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ABSTRACT

Motivation: The inference of biochemical networks, such as gene

regulatory networks, protein–protein interaction networks, and

metabolic pathway networks, from time-course data is one of the

main challenges in systems biology. The ultimate goal of inferred

modeling is to obtain expressions that quantitatively understand

every detail and principle of biological systems. To infer a realizable

S-system structure, most articles have applied sums of magnitude of

kinetic orders as a penalty term in the fitness evaluation. How to tune

a penalty weight to yield a realizable model structure is the main

issue for the inverse problem. No guideline has been published for

tuning a suitable penalty weight to infer a suitable model structure of

biochemical networks.

Results: We introduce an interactive inference algorithm to infer

a realizable S-system structure for biochemical networks. The

inference problem is formulated as a multiobjective optimization

problem to minimize simultaneously the concentration error, slope

error and interaction measure in order to find a suitable S-system

model structure and its corresponding model parameters. The

multiobjective optimization problem is solved by the e-constraint
method to minimize the interaction measure subject to the

expectation constraints for the concentration and slope error criteria.

The theorems serve to guarantee the minimum solution for the

e-constrained problem to achieve the minimum interaction network

for the inference problem. The approach could avoid assigning a

penalty weight for sums of magnitude of kinetic orders.

Contact: chmfsw@ccu.edu.tw

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

The rapid development of systems biology over the past few

years has been driven by the advances in experimental methods

that generate in vivo time-course data characterizing biochem-

ical network interactions. In recent years, researchers intend to

use such data for inferring a model structure and its parameters

in order to examine intracellular dynamic behaviors on a

systemic level. The ultimate goal of inferred modeling is to

obtain expressions that quantitatively understand every detail
and principle of biological systems (Chang et al., 2005). How to

select a suitable model structure and to estimate the parameter

values involved is the main issue for mathematical modeling

(Maki et al., 2001; Mendes and Kell, 1998; Tsai and Wang,

2005).
Given a model structure, parameter estimation remains the

limiting step in the modeling of biological systems. There exists,

however, no unique method for estimating model parameters

for nonlinear dynamic models. Most of the traditional non-

linear regression algorithms involving gradient methods have

the possibility of getting trapped at local optima, depending

upon the degree of system nonlinearity and the initial starting

point (Mendes and Kell, 1998). Alternating regression (Chou

et al., 2006) dissects the nonlinear inverse problem of estimating

parameter values into iterative steps of linear regression.

The branch and bound algorithm (Polisetty et al., 2006) is

employed to convert the inverse problem of generalized mass

action (GMA) or S-system into a convex optimization problem

in order to obtain a global solution. Stochastic optimization

methods, such as genetic algorithms, evolution strategy and

simulated annealing (Edwards et al., 1998; Gonzalez et al.,

2007; Moles et al., 2003), are applied for parameter estimation

in order to find a global solution. Many techniques have been

employed to alleviate numerical integration burden. Voit and

Almeida (2004) utilized a decoupling scheme to estimate the

slopes of the dynamic processes. Tsai and Wang (2005) used the

modified collocation method to approximate dynamic profiles

at sampling points. The decomposing method (Kimura et al.,

2005; Maki et al., 2002) is employed to convert the large

network inference problem into subproblems. Such approxima-

tion techniques can be easily incorporated into an optimization

method to avoid the computationally expensive numerical

integrations for fitness evaluations.
To infer a realizable S-system structure, most articles have

applied sums of magnitude of kinetic orders as a penalty term

in the fitness evaluation (Ho et al., 2005; Kikuchi et al., 2003;

Kimura et al., 2004, 2005; Noman and Iba, 2005). A weighting

factor in the penalty term needs to be carefully tuned in order to

infer a realizable S-system model structure. The weighting

factor in general depends on the problem of interest. An

improper weighting factor should make to yield a wrong

structure. According to our knowledge, no guideline has been

published for tuning a suitable penalty weight to infer model

structures of biochemical networks. In this study, we introduce

the multiple-objective optimization approach to inferring a*To whom correspondence should be addressed.
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realizable S-system structure for biochemical networks. Such an

approach can avoid assigning a weighting factor for sums of

magnitude of kinetic orders. One dry-lab and one wet-lab case

studies are made to illustrate the performance of the proposed

approach.

2 METHODS

A biochemical network system can be modeled as a set of S-system

canonical forms (Voit, 2000):

_Xi ¼ fiðX; pÞ ¼ �i
Ynþm

j¼1

X
gij
j � �i

Ynþm

j¼1

X
hij
j ; i ¼ 1; . . . ; n ð1Þ

where Xi is the ith component or pool in the network, the model

parameter vector p consists of rate constants, �j and �j, and kinetic

orders, gij and hij. fi is the net rate equation, which consists of both

influx and efflux. The m-dimensional independent variables in the

S-system equations are expressed as Xnþj, j¼ 1, . . . ,m. The parameter

estimation is to determine model parameters, rate constants and kinetic

orders, so that the dynamic profiles fit satisfactorily the measured

observation.

2.1 Estimation criteria

The canonical biochemical network inference problem is formulated as a

function optimization problem to minimize an objective function

that measures the goodness-of-fit of the model with respect to a given

experimental time-course dataset. The least-squared error criterion is a

commonly used objective function and is expressed as

J1 ¼
1

nNs

Xn

i¼1

XNs

j¼1

Xei ðtjÞ � XiðtjÞ
� �2

X2
ei max

ð2Þ

where Xei ðtjÞ denotes the measured data for the ith component at

the sampling time tj, Xi(tj) is the computed concentration for the

ith component at the sampling time tj, and Xei max is the maximum

measured concentration of the ith component. Here, Ns denotes

the number of sampled data points. The dynamic profiles Xi(tj) are

in general obtained by applying a numerical integration method to

solve the differential Equation (1). Numerical integration for

parameter estimation is time consuming and may cause a run-time

error during the computation progress. Wang (2000) has used the

modified collocation method to convert ordinary differential equations

into algebraic equations. The piecewise linear Lagrange polynomial is

the simplest shape polynomial for obtaining the approximate dynamic

profiles. The approximate equations are expressed as:

XiðtlÞ ffi Xiðtl�1Þ þ 0:5�l fi XðtlÞ; pð Þ þ fi Xðtl�1Þ; pð Þ
� �

; i ¼ 1; . . . ; n ð3Þ

Tsai and Wang (2005) have employed the algebraic equations to

generate approximate profiles for parameter estimation in order to

avoid solving the equations recursively. Such an approximation not

only reduces computation time, but also converts the coupled algebraic

equations into a set of uncoupled equations so that parallel computa-

tion can be straightforwardly applied for the parameter estimation.

The least-squared error criterion (2) is to directly employ concentra-

tion profiles of the system for evaluating fitness of the estimation. This

error criterion refers to the concentration error in this study. An

alternative error criterion is to use the slope information for evaluating

fitness of the estimation (Voit and Almeida, 2004). The slope error

criterion is therefore expressed as:

J2 ¼
1

nNs

Xn

i¼1

XNs

j¼1

_Xei ðtjÞ �
_XiðtjÞ

� �2

_X2
ei max

ð4Þ

where _Xei ðtjÞ is the approximate experimental slope for the ith

component at the sampling time tj, _XiðtjÞ is the computed slope for

the ith component at tj, and _Xei max is the maximum slope of the ith

component. Using the model slope to compute the error criterion can

avoid the numerical integration of differential equations so it alleviates

the computational burden. However, a smoothing filter, such as

artificial neural network or spline smoothing, has to be utilized to

smooth the measured data in order to generate the approximate

experimental slopes for each variable (Almeida and Voit, 2003).

Inference of regulatory interactions in a biochemical system provides

fundamental biological knowledge and significant efforts. Several

network inference algorithms estimate all of the S-system parameters

from time-course data. The estimation for a large-scale S-system often

causes bottlenecks, and fitting the model to experimentally observed

data is not simple. The decoupling approach, such as modified

collocation method (Tsai and Wang, 2005), slope approximation

(Voit and Almeida, 2004) and decomposition method (Kimura et al.,

2004), enables us to infer S-system models of genetic networks of a

larger scale. To detect a suitable model structure for a large-scale

S-system, the sum of magnitude of kinetic orders can be employed as a

criterion to pruning a skeletal structure, and is expressed as (Kikuchi

et al., 2003; Kimura et al., 2004; Voit and Almeida, 2003):

J3 ¼
Xn

i¼1

XI

j¼1

gij
�� ��þ hij

�� ��� �
ð5Þ

where I is a set of cardinal numbers indicating which kinetic orders

should be pruned. The kinetic orders gij and hij for S-systems quantify

the regulation effect of Xj on the production or degradation of Xi so

that less interaction means that the magnitude of the corresponding

kinetic order is small. When there is no interaction between Xj and Xi,

the S-system parameter values corresponding to the interaction (gij or

hij) are zero. The criterion (5) referred to as the interaction measure

(or sensitivity) therefore serves as the evaluation factor to prune smaller

interactive kinetic orders. If the decoupling approach is applied to each

subproblem, the concentration error criterion, slope error criterion and

interaction measure are evaluated for each component only.

2.2 Multiobjective optimization approach

The aim of this study is to minimize simultaneously the concentration

error, slope error and interaction measure in order to find a suitable

S-system model structure and its corresponding model parameters. The

multiobjective parameter estimation problem is therefore expressed as:

min
p2�

J1; J2; J3f g ð6Þ

where the feasible region : is a set of all admissible model parameters

p that satisfy the corresponding S-system model Equation (1).

Multiobjective optimization is a natural extension of the traditional

optimization of a single-objective function. Typically, the objectives are

incommensurable and often (partially or wholly) in conflict (Handl

et al., 2007). The incommensurability between multiobjective functions

gives rise to the distinguishing difference between multiobjective

optimization and traditional single-objective optimization. This fact

leads to the lack of a complete order for multiobjective optimization

problems. Concept of Pareto optimality or noninferiority is therefore

employed to characterize a solution to multiobjective optimization

problems. The definition of Pareto optimal solution is introduced as

follows:

DEFINITION. A vector of the model parameters, p*, is the Pareto

optimal point if and only if there does not exist p2X such that

JjðpÞ � Jjðp*Þ; j ¼ 1; 2; 3

JkðpÞ5Jkðp*Þ; for some k
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The image of the Pareto optimal point is the Pareto optimal solution.

The Pareto optimal point means that it is impossible to improve in

any objective without a simultaneous worsening in some other

objectives.

The literature on multiobjective optimization is abundant (Sakawa,

1993), and we cannot hope to mention all the techniques that have been

employed to generate a Pareto solution; however, one method is

pervasive in multiobjective optimization literature. This technique is the

weighted sum method for converting a multiobjective optimization

problem such as (6) into a single-objective function problem. Such an

approach is equivalent to introducing a penalty term to join with the

concentration error criterion or slope error criterion as discussed in the

literature (Kikuchi et al., 2003; Kimura et al., 2004; Tsai and Wang,

2005; Voit and Almeida, 2004). The penalty problem is therefore

expressed as:

min
p2�

J1 or J2ð Þ þ$
Xn

i¼1

XI

j¼1

gij
�� ��þ hij

�� ��� �
ð7Þ

The optimal estimates to the penalty problem (7) depend on the chosen

weighting factor $. The weighting factor needs to be carefully tuned in

order to infer a realizable S-system model structure. No guideline has

been published for tuning a suitable penalty weight to infer model

structures of regulatory networks. In this study, we introduce the

e-constraint method to overcome such a drawback.

The e-constraint method for characterizing the Pareto optimal

estimates is to solve the following constraint problem formulated by

taking one criterion as the objective function and letting all other

criteria be inequality constraints (Sakawa, 1993). The first goal of this

study is to find a suitable S-system structure so the constraint problem

is formulated as:

min
p2�

J3ðpÞ

JE3
ð8Þ

subject to

C1ðpÞ ¼
J1ðpÞ

JE1
� 1 � 0 ð9Þ

C2ðpÞ ¼
J2ðpÞ

JE2
� 1 � 0 ð10Þ

where JEi ; i ¼ 1; 2; 3 are the expected values for the concentration

criterion, slope criterion and interaction measure, respectively. In the

following section, we will introduce an interactive computational

algorithm to rationally provide these expected values. The relationships

between the optimal solution p* to the constraint problem and the

Pareto optimal concept of the primal multiobjective parameter

estimation problem (6) can be characterized by the following theorems.

THEOREM 1. If p*2X is a unique optimal solution of the constraint

problem for some JE1 and JE2 , then p* is the Pareto optimal solution to the

multiobjective parameter estimation problem (6).

THEOREM 2. If p*2X is a Pareto optimal solution of the multiobjective

parameter estimation problem (6), then p* is the optimal solution of the

constraint problem for some JE1 and JE2 .

Both theorems can be immediately proved from the definition of the

Pareto optimality by making use of contradictory arguments following

the similar procedures discussed in the textbook (Sakawa, 1993), and

are expressed in the Supplementary 1. This fact indicates that a Pareto

optimal estimate for the multiobjective parameter estimation problem

(6) can be obtained by solving the converted constraint problems

(8)–(10) using a global optimization method. Several constrained

optimization methods can be employed to solve the converted

constraint problem. In this study, the popular penalty-function

method is introduced to solve the constraint problem. The inference

problem is therefore expressed as:

min
p2�

J ¼
J3ðpÞ

JE3
þ ! max C1ðpÞ;C2ðpÞ

� �� �2
þ

ð11Þ

where the bracket operation in (11) is defined as CðpÞ
� �

þ
¼ maxfCðpÞ; 0g.

The second term in (11) indicates that a penalty is desired only if the

point p is not feasible. If any or both C1 and C2 are positive, the worst

value is employed to compute the penalty. If both inequality constraints

are feasible, i.e. max C1;C2f g � 0, then the penalty is zero, i.e.

CðpÞ
� �

þ
¼ 0. This situation indicates that no penalty is incurred. From

this result, it is clear that we can get arbitrarily close to the optimal

interaction measure value of the constraint problem (8)–(10) by

computing the inference problem (11) for a sufficiently large x. To

search easily a feasible point, the penalty parameter can be provided to

be greater than the inverse for the minimum of the expected values, i.e.

!41=max JE1 ; J
E
2

� �
. Theorem 3 that serves to guarantee the minimum

solution for the inference problem is also the optimal estimate for the

constraint problems (8)–(10).

THEOREM 3. If Cðp!Þ
� �

þ
¼ 0 and p! 2 � for some ! then p! is a

minimum solution to the constraint problems (8)–(10).

Theorem 3 can be immediately proved following the similar

procedures discussed in the textbook (Bazaraa and Shetty, 1979), and

are expressed in the Supplementary 1. The aim of the theorem is to

determine a feasible point p to the inference problem (11), i.e. both

concentration and slope error criteria are less than their expected

values, such that the interaction measure is minimized. Using this

theorem, we introduce an interactive algorithm as shown in Table 1 for

inferring biochemical regulatory networks. In Steps 1 and 3 of Table 1,

we used the hybrid differential evolution (HDE) to minimize each

corresponding objective function toward obtaining a global optimal

solution. HDE enables a smaller population to be used for finding a

global solution (Chiou and Wang, 1999) and has succeeded in solving

several biochemical optimization problems (Wang and Sheu, 2000).

Equations (9) and (10) are the inequality constraints for the

constraint problems (8)–(10). All parameters those satisfy both

inequality constraints make up a feasible set, i.e. � ¼

p 2 � : C1ðpÞ � 0 andC2ðpÞ � 0
� �

. The expected values, JE1 and JE2 , are

individually obtained from solving the corresponding single objective

parameter estimation problems (2) and (4). Therefore, the aim of the

constraint problem (8)–(10) is to determine the optimal parameters

within the feasible set such that the interaction measure is minimized.

In other words, given a super-structure, each single objective parameter

estimation problem is first solved in order to yield its expected value. The

multiobjective parameter estimation is then applied to find a compro-

mised solution. The solution must be less than the expected value, and

makes the state variables of the super-structure among the smallest

impact. Many constrained optimization methods can be employed to

solve the constraint problems (8)–(10). In this study, the problem is

converted to the inference problem (11) through a penalty-function

method. HDE is then applied to solve the inference problem. A large

punishment should be added to the inference problem (11) in order to

move the searching parameters into the feasible set, when the searching

parameters violate the constraints (9) and (10) in the solution process.

When the searching parameters satisfy the constraints (9) and (10), no

penalty is incurred. The inference problem can continuously minimize

the interaction measure toward obtaining a suitable structure.

3 RESULTS

In this article, we show two case studies, an artificial genetic

network and a wet-lab system, for inferring a suitable
interaction network. The detail of the computational results

and three additional case studies, a 30 gene network (Kimura
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et al., 2004), a circadian oscillations of period protein in

Drosophila (Ingalls, 2004) and an embryonic gene regulatory
network in zebrafish (Huang et al., 2006), are also provided in

the Supplementary 2 to illustrate the effectiveness of the
proposed algorithm. All computations were carried out on a

Pentium IV computer using Microsoft Windows XP. The
interactive inference algorithm is implemented in Compaq

Visual Fortran. HDE serves as a minimization solver in the
interactive algorithm, and has to provide four setting factors by

the user. The setting factors used for all runs in the case studies
are listed as follows: The crossover factor is set to be 0.5. Two

tolerances used in the migration are set to be 0.05. The
population size of 5 is used in the computation.

3.1 Case I: small-scale gene network

The dry-lab case study is a two-gene regulatory network shown
in Hlavacek and Savageau (1996). The ‘true’ system is described

in the S-system equations as follows:

_X1 ¼ 5X3X
�1
5 X6 � 10X2

1

_X2 ¼ 10X2
1X7 � 10X2

2

_X3 ¼ 10X�1
2 X8 � 10X�1

2 X2
3

_X4 ¼ 8X2
3X

�1
5 X6 � 10X2

4

_X5 ¼ 10X2
4X7 � 10X2

5

ð12Þ

where X1 is an mRNA produced from gene 1, X2 is an enzyme

protein it produces and X3 is an inducer protein catalyzed by
X2. X4 is an mRNA produced from gene 4 and X5 is a regulator

protein it produces. Positive feedback from the inducer protein
X3 and negative feedback from the regulator protein X5 are

assumed in the mRNA production processes of genes 1 and 4.
X6, X7 and X8 denote a pool of nucleic acid, amino acid and

substrate, respectively, and are considered as independent
variables in the system.
We first consider noise-free time-course data for evaluating

the penalty problem (7) and the constraint problems (8)–(10)
for comparison. The eight sets of training data generated by

Tsai and Wang (2005) were employed to infer an S-system
model structure. In this example, we set the kinetic orders

gii¼ 0, which precluded the direct effect of a variable on its own
production and required the kinetic orders hii to be greater than

zero, indicating that the degradation of compounds almost

depends always on the concentration. The search ranges used

for the regression were �i and �i2 [0, 20], gij and hij2 [�4, 4],

i 6¼ j and hii2 [0, 4]. The HDE algorithm was employed to solve

the penalty problem (7) with the weighting factor of 10�3, 10�4

and 10�6, respectively. The computational results were shown

in Supplementary 2. For the cases using the weighting factor of

10�3 and 10�6, we cannot infer a convergent structure from the

penalty problem (7) using several trials for HDE. For the

weighting factor of 10�4, the inferred structure is identical to

the ‘true system’ after four iterations. We next applied the

proposed interactive inference algorithm, as shown in Table 1,

except using a different penalty parameter in Step 3, to solve

the inference problem (11). In this computation, we used,

respectively, the penalty parameters of 1, 102 and 104 in Step 3

to solve each inference problem (11). The proposed algorithm

enabled us to infer the identical S-system structure to the ‘true’

system although the assigned penalty parameters were widely

different. The computation time for each case was about the

same. 38.8min and two iterations required on a single-CPU

Pentium IV 3.0GHz. The proposed algorithm requires one-

fifth CPU times that of the result solved by Tsai and Wang

(2005) because it uses decoupling computation to solve each

subsystem. Table 2 summarizes the comparison between the

proposed algorithm and the reported methods for this inference

problem (Kikuchi et al., 2003; Kimura et al., 2004; Tsai and

Wang, 2005).

Next, we test the performance of the proposed method in a

real-world situation by conducting the experiment with the sets

of noisy time-course data. To imitate real profiles, 10% random

noises are added into the eight sets of ‘true’ time-course data.

The rational method in the curve-fitting toolbox for MATLAB

is then employed to smooth the measured data in order to yield

the noise-free time-course profiles for evaluating concentration

error criterion and slope error criterion. In this work, the

proposed interactive inference algorithm not only can infer the

S-system model structure for dependent variables, as discussed

in the previous run, but can also infer interaction relations

between dependent and independent variables. The super-

structure for the S-system is therefore expressed as:

_Xi ¼ �i

Y5þ3

j¼1

X
gij
j � �i

Y5þ3

j¼1

X
hij
j ; i ¼ 1; . . . ; 5 ð13Þ

Table 1. Interactive inference algorithm for biochemical regulatory networks using hybrid differential evolution

1. Calculate the expected values, JE1 and JE2 , for the concentration error and slope error using hybrid differential evolution to minimize its single-

objective parameter estimation problem (2) and (4), respectively. Let each expected value be its corresponding minimum error criterion.

2. Compute the sum of the magnitude of kinetic orders for each single-objective parameter estimation problem. Let each expected value of the

interaction measure for each single-objective parameter estimation problem be JE31 and JE32. The expected value, JE3 , for the interaction measure is

set as JE3 ¼ max JE31,J
E
32

� �

3. Let the parameter be !4max JE1 ,J
E
2

� ��1
, and solve the inference problem (11) using hybrid differential evolution. Let the minimum solution be p*.

4. If Cðp*Þ
� �

þ
is smaller than the tolerance, e.g. 1.0E�6, then go to Step 5; otherwise, stop the interactive inference algorithm.

5. Sort the kinetic orders, gij and hij, for the synthesis and degradation terms using the score gij
�� ��=max gij

�� ��, hij
�� ��� �

and hij
�� ��=max gij

�� ��, hij
�� ��� �

,

respectively.

6. Delete the smaller kinetic orders with scores less than the assigned value, e.g. 1.0E�2, and then repeat the interactive procedures to infer the

pruned model.
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In this example, three independent variables, a pool of nucleic

acid, amino acid and substrate, are also included in the super-

structure so there are 90 S-system parameters to be estimated.

However, using the decoupling approach, parallel computation

can be employed to infer each subsystem that includes 18

parameters only.
In the first run, the HDE algorithm was employed to solve

each single-objective parameter estimation problem. The

expected values for the first subsystem were ðJE1 ¼

2:746E� 3; JE31 ¼ 1:746Eþ 1Þ and ðJE2 ¼ 7:514E� 2; JE32 ¼
2:491Eþ 1Þ, respectively. These expected values were then

provided for the inference problem (11) in Step 2 of the

interactive inference algorithm in Table 1. The optimal esti-

mates for each subsystem, as shown in the Supplementary 2,

were feasible. The optimal concentration error and slope

error were J*1 ¼ 2:506E� 3 and J*2 ¼ 4:678E� 2, respectively,

so the inequality constraints in (9) and (10) were less than zero,

i.e. Cðp*Þ
� �

þ
¼ 0. Many kinetic orders gij and hij were very small.

We then deleted those smaller kinetic orders with scores50.01.

The interactive inference algorithm was then repeated to refit

each pruned subsystem. For the second iteration, the inferred

regulatory structure for independent variables approached to

the ‘true’ system. One iteration is enough to achieve the

minimum connective network for the first subsystem, three

iterations for the second, fourth and fifth subsystem. For the

third subsystem, after the fifth iteration, the concentration error

criterion and slope error criterion were 5.326E�3 and

1.449E�2, respectively, both of which were almost equal to

their expected values. Both inequality constraints for the third

subsystem were less than zero. The score of the kinetic order g35
was smaller than 1.0E�2, after deleting this parameter; the

inferred S-system structure was essentially identical to the ‘true’

system. The estimated parameter values were employed to

evaluate an extra test-experiment in order to validate the

model. The initial condition for the test-experiment is beyond

the training dataset. The ‘true’ dynamic profiles are shown as

the data-points in Figure 1. The model profiles shown as solid

curves are capable of predicting the dynamic responses under

the condition. In order to yield more accurate estimates, the

solution obtained by the proposed algorithm is employed as the

initial starting point for a gradient-based method, a subroutine

BCONF in IMSL Math/Library, to solve the parameter

estimation problem. The local search procedure employs

Runge–Kutta pairs of various orders, a subroutine IVMRK

in IMSL Math/Library, to solve differential equations towards

obtaining time-course profiles of the system. The refined

estimates are then employed to evaluate the extra test-

experiment to validate the model. The model profiles shown

as dashed curves in Figure 1 can satisfactorily fit the test-

experiments.
So far, the inference problem is to minimize simultaneously

the concentration error, slope error and interaction measure in

order to find the S-system model structure and its corres-

ponding model parameters. The problem can be solved by

minimizing two objective functions. That is to minimize

simultaneously the concentration error and interaction measure

or the slope error and interaction measure, respectively. The

bi-objective minimization problem is therefore expressed as

min{J1, J3} or min{J2, J3}. The interactive inference algorithm

is then employed to solve both problems, respectively. For

noise-free time-course data, both bi-objective minimization

problems can achieve the exact model structure.
However, for noisy time-course data, we cannot obtain the

exact structure for minimizing {J1, J3} after four iterations and

{J2, J3} after five iterations, respectively. The optimal estimates

for each subsystem are shown in the Supplementary 2. The

optimal estimates from min{J1, J3} and min{J2, J3} are then

employed to evaluate the extra test-experiment to validate the

model, respectively. Although both structures are different

from the ‘true’ system, the model profiles shown as dashed-dot

curves (min{J1, J3}) and dashed-dot-dot curves (min{J2, J3}) in

Figure 1 can suitably fit the test-experiments.

3.2 Case studies II: kinetics model of ethanol

fermentation

In this wet-lab case study, we analyze a batch fermentation

process discussed by Wang et al. (2001). The fermentation

Table 2. Comparison between the proposed interactive inference algorithm and three reported methods

Method ODE solver CPU time Estimated result

This work Modified collocation and slope

approximation for each

subsystem

38.8min and two iterations

required on a single-CPU

Pentium IV 3.0GHz

The parameter values are almost

identical to the true values.

Modified collocation

approximation

Modified collocation for the whole

system

2.84 h required for all computation on

a single-CPU Pentium IV 2.4GHz

The parameter values are almost

identical to the true value.

PEACE 1 Numerical integration 10 h for one loop on PC cluster with

1040 CPUs and Pentium III

933MHz

The structure is not completely

identical to the true system.

There exists h53.

GLSDC Decomposed numerical integration 58.8min for minimizing each

subsystem on a single-CPU

Pentium III 1GHz

This method could not estimate the

parameter values with perfect

precision.

Modified collocation approximation was reported by Tsai and Wang (2005). PEACE 1 was reported by Kikuchi et al. (2003). GLSDC was reported by Kimura

et al. (2004).
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process uses high-ethanol tolerance yeast, Saccharomyces

diastaticus LORRE 316, to produce ethanol. The experimental
materials and methods were illustrated in Wang et al. (2001).
The yeast can utilize glucose to produce ethanol and glycerol so

the super-structure of S-system is described as

_Xi ¼ �i

Y4

j¼1

X
gij
j � �i

Y4

j¼1

X
hij
j ; i ¼ 1; . . . ; 4 ð14Þ

where X1, X2, X3 and X4 denotes, respectively, the concentra-

tions of the biomass, glucose, ethanol and glycerol, respectively.
The interactive inference algorithm is then employed to deter-
mine a suitable S-system structure and its parameter values.

The time-course data with 1 h sampling were obtained from
two batch fermentations using the initial glucose concentrations
of 100 and 150 g/l. Each fermentation was carried out in two

experiments giving data points shown in Figure 2a and b. These
repeated time-course data were noisy so the curve-fitting
toolbox in MATLAB software was first employed to smooth

the observed data for evaluating concentration error criterion
and slope error criterion. By following similar procedures as

discussed in the previous dry-lab case study, the inference
problem is decoupled into four subsystems. The search ranges

for each parameter used in the interactive inference algorithm

were �i and �i2 [0, 5], and gij and hij2 [�3, 3].
Table 3 shows the expected values for each iteration. The

Pareto optimal error criteria for the concentration and

slope are also listed in Table 3. Two iterations are enough to

achieve the minimum connective network for the first, third

and fourth subsystem, three iterations for the second sub-

system. The rate constant of degradation for glycerol was

almost zero so the degradation term was neglected. The inferred

model and its parameters were then provided as the initial

starting point for a gradient-based method, a subroutine

BCONF in IMSL Math/Library, to yield the more accurate

solution.
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Fig. 1. Model validated using various estimated parameters. The

symbolic data points are the ‘true’ dynamic profiles with 10%

random noise using the initial condition [0.56, 0.08, 0.57, 0.54, 0.34,

0.8, 0.8, 0.8]. The solid curves are the computed profiles using the

optimal estimates from min{J1, J2, J3}. The dashed curves are the

computed profiles using the refined estimates. The dashed-dot curves

are the computed profiles using the optimal estimates from min{J1, J3}.

The dashed-dot-dot curves are the computed profiles using the optimal

estimates from min{J2, J3}.
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Fig. 2. Two batch fermentations using the initial glucose concentra-

tions of (a) 100 g/L and (b) 150 g/L for inferring an S-system model, and

one batch fermentation using the initial concentration of (c) 200 g/L to

validate the inferred mode.
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The optimal model is obtained as follows:

_X1 ¼ 3:1125 X0:8993
1 X�0:2771

2 � 0:4777 X1:6345
1 X�0:2768

2

_X2 ¼ 3:3067� 1:8574 X0:5929
1 X0:2960

2

_X3 ¼ 0:5433 X0:8782
1 X0:2282

2 � 0:0735 X0:8352
3

_X4 ¼ 0:3568 X0:6600
1 X0:3187

2

ð15Þ

The optimal computed profiles for initial glucose concentration

of 100 g/l and 150 g/l are shown as the solid curves in Figure 2a

and b. To validate the inferred model, an additional experiment

with the initial glucose of 200 g/l, which is 33% greater than the

training data, are employed to predict the dynamic behavior.

Figure 2c shows the computed results and experimental data.

As seen from this figure, the inferred S-system model is suitable

for describing the dynamic behaviors of the batch fermentation

process.

4 CONCLUSION

To infer a suitable interaction network for biological systems

from time-course data poses many challenges. Numerical

integration for differential equations and finding global

parameter values are two major problems. Modified colloca-

tion and slope approximation can be employed to alleviate the

computation burden. Hybrid differential evolution is utilized to

obtain a global estimate. However, when inferring a minimum

interaction network, sums of magnitude of kinetic orders serve

as the penalty term to evaluate the fitness for the inference

problem. How to tune a penalty weight to yield a realizable

model structure is also a challenging problem. No guideline has

been published for tuning a suitable penalty weight to infer a

suitable model structure of biochemical networks. The multi-

objective optimization approach could avoid assigning a

penalty weight for sums of magnitude of kinetic orders.

We have proved that the approach could guarantee the

minimum solution for the constrained problem to achieve the

minimum interaction network for the inference problem.

A multiobjective optimization can consider many goals at the

same time. This study is to investigate the concentration error
criterion, the slope error criterion and interaction measure. The

concentration error criterion is employed to measure the

goodness-of-fit of the model with respect to a given experi-

mental time-course dataset. The slope error criterion is used to

judge the accuracy of the dynamic function, i.e. the net rate

equation in (1). Each kinetic order, gij or hij, is applied to

quantify the effect of Xj variable on the production or

degradation of Xi. A smaller parameter value means less

interaction between state variables, Xj and Xi. The interaction

measure sums up magnitude of kinetic orders which serves as

an index to prune a skeletal structure of S-systems. Such a

pruning strategy may be not suited for inferring whether genetic

interactions are fragile or robust. Since the fragile interaction

has higher sensitivity, a slight change in parameter value of this

interaction, gij or hij, should cause a big difference of dynamic

behaviors of gene expression. Under such circumstances, the

interaction measure may be unable to infer such high-sensitive

systems. An additional goal, such as dynamic sensitivities of

state variables with respect to gij and hij, should be considered

in the multiobjective parameter estimation problem toward

inferring a suitable network structure for a high-sensitive gene-

regulatory system.

ACKNOWLEDGEMENT

The financial support from the National Science Council,

Taiwan, ROC (Grant NSC96-2627-B-194-001), is highly

appreciated.

Conflict of Interest: none declared.

REFERENCES

Almeida,J.S. and Voit,E.O. (2003) Neural-network-based parameter estimation

in S-system models of biological networks. Genome Inform., 14, 114–123.

Bazaraa,M.S. and Shetty,C.M. (1979) Nonlinear Programming. Theory and

Algorithms. John Wiley and Sons, pp. 336–340.

Chang,W.C. et al. (2005) Quantitative inference of dynamic regulatory pathways

via microarray data. BMC Bioinformatics, 6, 1–19.

Chiou,J.P. and Wang,F.S. (1999) Hybrid method of evolution algorithms for

static and dynamic optimization problems with application to a fedbatch

fermentation process. Comput. Chem. Eng., 23, 1277–1291.

Chou,I.C. et al. (2006) Parameter estimation in biochemical systems models with

alternating regression. Theor. Biol. Med. Model., 3, 1–25.

Edwards,K. et al. (1998) Kinetic model reduction using genetic algorithms.

Comput. Chem. Eng., 22, 239–246.

Gonzalez,O.R. et al. (2007) Parameter estimation using simulated annealing for

S-system models of biochemical networks. Bioinformatics, 23, 480–486.

Handl,J. et al. (2007) Multiobjective optimization in bioinformatics and

computational biology. IEEE/ACM Trans. Comput. Biol. Bioinform., 4,

279–292.

Hlavacek,W.S. and Savageau,M.A. (1996) Rules for coupled expression of

regulator and effector genes in inducible circuits. J. Mol. Biol., 255, 121–139.

Ho,S.Y. et al. (2005) Evolutionary divide-and-conquer approach to inferring

S-system models of genetic networks. Proceedings of the 2005 IEEE Congress

on Evolutionary Computation., 1, 691–698.

Huang,W.H. et al. (2006) Reverse engineering for embryonic gene regulatory

network in zebrafish via evolutionary optimization with data collocation.

In Proceeding of 7th International conference on systems biology, pp. 9–13.

http://www.icsb-2006.org/program/postersF.htm.

Ingalls,B.P. (2004) Autonomously oscillating biochemical systems: parametric

sensi-tivities of extrema and period. IEE Syst. Biol., 1, 62–70.

Table 3. The expected values for each iteration obtained by each single

objective parameter estimation and the Pareto optimal values obtained

by multiobjective optimization problem

Iteration Variable Expected values Pareto optimal values

JE1 JE2 J*1 J*2

1 1 2.36E�3 1.39E�2 1.03E�3 1.39E�2

2 2.22E�4 6.23E�3 2.22E�4 3.82E�3

3 4.55E�4 3.32E�3 3.60E�4 3.32E�3

4 1.17E�3 6.52E�3 2.98E�4 6.42E�3

2 1 3.31E�3 4.14E�2 3.05E�3 4.14E�2

2 1.98E�3 6.49E�3 5.70E�4 6.49E�3

3 4.64E�4 1.01E�2 4.63E�4 4.71E�3

4 4.22E�4 1.62E�2 3.70E�4 1.20E�2

3 1 – – – –

2 4.78E�3 9.20E�2 1.99E�3 3.34E�2

3 – – – –

4 – – – –

1091

Inference of biochemical network models in S-system

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/8/1085/212929 by guest on 20 August 2022

http://www.icsb-2006.org/program/postersF.htm


Kikuchi,S. et al. (2003) Dynamic modeling of genetic algorithm and S-system.

Bioinformatics, 19, 643–650.

Kimura,S. et al. (2004) Inference of S-system models of genetic networks from

noisy time-series data. Chem-BioInformatics J., 4, 1–14.

Kimura,S. et al. (2005) Inference of S-system models of genetic networks using a

cooperative coevolutionary algorithm. Bioinformatics, 21, 1154–1163.

Maki,Y. et al. (2001) Development of a system for the inference of large scale

genetic networks. Pac. Symp. Biocomput., 6, 446–458.

Maki,Y. et al. (2002) Inference of genetic network using the expression

profile time course data of mouse P19 cells. Chem-BioInformatics J., 13,

382–383.

Mendes,P. and Kell,D.B. (1998) Non-linear optimization of biochemical path-

ways: applications to metabolic engineering and parameter estimation,

Bioinformatics, 14, 869–883.

Moles,C.G. et al. (2003) Parameter estimation in biochemical path-

ways: a comparison of global optimization methods. Genome Res., 13,

2467–2474.

Noman,N. and Iba,H. (2005) Reverse engineering genetic networks using

evolutionary computation. Genome Inform., 16, 205–214.

Polisetty,P.K. et al. (2006) Identification of metabolic system parameters using

global optimization methods,. Theor. Biol. Med. Model., 3, 1–15.

Sakawa,M. (1993) Fuzzy Sets and Interactive Multiobjective Optimization. Plenum

Press, New York, pp. 91–116.

Tsai,K.Y. and Wang,F.S. (2005) Evolutionary optimization with data collocation

for reverse engineering of biological networks,. Bioinformatics, 21, 1180–1188.

Voit,E.O. (2000) Computational analysis of biochemical systems. Cambridge

University Press, pp. 37–75.

Voit,E.O. and Almeida,J.S. (2003) Dynamic profiling and canonical modeling:

powerful partners in metabolic pathway identification. In Goodacre,R. and

Harrigan,G.G. (eds.) Metabolite Profiling: Its Role in Biomarker Discovery

and Gene Function Analysis. Kluwer Academic Publishing, Dordrecht,

pp. 125–139.

Voit,E.O. and Almeida,J.S. (2004) Decoupling dynamic systems for pathway

identification from metabolic profiles. Bioinformatics, 20, 1670–1681.

Wang,F.S. (2000) A modified collocation method for solving differential-

algebraic equations. Appl. Math. Comput., 116, 257–278.

Wang,F.S. and Sheu,J.W. (2000) Multiobjective parameter estimation problems

of fermentation processes using a high ethanol tolerance yeast. Chem. Eng.

Sci., 55, 3685–3695.

Wang,F.S. et al. (2001) Hybrid differential evolution for problems of kinetic

parameter estimation and dynamic optimization of an ethanol fermentation

process. Chem. Eng. Sci., 40, 2876–2885.

1092

P.-K.Liu and F.-S.Wang

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/24/8/1085/212929 by guest on 20 August 2022


