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Abstract. This paper presents a method inferring a model of the brain
white matter organisation from HARDI tractography results computed
for a group of subjects. This model is made up of a set of generic fiber
bundles that can be detected in most of the population. Our approach
is based on a two-level clustering strategy. The first level is a multires-
olution intra-subject clustering of the million tracts that are computed
for each brain. This analysis reduces the complexity of the data to a few
thousands fiber bundles for each subject. The second level is an inter-
subject clustering over fiber bundle centroids from all the subjects using
a pairwise distance computed after spatial normalization. The resulting
model includes the large bundles of anatomical literature and about 20
U-fiber bundles in each hemisphere.

1 Introduction

An interesting way to compare the different DW-MRI acquisition schemes, dif-
fusion models and tractography algorithms proposed in the literature lies in the
exploitation of the large sets of generated tracts to infer atlases of the fiber bun-
dles. Hence, this paper presents a method taking as input the sets of diffusion-
based tracts of a population of subjects and producing as output a list of generic
fiber bundles that can be detected in most of the population. The usual strate-
gies proposed for the reconstruction of fiber bundles follow two complementary
ideas. The first approach is based on regions of interest (ROI) used to select or
exclude tracts [1]. The second strategy is based on tract clustering using pair-
wise similarity measures [2]. This last approach is potentially less intensive in
terms of user interaction and can also embed predefined knowledge represented
by a bundle template [3]. Furthermore, when applying the clustering after spatial
normalization with a set of tracts stemming from several subjects, this strategy
can help to discover new reproducible bundles. The fiber clustering approach has
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been successfully used to map the well-known fiber bundles of deep white matter
(DWM). Until now, short fibers of superficial white matter (SWM) have been
barely considered. The cartography of fiber bundles of SWM is a complex and
unachieved task for the human brain. In a recent paper, Oishi et al. performed
a group analysis to study SWM using a voxel-based approach relying on linear
brain normalization [4]. They could identify only four U-fiber bundles because
of the blurring occuring with such a normalization. In this paper we show that
the fiber clustering approach can overcome this weakness.

We propose a two-level strategy chaining intra and inter-subject fiber cluster-
ing. The first level can be viewed as a compression procedure reducing a huge
set of fibers to a few thousand bundles. This step is developed following a mul-
tiresolution paradigm. A key point is the use of a voxel-based parcellation of
white matter, allowing the analysis of any number of fibers. This parcellation
produces small fiber subsets that can be split further using additional clustering
performed in the space of fiber extremities. The second level is an inter-subject
clustering of the resulting fiber bundles. This group analysis relies on a pair-
wise distance between bundles computed after affine spatial normalization. A
simulation is performed to prove that affine normalization is sufficient to create
consistent clusters in the bundle space.

2 Material and Method

2.1 Diffusion and Tractography Datasets

Analysis was performed for twelve subjects of the NMR public database. This
database provides high quality T1-weighted images and diffusion data acquired
with a GE Healthcare Signa 1.5Tesla Excite scanner. The diffusion data presents
a high angular resolution (HARDI) based on 200 directions and a b-value of
3000 s/mm2 (voxel size of 1.875x 1.875x 2 mm). DW-weighted data were ac-
quired using a twice refocusing spin echo technique compensating Eddy cur-
rents to the first order. Geometrical distortions linked to susceptibility artifacts
were corrected using a phase map acquisition. T1 and DW-weighted data were
automatically realigned using a rigid 3D transform.

The diffusion Orientation Distribution Function was reconstructed in each
voxel using a spherical deconvolution of fiber Orientation Distribution Function.
It is a spherical deconvolution transform (SDT) reconstructed from q-ball imag-
ing with a constrained regularization [5], using a maximum spherical harmonic
(SH) order 8 and a Laplace-Beltrami regularization factor λ = 0.006.

Tracts were reconstructed using a deterministic tractography algorithm [6]
provided by BrainVISA public software (http://brainvisa.info). Tractography
was initiated from two seeds in each voxel of the mask (voxel size of 0.94 x 0.94 x
1.2mm), in both retrograde and anterograde directions, according to the maxi-
mal direction of the underlying ODF. Tracking parameters included a maximum
curvature angle of 30◦ and a minimum and maximum fiber length of 20mm and
200mm, respectively, leading to a set of about 1.5 millions tracts per subject.
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2.2 The Two-Level Clustering Method

Intra-subject clustering. The intra-subject clustering follows a multiresolu-
tion strategy including five steps (see Fig. 1 A):
Step 1: Hierarchical decomposition: The complete tract set is segmented
into four parts, called fiber subsets : right hemisphere, left hemisphere, inter-he-
mispheric and cerebellum tracts. The following steps are applied separately to
each subset.
Step 2: Fiber segmentation based on length: The subset is split into differ-
ent fiber groups, containing fibers of similar length. While looking unsignifiant,
this second step is of key importance because it partially overcomes a big limi-
tation of the voxel-based approach: the difficulty to separate fiber bundles with
different shapes overlapping for a large part of their voxel support.
Step 3: Voxel-based clustering: Each fiber group obtained in the preceding
step is divided using a connectivity-based parcellation of white matter voxels.
A T2 fiber mask is calculated containing voxels crossed by tracts. The mask is
randomly parcellated using a geodesic k-means leading to about 12,000 parcels
per fiber group. Parcels are clustered using an average-link hierarchical cluster-
ing (HC) based on a parcel connectivity measure defined as the number of tracts
passing through the pair of parcels. The tree resulting from the hierarchical
clustering is analyzed in order to get an adaptive partition where each clus-
ter contains ideally only one putative fiber bundle. The tree analysis discards
small isolated clusters and split the large clusters until reaching sizes compatible
with the largest actual bundles. Finally, each cluster mask is used to extract
corresponding diffusion-based fiber clusters.
Step 4: Extremity-based fiber clusters subdivision: Fiber clusters are di-
vided into several thin and regular bundles, called fascicles, based on the fiber
extremities. For each cluster, the list of fiber extremities is converted into a
voxel-based density image. This image is segmented by a 3D watershed into
maxima-based regions. These regions are used to divide the extracted fiber clus-
ters into several fascicles, each one composed of the fibers whose extremities pass
through two particular regions.
Step 5: Fiber fascicle centroids clustering: This step considers all the fasci-
cles from all the fiber length groups of a subset. It consists in a second clustering,
aiming to agglomerate fiber fascicles that were over-segmented in the fiber clus-
ters subdivision step (Step 4 ) or in the length-based segmentation step (Step 2 ).
For this, a centroid tract, localized in the center of each fascicle, is computed
as a representative of the fascicle. It is determined as the tract minimizing a
distance to the rest of the fascicle fibers. The distance measure employed is a
symmetrized version of the mean closest point distance [7,2,3]. Centroids from
all the fascicles of a set are clustered using an average-link hierarchical cluster-
ing over a pairwise distance between centroids. The distance is defined as the
maximum distance between corresponding points, which is more stringent than
the mean closest point distance. This step aims only at regrouping fascicles that
have very similar shapes and positions.
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Fig. 1. A: General scheme of the intra-subject clustering: Step 1: Hierarchi-
cal decomposition, Step 2: Fiber segmentation based on length, Step 3: Voxel-based
clustering, Step 4: Extremity-based fiber clusters subdivision, Step 5: Fiber fascicles
centroids clustering. B: Example results for the intra-subject clustering. Short
and long bundles obtained for the right hemisphere fiber set of one subject.
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Inter-subject clustering. The second clustering level aims at matching the
putative bundles produced by the previous level across the population of sub-
jects. This step is very similar to the clustering performed in section 2.2 (Step 5 )
but this time the calculation considers the bundles obtained from all the sub-
jects in the same fiber subset. A centroid is first calculated for each bundle using
the mean of the two mean closest point distances [7,2,3]. Once all the centroids
are computed, they are transformed to the Talairach space (TS) using an affine
transformation estimated from the T1-weighted image. Then, a bundle centroid
affinity graph is computed using the maximum distance between corresponding
points, normalized by the bundle length. This restringent measure puts a focus
on matching bundles with similar shapes and positions in TS. The affinity graph
is used to compute an average-link HC. The resulting tree is analyzed in order to
extract only very tight clusters, where the distance between all the fibers within
a cluster is inferior to a maximum distance (tMdcp). The resulting clusters are
discarded if they do not contain more than half of the subjects. A final proce-
dure aims at relaxing the constraints in order to recover some instances of the
generic bundles that were missed during the stringent clustering analysis. The
goal is to be less demanding on the match between centroids, which is specially
important for the subjects that present a deficient normalization in Talairach
space. For each non attributed centroid, we compute the distance to each of
the centroids of the tight clusters. When the distance to the nearest neighbord
is below a threshold, the non attributed centroid is added to the final generic
bundle representation. Most of the added centroids belong to long fiber bundles.
Inter-subject clustering validation: In order to study the behavior of the
inter-subject clustering over a population of subjects aligned with affine registra-
tion, we created a simulated dataset of fiber bundles centroids. First, one subject
of the NMR database was selected to generate a set of 200 simulated bundle
centroids. These bundle centroids were fibers selected from the right hemisphere
of this subject with a minimum pairwise distance across the set. The distance
used was the maximum distance between corresponding points. The minimum
distance was set to 12mm (see Fig. 2 A1). The obtained bundle centroids set
was transformed to the space of each one of the eleven remaining subjects of the
database, using a non-rigid transform, calculated between T1 images using Med-
INRIA (http://www-sop.inria.fr/asclepios/software/MedINRIA). Hence, we ob-
tained a set of ground truth clusters, each one containing a centroid in each
subject (see Fig. 2 A2). In addition, 500 fibers from each subject were selected
to simulate noise. These fibers were pairwise separated by a minimum distance
equal to 11mm (see. Fig. 2 A4). For each subject, we got a fiber dataset of 700
fibers (200 centroids and 500 added noise fibers), leading to a total number of
8400 fibers for the twelve subjects. We applied the inter-subject clustering to the
fibers dataset, with the maximum distance within clusters (tMdcp) varying from
5 to 25mm. Resulting clusters where analyzed and compared with the ground
truth. First, only clusters containing centroids from a minimum of seven differ-
ent subjects were selected. Then, a cluster was counted as recovered only if all
its centroids belonged to the same simulated cluster, otherwise, it was counted
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Fig. 2. A: Inter-subject clustering validation: A1: the orignal 200 fibers selected
as simulated centroids. A2: simulated bundles for the 12 subjects in talairach space.
A3: a selection of bundles from A2. A4: noise fibers set (500 fibers) of one subject. A5:
inter-subject clustering simulation results presenting recovered clusters (color bars),
missed clusters (red line) and clusters with added noise (black line). B: Inter-subject
clustering results for twelve subjects: B1: centroids of one subject. B2: exam-
ples of tight clusters and the added centroids by the nearest neighbor procedure (in
black). B3-B9: long generic bundles centroids (manually labelled): cingulum (CG),
corticospinal tract (CST), uncinate (UN), inf. longitudinal (IL), inf. fronto-occipital
(IFO), arcuate (AR), and thalamic radiations (TAL-(FR,PAR,TM,OCC)). B10-B12:
selections of generic short bundles centroids. B13-B16: generic bundles for one subject.
B15 shows all the U-fibers while B16 contains a selection of U-fibers.
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as a missed cluster. Fig. 2 A5 presents the simulation results as a function of
the distance tMdcp. From the analysis, we note, as expected, that the number of
recovered clusters (color bars) increases with tMdcp, as the number of subjects
in the clusters (indicated by different colors, from 7 to 12). For distances tMdcp

superior to 11mm, a large number of clusters was recovered, but for distances
between 11 and 15mm, most of the clusters miss some centroids. This behav-
ior is accepted by the method, which adds a cluster to the model as soon as it
includes more than half of the subjects. The red line indicates the number of
missed clusters, which is very low. These are most of the time fused with other
clusters. The black line shows the number of recovered clusters that contain also
added noise fibers. Finally, a large number of clusters made up of only noise
fibers was found but discarded by the method because none of these clusters
had fibers from more than six different subjects.

3 Results

Individual fiber bundles were extracted for twelve subjects. The results obtained
for one subject (right hemisphere) are presented in Fig. 1B. Inter-subject cluster-
ing of the left hemisphere is presented in Fig. 2B. Ten DWM generic fiber bundles
were identified in all the subjects. Some of them are split into several generic fas-
cicles: Inferior fronto-occipital fasciculus, Cortico-spinal tract, Arquate fascicu-
lus, Uncinate fasciculus, Inferior Longitudinal fasciculus, Cingulum, and Frontal,
Temporal, Parietal and Occipital Thalamic Radiations. Twenty generic U-Fiber
bundles (SWM) occuring in at least seven subjects were detected in the left
hemisphere model.

4 Discussion and Conclusion

As for any fiber tracts analysis method, our results depend strongly on the
quality of the tractography results. Our method can not detect bundles that are
not tracked in individuals. Also, spurious bundles can not be differentiated from
real bundles if they are reproducible across subjects. Besides, anomalous final
bundles can be found due to errors in the propagation mask. Since this mask
defines where fibers are tracked, bundles can be erroneously cutted or fused.
Nevertheless, independently of the tracking results, our method is a powerfull
tool to extract the main bundles that constitute the dataset.

Our method is able to analyze huge fiber datasets and infer a model of the
generic bundles present in a population. The first level, composed by an intra-
subject clustering, can be seen as a compression of information and a filter-
ing, where bundles representing the individual whole white matter structure are
identified. The second level, an inter-subject clustering, deals with a reasonable
number of bundle centroids from a population of subjects and is capable to ex-
tract generic bundles present in most of the subjects. Long known bundles were
identified, but the result of major significance is the capability to identify generic
short association bundles. Hence, our approach will scale up easily to the 1mm
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spatial resolution that can now be achieved with highly parallel imaging or very
high fields. This spatial resolution is bound to highlight a myriad of U-fiber
bundles and better delineate other bigger bundles crossing.

The general idea of hierarchical decomposition underlying our method will be
pushed further with the use of a segmentation of the deep grey matter structures
to improve the clustering of their connections with the cortex. The corresponding
tracts will be filtered out and clustered independently.

We have shown that the affine registration to standard space is sufficient to
align reasonably the deep tracts across all the subjects. Each U-fiber bundle
inferred in this paper did require a reasonable alignment of the bundles of only
half of the subjects, which happens in the most stable brain regions. However,
increasing the number of generic U-fiber bundles, will require an improvement
of the spatial normalisation used to compare bundles across subject. Further
work will lead us to improve iteratively the spatial normalization using the in-
ferred bundles as constraints in order to better align other bundles. Moreover, we
will compare our results with the strategy computing bundles after computing
an average atlas of diffusion data based on high quality diffeomorphic spatial
normalization. Deciding which strategy is the best is one of the goals of our
research.
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