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Abstract

We develop an approach to recover the underlying prop-

erties of fluid-dynamical processes from sparse measure-

ments. We are motivated by the task of imaging the stochas-

tically evolving environment surrounding black holes, and

demonstrate how flow parameters can be estimated from

sparse interferometric measurements used in radio astro-

nomical imaging. To model the stochastic flow we use

spatio-temporal Gaussian Random Fields (GRFs). The high

dimensionality of the underlying source video makes di-

rect representation via a GRF’s full covariance matrix in-

tractable. In contrast, stochastic partial differential equa-

tions are able to capture correlations at multiple scales by

specifying only local interaction coefficients. Our approach

estimates the coefficients of a space-time diffusion equation

that dictates the stationary statistics of the dynamical pro-

cess. We analyze our approach on realistic simulations of

black hole evolution and demonstrate its advantage over

state-of-the-art dynamic black hole imaging techniques.

1. Introduction

The first-ever black hole image was produced by the

Event Horizon Telescope (EHT) collaboration in 2019 [35].

This image, of the black hole in the center of the M87

galaxy was computationally constructed from radio mea-

surements collected over an entire night [2]. The massive

size of the M87 black hole gives rise to evolution timescales

greater than acquisition length, thus, the image could be re-

constructed assuming a static source [8]. In contrast, the

Milky Way’s galactic center hosts a smaller [18] more dy-

namic [15, 23] black hole: Sgr A*.

While black holes are not directly observable by radio

telescopes, it is their imprint on the fluid-dynamic backdrop

that can be observed. In this work, our goal is to recover

the fluid-dynamics of quickly evolving phenomena, such

as Sgr A*, from sparse remote sensing data. Recovering

these dynamic properties could reveal information about the

spin and mass of Sgr A* and pose a stronger test [11] to

General Relativity than M87 (due to the tighter mass con-

straints). While motivated by the evolving plasma surround-

ing a black hole, our approach is also applicable to other

inference problems with fluid-dynamics at their core.

Inference of dynamics from sparse measurements can be

placed on a spectrum of approaches ranging from model-

free, with many degrees of freedom (DOFs), to fully

physics-based, with only a handful of DOFs. On the model-

free end of the spectrum are approaches that first recover

an entire video sequence from the sparse observations [7].

In theory, video estimation is extremely flexible and could

capture any evolution. In practice, to estimate many DOFs

(every pixel in the video) strong inter-frame regularization

is imposed and much of the dynamic information is lost.

On the other end of the spectrum, are approaches that

seek to infer parameters of high fidelity physics-based mod-

els [36]. While advantageously characterized by a small

number of parameters, these models lack the flexibility for

novel scientific discovery. For instance, it is crucial to avoid

a model that assumes the presence of a black hole obeying

our current numerical models of physics, as this could skew

the results and interpretation. Furthermore, in many sce-

narios physics-based models are complex and non-linear,

resulting in computationally intensive simulations that are

intractable for use in an inverse problem. For instance, high-

fidelity models used for black hole require thousands of core

hours for a single simulation1.

We instead seek to find a middle ground between these

two ends of the spectrum, using a physics-motivated sur-

rogate model that is able to capture key features of the

fluid-dynamical process. In particular, we model the spatio-

temporal flow surrounding a black hole as an output of a

stochastic partial differential equation (SPDE). This model

enables the efficient drawing of video samples with spatio-

temporal correlation at multiple scales (Fig. 1), and was pre-

viously shown to capture the spatio-temporal variability of

astrophysical disks [24]. The inference task we propose is

to recover the SPDE coefficients, which characterize pixel

interactions. These coefficients are interpretable and can be

related back to the local correlations of physics-based sim-

ulations [19].

1General relativistic magneto-hydrodynamics (GRMHD) [31]
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Figure 1. The anisotropic spatio-temporal SPDE generative forward model. The PDE transforms uncorrelated random noise samples,

W (x), into correlated Gaussian Markov Random Fields (GRFs), ρ (x). Different GRF samples have different pixel values but the same

statistics. The inference problem we formulate is to infer the PDE parameters Θ from either a single video sample or interferometic

measurements of a source exhibiting similar dynamic properties. We are not interested in recovering exact pixel values of an evolving

source, which is dependent on the unknown random noise. Rather we wish to recover the source’s underlying stationary statistics.

2. Relevant Prior Work

Prior work on imaging dynamic black holes has focused

on the recovery of an entire video from sparse interfero-

metric measurements [7, 22, 5]. Although these video re-

construction methods do not estimate flow properties di-

rectly, subsequent analysis (e.g., optical flow) could be used

for this purpose. However, in practice, estimating an en-

tire video of unknown pixel values from very sparse data

requires strong temporal regularization that suppresses dy-

namic information within the recovered video. In contrast,

our work seeks to directly recover the flow model statistics

from measurements. As we demonstrate in Sec. 5, model-

fitting statistical flow parameters outperforms recovery via

video reconstruction when measurements are very sparse.

To model complex fluid flows surrounding a black hole,

we rely on fitting random spatio-temporal fields to observed

data. In the field of computer vision, there has been signif-

icant work dedicated to the analysis of dynamic video tex-

tures. This includes detection [4], classification [32, 17],

estimation [25], and generation [12]. More recently, gener-

ative neural nets [38, 10] have shown great promise in cap-

turing statistics of complex dynamical videos. Neverthe-

less, statistical properties captured by network weights lack

scientific interpretability. In contrast, we wish to recover

dynamic-parameters that relate to the underlying physics

and could be used in subsequent analysis. Closest in spirit

to our work are [39, 33], which also solve a related inverse

problem, recovering fluid properties from sparse data. Nev-

ertheless, these works recover fluid properties at each time

frame, whereas our approach recovers motion statistics.

In the following subsections we introduce the genera-

tion and modeling of stochastic flows as Gaussian Ran-

dom Fields (Section 2.1) that are efficiently captured by a

Stochastic Partial Differential Equation (Section 2.2).

2.1. Gaussian Random Fields (GRFs)

Gaussian Random Fields are commonly used to repre-

sent random spatial fields [34]. GRFs capture second or-

der statistics with a mean and continuous covariance kernel

(function). On a discrete grid (e.g. pixels), a continuous

GRF can be approximated as a multivariate Gaussian. For

small grids the full covariance matrix can be stored in mem-

ory and used to draw GRF samples.

Using a covariance matrix to model GRFs is common for

spatial data [34]. However, in this work we model spatio-

temporal fields, for which the covariance matrix can easily

reach impractical memory and computation requirements2.

2.2. Stochastic Partial Differential Equations

To efficiently model spatio-temporal random fields (i.e.,

GRFs) we employ an approach that generates a random

field as a solution to a stocastic partial differential equa-

tion (SPDE) [37, 26, 16]. Thus, instead of requiring full

rank covariance matrices to specify and sample a field, only

local interactions need to be specified. In particular, in

Sec. 2.2.1 we describe the anisotropic spatio-temporal dif-

fusion equation that is able to capture the (in-homogeneous

and non-isotropic) variability of astrophysical accretion

disks [24]. Anisotropic (directional) correlations are intro-

duced through a diffusion tensor, as detailed in Sec. 2.2.2.

2.2.1 Anisotropic Spatio-Temporal Diffusion

Let x=(x0, x1, x2) and ∇=( ∂
∂x0

, ∂
∂x1

, ∂
∂x2

)⊤ denote a

space-time grid point and derivative. Subscript 0 denotes

the temporal axis whereas 1 and 2 denote spatial axes. For

notational compactness we denote only the spatial coor-

2Drawing samples from an N×N covariance matrix typically involves

computing its Cholskey decomposition which scales as O(N3)
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dinates as x=(x1, x2) (note that x ̸=x). The anisotropic

spatio-temporal diffusion equation is given by [24]

(1−∇ ·Λ (x)∇) ρ (x) = γ det(Λ (x))1/4W (x) . (1)

Here W is an input emission source modeled by a Gaussian

white noise process [37], ρ (x) is the spatio-temporal out-

put GRF, and Λ (x) is a spatially dependent diffusion tensor

that encodes local interactions. The heterogeneity of Λ (x)
across the image produces GRFs with spatially varying tem-

poral variance. The normalization factor det(Λ (x))1/4 on

the right hand side of Eq. (1) ensures constant (flat) tem-

poral variance across image pixels. The scaling factor γ

determines the magnitude of variations.

In practice, Eq. (1) is solved by discretization in space

and time; the output GRF, ρ, is obtained as a solution to a

linear set of equations:

Dρ = Bw, (2)

ρ = (ρ(x1), ..., ρ(xN ))⊤, w = (W(x1), ...,W(xN ))⊤,

where D is a sparse matrix that approximates the differen-

tial operators via finite differences,

D ≃ (1−∇ ·Λ (x)∇) , (3)

and B is a diagonal normalization matrix,

B = diag
[

γdet
(

Λ(x1)
)1/4

, ..., γdet
(

Λ(xN )
)1/4

]

. (4)

The SPDE formulation reduces the problem of sampling

a correlated Gaussian distribution, with a large dense co-

variance matrix, to that of sampling i.i.d. Gaussian vari-

ables, w, and solving a sparse linear set of equations. The

latter can be done very efficiently3.

2.2.2 Diffusion Tensor

The correlations in the output GRF are completely deter-

mined by the diffusion tensor Λ (x). In contrast to a scalar

coefficient, the tensor captures non-isotropic local interac-

tions. The diffusion tensor is a symmetric 3×3 matrix with

positive coefficients specifying correlations in each of the

axes and their combinations. Locally Λ can be described

by three directional axes

Λ = λ2
0ξ0ξ

⊤

0 + λ2
1ξ1ξ

⊤

1 + λ2
2ξ2ξ

⊤

2 , (5)

where λ0, λ1, λ2 denote correlation time and lengths along

axes specified by ξ0, ξ1, and ξ2, respectfully4. The corre-

lation time λ0 describes a characteristic timescale in which

features persist in the flow and the correlation lengths λ1, λ2

describe the spatial direction and extent of the features.

3Efficient sparse numerical algorithms have memory requirements

which scale as O(N) and computations as O(N3/2)
4Here the spatial coordinates dependence was omitted for brevity

radius

Correlation lengths

λ0(r)

λ1(r)

λ2(r)

v(x) ξ1(x) ξ2(x)

time

Figure 2. The bottom row shows four sequential frames of a clock-

wise (CW) rotating GRF, dictated by v (blue in the top figure). The

spiral spatial correlations are dictated by ξ1 (green in the top fig-

ure). The correlation lengths λ0, λ1, λ2 are azimuthally symmetric

and are a function of radius only (top left).

We define a parameterization of the correlation axis as

Temporal axis: ξ0 = (1, vx, vy)
⊤, (6)

Major spatial axis: ξ1 = (0, cosϕ, sinϕ)⊤, (7)

Minor spatial axis: ξ2 = (0,− sinϕ, cosϕ)⊤. (8)

Here v=(vx, vy) is a velocity field that dictates the motion

of the GRF and ϕ defines the spatial direction of correla-

tion at each position x (Fig. 2). Note that the normalization

factor defined in Eq. (1) is given by det(Λ) = λ2
0λ

2
1λ

2
2.

3. Forward Video Generation Model

In Sec. 2.2 we described a computationally tractable

method for sampling spatio-temporal GRFs, ρ (x), via an

SPDE. While these GRFs capture flow dynamics, they are

not suitable for modeling static image features, such as the

photon ring in a black hole shadow [30]. Thus, we define

a video formation model where the GRF is a multiplicative

perturbation to a static “envelope” image, I . The formation

of a video sample, V (x), is modeled by

V (x) = I (x) eρ(x). (9)

Here, negative and positive values of ρ describe a fractional

deviation from the envelope’s local intensity.

3.1. Astrophysical Accretion Disks as GRFs

Equations (5)–(8) define a diffusion tensor field where

the correlation length and direction can, in principle, vary

arbitrarily in space. Nevertheless, for the purpose of black

hole imaging, it is constructive to examine the special case

of astrophysical accretion disks. Accretion disks are struc-

tures formed by diffuse material orbiting around a massive

central body. To capture the structural variability of a face-

on accretion disk we define a simple, azimuthally symmet-

ric, parameterization of the evolution. Derived from Kep-

lerian orbital motion [24], we define the correlation lengths

λ0, λ1, λ2 (Eq. 5) and velocity magnitude (Eq. 6) as a func-
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tion of radius r from the origin (Fig. 2). We define a con-

stant ratio λ2=ϵλ1 for ϵ∈[0, 1] that dictates the direction-

ality of spatial correlations (ϵ=1.0 yields isotropic correla-

tions). In our experimental results (Sec. 5) we fix ϵ = 0.1.

Moreover, we parameterize the directions of flow veloc-

ity, v, and spatial correlation, ϕ, with two angles φ0 and

φ1, respectfully. These angles dictate the flow direction5

and spiral opening angle (Fig. 2). For the accrection disk

model, the inverse problem we formulate seeks to recover

the unknown angles (φ0, φ1). Recovering (φ0, φ1) reveals

disk rotation that could shed light on important questions

in fundamental physics [3, 19]. Refer to the supplemental

material [1] for mathematical definitions of this parameter-

ization.

4. Inverse Problem Formulation

Let Θ denote the unknown dynamic parameters (e.g.,

Θ = {φ0, φ1}) of ρ (x). We seek to estimate Θ from mea-

surements y (yet to be defined). Recall that Θ only dic-

tates the statistics of evolution seen in ρ (x), not the indi-

vidual pixel values. In fact, as is shown in Figure 1, mul-

tiple ρ’s sampled from the same PDE parameters, Θ, re-

sult in movies with very different pixel values over time.

Therefore, in order to naively solve for parameters, Θ,

that lead to movies that directly match ρ (e.g., via an ℓp-

norm), we would also have to recover the unknown random

noise source, w. Unfortunately, jointly estimating Θ and

w is impractical, as w is i.i.d. random noise and as high-

dimensional as the video itself. Thus we seek a metric D,

that is invariant to w when solving for the statistical param-

eters of ρ’s evolution, Θ:

I∗,Θ∗ = argmin
I,Θ

D(I,Θ|y). (10)

Our key insight to designing D is recognizing that the

underlying dynamic video, ρ, will be best captured by a

low-dimensional subspace describing videos drawn from

the true parameters, Θtrue. The challenge is to compute the

low-dimensional subspace for every possible Θ, and then

identify which subspace best captures ρ.

Since we model ρ as a (zero-mean) GRF (Sec. 2.1),

its statistics are fully captured by a covariance matrix

parametrized by Θ. If we had access to this covariance ma-

trix we could simply compute an eigenvalue decomposition

to reduce the dimensionality – selecting the top eigenvec-

tors, which explain most of the variability seen in videos

drawn with parameters Θ. However, recall that a spatio-

temporal covariance matrix describing the video ρ would

be intractably large to store in memory; thus, we cannot

use standard eigenvalue decompositions to recover the low-

dimensional subspace. An alternative, but inefficient, ap-

5Direction with respect to counter-clockwise (CCW) rotation. For ex-

ample, ϕ0 = {0◦, 90◦, 180◦, 270◦} describe counter-clockwise (CCW)

flow, radial outflow, clockwise (CW) flow, and radial inflow

proach to reduce the dimensionality is by sampling multiple

GRFs with parameters Θ (via the SPDE in Sec. 2.2) and

applying Principle Component Analysis (PCA) [29]. For a

large number of GRF samples, PCA vectors should coincide

with the eigenvectors of the covariance. However, this PCA

approach is either very computationally intensive or inaccu-

rate (see further analysis in the supplemental material [1]).

Alternatively, in Section 4.1 we describe a tractable ap-

proach for dimensionality reduction without explicit access

to the covariance matrix.

4.1. Dimensionality Reduction

In this section we describe a matrix-free approach to re-

duce the dimensioanlity of an SPDE system parameterized

by Θ. It is convenient to symbolically re-write Eq. (2) as

ρ = Aw, (11)

where A=D−1B. The dependency on Θ is omitted

throughout for clarity (i.e. A ↔ AΘ). We seek to find

a low-rank approximation for the forward operator

A ≃ Â = UΣQ⊤, (12)

where U and Q⊤ are of size N×K, Σ is a K×K diago-

nal matrix, and K≪N . The challenge is that A is a large,

dense matrix that we do not have access to; thus, we must

rely on methods to recover a low-dimensional decomposi-

tion without having access to A.

We employ randomized matrix-free computations [28]

to solve for U and Σ. A matrix-free approach is advan-

tageous for both high-dimensional spaces in which matrix

operations (i.e. direct SVD or QR) are too costly, as well as

for numerical simulations in which an input-output relation

is established without an explicit matrix representation.

Randomized subspace iteration (RSI)6 [27, 21] is a ro-

bust approach that builds a low-rank approximation of the

forward operator, A, through sequential applications to a

set of K random (typically i.i.d. Gaussian) vectors. The

block-size K is (roughly) the desired dimension of the com-

puted subspace. While the “application” of A is symboli-

cally written as an input-output relation (Eq. 11), in practice

it means solving a linear set of equations (Eq. 2). In the con-

text of the SPDE model, we iteratively compute an output

GRF by replacing the input source with the previous output.

Algorithm 1 outlines RSI where the key outputs are

U = (u0, ...,uK−1) , Σ = diag (σ0, ..., σK−1) . (13)

Here uk, σk are the top singular vectors and values of A.

The orthonormal vectors uk are aligned with the axes of

most variability, where σk is the variance along each axis.

6RSI typically computes a good approximation of the leading singular

subspaces of A after a modest number of iterations. For our purposes, RSI

is simple and highly effective. In cases where very precise estimates of the

leading singular values and vectors are needed, more sophisticated algo-

rithms could be considered (e.g. randomized block Krylov methods [27]).
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modesprojection

measurement

Figure 3. The measurement y = ρ was generated with Θtrue = (0◦, 70◦). Here φ0 = 0◦ defines CCW rotation and φ1 = 70◦ defines the

opening angle of the spiral. The top and bottom rows show projections of y onto the (K=60) modes generated with Θ1 = (10◦, 71◦) and

Θ2 = (−28◦,−17◦), respectively. Since Θ1 is closer to Θtrue, the projection P(y,Θ1) retains more of the measurement flow features.

Algorithm 1 Random Subspace Iteration

1: b0 ← qr economic (randn (N,K)) ▷ Draw N×K

orthonormal block
2: for t=1,2,3...,q do

3: bt ← Abt−1 ▷ Solve Eq. 2 for each vector in bt−1

4: bt ← qr economic (bt) ▷ Orthogonalize

5: end for

6: U,Σ,Q← svd (Abq)

Once U and Σ have been identified, the low-dimensional

random field representation, ρ̂, is given by

ρ̂ = Âw = UΣQ⊤w = UΣc =

K−1
∑

k=0

ckσkuk, (14)

where

ck = q⊤

k w ∼ N (0, 1) (15)

Note that the series given by the de-correlated coefficients

ck is in fact a truncated Karhunen–Loève expansion [6].

4.2. Measurement Models

Denote a measurement operation by M, which takes as

input a video source, ρ or V (x), and outputs measurements

y. In the following sections we explore three measurement

models with an increasing level of complexity and realism.

4.2.1 Direct GRF Measurement

We first analyze the inverse problem in a setting where the

static envelope has no effect on the measurements. In partic-

ular, we define a simplistic measurement process with direct

access to GRF pixel values:

y = M [ρ (x)] + n = ρ+ n. (16)

Here ρ is the discretized GRF and n ∼ N (0,Σy) is mea-

surement noise. Since the measurements do not depend on

I, Eq. (10) can be written as

Θ∗ = argmin
Θ

Dρ(Θ|y). (17)

Using ρ̂ (Eq. 14) as the forward model yields

Dρ(Θ|y) = min
c

∥y −UΘΣΘc∥2Σy
+ ∥c∥2. (18)

Note that Eq. (18) is equivalent to the maximum a poste-

riori (MAP) estimation of c, where the prior comes from

Eq. (15). Based on Eq. (18) we define a projection operator

P(y,Θ) = UΘΣΘc∗, (19)

c∗ = argmin
c

∥y −UΘΣΘc∥2Σy
+ ∥c∥2.

For a fixed Θ, this is a projection of the measurements onto

a subspace spanned by the top modes of the SPDE system.

Although gradients can be derived, in practice, we evaluate

Dρ for each proposed parameter Θ (which includes solving

for UΘ and ΣΘ), and identify the Θ∗ that minimizes Dρ.

For the accretion disk model (Sec. 3.1) we define the

unknown parameters as Θ={φ0, φ1} and assume measure-

ment noise Σy=1. Figure 3 shows the top modes, and pro-

jections for two different parameter settings Θ1, Θ2. When

Θ is closer to Θtrue the projection retains more flow fea-

tures. We analyze the two-dimensional (2D) data-fit mani-

fold defined by Eq. (18) in Figure 4. This figure shows the

manifold for four cases where measurements are simulated

with different Θtrue. Note that Dρ is periodic with respect

to φ0 and φ1 with 2π and π periods, respectively. Addi-

tional loss manifolds are shown in the Supp. material.

4.2.2 Direct Video Measurement

We now analyze the inverse problem in a setting with direct

access to the modulated envelope pixel values. In this model

(defined in Eq. 9), measurements are affected by both static

and dynamic parameters:

ỹ = M [V (x)]+ñ = M
[

I (x) eρ(x)
]

+ñ = V+ñ. (20)

Here V is the discretized video. Taking into account both

static and dynamic parameters, Eq. (10) is given by

I∗,Θ∗ = argmin
I,Θ

DV(I,Θ|ỹ), (21)
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Figure 4. A 2D data-fit manifold over possible Θ = (φ0, φ1)
for four different y = ρ that correspond to different Θtrue. The

global minima track the ground-truth. Note that due to periodicity

the manifolds wrap around in both the horizontal and vertical axes.

To estimate the dynamic parameters we define a non-

linear pre-processing operation. Let log(·) denote an

element-wise logarithm, then

log(ỹ) ≃ log(I) + ρ+ n. (22)

Here the noise is approximated as additive Gaussian

n ∼ N (0, 1). Since the temporal mean over the GRF and

measurement noise converges to zero,

Ex0
[log(ỹ)] ≃ log(I). (23)

Thus, by subtracting the temporal mean from Eq. (22), we

can isolate the dynamic video component

y = log(ỹ)− Ex0
[log(ỹ)] ≃ ρ+ n. (24)

Overall the measurement model of Eq. (24) is approxi-

mately equivalent to Eq. (16) and identical expressions to

Eqs. (17)–(18) can be derived to solve for Θ∗.

4.2.3 Interferometric Measurements

In radio astronomy, interferometery is an imaging approach

that can achieve high angular resolution. This is done by

correlating signals captured at multiple telescopes simul-

taneously observing a radio source. The EHT array is an

extreme example of Very Long Baseline Intereferometry

(VLBI), where telescopes across the globe are synchronized

to image the emission around a single black hole.

Interferometric measurements, known as visibilities de-

note by ν, are related to the source video via a sparse set

spatial frequencies, k1, k2. We decompose M into a dense

Fourier transform and a sparse sampling operator:

y = M [V (x)] + n = S◦F
[

I (x) eρ(x)
]

+ n. (25)

Here F is the 2D spatial Fourier transform as a function of
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Figure 5. EHT synthetic measurement locations of a∼12 hour ob-

servation period (color-coded by time) observing the black hole

Sgr A*. The EHT2017 array is comprised of the eight radio

telescopes that were observing during the 2017 campaign. The

EHT++ array contains an additional 13 prospected telescopes.

time x0. The operator S samples the 2D Fourier transform

at specific times, and spatial frequencies. For VLBI arrays,

sampled frequencies are dictated by the projected baselines

of the observing telescopes. Thus, as the Earth rotates with

respect to the source, EHT measurements carve out ellip-

tical trajectories through the Fourier plane (Fig. 5). The

challenge of imaging a dynamic source is that the source

is evolving as measurements are being acquired.

Similarly to Eq. (21), estimation takes into account both

the unknown static image and dynamic parameters. The

data-fit for visibility measurements is given by

Dν(I,Θ|y) = min
c

∥

∥y−S◦F
[

I (x) eρ̂(x)
]

∥

∥

2

Σy
+∥c∥2. (26)

In practice, we solve Eq. (21) using block-coordinate de-

scent, alternating between two minimization problems:

I∗ = argmin
I

Dν(I,Θ
∗|y) +R(I), (27)

Θ∗ = argmin
Θ

Dν(I
∗,Θ|y). (28)

We discuss optimization of I∗ in detail in the supplemental

material [1]. To efficiently optimize Eq. (28) for recovery

of Θ∗, we linearize the measurement model:

S◦F
[

I (x) eρ̂(x)
]

≃ S◦F [I (x)] + S◦F [I (x) ρ̂ (x)]. (29)

This linearization enables approximation of Eq. (26) as a

linear convex minimization (see Supp. for more details)

D̂ν(y, I
∗,Θ) = min

c

∥

∥ỹ − ZΘ,I∗ΣΘc
∥

∥

2

Σy
+ ∥c∥2 (30)

for ỹ = y − S◦F [I∗ (x)] ,

where ỹ can be intuitively interpreted as the current es-

timate (since it depends on I∗) of the dynamic portion

of the visibility measurements. Here the k’th column

of ZΘ,I is the sampled Fourier transform of mode uk:

S◦F
[

I (x)uk (x)
]

. Note that ZΘ,I depends on both the

static envelope and dynamic parameters.

2345



Figure 6. Joint estimation of I∗ and Θ∗ = (φ∗

0, φ
∗

1) with four different sets of measurements, simulated with the same envelope Itrue.

Each row shows recovery from video measurements (Sec. 4.2.2) with different dynamic parameters Θtrue
1 , Θtrue

2 . The second column

shows a single frame of the true GRFs with CCW rotation [top] and radial inflow [bottom]. For each EHT array, recovery is shown by I∗

and D where Θ∗ is given by the global minima. Note that due to periodicity the manifolds wrap in both the horizontal and vertical axes.

Our method is able to identify flow parameters close to truth and demonstrates robustness to errors in the envelope reconstruction.

5. Numerical Simulations

We analyze the performance of our proposed method on

recovering the static envelope I and dynamic parameters

Θ = (φ0, φ1) of simulated astronomical accretion disks.

In Section 5.1 we demonstrate recovery when the underly-

ing video obeys the assumed GRF forward model. In Sec-

tion 5.2 we show that our method is able to generalize to re-

alistic complex black hole simulations that are not derived

from our assumed GRF fluid-flow model.

Synthetic Data Generation For each specified source

video, we generate synthetic visibility measurements corre-

sponding to 12 hours of observation. Visibilities are sam-

pled from two telescope arrays: EHT2017 and EHT++.

The spatial frequency coverage sampled by the two arrays

is shown in Fig. 5. EHT2017 contains only existing tele-

scopes that were used during the 2017 campaign. EHT++ is

a future projection that has 13 additional radio telescopes.

Thus, recovery with EHT2017 data is more challenging due

to severe measurement sparsity. VLBI measurements are

synthesized using the eht-imaging [9] library, with a

field-of-view (FOV) of 160µas and no additional noise.

Stochastic Parameter Representation For stochastic pa-

rameter estimation (Eq. 28) we grid Θ = (φ0, φ1) with

20×20 grid points. For each angle-pair we compute K=60
modes of the SPDE using RSI with q=10 iterations (see

Alg. 1). The values of K and q were chosen empirically.

During each iteration of RSI we solve Eq. (1) on a discrete

spatio-temporal grid of size Nt×Nx×Ny = 643, using the

HYPRE [13] computing library.

Envelope Estimation For the static envelope recon-

struction (Eq. 27) we use Maximum Entropy Method

(MEM) [20] regularization as R(I). The MEM regulariza-

tion uses a prior image of 2D Gaussian with a standard de-

viation of 50µas [35] (see Supp. material for more details).

5.1. SPDE Sampled Videos

To validate our approach, with access to ground-truth

parameters Θ, we generate videos that mimic black hole

emission using the SPDE forward model (Sec. 3). The true

envelope Itrue contains a ring structure [30] with a radius of

∼ 30µas that resembles a black hole shadow (Fig. 6 left).

Figure 6 shows estimation results obtained from

EHT2017 and EHT++ measurements for two different evo-

lution parameters (Θtrue
1 ,Θtrue

2 ) with the same envelope,

Itrue. For both EHT arrays, we recover an envelope with

a ring shape. The 2D loss manifolds (Eq. 28) are also

shown for the two parameter settings. The true parame-

ters Θtrue are indicated by a white triangle on the plots;

the global minimum, Θ∗, obtained by our proposed method

is indicated by the red circle. We find that Θ∗ is able to

roughly track Θtrue, even with very sparse EHT2017 mea-

surements. In particular, note that the envelope recovery

with EHT2017 is degraded compared to EHT++; neverthe-

less, we find that the dynamic parameter estimation is some-

what robust to these errors.

We compare our results to a state-of-the-art VLBI imag-

ing approach, StarWarps (SW) [7], which was developed

to handle time-varying interferometric datasets. The output

of SW is an estimated full length video, V SW, from which

we extract the mean OpticalFlow (OF) field [14] to approx-

imate the velocity field. Figure 7 highlights the advantage

of having a model for the dynamic evolution in the setting

of very sparse measurements made by EHT2017. In par-

ticular, for the EHT2017 array, V SW’s low-fidelity prevents

2346



V
el
o
ci
ty

v
(x
)

vtrue

True

v(Θ∗)

Proposed

Mean OF

SW[4] + OpticalFlow

F
ra
m
e
+

sp
at
ia
l
co
rr

ξ 1
(x
)

V true V ∗ V SW

Figure 7. Comparison of the proposed (model-based) approach

with StarWarps (SW) [7] for EHT2017 measurements. The top

row shows the true velocity field (captured in φ0) [left], the esti-

mated velocity field [center], and the mean OpticalFlow (OF) field

recovered from V SW [right]. The bottom row shows a frame from

the true movie sequence [right], a synthetic frame generated with

the recovered parameters and envelope V ∗ = I∗eρ
∗

[center], and

a frame from V SW [left]. Green ticks represent the true and re-

covered spatial correlations (captured in φ1). Our model fitting

approach is better able to recover the stochastic evolution of the

flow field from sparse data (see animations in the Supp. clip).

accurate recovery of dynamic properties using subsequent

video analysis. Additional comparisons are provided in the

supplemental material [1].

5.2. GRMHD Black Hole Videos

We test our approach in a more realistic setting, us-

ing physics-based video simulations of black hole accre-

tion. These movies are generated with General Relativistic

Magneto Hydrodynamics (GRMHD) [31]. Each simulation

takes around 50K core hours to compute.

While we do not have access to ground-truth parameters

for GRMHD movies, we can compare the recovery obtained

from VLBI measurements to the recovery obtained directly

from the GRMHD video, as formulated in Sec. 4.2.2. Recall

that we expect the pre-processing step of Eq. (24) to yield

a video with similar statistics to the sampled GRFs. More-

over, the 2D loss manifold recovered directly from the pre-

processed video is an upper bound of what we can expect

to achieve from sparse EHT measurements. Figure 8 shows

the recovered envelope and loss manifolds for video data,

as well as EHT++ and EHT2017 measurements. In all three

cases we are able to estimate the clockwise (CW) rotational

field. The loss manifolds for the EHT based recoveries re-

semble the loss from the video data, with global minima

(red dot) around φ1 = −60◦. Note that the local minima

at φ0≃0.0 correspond to an opposite rotation (CCW) with

the same φ1 = −60◦. While in this work we consider the

entire 2D parameter space, these local minima could be reg-

ularized or suppressed as an unlikely (non-physical) flow.

x
-

x
-

Figure 8. Recovery of the envelope and dynamic parameters of a

realistic black hole simulation from video data [top], EHT++ mea-

surements [center], and EHT2017 measurements [bottom]. Left

column: a frame from the GRMHD video and its preprocessed

dynamic component (Eq. 24). Right column: a frame from a GRF

sampled with the estimated parameters Θ∗. The correlations in

ρ(Θ∗) resemble those in the preprocessed GRMHD.

6. Discussion and Conclusion

Motivated by imaging black hole evolution, we formu-

late an approach to infer fluid-dynamics from interferomet-

ric measurements. The sparsity of the measurements makes

direct imaging challenging and highly ill-posed. In con-

trast, our approach relies on a stochastic surrogate model

that captures key features of the flow. We analyze our ap-

proach through simulations and demonstrate its advantage

over state-of-the-art interferometric imaging.

The primary limitation of our approach is the assump-

tion of stationarity; however, in Sec. 5.2 we demonstrate

recovery on non-stationary GRMHD flows. In the future,

we plan to extend the flow parameterization (Sec. 3.1) to

capture black holes observed at high inclination angles, and

infer parameters from noisy measurements [9].

Finally, we believe key insights from this work are

valuable for other scientific domains with complex fluid-

dynamics at their core. Potential applications include, for

example, remote sensing of atmospheric patterns (storms,

clouds, dust) from geo-stationary satellites.
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Mislav Baloković, John Barrett, Dan Bintley, et al. First m87

event horizon telescope results. ii. array and instrumentation.

The Astrophysical Journal Letters, 875(1):L2, 2019.

[3] Kazunori Akiyama, Antxon Alberdi, Walter Alef, Keiichi

Asada, Rebecca Azulay, Anne-Kathrin Baczko, David Ball,

Mislav Baloković, John Barrett, Dan Bintley, et al. First

M87 Event Horizon Telescope Results. V. physical origin

of the asymmetric ring. The Astrophysical Journal Letters,

875(1):L5, 2019.

[4] Tomer Amiaz, Sándor Fazekas, Dmitry Chetverikov, and

Nahum Kiryati. Detecting regions of dynamic texture. In In-

ternational conference on scale space and variational meth-

ods in computer vision, pages 848–859. Springer, 2007.

[5] Philipp Arras, Philipp Frank, Philipp Haim, Jakob

Knollmüller, Reimar Leike, Martin Reinecke, and Torsten

Enßlin. M87* in space, time, and frequency. arXiv preprint

arXiv:2002.05218, 2020.

[6] Wolfgang Betz, Iason Papaioannou, and Daniel Straub. Nu-

merical methods for the discretization of random fields by
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