentials leads to a significant improvement
in accuracy.

It is not computationally feasible to perform a direct com-
parison between the work (Rabinovich et al. 2007) and our
potentials, as the AHRF model is defined over individual pix-
els, and it is not possible to minimise the resulting fully con-
nected graph which would contain approximately 4 × 1010

edges. Similarly, without their scene classification potentials
it was not possible to do a like for like comparison with
(Torralba et al. 2003).

Average running time on the MSRC data set without
co-occurrence was 5.1 s in comparison to 16.1 s with
co-occurrence cost. On the VOC2009 data set the aver-
age times were 107 s and 388 s for inference without and
with co-occurrence costs. We compared the performance of
α-expansion with BP and LP relaxation using solver of
Benson and Shanno (2007) for general co-occurrence poten-
tial on the VOC images sub-sampled to 20 × 20 boxes.
All methods produced exactly the same results in terms of
energy for every image, however α-expansion took on aver-
age 43 ms, BP 0.8 s and LP relaxation 1,200 s. The solution
found was the global solution for every image, because the
LP found an integer solution. The main reason could be that
the sub-sampling simplified the problem making the unary
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potentials relatively stronger to pairwise potentials. Compari-
son on larger images was not feasible due to the large memory
consumption of LP solver. Message passing BP could have
been applied also to the images of the standard size, however
it was approximately 20 times slower and converged to the
worse solution than α-expansion in terms of energy for every
tested image.

5 Conclusion

The importance of co-occurrence statistics is well estab-
lished (Torralba et al. 2003; Rabinovich et al. 2007; Csurka
and Perronnin 2008). In this work we examined the use of
co-occurrence statistics and how they can be efficiently incor-
porated into a global energy or probabilistic model such as a
conditional random field. We have shown how they can natu-
rally be encoded by the use of higher order cliques, without a
significant computational overhead. Whilst the performance
improvements on current data sets are slight, we believe
encoding co-occurrence will become increasingly important
in the future when, rather than attempting to classify 20
classes in an image we have to classify 20,000 (Sturgess
et al. 2012). Even with a false positive rate of 1 % this would
still give 200 false positives per image. Co-occurrence infor-
mation gives a natural way to tackle this problem.
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Appendix

Lemma 1 Proof First we show that:

Eα(t) = min
zα

[(Cαβ − Cβ)(1 − zα)

+
∑

i∈Vαβ
(Cαβ − Cβ)(1 − ti )zα]

=
{

0 if ∀i ∈ Vαβ : ti = 1,
Cαβ − Cβ otherwise.

(61)

If ∀i ∈ Vαβ : ti = 1 then
∑

i∈Vαβ (Cαβ − Cβ)(1 − ti )zα = 0
and the minimum cost cost 0 occurs when zα = 1. If ∃i ∈
Vαβ , ti = 0 the minimum cost labelling occurs when zα = 0
and the minimum cost is Cαβ − Cβ. Similarly:

Eβ(t) = min
zβ

[(Cαβ − Cα)zβ

+
∑

i∈Vαβ
(Cα,β − Cα)ti (1 − zβ)]

=
{

0 if ∀i ∈ Vαβ : ti = 0,
Cαβ − Cα otherwise.

(62)

By inspection, if ∀i ∈ Vαβ : ti = 0 then
∑

i∈Vαβ (Cα,β −
Cα)ti (1− zβ) = 0 and the minimum cost cost 0 occurs when
zβ = 0. If ∃i ∈ Vαβ, ti = 1 the minimum cost labelling
occurs when zβ = 1 and the minimum cost is Cαβ − Cα.

For all three cases (all pixels take label α, all pixels take
label β and mixed labelling) E(t) = Eα(t)+ Eβ(t)+ Cα +
Cβ −Cαβ. The construction of the αβ-swap move is similar
to the Robust P N model (Kohli et al. 2008). ��

See Figs. 2 and 3 for graph construction.

Lemma 2 Proof Similarly to the αβ-swap proof we can
show:

Eα(t) = min
zα

[
k′
α(1 − zα)+

∑

i∈V
k′
α(1 − ti )zα

]

=
{

k′
α if ∃i ∈ V s.t. ti = 0,

0 otherwise .
(63)

If ∃i ∈ Vs.t.ti = 0, then
∑

i∈V k′
α(1 − ti ) ≥ k′

α, the mini-
mum is reached when zα = 0 and the cost is k′

α.

If ∀i ∈ V : ti = 1 then k′
α(1 − ti )zα = 0, the minimum is

reached when zα = 1 and the cost becomes 0.
For all other l ∈ A:

Eb(t) = min
zl

[
k′′

l zl +
∑

i∈Vl

k′′
l ti (1 − zl)

]

=
{

k′′
l if ∃i ∈ Vl s.t. ti = 1,

0 otherwise .
(64)

If ∃i ∈ Vl s.t. ti = 1, then
∑

i∈Vl
k′′

l ti ≥ k′′
l , the minimum is

reached when zl = 1 and the cost is k′′
l .

If ∀i ∈ Vl : ti = 0 then
∑

i∈Vl
k′′

l ti (1 − zl) = 0, the
minimum is reached when zl = 1 and the cost becomes 0.

By summing up the cost Eα(t) and |A| costs El(t) we get
E ′(t) = Eα(t) + ∑

l∈A El(t). If α is already present in the
image k′

α = 0 and edges with this weight and variable zα can
be ignored. ��

See Figs. 2 and 3 for graph construction.
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