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Abstract

We introduce a new approach for amortizing in-

ference in directed graphical models by learning

heuristic approximations to stochastic inverses,

designed specifically for use as proposal distri-

butions in sequential Monte Carlo methods. We

describe a procedure for constructing and learn-

ing a structured neural network which represents

an inverse factorization of the graphical model,

resulting in a conditional density estimator that

takes as input particular values of the observed

random variables, and returns an approximation to

the distribution of the latent variables. This recog-

nition model can be learned offline, independent

from any particular dataset, prior to performing

inference. The output of these networks can be

used as automatically-learned high-quality pro-

posal distributions to accelerate sequential Monte

Carlo across a diverse range of problem settings.

1. Introduction

Recently proposed methods for Bayesian inference based

on sequential Monte Carlo (Doucet et al., 2001) have shown

themselves to provide state-of-the art results in applications

far broader than the traditional use of sequential Monte

Carlo (SMC) for filtering in state space models (Gordon

et al., 1993; Pitt and Shephard, 1999), with diverse appli-

cation to factor graphs (Naesseth et al., 2014), hierarchical

Bayesian models (Lindsten et al., 2014), procedural gen-

erative graphics (Ritchie et al., 2015), and general prob-

abilistic programs (Wood et al., 2014; Todeschini et al.,

2014). These are accompanied by complementary compu-

tational advances, including memory-efficient implementa-

tions (Jun and Bouchard-Côté, 2014), and highly-parallel

variants (Murray et al., 2014; Paige et al., 2014).

All these algorithms, however, share the need for specifying
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a series of proposal distributions, used to sample candidate

values at each stage of the algorithm. Sequential Monte

Carlo methods perform inference progressively, iteratively

targeting a sequence of intermediate distributions which cul-

minates in a final target distribution. Well-chosen proposal

distributions for transitioning from one intermediate target

distribution to the next can lead to sample-efficient infer-

ence, and are necessary for practical application of these

methods to difficult inference problems. Theoretically opti-

mal proposal distributions (Doucet et al., 2000; Cornebise

et al., 2008) are in general intractable, thus in practice im-

plementing these algorithms requires either active (human)

work to design an appropriate proposal distribution prior

to sampling, or using an online estimation procedure to

approximate the optimal proposal during inference (as in

e.g. Van Der Merwe et al. (2000) or Cornebise et al. (2014)

for state-space models). In many cases, a baseline proposal

distribution which simulates from a prior distribution can be

used, analogous to the so-called bootstrap particle filter for

inference in state-space models; however, when confronted

with tightly peaked likelihoods (i.e. highly informative ob-

servations), proposing from the prior distribution may be

arbitrarily statistically inefficient (Del Moral and Murray,

2015). Furthermore, for some choices of sequences of den-

sities there is no natural prior distribution, or even it may

not be available in closed form. All in all, the need to design

appropriate proposal distributions is a real impediment to

the automatic application of these SMC methods to new

models and problems.

This paper investigates how autoregressive neural network

models for modeling probability distributions (Bengio and

Bengio, 1999; Uria et al., 2013; Germain et al., 2015) can

be leveraged to automate the design of model-specific pro-

posal distributions for sequential Monte Carlo. We propose

a method for learning proposal distributions for a given

probabilistic generative model offline, prior to performing

inference on any particular dataset. The learned proposals

can then be reused as desired, allowing SMC inference to be

performed quickly and efficiently for the same probabilistic

model, but for new data — that is, for new settings of the

observed random variables — once we have incurred the

up-front cost of learning the proposals.
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We thus present this work as an amortized inference proce-

dure in the sense of Gershman and Goodman (2014), in that

it takes a model as its input and generates an artifact which

then can be leveraged for accelerating future inference tasks.

Such procedures have been considered for other inference

methods: learning idealized Gibbs samplers offline for mod-

els in which closed-form full conditionals are not available

(Stuhlmüller et al., 2013), using pre-trained neural networks

to inform local MCMC proposal kernels (Jampani et al.,

2015; Kulkarni et al., 2015), and learning messages for new

factors for expectation-propagation (Heess et al., 2013). In

the context of SMC, offline learning of high-quality proposal

distributions provides a similar opportunity for amortizing

runtime costs of inference, while simultaneously automating

a currently-manual process.

2. Preliminaries

A directed graphical model, or Bayesian network (Pearl

and Russell, 1998), defines a joint probability distribu-

tion and conditional independence structure via a directed

acyclic graph. For each xi in a set of random variables

x1, . . . , xN , the network structure specifies a conditional

density pi(xi|PA(xi)), where PA(xi) denotes the parent

nodes of xi. Inference tasks in Bayesian networks involve

marking certain nodes as observed random variables, and

characterizing the posterior distribution of the remaining

latent nodes. The joint distribution over N latent random

variables x and M observed random variables y is defined

as

p(x,y) ,

N∏

i=1

fi (xi|PA(xi))

M∏

j=1

gj (yj |PA(yj)) , (1)

where fi and gj refer to the probability density or mass

functions associated with the respective latent and observed

random variables xi, yj . Posterior inference in directed

graphical models entails using Bayes’ rule to estimate the

posterior distribution of the latent variables x given partic-

ular observed values y; that is, to characterize the target

density π(x) ≡ p(x|y). In most models, exact posterior

inference is intractable, and one must resort to either varia-

tional or finite-sample approximations.

2.1. Sequential Monte Carlo

Importance sampling methods approximate expectations

with respect to a (presumably intractable) distribution π(x)
by weighting samples drawn from a (presumably sim-

pler) proposal distribution q(x). In graphical models, with

π(x) ≡ p(x|y), we define an unnormalized target density

γ(x) ≡ p(x,y) such that π(x) = Z−1γ(x), where the

normalizing constant Z is unknown.

The sequential Monte Carlo algorithms we consider (Doucet

et al., 2001) for inference on an N−dimensional latent

space x1:N proceed by incrementally importance sampling

a weighted set of K particles, with interspersed resam-

pling steps to direct computation towards more promising

regions of the high-dimensional space. We break the prob-

lem of estimating the posterior distribution of x1:N into a

series of simpler lower-dimensional problems by construct-

ing an artificial sequence of target densities π1, . . . , πN

(and corresponding unnormalized densities γ1, . . . , γN ) de-

fined on increasing subsets x1:n, n = 1, . . . , N , where the

final πN ≡ π is the full target posterior of interest. At

each intermediate density, the importance sampling density

qn+1(xn+1|x1:n) only needs to adequately approximate a

low-dimensional step from x1:n to xn+1.

Procedurally, we initialize at n = 1 by sampling K values

of x1 from a proposal density q1(x1), and assigning each of

these particles xk
1 an associated importance weight

w1(x
k
1) =

γ1(x
k
1)

q1(xk
1)

, W k
1 =

w1(x
k
1)∑K

j=1 w1(x
j
1)
. (2)

For each subsequent n = 2, . . . , N , we first resample the

particles according to the normalized weights at W k
n−1, pref-

erentially duplicating high-weight particles and discarding

those with low weight. To do this we draw particle ances-

tor indices a1n−1, . . . , a
K
n−1 from a resampling distribution

r(·|W 1
n−1, . . . ,W

K
n−1) corresponding to any standard re-

sampling scheme (Douc et al., 2005). We then extend each

particle by sampling a value for xk
n from the proposal kernel

qn(x
k
n|·), and update the importance weights

wn(x
k
1:n) =

γn(x
k
1:n)

γn−1(x
ak

n−1

1:n−1)qn(x
k
n|x

ak

n−1

1:n−1)
, (3)

W k
n =

wn(x
k
1:n)∑K

j=1 wn(x
j
1:n)

. (4)

We can approximate expectations with respect to the target

density π(x1:N ) using the SMC estimator

π̂(x1:K
1:N ) =

K∑

k=1

W k
Nδ

x
k

1:N

(x1:N ), (5)

where δ(·) is a Dirac point mass.

2.2. Target densities and proposal kernels

The choice of incremental target densities is application-

specific; innovation in SMC algorithms often involves

proposing novel manners for constructing sequences of in-

termediate distributions. These incremental densities do

not necessarily need to correspond to marginal distributions

of full target. Particularly relevant recent work directed

towards improving SMC inference in the same class of mod-

els we address includes the Biips ordering and arrangement
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algorithm (Todeschini et al., 2014), the divide and conquer

approach (Lindsten et al., 2014), and heuristics for scoring

orderings in general factor graphs (Naesseth et al., 2014;

2015). All these methods provide a means for selecting a

sequence of intermediate target densities — however, given

a sequence of targets, one still must supply an appropriate

proposal density.

The ideal choice for this proposal in general is found by

proposing directly from the incremental change in densities

(Doucet et al., 2000), with

qoptn (xn|x1:n−1) =
πn(x1:n)

πn−1(x1:n−1)
∝

γn(x1:n)

γn−1(x1:n−1)
. (6)

Using this proposal, each of the unnormalized weights in

Equation (3) are independent of the sampled values of xk
n. In

practice this conditional density is nearly always intractable,

and one must resort to approximation.

Adaptive importance sampling methods aim to learn the op-

timal proposal online during the course of inference, imme-

diately prior to proposing values for the next target density.

In both in the context of population Monte Carlo (PMC)

(Cappé et al., 2008) and sequential Monte Carlo (Cornebise

et al., 2008; 2014; Gu et al., 2015), a parametric family

q(x|λ) is proposed, with λ is a free parameter, and the adap-

tive algorithms aim to minimize either the reverse Kullback-

Leibler (KL) divergence or Chi-squared distance between

the approximating family q(x|λ) and the optimal proposal

density. This can be optimized via stochastic gradient de-

scent (Gu et al., 2015), or for specific forms of q by online

Monte Carlo expectation maximization, both for population

Monte Carlo (Cappé et al., 2008) and in state-space models

(Cornebise et al., 2014). Note that this is the reverse of the

KL divergence traditionally used in variational inference

(Jordan et al., 1999), and takes the form of an expectation

with respect to the intractable target distribution.

2.3. Neural autoregressive distribution estimation

As a general model class for q(x|·), we adapt recent ad-

vances in flexible neural network density estimators, appro-

priate for both discrete and continuous high-dimensional

data. We focus particularly on the use of autoregressive neu-

ral network density estimation models (Bengio and Bengio,

1999; Larochelle and Murray, 2011; Uria et al., 2013; Ger-

main et al., 2015) which model high-dimensional distribu-

tion by learning a sequence of one-dimensional conditional

distributions; that is, learning each product term in

p(x) =

N∏

n=1

p(xn|x1, . . . , xn−1), (7)

typically with weight parameter sharing across densities.

We choose to adapt the masked autoencoder for distribution

estimation (MADE) model (Germain et al., 2015), which

fits an autoregressive model to binary data, with structure

inspired by autoencoders. In its simplest form, a single-

layer MADE model described on N−dimensional binary

data x ∈ [0, 1]N has a hidden layer h(x) and output x̂ with

h(x) = σw(b+ (W ⊙Mw)x) (8)

x̂ = σv(c+ (V ⊙Mv)h(x)), (9)

where b, c,W,V are real-valued parameters to be learned,

⊙ denotes elementwise multiplication, σw, σv are nonlin-

ear functions, and Mw,Mv are fixed binary masks. Criti-

cally, the construction of the masks is such that computing

the network output for each x̂n requires only the inputs

x1, . . . , xn−1, with the zeros in the masks dropping the con-

nections. The masks are generated by assigning each unit in

each hidden layer a number from 1, . . . , N − 1, describing

which of the dimensions x1, . . . , xn−1 it is permitted to take

as input; output units then are only permitted to take as input

hidden nodes numbered lower than their output.

With a logistic function sigmoid as σv, then x̂n can be in-

terpreted as p(xn|x1, . . . , xn−1), and to compute x̂n one

does not need supply any value as input to h(x) for the

dimensions xn, . . . , xN . That is, if one follows all connec-

tions “back” through the network from x̂n to the input x,

one would find only themselves at x1, . . . , xn−1.

3. Approach

Our approach is two-fold. First, given a Bayesian net-

work that acts as a generative model for our observed data

y given latent variables x, we construct a new Bayesian

network which acts as a generative model for our latent

x, given observed data y. This network is constructed

such that the joint distribution of the new “inverse model”,

which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), preserves

the conditional dependence structure in the original model

p(x,y) = p(x)p(y|x), but has a different factorization

(Stuhlmüller et al., 2013).

Unfortunately, unlike the original forward model, the inverse

model has conditional densities which we do not in general

know how to normalize or sample from. However, were we

to know the full conditional density of the inverse model

p̃(x|y), then we could directly draw samples of x given a

particular dataset y.

Thus second task is to learn approximations for the condi-

tionals p̃(xi|P̃A(xi)), where P̃A(xi) are parents of xi in the

inverse model. To do so we employ neural density estima-

tors and design a procedure to train these “offline”, in the

sense that no real data is required.

3.1. Defining the inverse model

We begin by constructing an inverse model p̃(x,y) which

admits the same distribution over all random variables as
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Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). New datasets {zn, tn}
N

n=1 can be input

directly into the joint density estimator ϕw to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

p(x,y), but with a different factorization. We first note

that the directed acyclic graph structure of p(x,y) imposes

a partial ordering on all random variables x and y; we

choose any single valid ordering arbitrarily, and define the

sequences x1, . . . , xN and y1, . . . , yM such that for any

xi, PA(xi) ⊆ {x1, . . . , xi−1} ∪ {yj}
M
j=1, and for any yj ,

PA(yj) ⊆ {y1, . . . , yj−1} ∪ {xi}
N
i=1.

Our goal here is to construct as simple as possible a dis-

tribution p̃(x|y) whose factorization does not introduce

any new conditional independencies not also present in

the original generative model. To consider two extremes:

a fully factorized p̃(x|y) ≡
∏N

i=1 p̃(xi|y) which assumes

all xi are conditionally independent given y may be at-

tractive for computational reasons, but fails to capture all

the structure of the posterior; whereas a fully connected

p̃(x|y) ≡
∏N

i=1 p̃(xi|x1:i−1,y) is guaranteed to capture all

dependencies, but may be unnecessarily complex.

To define the approximating distribution at each xi, we

invert the dependencies on yj , effectively running the gener-

ative model backwards. Following the heuristic algorithm

of Stuhlmüller et al. (2013), we do this by literally con-

structing the dependency graph in reverse. Ordering the

random variables yM , . . . , y1, xN , . . . , x1, we define a new

parent set P̃A(xi) for each xi in the transformed model,

with P̃A(xi) ⊆ {xi+1, . . . , xN , y1, . . . , yM}. In particular,

if MB(xi) is the Markov blanket of the latent variable xi in

the original probability model, then defining the parent sets

P̃A(xi) = MB(xi) ∩ {xi+1, . . . , xN , y1, . . . , yM}

P̃A(yj) = MB(yj) ∩ {yj+1, . . . , yM}

yields a model with the same dependency structure as

the original model p(x,y); however, now the sequence

is reversed such that the observed values are inputs (i.e.,

P̃A(yj)∩x = ∅). The sequence under the new model, which

we will refer to as p̃(x,y), factorizes naturally as p̃(x,y) =
p̃(x|y)p̃(y); particularly important to us is the factorization

of the conditional density p̃(x|y) =
∏N

i=1 p̃(xi|P̃A(xi)).

This algorithm produces inverse graph structures which de-

spite not being fully connected, are guaranteed to represent

all conditional dependencies in the original graph:

Proposition 1. Preservation of conditional dependence. Let

xA, xB , xC be any latent or observed random variables in

p(x) with graph structure G, and let x̃A, x̃B , x̃C denote the

corresponding random variables in the inverse model p̃(x)

with graph structure G̃, constructed via the algorithm above.

Then if x̃A and x̃B are conditionally independent given

x̃C in the inverse model G̃, they were also conditionally

independent in the original model G; that is,

x̃A ⊥⊥ x̃B

∣∣x̃C ⇒ xA ⊥⊥ xB

∣∣xC .

Proof. Suppose we had a conditional dependence in G

which was not preserved in G̃, i.e. with xA ⊥6⊥ xB

∣∣xC but

x̃A ⊥⊥ x̃B

∣∣x̃C . Without loss of generality assume x̃B was

added to the inverse graph prior to x̃A, i.e. xA ≺ xB in

G. Note that xA ⊥6⊥ xB

∣∣xC can occur either due to a direct

dependence between xA and xB , or, due to both xA, xB ∈
PA(xC); in either case, xB ∈ MB(xA). Then when adding

x̃B to the inverse graph G̃ we are guaranteed to have x̃B ∈
P̃A(x̃A), in which case x̃A ⊥6⊥ x̃B . �

Examples of generative models and their corresponding

inverse models are shown in Figures 1–3. Note that as the

topological sort of the nodes in the original generative model

is not unique, neither is the inverse graphical model.

3.2. Learning a family of approximating densities

Following Cappé et al. (2008), learning proposals for impor-

tance sampling on π(x) in a single-dataset setting (i.e., with

fixed y) entails proposing a parametric family q(x|λ), where

λ is a free parameter, and then choosing λ to minimize

DKL(π||qλ) =

∫
π(x) log

[
π(x)

q(x|λ)

]
dx. (10)

This KL divergence between the true posterior distribution

π(x) ≡ p(x|y) and proposal distribution q(x|λ) is also

known as the relative entropy criterion, and is a preferred

objective function in situations in which the estimation goal

construct a high-quality weighted sample representation,

rather than to minimize the variance of a particular expecta-

tion (Cornebise et al., 2008).
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Figure 2. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor ϕθn is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

In an amortized inference setting, instead of learning λ ex-

plicitly for a fixed value of y, we learn a mapping from y

to λ. More explicitly, if y ∈ Y and λ ∈ ϑ, then learning a

deterministic mapping ϕ : Y → ϑ allows performing ap-

proximate inference for p(x|y) with only the computational

complexity of evaluating the function ϕ. The tradeoff is that

the training of ϕ itself may be quite involved.

We thus generalize the adaptive importance sampling algo-

rithms by learning a family of distributions q(x|y), parame-

terized by the observed data y. Suppose that λ = ϕ(η,y),
where the function ϕ is parameterized by a set of upper-level

parameters η. We would like a choice of η which performs

well across all datasets y. We can frame this as minimizing

the expected value of Eq. (10) under p(y), suggesting an

objective function J (η) defined as

J (η) =

∫
DKL(π||qλ)p(y)dy

=

∫
p(y)

∫
p(x|y) log

[
p(x|y)

q(x|ϕ(η,y))

]
dxdy

= Ep(x,y) [− log q(x|ϕ(η,y))] + const (11)

which has a gradient

∇ηJ (η) = Ep(x,y) [−∇η log q(x|ϕ(η,y))] . (12)

Notice that these expectations in Equations (11) and (12)

are with respect to the tractable joint distribution p(x,y).
We can thus fit η by stochastic gradient descent, estimating

the expectation of the gradient ∇ηJ (η) by sampling syn-

thetic full-data training examples {x,y} from the original

model. This procedure can be performed entirely offline —

we require only to be able to sample from the joint distribu-

tion p(x,y) to generate candidate data points (effectively

providing infinite training data). In any directed graphical

model this can be achieved by ancestral sampling, where

in addition to sampling x we sample values of the as-yet

unobserved variables y. Furthermore, we do not need need

to be able to compute gradients of our model p(x,y) it-

self — we only need the gradients of our recognition model

q(x|ϕ(η,y)), allowing use of any differentiable representa-

tion for q. We choose the parametric family q(x|λ) and the

transformation ϕ such that this inner gradient in Eq. (12)

can be computed easily.

We can now use the conditional independence structure in

our inverse model p̃(x,y) to break down q(x|λ), an approx-

imation of p̃(x|y), into a product of smaller conditional

densities each approximating p̃(xi|P̃A(xi)). The full pro-

posal density q(x|ϕ(η,y)) can be decomposed as

q(x|ϕ(η,y)) =
N∏

i=1

qi(xi|ϕi(ηi, P̃A(xi))) (13)

with the gradient similarly decomposing as

∇ηi
J (η) = Ep(x,y)

[
−∇ηi

log qi(xi|ϕi(ηi, P̃A(xi)))
]
.

Each of these expectations requires only samples of the

random variables in {xi} ∪ P̃A(xi), reducing the dimension-

ality of the joint optimization problem. This factorization of

q(x|ϕ(η,y)) does not practically reduce the expressivity of

the approximating family, as all conditional dependencies

in the true posterior are preserved.

3.3. Joint conditional neural density estimation

We particularly wish to construct the inverse factorization

p̃(x|y) (and our proposal model q(·)) in such a way that we

deal naturally with the presence of head-to-head nodes, in

which one random variable may have a very large parent set.

This situation is common in machine learning models: it is

quite common to have generative models which factorize in

the joint distribution, but have complex dependencies in the

posterior; see for example the model in Figure 1.

We thus choose to treat all such situations in our inverse fac-

torization — where a sequence of variables x′ ⊆ x are fully

dependent on one another after conditioning on a shared

set of parent nodes P̃A(x′) — as a single joint conditional

density which we will approximate with an autoregressive

density model. We extend MADE (Germain et al., 2015) to

function as a conditional density estimator by allowing it to

take P̃A(x′) as additional inputs, and constructing the masks

such that these additional inputs are propagated through all

hidden layers to all outputs, even for the very first dimension.

As in MADE this can be achieved by labeling the hidden

units with integers denoting which input dimensions they

are allowed to accept. In contrast to the original MADE, we

label hidden units with numbers from 0, . . . , N − 1, where
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Figure 3. Factorial HMM. (left) The generative model consists D independent Markov models, with observed data yt depending on

the current state of each latent HMM. (middle) An inverse model obtained by reversing the order of the generative model at each t.

Conditioned on the previous latent states at t− 1 and the next observation yt, all latent states at each t are dependent on one another and

must be modeled jointly. (right) The repeated structure at each t = 1, 2, . . . means that the same learned conditional density network can

be reused at every t.

hidden units labeled 0 to take as input only the dimensions

in P̃A(x′). For single-dimensional data, where N = 1, all

hidden units are labeled 0 and all feed forward into the single

output x1, recovering a standard mixture density network

(Bishop, 1994).

To model non-binary data, MADE can be extended by

altering the output layer network to emit parameters of

any univariate probability density function. We take the

same approach by which RNADE (Uria et al., 2013) modi-

fies the binary autoregressive distribution estimator NADE

(Larochelle and Murray, 2011) to handle real-valued data,

with an output layer that parameterizes a univariate mixture

of D Gaussians for each dimension xi conditioned on its

parents. The probability of any particular xi is given by

q(xi|ϕi(ηi, P̃A(xi))) =

D∑

d=1

αi,dN (xi|µi,d, σ
2
i,d)

where N (·) is the Gaussian probability density. This re-

quires an output layer with 3 × D dimensions, to predict

D each of means µi,d, standard deviations σi,d, weights

αi,d; to enforce positivity of standard deviations we apply a

softplus function to the raw network outputs, and a softmax

function to ensure αi,· is a probability vector.

3.4. Training the neural network

Contrary to many standard settings in which one is limited

by the amount of data present, we are armed with a sam-

pler p(x,y) which allows us to generate effectively infinite

training data. This could be used to sample a “giant” syn-

thetic dataset, which we then use for mini-batch training via

gradient descent; however, then we must decide how large a

dataset is required. Alternatively, we could sample a brand

new set of training examples for every mini-batch, never

re-using previous samples.

In testing we found that a hybrid training procedure, which

samples new synthetic datasets based on performance on

a held-out set of synthetic validation data, appeared more

efficient than resampling a new synthetic dataset for each

new gradient update. We perform mini-batch gradient up-

dates on η using synthetic training data, while evaluating on

the validation set. If the validation error increases, or after

a set maximum number of steps, we draw new sets of both

synthetic training and validation data from p(x,y).

In all experiments we use Adam (Kingma and Ba, 2015)

with the suggested default parameters to update learning

rates online, and use rectified linear activation functions.

4. Examples

4.1. Inverting a single factor

To illustrate the basic method for inverting factors, we con-

sider a non-conjugate polynomial regression model, with

global-only latent variables. The graphical model, its inver-

sion, and the neural network structure are shown in Figure 1.

Here we place a Laplace prior on the regression weights,

and have Student-t likelihoods, giving us

wd ∼ Laplace(0, 101−d) for d = 0, 1, 2;

tn ∼ tν(w0 + w1zn + w2z
2
n, ǫ

2) for n = 1, . . . , N

for fixed ν = 4, ǫ = 1, and zn ∈ (−10, 10) uniformly. The

goal is to estimate the posterior distribution of weights for

the constant, linear, and quadratic terms, given any possible

collected dataset {zn, tn}
N
n=1. In the notation of the pre-

ceding sections, we have latent variables x ≡ {w0, w1, w2}
and observed variables y ≡ {zn, tn}

N
n=1.

Note particularly that although the original graphical model

which expressed p(y|x)p(x) factorizes into products over

yn which are conditionally independent given x, in the

inverse model p̃(x|y) due to the explaining-away phe-

nomenon all latent variables depend on all others: there

are no latent variables which can be d-separated from the

observed y, and all latent variables share y as parents.

This means we fit as proposal only a single joint density

q(w0:2|z1:N , t1:N ). Examples of representative output from

this network are shown in Figure 4. The trained network

used here 200 hidden units in each of two hidden layers, and

a mixture of 3 Gaussians as each output.
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Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked

as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but

also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of

burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel

model where exact inference is intractable, a Poisson model

for estimating failure rates of power plant pumps (George

et al., 1993). Given N power plant pumps, each having

operated for tn thousands of hours, we see xn failures, fol-

lowing

α ∼ Exponential(1.0), β ∼ Gamma(0.1, 1.0),

θn ∼ Gamma(α, β), yn ∼ Poisson(θntn).

The graphical model, an inverse factorization, and the neural

network structure are shown in Figure 2. To generating syn-

thetic training data, tn are sampled iid from an exponential

distribution with mean 50.

The repeated structure in the inverse factorization of this

model allows us to learn a single inverse factor to represent

the distribution p̃(θn|tn, yn) across all n. This yields a far

simpler learning problem than were we forced to fit all of

p̃(θ1:N |t1:N , y1:N ) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-

sten et al., 2014) which works particularly efficiently on this

model. Each of the N replicated structures are sampled

in parallel with independent particle sets, weighted locally,

and resampled; once all θn are sampled, we end by sam-

pling α and β jointly, which need both be included in order

to evaluate the final terms in the joint target density. We

stress that there is no obvious baseline proposal density to

use for a divide-and-conquer SMC algorithm, as neither the

marginal prior nor posterior distributions over θn are avail-

able in closed form. Any usage of this algorithm requires

manual specification of some proposal q(θn).

We test our proposals on the actual power pump failure data

analyzed in George et al. (1993). The relative convergence

speeds of marginal likelihood estimators from importance

sampling from prior and neural network proposals, and

SMC with neural network proposals, are shown in Figure 5.

To capture the wide tails of the broad gamma distributions,

we use a mixture of 10 Gaussians here at each output node,

and 500 hidden units in each of two hidden layers.
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Figure 5. Convergence of marginal likelihood estimate as a func-

tion of number of particles, for likelihood-weighted importance

sampling, neural network importance sampling, and a divide-and-

conquer sequential Monte Carlo algorithm with neural network

proposals. The SMC algorithm can achieve reasonable estimates

of the normalizing constant with as few as 5 samples. Plot shows

mean of 10 runs; error bars show two standard deviations.

4.3. Factorial hidden Markov model

Proposals can also be learned to approximate the optimal fil-

tering distribution in models for sequential data; we demon-

strate here on a factorial hidden Markov model (Ghahramani

and Jordan, 1997), where each time step has a combinatorial

latent space. The additive model we consider is inspired by

the model studied in Kolter and Jaakkola (2012) for disag-

gregation of household energy usage; effective inference in

this model is a subject of continued research. Some number

of devices D are either in an active state, in which case each

device i consumes µi units of energy, or it is off, in which

case it consumes no energy. At each time step we receive a

noisy observation of the total amount of energy consumed,

summed across all devices. This model, whose graphical

model structure is shown in Figure 3, can be represented as

xi
t|x

i
t−1 ∼ Bernoulli(θi[xi

t−1])

yt|x
1
t , . . . , x

D
t ∼ N

(∑D
i=1 µ

ixi
t, σ

2
)
,

where θi represents the prior probability of devices switch-

ing on or off at each time increment. We design a syn-

thetic example with D = 20, meaning each time step has

220 ≈ 100, 000 possible discrete states; the parameters µd

are spread out from 30 to 500, with σ = 10. Each individual

device has an initial probability 0.1 of being activated at

t = 1, switching state at subsequent t with probability 0.05.

As different combinations of devices can yield identical to-

tal energy usage it is impossible to disambiguate between

different combinations of active devices from a single ob-

servation, meaning any successful inference algorithm must

attempt to mix across many disconnected modes over time

to preserve the multiple possible explanations. Synthetic

data and example output of inference is shown in the supple-

mental material. The effect of the learned proposals on the

overall number of surviving particles is shown in Figure 6.

Our proposal model uses D Bernoulli outputs in a 4-layer

network, with 300 units per hidden layer; it takes as input

Figure 6. Learned proposals reduce particle degeneracy in the fac-

torial HMM. Here we show the number of unique ancestries which

survive over the course of 30 time steps, running 100 particles.

Proposing from the transition dynamics nearly immediately degen-

erates to a single possible solution; the learned proposals increase

the effective sample size at each stage and reduce the need for

resampling. Plot shows mean and standard deviation over 10 runs.

the D latent states at the previous time t − 1, as well as

the current observation yt. A separate network is used for

predicting the initial state xi
1 given only the initial input y1.

5. Discussion

We present this work primarily as a manner by which we

compile away application-time inference costs when per-

forming SMC, and automating the manual task of designing

proposal densities. However, in some situations direct sam-

pling from the model may provide a satisfactory approxi-

mation even eschewing importance weighting steps; in such

cases our approach can be viewed as a graphical-model-

regularized algorithm for designing and training neural net-

works with interpretable structural representations. Rather

than learning from data, the emulator model is chosen to ap-

proximate the specified generative model, akin to the “sleep”

cycle of the wake-sleep algorithm (Hinton et al., 1995).

In contrast to variational autoencoders (Kingma and Welling,

2014), where one simultaneously learns parameters for both

the inference network and generative model from data, we

assume a known generative model with fixed parameters

and structured, interpretable latent variables. This provides

robustness to bias arising from training data which comes

from an unrepresentative sample, and also allows us to apply

our method in situations where a sufficiently large supply of

exemplar data is unavailable. However, it does require plac-

ing trust in the generative model: in particular, it requires a

generative model which could plausibly create the data we

will later collect and condition on.

Beyond these differences, our choice of DKL(π||q), the

same minimized by EP, leads to approximations more ap-

propriate for SMC refinement than a variational Bayes ob-

jective function; see e.g. Minka (2005) for a discussion of

“zero-forcing” behavior, and e.g. Cappé et al. (2008) for

a discussion of pathological cases in learned importance

sampling distributions.
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