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ABSTRACT

We describe a model-based method for using multilocus sequence data to infer the clonal relation-

ships of bacteria and the chromosomal position of homologous recombination events that disrupt

a clonal pattern of inheritance. The key assumption of our model is that recombination events

introduce a constant rate of substitutions to a contiguous region of sequence. The method is appli-

cable both to Multilocus Sequence Typing (MLST) data from a few loci and alignments of multiple

bacterial genomes. It can be used to decide whether a subset of isolates share common ancestry,

to estimate the age of the common ancestor and hence to address a variety of epidemiological and

ecological questions that hinge on the pattern of bacterial spread. It should also be useful in asso-

ciating particular genetic events with the changes in phenotype that they cause. We show that the

model outperforms existing methods of subdividing recombinogenic bacteria using MLST data and

provide examples from Salmonella and Bacillus. The software used in this article, ClonalFrame,

is available from http://www.stats.ox.ac.uk/~didelot.
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INTRODUCTION

Bacteria reproduce clonally but their genomes evolve by a variety of mechanisms, including point

mutation, genome rearrangement, deletion, duplication, bacteriophage lysogeny, gene degradation,

transposition, slippage mutation in DNA sequence repeats and homologous and non-homologous

recombination (Maynard Smith et al., 1993; Feil et al., 1999, 2000; Lawrence and Hendrick-

son, 2003). Recombination can occur when bacterial DNA enters the host cell via conjugation

(which requires cell to cell contact between a donor and a receiver), transformation (uptake of

naked DNA that remains from the lysis of another cell) or transduction (which involves packing of

host DNA in a phage and release in the receiver).

The variety of evolutionary mechanisms by which bacteria evolve can pose problems when

attempting to infer relationships between strains. Clonal relationships can be represented by a

genealogy, which is a tree where each leaf is a member of the sample, and each internal node is

the most recent common ancestor of the descendent strains. Each node is associated with a time

before the present when that ancestor divided. Many methods for inferring these relationships rely

on DNA sequence differences. Point mutations happen approximately randomly and independently

and thus, in the absence of other processes, would allow accurate reconstruction of clonal relation-

ships using standard phylogenetic methods (Felsenstein, 1989; Swofford, 2002; Drummond

and Rambaut, 2003). However, even in “housekeeping genes” that are required for metabolic

function, so that gross changes in sequence such as insertions or deletions are likely to be lethal

and therefore rarely observed, homologous recombination with other bacteria from the same popu-

lation can change several nucleotides at once (Milkman and Crawford, 1983). These events are

over-weighted by nucleotide-based phylogenetic methods in comparison to point mutations, which

can lead to inaccurate genealogies being inferred (Schierup and Hein, 2000).

The necessity to account for recombination as well as point mutation in genealogical inference

has led to the development of sequencing strategies such as Multilocus Sequence Typing (MLST)
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which involves sequencing a handful (typically 7) of fragments from housekeeping genes that are

each sufficiently far apart on the chromosome of the type strain that it would be unlikely for more

than one of them to be affected by a single recombination event (Maiden et al., 1998). It has

also led to the use of allele designations for each unique sequence at each locus rather than the

sequence itself. Alleles are considered to be equally distinct from each other whether they differ at

one nucleotide position or at many with the consequence that recombination and mutation events

are given similar weight in analysis. A variety of methods have been adapted, and new ones such

as BURST have been developed, to analyse genetic relationships using allele designations (Jolley

et al., 2001; Feil et al., 2004; Spratt et al., 2004).

Allele-based methods have important limitations. Alleles that differ at one or two nucleotides can

provide evidence for a higher degree of relatedness for the strains that carry them than alleles that

differ by many. For example if recombination were rare, and a strain differed from a second by one or

two nucleotide differences at 6/7 loci and by many nucleotides at the 7th then the two strains would

be classified as unrelated by allele based methods despite the clear evidence for a relatively recent

common ancestor provided by the 6 similar loci. Additionally, variation in relatedness within each

sequence fragment is ignored. A half fragment of identical sequence provides evidence of relatedness

even if the other half contains several nucleotide differences because this spatial pattern will most

likely have been caused by a homologous recombination event whose boundary occurred at the

middle of the fragment. Allele-based methods are thus more suited to exploratory data analysis

than to fine statistical inference. Ultimately, we are interested in patterns of relatedness for entire

bacterial genomes and therefore would like to dispense with arbitrary boundaries between loci and

instead infer the beginning and end points of each homologous recombination event.

Here we describe a statistical approach for inferring bacterial clonal relationships based on DNA

sequences that accounts for both point mutation and homologous recombination. In bacteria, each

recombination event affects a contiguous region of sequence, but leaves the remainder of the circular

chromosome unchanged. In the language of eukaryotic geneticists, we therefore need to model gene

conversion like events, but not crossovers. Our method estimates the extent of the clonal frame

(Milkman and Bridges, 1990) for each branch of the genealogy, which is the subset of the genome
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that has not undergone recombination. Our approach is model-based in the sense that it attempts

to infer the parameters and events in the evolutionary process that led to the observed pattern of

DNA sequence variation. However, our method does not attempt to model the origin of the DNA

imported in homologous recombination events, instead assuming that imported stretches differ from

the sequence they replace at a constant proportion of nucleotides, ν. ν is estimated from the data

but does not have a straightforward biological interpretation.

We do not attempt to model the origin of imports for two reasons. First, a full description of

the ancestral relationships of all the DNA in a sample, the ancestral recombination graph (ARG), is

extremely complex (Griffiths and Marjoram, 1996). This complexity makes it computationally

challenging to perform inference of the ARG even for modestly sized datasets in which the sample

can be assumed to come from a closed, homogenous population in which recombination takes place

at a uniform rate between all pairs of strains (McVean and Cardin, 2005). Secondly, bacteria

are often more promiscuous than eukaryotes, occasionally importing DNA from different species

(e.g. Dingle et al., 2005) or even genera (Ochman et al., 2000), making the standard assumption

of a closed, homogeneous population particularly unrealistic. Ignoring inter-population events is

problematic even if they are rare because these events can be responsible for a large number of

nucleotide differences. Our method avoids both of these problems. However, because it does not

look for potential sources of descent for each stretch of DNA, it tends to underestimate the number

of recombination events that have taken place (see Results below). Nevertheless, it is still able to

infer genealogies more accurately than existing methods, with an algorithm that is fast enough to

be applied to multiple bacterial genomes.

We perform inference in a Bayesian framework, which means that we need to specify a prior for

the genealogical process that defines the probability of any genealogy before observing the data.

We assume a standard neutral coalescent model (Kingman, 1982), which is equivalent to assuming

that the bacteria in the sample come from a constant sized population in which each bacterium is

equally likely to reproduce, irrespective of its previous history. More details about the coalescent

can be found for example in Donnelly and Tavaré (1995). A coalescent prior has the advantage of

tractability and simplicity. However it has been shown that for many bacterial populations, there are
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an excess of isolates with identical allelic profiles, in comparison to neutral expectations (Jolley

et al., 2005; Fraser et al., 2005). Since bacteria do not disperse at each replication, different

growth conditions in different physical locations could introduce local correlations in the genealogy.

However, the geographical and temporal extent of these correlations has not been established for

any bacterial species and other factors such as selection and demography can also cause deviations

from neutral expectation. These deviations might introduce biases in the genealogy produced by our

method. Fortunately new genotyping technologies will allow population variation to be surveyed

at a genomic scale. Such data has the potential to provide a great deal of information on the shape

of the genealogy, which reduces the importance of the prior and will ultimately reveal the causes of

the deviations from neutrality that have been observed.

MODEL AND METHODS

We now provide a more detailed description of our modelling assumptions and the algorithms used

to perform inference. The mathematical symbols used and their meanings are summarized in Table

1.

Model

We perform statistical inference assuming that the clonal genealogy, and the sequences on each

node have been generated by the probabilistic model described in this section and summarized in

Figure 1. Let t1, .., tN−1 specify the times before the present at which branching takes place in

the genealogy, with t1 < t2 < ... < tN−1 and let t0 = 0. The assumption of a coalescent prior

means that for all i ∈ [1..N − 1], the difference ti − ti−1 is exponentially distributed with mean

2/(N − i)(N − i + 1). The prior probability for the entire genealogy, T , is equal to the product of

probability of all N − 1 branching events,



8

P(T ) =
N−1
∏

i=1

exp

(

−

(

N + 1 − i

2

)

(ti − ti−1)

)

(1)

Each sequence is assumed to consist of b blocks of size (s1, ..., sb), with
∑

i∈[1..b] si = L. Each

site of the sequence at the topmost node of the tree is equally likely to be one of the four bases

A, C, G and T. The sequence associated with each daughter node is generated by the combined

effects of recombination and mutation. Recombination happens between each node as a Poisson

process of rate R/2, so that for a branch of length l, the total number of recombination events is

Poisson distributed with mean Rl/2. Each recombination event affects a contiguous stretch of the

sequence of the daughter node. Only a small proportion of the chromosome may be available in

the alignment and we only model events that affect this subset while assuming that events occur

uniformly on the whole chromosome. To do this, we make the simplifying assumptions that blocks

are distant enough from each other that each recombination event affects one and only one block

and that recombination events are equally likely to start at any site on the genome. The total

length of a recombination event is assumed to be geometrically distributed with mean δ. For any

given recombination event that affects a given block, the probability that it starts at any nucleotide

in the block except for the first is identical and is denoted u. The probability that the observed

beginning of the event is at the first nucleotide of a block is higher and equal to:

u′ =
∞
∑

i=0

uP(d > i) with d ∼ Geom(δ−1) (2)

= u
∞
∑

i=0

(1 − δ−1)i = uδ (3)

Summing over all possible sites, we get:

u =
1

bδ + L − b
and u′ =

δ

bδ + L − b
(4)

Within the recombined regions (which are affected by at least one recombination), the daughter
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sequence is altered with constant rate ν. Within the non-recombined regions the daughter sequence

at each nucleotide is altered with probability θl/2L on the branches of the genealogy. Altered nu-

cleotides are replaced according to the model of Jukes and Cantor (1969), where all substitutions

are equally likely.

Inference

Given the data A, which consist of the N sequences at the leaves of the genealogy, we would

like to infer the genealogy, T , the sequences at each of the internal nodes, C, the position of the

recombined regions in each of the branches of the genealogy, R, and the four model parameters

M = (ν,R, δ, θ). In formal terms, we wish to calculate the posterior of all these terms given the

data, P(T ,M,R, C|A). While it is not possible to compute this distribution exactly, it is possible

to use Markov chain Monte Carlo (MCMC) to obtain an approximate sample (Gilks et al., 1998).

See for example Pritchard et al. (2000) for another application of MCMC to population genetics

inference.

MCMC involves updating subsets of the parameters, conditional on the values of the others. In

order to do so, we make use of the following decomposition:

P(T ,M,R, C|A) ∝ P(T ,M,R, C,A) = P(A, C|R,M, T )P(R|T ,M)P(T )P(M) (5)

P(T ) is the prior probability of the genealogy, which is independent of other parameters and

given by Equation 1. P(M) is the prior probability of the model parameters which are detailed in

Appendix 3. P(R|T ,M) is the prior probability of the locations of the recombined regions for each

branch of the genealogy. The locations of these regions are independent from branch to branch and

can be calculated block-by-block using a Markovian approximation detailed in Appendix 1 where

the lengths of recombined and non-recombined regions are assumed to be exponentially distributed

with parameters α(l) and β(l) respectively. Each branch has an associated map of imported regions,

r, where ri,j = 1 when the j-th position of the i-th block of r is imported and ri,j = 0 otherwise.
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The prior distribution of r for a branch of length l is given by:

P(r) =
∏

i∈[1,b]



P(ri,1)
∏

j∈[1,si−1]

P(ri,j+1|ri,j)



 (6)

=

(

β(l)

β(l) + α(l)

)x(
α(l)

β(l) + α(l)

)b−x

(1 − β(l))L−s−zβ(l)y−x(1 − α(l))s−yα(l)z−b+x (7)

where x =
∑

i∈[1,b] ri,1 is the number of blocks starting in imported state, y is the total number of im-

ported regions of r, z is the total number of non-imported regions of r and s =
∑

i∈[1,b]

∑

j∈[1,si]
ri,j .

P(A, C|R,M, T ) is proportional to the product for each branch of T of the probability to

obtain the sequence at the bottom of the branch given the sequence at the top of the branch and

the location of imports for the branch. For a branch a of length l this is equal to:

P(a) = (1 − θl/2L)x(θl/6L)y(1 − ν)z(ν/3)L−x−y−z (8)

where x is the number of non-identical sites in non-imported regions, y the number of identical sites

in non-imported regions, z the number of non-identical sites in imported regions and L− x− y − z

the number of identical sites in imported regions.

We are now in a position to outline updates for the elements of C, R, T and M. The model

parameters M and the ages of the nodes of the genealogy are updated using the Metropolis-Hastings

algorithm as described in Appendix 3. We also designed an additional update to deal with missing

data presented in Appendix 4.

The ancestral sequences and maps of imports are updated node-by-node. We outline the update

for a non-root internal node n of the tree T . A similar update is used for the root. The location of

the recombined regions are highly correlated with the ancestral sequences of the nodes, so in order

to achieve better mixing of the Markov chain we update the location of recombination events of

the branch above and the two branches below each internal node simultaneously with the ances-

tral sequence associated to n. This is done using the forward-backward algorithm as detailed in
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Appendix 2.

The branching of the genealogy is updated by a version of the branch swapping algorithm of

Wilson and Balding (1998). A non-root internal node x is chosen uniformly as well as a node

y and we propose to reconnect x on the branch above y. y is chosen according to the procedure

adopted by Wilson and Balding (1998). The age of the newly created node n is drawn uniformly

from [max(tx, ty), tz] if y has a father z and from [ty, ty+1] if y is the root. To calculate the ancestral

sequence and location of imports for the new node n, we apply the forward-backward algorithm

described in Appendix 2 to the node n. The move is accepted according to the Metropolis-Hastings

acceptance ratio:

α = min

(

1,
P(T ′, C′,R′|A,M)

P(T , C,R|A,M)

Q(T , C,R|T ′, C′,R′,A,M)

Q(T ′, C′,R′|T , C,R,A,M)

)

(9)

where the ratio of posterior probabilities can be calculated using equation 5 and Q(T ′, C′,R′|T , C,R,A,M)

is the probability to propose the new parameters T ′, C′,R′ and is given by:

Q(T ′, C′,R′|T , C,R,A,M) = Q(HMM)Q(y|x)Q(age) (10)

where Q(y|x) is the probability to propose y given x as described by Wilson and Balding (1998);

Q(age) is the probability that the age of n was proposed which is equal to 1 if y is the root and to

1/(tz−max(tx, ty)) otherwise; and Q(HMM) is the probability that the forward-backward algorithm

returned the given ancestral sequence for n and location of imports for n and its children x and y.

In all of the examples shown, each iteration of the MCMC algorithm updates the ancestral

sequence and associated location of imported regions for each internal node once as described in

Appendix 2. Updates are also performed for the age of each node, the values θ, R, ν and δ and

the nucleotide sequence of any missing data. A single attempt is also made to change the topology

T using the branch-swapping algorithm. However, experimentation has shown that the mixing

is improved by attempting several topology updates per iteration, especially for large datasets.

Convergence and mixing properties were assessed by monitoring parameters and comparing runs

with different starting conditions (Gelman and Rubin, 1992).
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APPLICATIONS TO DATA

Detection of imports from an external origin

The simplest use of our method is to detect genetic imports affecting closely related strains, from

sources that are external to the dataset. Our model is particularly well suited to this scenario

because of the assumption that all recombination events introduce novel polymorphisms. Even if

this assumption that imported stretches contain a constant rate ν of new polymorphisms is not met

exactly, it should still be relatively easy for the model to distinguish imports from point mutations,

which will be scattered and rare.

This use is illustrated in Figure 2 for four genomes of Salmonella enterica, serovar Typhimurium

(LT2 is published in McClelland et al. 2001; DT2, DT104 and SL1344 are unfinished at the time

of writing and represent unpublished data from the Sanger Institute). An alignment of the four

genomes was built using Mauve (Darling et al., 2004): 57 sequences stretches were found that

are locally colinear in all four genomes, making up an alignment of total length L = 4, 957, 309 bp.

Each of these was input as a block in our program. Our program was run for 10,000 iterations

(including 5,000 burn-in iterations) which required 72 hours on a desktop computer. Results were

highly replicable between different runs.

Our method (Figure 2D) produces a tree with shorter branches than Neighbour-Joining (Figure

2A, with root chosen arbitrarily), UPGMA (Figure 2B) or BEAST (Figure 2C) (Drummond and

Rambaut, 2003). One reason is that our method identified 50 imported regions with an estimated

mean length δ of 800 bp, that have introduced a total of 872 substitutions. These events (Figure

2E) are in most cases visually obvious, introducing a much higher number of substitutions than

observed in the clonal frame (Figure 2F). ν, the rate of differences introduced by recombination is

estimated between 1.2% and 1.4%. This value is close to the average number of differences between

strains of Salmonella enterica based on MLST data (Falush et al., 2006) and much higher than

the maximum rate of mutations inferred in the clonal frame of any branch of the genealogy, which
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is 0.01%, implying that the method should successfully identify imports from unrelated S. enterica

as long as they are greater than 2-300 base pairs in length.

Our analysis allows us to make a detailed reconstruction of the events involved in the divergence

of these four strains. Firstly, it shows LT2 and DT104 are the most closely related, sharing 141

point mutations and 4 imports. Secondly, the genealogy is very star-like in shape, splitting into

four lineages soon after they all shared a common ancestor. This pattern is very unlikely under the

coalescent. Specifically, the ratio of the last and first coalescence times in the posterior is higher

than in a random coalescent genealogy 98% of the time. Our program inferred this pattern because

most of the polymorphic sites in the dataset are unique to one strain. This pattern is consistent with

a rapid clonal expansion of the most recent common ancestor of these Typhimurium which perhaps

coincided with adaptation to its current niche in farm animals. Thirdly, there is clear evidence for

a higher number of mutations in the DT2 lineage, with SL1344 also evolving more slowly than the

other strains, since the observed number of mutations in both lineages is significantly different from

what is expected given a constant mutation rate. The elevated rate of change is not due to relaxed

selection, since the ratio of synonomous to non-synonomous mutations does not differ significantly

between lineages (data not shown). Thus, the mutation rate has changed at least twice during a

relatively short evolutionary history.

Our algorithm was however unable to infer which pair of LT2, DT104 and the ancestor of DT2

and SL1344 is most closely related. This is indicated by a three way branching at the top of the

consensus tree shown in Figure 2D, which means that there is not a pair of strains that is most

closely related in 50% of the posterior sample of genealogies produced by the MCMC. The inability

to infer this branching pattern despite having data from the entire genome is partly due to the

star-shaped genealogy but also to the intrinsic difficulty of resolving the location and sequence of

the root of a tree.

Application to simulated data from a closed population

A more ambitious use of the method is to attempt to define the clonal relationships and imports

for a sample from an entire bacterial species. The assumptions of the model fit less well since in
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many instances recombination will reassort existing polymorphisms rather than introducing novel

ones. In addition the deeper branches in the genealogy might be difficult or impossible to resolve

accurately, especially if there has been substantial recombination so that most of the genome of

each strain has been exchanged since they shared a common ancestor. Finally, imports from closely

related strains might be difficult to distinguish from mutation, particularly for the longer branches,

so that the value of ν becomes more important in the inference.

Analysis of simulated datasets shows that despite these potential difficulties our model provides

useful results and outperforms existing methods of subdividing bacterial populations. In order to

evaluate the performance of our algorithm we simulated ancestral recombination graphs (ARGs)

using the algorithm described in Hudson (1983) but with gene conversion rather than crossing

over. The simulation parameters were chosen to approximately mimic MLST data, with 7 unlinked

fragments of 500 bp each for N = 100 isolates and an average tract length of δ = 1000 (Tables 2,

4). For each dataset, 100,000 iterations of our program were performed (including 50,000 burn-in

interations) which required about 12 hours on a desktop computer. Instead of checking convergence

for each run we assess the validity of the results by comparison with the true history.

Figure 3 compares our method and eBURST (Feil et al., 2004), an implementation of the

BURST algorithm, for one example with θ = 0.2 per site, and ρ = 5 for the entire dataset. In this

example, it is clearly not going to be possible to infer every branch of the genealogy let alone to

accurately estimate each branch length (both shown in part A) because the 100 isolates have only 27

sequence types between them. We handle the statistical uncertainty by only retaining branches that

are supported in a majority-rule consensus tree (Bryant, 1997) based on the posterior probability

for the genealogy and using the posterior mean for the length of each supported branch (B). Our

algorithm both correctly captures the overall structure of the tree, and also correctly infers the STs

of most internal nodes (shown in italics on each branch, with x denoting an ST that is not found

in extant strains). One of the few errors is that the strain with ST20 is not correctly grouped with

STs 7 and 4 on the genealogy inferred by our method. An explanation can be found by looking at

the sequence types of the ancestral nodes of the real topology: ST20 was in fact the type of the

most recent common ancestor of more than half of the sample. This type disappeared by mutation
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and recombination, but reappeared later once due to recombination. Our program has correctly

inferred that the type of the MRCA of STs 1 and 3 was 20 and therefore clustered the observed

isolate of type 20 at that point in the tree, which is the most parsimonious explanation for the

observed data but not the correct one in this case.

A UPGMA tree (C) correctly captures most of the branches structure of the tree but gets the

branching order of the deepest clades wrong (i.e. in the true tree ST3 is more closely related to

ST2 than to ST11 while the UPGMA tree indicates the opposite). Another issue is that many

branch lengths are exaggerated (e.g. ST21). Indeed the correlation coefficient between the time of

divergence between pairs of strains and their number of nucleotide differences on which UPGMA is

based is 0.91 whereas the times inferred by our method have a correlation coefficient of 0.97 with

the true values. The UPGMA tree also does not make it explicit which STs constitute monophyletic

clusters (e.g. ST11 is not since it occurs in more than one place in the true tree).

eBURST (D) correctly identifies many of the subdivisions at the tips of the tree. However, it

fails to identify any of the deep nodes in the tree for example failing to indicate that ST11 and

ST14 are related to each other and also fails to find close relatives for ST25 or ST26. Moreover,

although it sometimes assigns ancestral sequences to particular lineages these assignments are not

particularly accurate (for example ST23 is not ancestral to ST3). A similar network representation

of the consensus genealogy (without estimated branch lengths) obtained using our method is shown

in part E. This representation, which should be particularly useful for large datasets, makes it

explicit that some STs (for example ST2) probably occur in more than one location in the true

genealogy, while others probably form a single cluster (such as ST17). Indeed in this case, inspection

of the true genealogy shows that some ST2 isolates are more closely related to ST17 isolates than

they are to some of the other ST2s.

More formally, two types of errors can be identified for the branching pattern. An error of type

A happens for example for STs 1, 9 and 12, where the clustering of these three STs is correctly

identified by our method, but the details of how these three STs relate to each other was not

inferred. We call efficiency the ratio of numbers of correctly inferred clusters and clusters present

in the data (this second number being always equal to N − 1). An error of type B happens for
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example for ST 20 which is not inferred to be a close relative of 4 as it should be, causing the cluster

containing STs 4 and 7 to be wrong. We call accuracy the proportion of inferred clusters that are

correct. For this example the efficiency of our program is 18% and its accuracy is 90%. Exactly the

same method can be used to measure the performance of BURST (which we reimplemented ourself

for the purpose of comparison). We interpreted BURST output as a genealogy analogous to ours.

Specifically we assume that only STs at the tips of each complex and groups of STs that form a

single clade radiating from the ancestral ST are predicted to be monophyletic. According to these

criteria, the efficiency of BURST is 13% and its accuracy is 68%. The alternative assumption that

each ST constitutes a monophyletic lineage gives an increase in efficiency, but at the expense of a

large decrease in accuracy (data not shown).

We have performed simulations of 10 ARGs similar to the one presented above for a range

of parameter combinations (θ, ρ) which shows that our algorithm provides accurate subdivisions

and outperforms existing methods (Table 2). BURST has consistent accuracy of 80 − 91% for all

parameter combinations we explored but never infers more than 20% of the nodes correctly, even

when there are a large number of mutations on the tree, so that the data is potentially highly

informative about relationships between strains.

UPGMA trees can be bootstrapped either site-by-site or gene-by-gene. The latter takes into

account the property that recombination can import an entire gene that may look similar to the

sequence of another strain. Gene-by-gene bootstrapping performs more accurately for high recombi-

nation rates but both methods generally underperform our program in both accuracy and efficiency.

The efficiency of our method is significantly increased for all parameter combinations by doubling

the number of loci to 14, showing that additional sequencing is likely to be effective in providing

additional resolution (Table 4).

In general, the performance of our method increases with θ and decreases with ρ. For low values

of θ (simulations 1, 4, 7 and 10), the accuracy and efficiency of our program is only slightly better

than that of bootstrapped UPGMA trees. However for higher values of θ (simulations 3, 6, 9 and

12), our program outperforms bootstrapped UPGMA trees both in accuracy and efficiency by up

to 10% (simulations 3 and 9).
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Our model can also be used to estimate model parameters (Table 3). It provides accurate

and approximately unbiased estimates of θ and the size of imported chunks, δ. Estimates for the

recombination rate ρ are poor when ρ and θ are low (simulations 1 to 7 and 10) but become better

for higher values of these two parameters (simulations 9 and 12).

Application to a Bacillus MLST dataset

Finally (Figure 4), we present a reanalysis of the Bacillus dataset described in Priest et al.

(2004). We calculated a strict consensus genealogy assuming no recombination (A) and estimating

recombination parameters and location of imports from the data (B), based on 100,000 iterations

including 50,000 burn-in iterations, which required about 6 hours on a desktop computer. This strict

consensus was highly replicable between different runs of the algorithm. (D) shows the location of

imports for each of the 7 MLST loci estimated for a selection of branches as indicated in (B).

Our analysis shows that although many of the clades can be correctly identified using phyloge-

netic methods, ignoring recombination has important effects on the inference. Firstly, our analysis

indicates that a majority of the polymorphisms have been introduced by recombination, so that

estimates of the time since divergence between lineages would be substantially overestimated by

assuming a molecular clock calibrated using the mutation rate. Secondly the existence of some

clades is obscured by particular recombination events. For example, ST20 is closely related to STs

58, 10 and 43, but a single genetic import in the pycA gene in the common ancestor of the latter

three STs (corresponding to event G in part D) obscured this close relationship. Thirdly statistical

support for some subdivisions, such as many of those within the Kurstaki clade are overestimated.

Indeed, the topmost node in our genealogy, indicating the relationships between Kurstaki, Cereus

and Others, is not resolved, consistant with the general difficulty in inferring deep branches when

substantial recombination has taken place.

Our analysis confirms and refines the original conclusions of Priest et al. (2004), namely that

some of the named groupings of Bacillus do not correspond to monophyletic groups, so that the

taxonomy needs to be redefined. Our method provides the most accurate basis to date for redefining

this taxonomy. The inferred value of ν is high with a 95% credibility region of (0.031-0.042) and
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some events have even higher values (e.g. event G in part D introduces substitutions at a rate

of 0.06). Such events introduce a higher rate of polymorphism than is available in the Bacillus

population studied (around 2.5-3.0%) which means that they might come from outside Bacillus.

These imports have greatly increased average branch lengths, accounting for the size difference

between (A) and (B). Thus, standard methods of inference assuming a coalescent model with

within-population recombination would be particularly inappropriate for this dataset. The average

tract length of recombination chunks δ is surprisingly small with a 95% credibility region of (193-435

bp), however this low value may in part be due to model misspecification and the fact that the gene

fragments of the Bacillus MLST scheme are quite short (405 bp on average), making inference of

tract size more difficult.

Our method also produces estimates of the relative frequency of recombination and mutation.

However, the limited information provided by short sequence fragments and the wide variety of

estimates obtained by different methods, suggests that these estimates should also be treated with

care. Two quite different measures have been used; the ratio of probabilities that an individual

nucleotide will be altered through recombination and point mutation, r/m, and the ratio of absolute

number of events ρ/θ. For Neisseria meningitidis, three quite different methods have been used

to estimate r/m. Our method, using the dataset of Jolley et al. (2005) ran for 100,000 iterations

including 50,000 burnin, gives 5-8; a population genetic method based on the pattern of linkage

disequilibrium within sequence fragments (McVean et al., 2002) gives 6-16 and a method based on

the number of nucleotide changes within single-locus variants of robustly assigned clonal founders

gives 80 (Feil et al., 1999, 2000, 2001). The three published estimates of ρ/θ are more consistent,

each including 1. These are our estimate (0.7-1.2), the estimate of Jolley et al. (2005) (0.16-1.8)

and that of Fraser et al. (2005) based on the distribution of allele sharing within a population

(1.1). For Bacillus, 95% credibility regions for r/m and ρ/θ based on our method are 1.3-2.8 and

0.2-0.5 respectively, showing that recombination is rare compared to the level observed in Neisseria

or to many other bacteria.

eBURST finds few clades in this example, reflecting a paucity of single locus variants, implying

that the STs are too distantly related to be clustered by this type of method (Figure 4C). Our
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method finds many more subdivisions, which is analogous to the better performance of our method

for high values of θ in the simulated data. Specifically, eBURST has correctly grouped STs 25 and

8 together. Looking at the events on branches A and C on our output indicates that the difference

between these two types is a single mutation on the glpF gene, making them single locus variants

of each other. However, eBURST does not see that ST 15 is also a close relative because two

mutations, one on glpF and one on tpi separate it from ST 8. A less stringent definitions of clonal

complexes would allow these strains to be grouped together but would not help to spot relationship

where several genes have been altered through point mutations. Examples of this are branches D,

E and F: many genes have been mutated, but in a pattern consistent with clonal evolution.

DISCUSSION

We have described a general method for using multilocus sequence data to assess the clonal rela-

tionships amongst a sample of bacteria. As well as defining lineages, i.e. subsets of the sample that

uniquely share a particular common ancestor, the algorithm can be used to infer the relative age

of each lineage, the sequence of the ancestor and the recombination and mutation events that have

taken place in giving rise to each of its descendents.

Application of our method to simulated datasets shows that as well as providing additional

information that existing methods do not, our method provides more accurate subdivisions and

appropriate measures of statistical uncertainty. Further, our method is uniquely able to fully

and appropriately utilize information from long stretches of contiguous sequence, up to complete

genomes. Although our method is slower than non-model based approaches such as UPGMA trees

or the BURST algorithm, the time taken to perform each iteration is a linear function of the product

of the number N of strains and the length L of the sequences. The algorithm should be run for

longer as N increases, but the algorithm remains feasible to apply to scores of bacterial genomes

or MLST data from thousands of isolates.
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Most problems in bacterial epidemiology and systematics require accurate information about

genealogies, whether on a very short timescale (e.g. in tracking the origin of a particular disease

outbreak) or on a longer one (e.g. in identifying lineages that have acquired specific phenotypes),

ranging up to species splits. On short timescales, the dominant paradigm has been to identify either

isolates with identical STs or “clonal complexes”, i.e. groups of closely related genotypes that share

a recent common ancestor, based on sharing a particular number of alleles. Over longer timescales

analysis is typically performed using phylogenetic methods, based on a large number of concatenated

fragments (Gevers et al., 2005). Our method allows us to estimate degrees of relatedness at a

wide range of different timescales using a single unified approach. Indeed application of our method

correctly indicates that sharing the same ST can provide quite different information on when the

strains last shared a common ancestor, depending on the genotypes of the rest of the sample. ST

complexes can also differ considerably in their antiquity. Since the method provides indications of

uncertainty it also indicates when there is insufficient information to infer clonal relationships in a

given dataset.

An advantage of model-based approaches over ad-hoc methods is that they can be refined in

order to take into account a wide variety of features of the data. For example, instead of the

Jukes-Cantor model for mutation used here, it would be possible to incorporate more sophisticated

models of mutation, such as those discussed in Whelan et al. (2001). Incorporating such a para-

metric mutational model into our inferential framework would be straight-forward. In addition to

assuming a simple mutational model, our method does not take into account insertions, deletions or

rearrangements and can only handle fully aligned sequence data. In principle it might be possible

to jointly infer alignment and genealogy (Suchard and Redelings, 2006). The model we use for

the prior on the genealogies is a standard coalescent which assumes a constant population size.

This can be generalized to include population subdivisions and growth as described in (Wilson

et al., 2003). It would also be possible to allow changes in demographic parameters, mutation or

recombination rates in different parts of the genealogy (e.g. Drummond et al., 2005, 2006).

The key assumptions of the model concern recombination. The method does not attempt to

model the origin of genetic imports and instead assumes that imports introduce a uniform rate
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of novel substitutions ν. As a consequence, the model tends to underestimate the number of

recombination as opposed to mutation events and can infer incorrect subdivisions, particularly if

recombination is frequent compared to mutation. There are a number of different ways of addressing

these limitations. For example, it should be relatively easy to assign putative origins for inferred

imports based on homology with different sequences from within or external to the dataset in

question and hence to make inferences on patterns of recombination in bacteria, which can be

highly non-random (Didelot et al., 2006; Zhu et al., 2001; Falush et al., 2006).

It might also be possible to incorporate some information on origin of imports directly into the

model. For example, for each branch in the genealogy, it would be possible to distinguish between

substitutions that are novel and those that are already present in another lineage. Those that are

present are more likely to have been introduced by recombination and also provide information

about the likely origin of the event. Another interesting refinement would be to make the substitu-

tion rate in recombined regions non-constant. One way to do this would be to have a different value

of ν for each recombined region, but this implies a non-constant dimensionality of the parameter

space, which requires the use of complex inferential methods, for example reversible jump MCMC

(Green, 1995) or exact sampling (Fearnhead, 2006). Alternatives include having a different

value of ν for each branch or having several possible values of ν representing different distances of

the import source. Each of these refinements would make the inference a lot slower unless efficient

approximations can be found.

In summary, we find that the method that we described here provides accurate estimation of

bacterial genealogies and specific genetic changes both for simulated data and for real data. The

application of our general approach to the large-scale DNA sequence datasets that are becoming

available should facilitate a detailed understanding of patterns of microevolution and phenotypic

change (Falush and Bowden, 2006) in diverse bacterial genera.

The algorithms described in this article have been implemented in a computer software package,

ClonalFrame, which is available at http://www.stats.ox.ac.uk/~didelot.
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Figure 1: Illustration of the model. Two blocks (horizontal lines) evolve by point mutation (black
crosses) and recombination from an unmodelled origin (colored arrows, inducing the substitutions
marked by colored crosses). A = {a1, a2, a3, a4} corresponds to the observed sequences and C =
{c1, c2, c3} corresponds to the sequences at internal nodes.
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Figure 2: Application to whole genomes of Salmonella enterica serovar Typhimurium. (A) is
a Neighbour-Joining tree, (B) is a UPGMA tree, (C) is a majority-rule consensus tree based on
the output of BEAST (Drummond and Rambaut, 2003), (D) is a majority-rule consensus tree
based on the posterior distribution of genealogies inferred by our method. Black numbers above
each branch indicate observed/expected numbers of mutations, while red numbers below the branch
indicate the equivalent values for recombination events followed by the total number of substitutions
caused. The scale is the same for all three trees and is proportional to the expected number of
mutations in each branch in part (D) given the inferred values of θ and T . (E) highlights the
events on each branch of (D). Each row represents 300,000 bp, with recombined regions in red
and point mutations in green. (F) shows three regions containing imports, with crosses indicating
substitutions and the red line indicating probability for each nucleotide to have recombined. The
location of the beginning and end of each region is indicated in kbp.
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Symbol Description

Data
A Aligned sequence data
N Number of sequences
L Total length of the sequences
b Number of blocks in the alignment

{si}i=1..b Size of the i-th block

Model parameters
T Genealogy
R Locations of recombination events associated with the branches of the genealogy
C Ancestral sequences for the internal nodes of the genealogy
M Model parameters: (ν,R, δ, θ)
θ/2 Rate of mutation on the branches of the genealogy
R/2 Rate of recombination on the branches of the genealogy
ν Rate of nucleotide differences in the recombined stretches
δ Mean of the exponential distribution modelling the length of recombinant segments

{ti}i=1..N−1 Age of the i-th coalescent event (looking back in time)
u Probability that a specific recombination event starts at any given site within a block
u′ Probability that a specific recombination event starts at the beginning of a given block

α(l) Parameter of the exponential distribution modelling the length of imported regions
for a branch of length l

β(l) Parameter of the exponential distribution modelling the length of non-imported regions
for a branch of length l

Table 1: Table of symbols

Parameters UPGMAa UPGMAb BURST Our program
Id

θ/L ρ Effi. Accu. Effi. Accu. Effi. Accu. Effi. Accu.

1 0.2% 0 0.16 0.94 0.19 0.90 0.11 0.83 0.17 0.95
2 1.0% 0 0.42 0.91 0.44 0.91 0.20 0.84 0.42 0.94
3 5.0% 0 0.57 0.85 0.57 0.82 0.15 0.86 0.75 0.94
4 0.2% 1 0.14 1.00 0.14 1.00 0.11 0.84 0.19 0.94
5 1.0% 1 0.37 0.86 0.38 0.84 0.19 0.82 0.43 0.95
6 5.0% 1 0.65 0.85 0.67 0.87 0.15 0.85 0.73 0.93
7 0.2% 5 0.14 0.87 0.15 0.88 0.12 0.86 0.19 0.86
8 1.0% 5 0.35 0.79 0.38 0.76 0.18 0.80 0.40 0.86
9 5.0% 5 0.57 0.74 0.58 0.77 0.14 0.88 0.70 0.90
10 0.2% 10 0.21 0.67 0.17 0.85 0.14 0.80 0.19 0.81
11 1.0% 10 0.33 0.66 0.34 0.73 0.18 0.80 0.39 0.84
12 5.0% 10 0.70 0.85 0.70 0.87 0.16 0.91 0.71 0.89

Table 2: Comparison of the efficiency and accuracy of UPGMA using site-by-site (UGPMAa) and
gene-by-gene (UPGMAb) bootstrapping, BURST and our method on simulated data
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Parameters θ/L R δ−1

Id
θ/L ρ Mean Std Right Mean Std Right Mean Std Right

1 0.2% 0 0.17 0.05 10/10 0.03 0.06 0/10 0.014 0.018 9/10

2 1.0% 0 0.98 0.14 10/10 0.10 0.12 0/10 0.015 0.017 9/10

3 5.0% 0 5.01 0.57 10/10 0.06 0.08 0/10 0.021 0.022 9/10

4 0.2% 1 0.24 0.05 10/10 0.17 0.35 0/10 0.011 0.014 8/10

5 1.0% 1 0.97 0.17 10/10 1.01 0.41 1/10 0.012 0.014 9/10

6 5.0% 1 5.09 0.57 9/10 2.98 0.42 3/10 0.004 0.004 8/10

7 0.2% 5 0.22 0.06 10/10 1.27 1.16 0/10 0.012 0.015 10/10

8 1.0% 5 1.03 0.16 10/10 3.36 0.81 4/10 0.001 0.001 7/10

9 5.0% 5 5.06 0.56 10/10 4.80 0.98 6/10 0.002 0.001 7/10

10 0.2% 10 0.2 0.06 8/10 12.92 2.1 0/10 0.010 0.013 7/10

11 1.0% 10 1.03 0.16 9/10 5.38 1.3 3/10 0.001 0.001 9/10

12 5.0% 10 5.15 0.6 10/10 8.92 1.51 8/10 0.002 0.001 7/10

Table 3: Parameter estimation on simulated data

7 times 500bp 14 times 500bp
Id

θ/L ρ Efficiency Accuracy θ/L ρ Efficiency Accuracy

1 0.2% 0 0.17 0.95 0.2% 0 0.28 0.96

2 1.0% 0 0.42 0.94 1.0% 0 0.58 0.94

3 5.0% 0 0.75 0.94 5.0% 0 0.84 0.96

4 0.2% 1 0.19 0.94 0.2% 2 0.23 0.96

5 1.0% 1 0.43 0.95 1.0% 2 0.54 0.96

6 5.0% 1 0.73 0.93 5.0% 2 0.84 0.94

7 0.2% 5 0.19 0.86 0.2% 10 0.27 0.86

8 1.0% 5 0.40 0.86 1.0% 10 0.53 0.90

9 5.0% 5 0.70 0.90 5.0% 10 0.79 0.91

Table 4: Comparison of the efficiency and accuracy of our method for different sizes of simulated
data
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Appendices

Appendix 1: Markovian structure of the recombined and unrecombined

regions

Under our model, recombination may happen several times on a branch of the tree and affect the same portion

of the genome repetitively. However, because recombination erases previous polymorphism accumulated through

recombination and mutation for that branch, it is impossible to tell how many successive recombination events took

place. We will therefore describe each site of each branch as having two states: imported or unimported. The lengths

of imported and non-imported regions follow complex distributions which are respectively those of busy and idle

periods of an M/M/∞-queue with arrival rate Rlu/2 and mean service requirement δ as studied by Roijers et al.

(2006).

In order to facilitate statistical inference, we will approximate the relationship of these two states for a branch

of length l to make it Markovian with transition matrix from one nucleotide to the next equal to:

to unimported to imported

from unimported

from imported

(

1 − β(l) β(l)

α(l) 1 − α(l)

)

(11)

Where α(l)−1 and β(l)−1 are set to be equal to the means of the busy and idle periods of an M/M/∞-queue

respectively:

α(l) =
Rlu/2

eRluδ/2 − 1
and β(l) = Rlu/2 (12)

Consequently, the average length of an imported region is α(l)−1 and the average length of an unimported regions

is β(l)−1.

The imported and unimported states are not observed directly for each branch but the level of polymorphism

between the genotypes at the top and the bottom of a branch gives us some information on the state. Under our

model, the expected polymorphism rates in affected and unaffected regions are ν and θl/2L respectively. We can

therefore use a Hidden Markov Model to infer the location of affected and unaffected regions given the genotype at

the top and at the bottom of a branch of T .

Appendix 2: Update of the ancestral sequences and maps of import

We consider a non-root node n. Let a and b denote the children of n and f denote its father. Let ln, la and lb denote

the lengths of the branches above n, a and b respectively. We need to update the ancestral sequence cn and map of

imports rn of n, as well as the map of imports ra and rb of the two children of n given the rest of the parameters and
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the data. These only depend on ln, la, lb and the ancestral sequences ca, cb and cf of a, b and f , so that we need to

sample from P(cn, rn, ra, rb|ln, la, lb, cf , ca, cb,M). To do so, we first sample from P(rn, ra, rb|ln, la, lb, cf , ca, cb,M)

and then sample from P(cn|ln, la, lb, rn, ra, rb, cf , ca, cb,M).

In order to sample from P(rn, ra, rb|ln, la, lb, cf , ca, cb,M), we consider the Hidden Markov Model (HMM,

Durbin et al., 1998; Rabiner, 1989) where at each location the hidden states are the values of rn, ra and rb

and the observed messages are the values of cf , ca and cb. This HMM has 8 different possible hidden states because

rn, ra and rb take values in {0,1} (0 for a non-imported region and 1 for an imported region) and 5 messages (enumer-

ated in the emission matrix section below). Samples from P(rn, ra, rb|ln, la, lb, cf , ca, cb,M) are obtained using the

forward-backward algorithm, with the transition and emission matrices detailed below. The second step, sampling

from P(cn|ln, la, lb, rn, ra, rb, cf , ca, cb,M), is straightforward: we calculate for each position the probabilities of cn

to be A, C, G and T given ln, la, lb, rn, ra, rb, cf , ca and cb at that position and choose one of the four possibilities

with their respective probabilities.

Transition matrix

Let πi denote the hidden state at site i and xi denote the message at site i. The transition matrix T is defined by

ts1,s2 = P(πi = s2|πi−1 = s1). Here T is simply a function of the α(l) and β(l) for the branches above and below n:

each term of T is equal to the product for each j ∈ {n, a, b} of:

• β(lj) if rj stays in a non-imported region;

• 1 − β(lj) if rj steps into an imported region;

• 1 − α(lj) if rj stays in an imported region;

• α(lj) if rj steps into a non-imported region.

Emission matrix

The emission matrix E is defined by es,m = P(xi = m|πi = s). For j ∈ {n, a, b} let µj = θlj/(2L) if rj is in a

non-imported region and ν otherwise. Assuming that there are no repeat mutations on each branch, the emission

probabilities in E are equal to:

• (1 − µn)(1 − µa)(1 − µb) + µnµaµb/9 for message 1 (cf , ca and cb are equal);

• (1 − µa)(1 − µb)µn + µaµb(1 − µn)/3 + 2µnµaµb/9 for message 2 (cf is different from ca and cb);

• (1 − µn)(1 − µb)µa + µbµn(1 − µa)/3 + 2µnµaµb/9 for message 3 (ca is different from cf and cb);

• (1 − µn)(1 − µa)µb + µaµn(1 − µb)/3 + 2µnµaµb/9 for message 4 (cb is different from cf and ca);

• 2(1 − µn)µaµb/3 + 2(1 − µa)µnµb/3 + 2(1 − µb)µnµa/3 + 2µnµaµb/9 for message 5 (cf , ca and cb are all

different).



31

Forward-backward algorithm

We can use the transition and emission matrices T and E above in order to calculate the matrix F where fs,i =

P(x1..xi, πi = s). This is done by using the recursion equation:

fs,i+1 = es,xi+1

∑

k

fk,itk,s (13)

We can then draw πL from P (πL = s) = fs,L and each πi iteratively for all i from L − 1 down to 1 using:

P(πi = s|πi+1, x) = fs,its,πi+1 (14)

The complexity of this algorithm is O(M2L) where L is the length of the alignment and M the number of hidden

states (8 here). This is acceptable even for full bacterial genomes where the length of an alignment is a few million

base pairs, but as this procedure will be called repetively in the Monte Carlo Markov Chain for each internal node

of the phylogeny, a considerable proportion of the time will be spent in it and it is therefore interesting to optimise

it as much as possible.

Optimisation

One way in which this algorithm can be made much faster is to only calculate the values of fs,i for a subset of the

sites that we call the “reference sites”. We used the polymorphic sites, the sites at the beginning or end of blocks

and additional sites at intervals of 50 bp. If p(i) denotes the i-th reference site then equation 13 becomes:

fl,p(i+1) = el,xp(i+1)

∑

k

fk,p(i)q(k, l, p(i + 1) − p(i)) (15)

Where:

q(k, l, p(i + 1) − p(i)) = P(πp(i+1)|πp(i), (xp(i)+1, xp(i)+2..xp(i+1)−1) = 1) (16)

The values of Q can be calculated recursively using:

q(k, l, 1) = tk,l and q(k, l, d + 1) =
∑

m

q(k, m, d)tm,lem,1 (17)

Note that as the values of Q do not depend on p(i) and p(i+1) but only on their difference d, Q can be calculated

once and for all before applying the forward-backward algorithm for all d = [1..maxi∈[1..L−1](p(i + 1) − p(i))].

In the backward step, we use the following equation instead of 14:

(πp(i)|πp(i+1), x) = fk,p(i)q(πp(i), πp(i+1), p(i + 1) − p(i)) (18)

This determines the hidden states at all reference sites. To finish, we determine the hidden states between two

reference sites by assuming that there is no change of state when two consecutive polymorphic sites have the same
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state and assuming that there is only one transition point when they are different. For a transition between states x

and y at distance d from each other, the probability that the transition is at a distance i from the polymorphic site

of state x for all i ∈ [0..d] is given by:

P(i) ∝ ei
x,1ed−i−1

y,1 tix,xtd−i−1
y,y tx,y (19)

It is possible to verify that this approximation only has a minor effect on the behaviour of the program by

calculating the acceptance ratio of the move as if it was a Metropolis-Hastings move, i.e. the ratio:

α =
P(C′,R′|A, T ,M)

P(C,R|A, T ,M)

Q(C,R|C′,R′,A, T ,M)

Q(C′,R′|C,R,A, T ,M)
(20)

As this is a Gibbs move, the acceptance ratio should be equal to one. Without the approximation above α is

exactly equal to 1 which proves that the move is working as expected and with the approximation log(α) varies

between -1 and 1 which means that this approximation does not have much effect on the behaviour of the move.

Appendix 3: Update of the parameter models M and the ages of the

genealogy

Let M denote the set of parameters of our model, i.e. M = {θ, R, δ, ν}. Depending on how much prior information

we have on each of these parameters we might want to estimate them or not in the MCMC.

ν is the only one that can be updated using a Gibbs step: as the likelihood P(A, T , C,R|M) is a binomial

function of ν, using a conjugate Beta prior for ν leads to a Beta distributed posterior. Here we used a Beta(1,1) prior

for ν, i.e. a uniform prior on [0,1]. A non-Beta prior distribution can also be assumed if we use a Metropolis-Hastings

move as described below.

For R, δ−1 and θ we have to use a Metropolis-Hastings update. A natural uninformative prior is a uniform prior

for the log of each parameter. To make it proper, we only consider values of each parameter between 10−10 and 1.

We propose to update the value of log(θ) by adding s to it with s drawn uniformly from [−0.05; 0.05]. If the

proposed value is below 10−10 or above 1, the move is rejected. This move is symmetric and its acceptance probability

is simply equal to the minimum of one and the ratio of posterior probabilities P(T ,M,R, C|A) calculated using

Equation 5.

The ages of T are updated using Metropolis-Hastings updates. For each internal node n of the tree T , its age is

updated by adding to it a random draw from Unif([−0.05, 0.05]). If the new age is less than 0, less than the age of

one of the children of n or more than the age of the father of n, then the move is rejected. The proposal distribution

is therefore symmetric and the move is accepted with a probability equal to the minimum of one and the ratio of the

likelihood with the new age over the likelihood before the update.
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Appendix 4: Dealing with missing data

There can be several reasons why an alignment contains gaps. Firstly, deletions and insertions in one sequence create

indels which correspond to small gaps in the alignment. Secondly, when aligning genomes against each other, if

one sequence is incomplete then gaps may appear in the alignment depending on which alignment method is used.

Finally, sequences sometimes contain uncertainty about some of the nucleotides.

Here we treat gaps in the input alignment as missing data. Each missing nucleotide of each sequence in A is

therefore considered to be a parameter over which we need to mix as well as for any other parameter. Let G denote

the set of these missing nucleotides. We use a Gibbs step to update G given A and the current values of all the other

parameters. Our prior for each missing nucleotide is uniform over the four possible nucleotides.

Clearly, the value of each missing nucleotide g in sequence a depends only on the value x at that position in the

ancestral sequence of the father of a in T , the value r of the locations of recombinations on the branch above a and

the length l of the branch above a:

• If r = 0, g is equal to x with probability 1 − θl/(2L) and to something else with probability θl/(6L);

• If r = 1, g is equal to x with probability 1 − ν and to something else with probability ν/3.
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