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Abstract – Genetic regulatory network inference is critically important for revealing fundamental cellular 
processes, investigating gene functions, and understanding their relations. The availability of time series gene 
expression data makes it possible to investigate the gene activities of whole genomes, rather than those of 
only a pair of genes or among several genes. However, current computational methods do not sufficiently 
consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear 
system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) 
approach to infer genetic regulatory networks from time series gene expression data. Under this framework, 
gene interaction is explained through a connection weight matrix. Based on the fact that the measured time 
points are limited and the assumption that the genetic networks are usually sparsely connected, we present a 
PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time 
series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine 
the network parameters. Our approach has been applied to both synthetic and real data sets. The results 
demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of 
the gene expression time series and revealing potential regulatory interactions between genes.    

Index Terms —Genetic regulatory networks, Recurrent neural networks, Particle swarm optimization, Time 
series gene expression data. 

I INTRODUCTION 

With the rapid advancement of DNA microarray technologies [10, 29], inferring genetic 

regulatory networks from time series gene expression data has become critically important to 

revealing fundamental cellular processes, investigating functions of genes and proteins, and 

understanding complex relations and interactions between genes [6, 21, 49]. In the context of the 

data generated from microarray technologies, i.e., transcriptional regulation of protein-coding 

genes, a genetic regulatory network consists of a set of DNA, RNA, proteins, and other 

molecules, and it describes regulatory mechanisms among these components. Although 
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regulation of gene expression can occur at any step along the cellular information flow from 

DNA to RNA to protein, one of the most common and well-studied steps is the initiation of 

transcription (RNA synthesis from a DNA template). Eventually, a more complete 

understanding of gene expression will have to take into consideration that regulation can occur 

at other levels, e.g., mRNA splicing, translational and post-translational control, including 

microRNAs that do not encode protein but can interact with DNA or RNA to affect expression. 

However, the complexity of genetic networks consisting of protein-coding genes that affect 

other protein-coding genes is vast enough to warrant current studies aimed at data from 

microarrays. Advancements at this level will facilitate even more complex networks that 

incorporate proteomic and metabolomic data. All cells for a specific organism include identical 

genetic information, so it is the regulatory network that determines which subset of genes is 

expressed, to what level, and in response to what conditions of the cellular environment. For 

example, genes encoding digestive enzymes are expressed in the gut but not in the skin, and 

their level of expression increases in the presence of food. This control is achieved through the 

actions of regulatory proteins, called transcription factors, that activate or inhibit the 

transcription rate of certain genes by binding to their transcriptional regulatory sites. Therefore, 

the transcription of a specific gene, or the control of its expression, can be regarded as a 

combinatorial effect of a set of other genes. In other words, when we say that gene g1 regulates 

gene g2, we actually mean that the transcription factors encoded by g1, translated from its 

mRNA products, control the transcription rate of g2. Other activities, such as RNA splicing and 

posttranslational modification of proteins, are also constituents of the entire regulatory system. 

However, due to limited data availability, we can only focus on the transcription (mRNA) level 

at the current stage instead of the protein level. Despite such restrictions, simplification has the 
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advantage of measurements over a very large scale, and the use of mRNA expression-based 

microarrays has led to many interesting and important results [1, 6, 21, 32].  

Classical molecular methods, such as Northern blotting, reporter genes, and DNA 

footprinting, have provided great insight into the regulatory relationships between a pair of 

genes or among a few preselected genes, which is far from sufficient for exploring their 

complicated regulatory mechanisms. DNA microarray technologies provide an effective and 

efficient way to measure the gene expression levels of up to tens of thousands of genes 

simultaneously under many different conditions; such technologies have already been 

successfully applied to gene function prediction, disease diagnosis, drug development, and 

patient survival analysis [30, 48, 50]. Particularly, time series gene expression data, which 

measure the mRNA abundance of genes through a number of time points, make it possible to 

investigate gene relations and interactions when taking the entire genome into consideration [6, 

21].   

Several computational models have been proposed to infer regulatory networks through the 

analysis of gene expression data [5, 7, 12, 14-17, 20, 23, 28, 31, 33, 36-38, 40-43, 45]. Boolean 

networks are binary models, which consider that a gene has only two states: 1 for active and 0 

for inactive [15, 23, 28, 36]. The effect of other genes on the state change of a given gene is 

described through a Boolean function. Although Boolean networks make it possible to explore 

the dynamics of a genetic regulatory system, they ignore the effect of genes at intermediate 

levels and inevitably cause information loss during the discretization process. Furthermore, 

Boolean networks assume the transitions between genes’ activation states are synchronous, 

which is biologically implausible. Investigations of the dynamic behaviors under an 

asynchronous framework are given in [16] and [17]. Bayesian networks are graph models that 
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estimate complicated multivariate joint probability distributions through local probabilities [12]. 

Under this framework, a genetic regulatory network is described as a directed acyclic graph that 

includes a set of vertices and edges. The vertices are related to random variables and are 

regarded as genes or other components while the edges capture the conditional dependence 

relation and represent the interactions between genes. Bayesian networks are effective in dealing 

with noise, incompleteness, and stochastic aspects of gene expression data. However, they do 

not consider dynamical aspects of gene regulation and leave temporal information unaddressed. 

Recently, dynamic Bayesian networks (DBN) have attracted more attention [20, 33, 40]. DBN 

can model behaviors emerging temporally and can effectively handle problems like hidden 

variables, prior knowledge, and missing data. For linear additive regulation models [5, 7, 37-38], 

the expression level of a gene at a certain time point can be calculated by the weighted sum of 

the expression levels of all genes in the network at a previous time point. Although linear 

additive regulation can reveal certain linear relations in the regulatory systems, it lacks the 

capability to capture the nonlinear dynamics between gene regulations. 

Considering the limitations of the above methods, we discuss the inference of genetic 

regulatory networks from time series gene expression in the framework of recurrent neural 

networks [27]. In using RNNs for genetic network inference, we are mainly concerned with their 

ability to interpret complex temporal behavior, which is an important characteristic of time 

series gene expression data and makes them different from static expression data [1]. 

Generalized RNNs can be considered as signal processing units forming a global regulatory 

network. The recurrent structure of RNNs effectively reflects the existence of feedback, which is 

essential for gene regulatory systems. D’haeseleer discussed a realization of RNNs in modeling 

gene networks using synthetic data [5]. Vohradský investigated the dynamic behaviors of a 3-

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



gene network in the framework of RNNs [41]. Several more RNN-based applications can also 

be found in [31], [38], and [45]. 

Commonly, back-propagation through time (BPTT) [46] and evolutionary algorithms (EAs) 

[11, 51] are used for RNN training, i.e., learning the functional and structural parameters of 

regulatory networks. BPTT may be derived by unfolding the temporal operation of the network 

into a layered feedforward network, the topology of which grows by one layer at every time step 

[18].  By using BPTT, we find the derivatives of a cost function with respect to the individual 

weight of the network. These derivatives can be used to do gradient descent on the weights, 

updating them in the direction that minimizes the error. However, the requirement that the 

derivatives must be computed limits its application because the derivatives are not always 

available. EAs are inspired by the process and principles of natural evolution and refer to a class 

of population-based stochastic optimization search algorithms [51]. The major technologies of 

EAs include genetic algorithms (GAs), evolution strategies (ES), and evolutionary programming 

(EP), each of which focuses on a different facet of natural evolution [11, 51]. Particularly, gene 

regulatory network inference with GAs has already been reported by Wahde and Hertz [42-43] 

and Keedwell and Narayanan [24]. As an example, Wahde and Hertz used GAs to identify the 

network parameters in inferring gene regulatory interactions during the development of the 

central nervous system of rats [42-43]. More broadly, a survey on the application of EAs in 

classifying biological data was offered by Wahde and Szallasi [44].  

Here, we use particle swarm optimization, a variant of evolutionary computation technology 

for global optimization, for RNN training [9, 26]. In contrast to other EAs, PSO has a random 

velocity associated with each potential solution, which is considered to be flown through the 

problem space [26]. Similar to the state-of-the-art EAs, PSO is implemented with a memory 
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mechanism, which can retain the information of previous best solutions that may get lost during 

the population evolution. PSO has many other desirable characteristics, such as flexibility in 

balancing global and local searches, computational efficiency for both time and memory, no 

need for encoding, and ease of implementation. PSO is particularly useful in evolving neural 

networks when many local optima exist, a circumstance in which traditional gradient-based 

search algorithms get stuck easily [26]. It has been shown that PSO requires less computational 

cost and can achieve faster convergence than conventional back-propagation in training 

feedforward neural networks for nonlinear function approximation [13]. Juang [22] and Cai and 

Wunsch [3] combined PSO with EAs in training RNNs for dynamic plant control and engine 

data classification, respectively. A comparison of PSO and GA in evolving RNNs was also 

given by Settles et al. [35]. In addition to RNN weight evolution, we also use PSO for RNN 

architecture evolution in this study. In other words, we search the gene regulatory network 

(modeled by RNNs) structures in order to unveil the potential and meaningful ones that fit well 

with the time series data, and we then investigate the interactions between genes. Since genetic 

regulatory networks are usually assumed to be sparsely connected, this strategy offsets the effect 

of the insufficient data points of time series to some extent. PSO proves to be a powerful tool to 

explore sophisticated problem spaces [9, 26], which makes it one of several alternatives that can 

be explored for regulatory network inference.  

The paper is organized as follows. Section II describes the model for regulatory network 

inference, together with the RNN training algorithm. In Section III, we show how to use PSO to 

select the potential network structures. Section IV illustrates applications to both the synthetic 

data and the real data - the SOS DNA repair system. We conclude the paper in Section V. 

II. RECURRENT NEURAL NETWORKS 
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A. Model 

For a continuous time system, the genetic regulation model can be represented through a 

recurrent neural network formulation [5, 31, 38, 41, 45],  

1 1
( )

N K
i

i ij j ik k i i i
j k

de
f w e v u e

dt
τ β λ

= =

= + + −∑ ∑ , (1) 

where ei is the gene expression level for the ith gene (1≤i≤N, N is the number of genes in the 

system), f() is a nonlinear function (usually, a sigmoid function is used ( ) 1/(1 )zf z e−= + ), wij

represents the effect of the jth gene on the ith gene (1≤i,j≤N), uk is the kth (1≤k≤K, K is the 

number of external variables) external variable, which could represent the externally added 

chemicals, nutrients, or other exogenous inputs, vik represents the effect of the kth external 

variable on the ith gene, τ is the time constant, β is the bias term, and λ is the decay rate 

parameter. A negative value of wij represents the inhibition of the jth gene on the ith gene, while a 

positive value indicates the activation controls. When wij is zero, there is no influence of the jth

gene on the expression change of the ith gene. The effects of other factors can be added into the 

formula based on the specific situation. Note that this model is a natural extension of the linear 

additive model in [7, 37] in order to explicitly account for the nonlinear dynamics of the 

networks. Several applications based on the model in Eq. 1 have been reported in the literature 

[5, 31, 38, 41, 45].

This model can also be described in a discrete form (for computational convenience, since 

we only measure at certain time points): 

1 1

( ) ( ) 1 ( ( ) ( ) ) ( ) ,
N K

i i
ij j ik k i i i

j ki

e t t e t
f w e t v u t e t

t
β λ

τ = =

⎛ ⎞+ Δ −
= + + −⎜ ⎟Δ ⎝ ⎠

∑ ∑ or, 
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1 1
( ) ( ( ) ( ) )

1 ( )

N K

i ij j ik k i
j ki

i
i

i

te t t f w e t v u t

t
e t

β
τ

λ
τ

= =

Δ
+ Δ = + +

⎛ ⎞Δ
+ −⎜ ⎟
⎝ ⎠

∑ ∑
. (2) 

Fig. 1 depicts a recurrent neural network, which is unfolded in time from t=0 to T with an 

interval Δt, for modeling a genetic network. Here, each node corresponds to a gene, and a 

connection between two nodes defines their interaction. The weight values can be either 

positive, negative, or zero, as mentioned above. Fig. 2 illustrates a node in the recurrent neural 

network, which realizes Eq. 2.  
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Fig 1. The description of a genetic network through a recurrent neural network model. This
network is unfolded in time from t=0 to T with an interval Δt. Here, the regulatory network
is shown in a fully connected form, although, in practice, the network is usually sparsely
connected.

ΣwiNeN(t)
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Fig. 2. A node (neuron) in the recurrent neural network model, based on Eq. 2. 
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It is usually difficult to obtain the measurements of the external variables, so it is a common 

practice to ignore the term 
1

( )
K

ik k
k

v u t
=
∑ . Although this simplification inevitably affects the 

accuracy of the models, studies based on it still provide many interesting insights into gene 

networks, as demonstrated in [31, 37, 42, 45]. From the following section, we can see that the 

inclusion of these exogenous inputs does not affect the derivation of the learning algorithm. For 

computational simplicity, we also assume that the decay rate parameter λ is 1. The final model 

we process in the paper is represented as 

1
( ) ( ( ) ) 1 ( )

N

i ij j i i
ji i

t t
e t t f w e t e tβ

τ τ=

⎛ ⎞Δ Δ
+ Δ = × + + −⎜ ⎟

⎝ ⎠
∑ . (3) 

B. Training algorithm 

Although the model has already been reported in the literature, the difficulty of RNN 

training limits its further application for gene network inference, as aforementioned. Here, we 

propose to use a different training strategy, particle swarm optimization, to determine the 

unknown network parameters.  

PSO consists of a swarm of particles, each of which represents a candidate solution. Each 

particle i with a position represented as xi moves in the multidimensional problem space with a 

corresponding velocity vi. The basic idea of PSO is that each particle randomly searches through 

the problem space by updating itself with its own memory and the social information gathered 

from other particles. These components are represented in terms of two best locations during the 

evolution process: one is the particle’s own previous best position, recorded as vector pi,

according to the calculated fitness value, and the other is the best position in the whole swarm, 

represented as pg. Also, pg can be replaced with a local best solution obtained within a certain 
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local topological neighborhood. Fig. 3 depicts the vector representation of the PSO search space. 

The corresponding canonical PSO velocity and position equations are written as, 

1 1

2 2

( 1) ( ) ( ( ))
( ( ))

i I i i i

g i

t W t c t
c t

η
η

+ = × + × × −
+ × × −

v v p x
p x

, (4) 

( 1) ( ) ( 1)i i it t t+ = + +x x v  ,        (5) 

where WI is the inertia weight, c1 and c2 are the acceleration constants, and η1 and η2 are uniform 

random functions in the range of [0, 1]. 

In the context of RNN training with PSO, a set of M particles X=(x1,x2,…, xM), where the ith

particle (candidate solution) can be represented as a D-dimensional vector 

( ),11 , 1 ,12 ,1 , ,1 , ,1 ,,..., , ,..., ,..., , ,..., , ,...,i i i N i i N i NN i i N i i Nw w w w w β β τ τ=x with D=N(N+2), are included in 

the swarm. The velocity associated with each particle is described as ( )1 2 , ,...,i i i iDv v v=v . A

fitness function, which is used to measure the deviation of network output e(t) from the real 

measurement (target) d(t), is defined as  

xi(t) WIvi(t)

c1η1(pi-xi(t))

c2η2(pg-xi(t))

xi(t+1) 

vi(t+1)

Fig.3. Concept of a swarm particle’s position. xi(t) and vi(t) denote the particle’s position
and the associated velocity vector in the searching space at generation t, respectively.
Vectors c1η1(pi-xi(t)) and c2η2(pg-xi(t)) describe the particle’s cognitive and social activities,
respectively. The new velocity vi(t+1) is determined by the momentum part, cognitive part,
and social part, given in Eq. 4. The particle’s position at generation t+1 is updated with xi(t)
and vi(t+1), given in Eq. 5. 
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2

0 1

1( ) ( ( ) ( ))
T N

i i i
t i

Fit e t d t
TN = =

= −∑∑x . (6) 

More elaborate error terms can be added easily based on the specific requirement of the problem 

at hand. Here, we use a batch mode for training, which means the parameter updates are 

performed after all input data points are presented to the model [13, 18]. The basic procedure of 

PSO-based RNN training can be summarized as follows:   

i). Initialize a population of particles with random positions and velocities of D dimensions. 

Specifically, the connection weights, biases, and time constants are randomly generated 

with uniform probabilities over the range [wmin, wmax], [βmin, βmax], and [τmin, τmax], 

respectively. Similarly, the velocities are randomly generated with uniform probabilities in 

the range [-Vmax, Vmax], where Vmax is the maximum value of the velocity allowed.  

ii). Calculate the estimated gene expression time series based on the RNN model, and evaluate 

the optimization fitness function for each particle.  

iii). Compare the fitness value of each particle Fit(xi) with Fit(pi). If the current value is better, 

reset both Fit(pi) and pi to the current value and location. 

iv). Compare the fitness value of each particle Fit(xi) with Fit(pg). If the current value is better, 

reset Fit(pg) and pg to the current value and location. 

v). Update the velocity and position of the particles with Eqs. 4 and 5. 

vi). Return to step ii until a stopping criterion is met, which usually occurs upon reaching the 

maximum number of iterations or discovering high-quality solutions. 

PSO has only four major user-dependent parameters. The inertia weight WI is designed as a 

tradeoff between the global and local search. Larger values of WI facilitate global exploration 

while lower values encourage a local search. WI can be fixed to some certain value or can vary 

with a random component, such as  
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max 2IW W η
= − , (7) 

where η is a uniform random function in the range of [0,1]. As an example, if Wmax is set as 1, 

Eq. 7 makes WI vary between 0.5 and 1, with a mean of 0.75. In this paper, these two strategies 

are referred to as PSO-FIXEW and PSO-RADW, respectively. c1 and c2 are known as the 

cognitive and social components, respectively, and are used to adjust the velocity of a particle 

towards pi and pg. Commonly, both parameters are set to 2.0 based on past experience [9, 26]. 

During the evolutionary procedure, the velocity for each particle is restricted to a limit Vmax, like 

in velocity initialization. When the velocity exceeds Vmax, it is reassigned to Vmax. If Vmax is too 

small, particles may become trapped into local optima, but if Vmax is too large, particles may 

miss some good solutions. Vmax is usually set to around 10-20% of the dynamic range of the 

variable on each dimension [26]. 

III. MODEL SELECTION 

One of the major obstacles for genetic network inference is the “curse of dimensionality” [5, 

38], which describes the exponential growth in computational complexity and the demand for 

more time points as a result of high dimensionality in the feature space [18]. Typically, the gene 

expression data currently available contain measurements of thousands of genes, but only with a 

limited number of time points (less than 50). This situation limits the application of many data-

driven computational models and makes it very difficult to infer a fully determined large-scale 

regulatory network and make accurate predictions of future expression levels. Several strategies 

have been employed for limiting an effective number of parameters, including clustering [31, 

42], interpolation [2, 4-5], adding noisy duplicates [39], and thresholding [38-39]. For RNN 

training, strategies like weight decays and pruning algorithms can be used [18]. Clustering 
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algorithms are used to generate clusters of co-expressed genes based on their expression 

profiles. For each cluster, the mean time series is then calculated for further analysis. The 

disadvantage of this method is that it only identifies relations between groups of genes instead of 

Output the optimum 
solutions 

Set the PSO parameters 

Initialize a swarm of genetic 
networks (structure, connection 

weights, biases, and time constants) 

Start

Meet the 
stop criterion

Yes

No

Update velocities and 
positions for structures 

Evolution of structures

Evolution of connection weights 
and other parameters 

Calculate and evaluate 
fitness function 

Update corresponding 
velocities and positions 

Fig. 4.  Flowchart for genetic regulatory network inference with PSO. Both structures and 
connection weights, together with other parameters, are evolved. 
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individual genes, which biologists are more interested in. Interpolation techniques have the 

disadvantage that they may not sufficiently capture changes between two time points, and they 

“tend to reduce dimensionality problem only marginally regardless of the number of time points 

added” [39]. The effectiveness of adding noisy duplicates and thresholding is also limited 

because these strategies do not provide any additional information on expression level changes.  

Fortunately, biological knowledge of genetic regulatory networks assumes that a gene is 

only regulated by a limited number of genes [5, 33, 38]. In other words, the regulatory networks 

are sparsely connected rather than fully connected, and most weight values are zeroes. It is 

reasonable to identify the weights whose values are non-zeroes from these data, which indicate 

the potential interactions between genes, and furthermore, whether the interaction is activation 

or inhibition, based on the sign of the weights. However, it may not be possible to accurately 

recover the values of the weights due to the limited availability of the time points. Wahde and 

Hertz proposed a two-step procedure for genetic regulatory network inference [43]. The goal of 

the first step is to unravel the possible interactions between genes by iteratively searching non-

significant network parameters, i.e., to determine what weight values are non-zeroes. With the 

results of the first stage, the non-zero weights can be further fine-tuned, while the non-

significant weights are clamped to zero. This procedure is repeated for different values of the 

maximum allowed weight. This reverse engineering procedure provides a way to identify and 

understand the regulatory mechanism in a genetic network. However, identifying the non-

significant network parameters is not a trivial task, and there is no effective criterion for 

guidance. A feedforward neural network and genetic algorithm-based hybrid system was 

proposed in a recent paper by Keedwell and Narayanan [24]. Here, we use PSO to search the 

network structure space and find meaningful weights that indicate the regulatory relations. This 
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strategy can avoid the exhaustive enumeration of all possible connectivity (although generally 

much less than N, the search space is still large), and has the potential to be extended to solve 

the problem for large-scale regulatory network inference.  

Since our goal is to choose a subset of network connections from a large solution space, we 

employ a discrete binary version of PSO in this context [25]. The major change from the 

continuous version in Section III lies in the interpretation of the meaning of the particle velocity. 

As aforementioned, for a set of particles ( )1 2, ,..., M=X x x x , the velocity of the ith particle 

( )1 2, ,...,i i i idx x x=x is represented as ( )* * * *
1 2, ,...,i i i idv v v=v , where d=N2. The possible value for 

each bit xil (1≤i≤N, 1≤l≤d) is either one or zero, which indicates whether there exists an 

interaction between a pair of genes (1 for yes and 0 for no). The velocity vil
* associated with it is 

defined as the probability that xil takes the value of one, and it is calculated by the logistic 

probability law 

1 1

2 2

( 1) ( ) ( ( ))      

( ( ))
il

il

il I il i il

g il

v t W v t c p x t

c p x t

η

η

+ = × + × × −

+ × × −
, (8) 

* ( 1) 1/(1 exp( ( 1)))il ilv t v t+ = + − + , (9)               

*
31 if   ( 1)

( 1)
0,                     otherwise

il
il

v t
x t

η δ⎧ + < +
+ = ⎨

⎩
, (10) 

where η3 is a sample of a random variable uniformly distributed in the range of [0, 1], and δ is a 

parameter that limits the total number of connections selected to a certain range. Compared to 

the original binary PSO in [25], we add the parameter δ in order to control the connectivity more 

flexibly. If the value of δ is large, the number of connections for a node becomes smaller, and 

vice versa.  Like the continuous PSO, the velocity is also restricted to a limit Vmax. In this case, 
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this restricts the probability that a bit in a particle takes on the value of one to a certain range. 

Usually, the smaller Vmax is, the higher the mutation rate [25].  

The inference procedure for the genetic regulatory networks of interest is described through 

a flowchart in Fig. 4. The algorithm consists of two major steps, i.e., the evolution of the 

network architecture and the evolution of the corresponding weights, together with other 

parameters (bias and time constant). For a given network construction, PSO is used to determine 

the parameters of the genetic networks. A sufficient number of runs are required to assure the 

quality of the inferred networks. Based on the values of the fitness function and the best 

networks obtained previously, network structures evolve through another PSO procedure, which 

aims to explore the meaningful connection relations between network nodes (genes). The 

procedure iterates until the stop criterion is met. During the algorithm’s run, we can also use the 

strategy introduced by Wahde and Hertz [43] to clamp the structure parameters of significant 

weights to one when we are highly confident of the presence of gene interactions, or we could 

clamp the parameters to zero when we are highly confident of the nonexistence of the 

corresponding connections. This means the entire algorithm may need to be repeated a certain 

number of times in order to effectively model the regulatory systems.     

Since the data are sparse and quite limited, it is meaningless to determine a particular 

network with the highest fitness value. Rather, potential information could be unveiled by 

sampling a set of networks and identifying the connection appearing with the highest frequency, 

as described in a Markov chain Monte Carlo simulation-based method [20]. In our study, we 

follow the same strategy and determine the network structures based on a large set of sampling 

networks. In order to estimate the number of connections that a particular network may have, we 

use a heuristic based on the assumption that the number of times that a nonexistent connection is 
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observed in the inferred networks follows a binomial distribution with a probability p [47]. We 

set the level of significance at 0.05, which means the probability of exactly m observations of a 

nonexistent connection in M sampling networks is less than or equal to 0.05, or 

( ) (1 ) 0.05m m M m
MP m C p p −= − ≤ . We then count the total number of connections NC that occur 

more than m times, which varies with different values of p. Using this information, we can draw 

a plot reflecting the relation of NC and p. We select the value of p that corresponds to an abrupt 

change of the curve as the estimated probability of the false occurrence of a connection. 

Accordingly, the value of NC, denoted as NC*, provides an estimate of the real number of 

connections in the network. 

Fig. 5.  Typical gene behaviors of the synthetic data in terms of expression level over time. 
X-axis: time, Y-axis: gene expression level.

Table I. The synthetic genetic network used to generate the data. Half of the weights are non-
zeroes. 

wij βi τi

20.0 -20.0 0.0 0.0 0.0 10.0 

15.0 -10.0 0.0 0.0 -5.0 5.0 

0.0 -8.0 12.0 0.0 0.0 5.0 

0.0 0.0 8.0 -12.0 0.0 5.0 

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IV. RESULTS 

We perform the proposed PSO/RNN method on both a synthetic and a real data set. By 

using an artificial data set, we have a clearer view of the performance of the model and 

algorithm, and we can investigate more effectively the properties of the algorithm as it is 

possible to compare the learned models with the known regulatory system, which is usually 

infeasible or incomplete for real data. For the real data set, we show that PSO/RNN can provide 

meaningful insight into the potential gene interactions in the network. 

A. Artificial Data Set 

We first apply the algorithm to a simplified synthetic genetic network with 4 genes, used in 

[42]. The goal is to recover the basic genetic regulatory networks from the generated time series 

gene expression data. The interaction weight matrix W, the bias β, and the time constant τ for 

the network are set as in Table I. The network is simulated from a random initial state for each 

gene. We generate three curves with 300 time points for each curve, based on Eq. 3, at a time 

resolution of Δt=0.1. The typical behaviors of some simulated genes are depicted in Fig. 5. It is 

clear that, because we do not consider stimuli from the external environment, the expression 

levels for these genes quickly get saturated. For the real data, the data points generally are not 

sufficient; therefore, we only use 50 points from each curve to train the regulatory systems, 

mostly taken from the early stage of the process. For the purpose of comparison, we also 

perform an experiment for a single time series with 150 time points. 

The algorithm is written in C++. It takes about 6 seconds to run 1,000 training epochs with 

150 time points on a 2.4GHz Intel Pentium 4 processor with 512M of DDR RAM. Moreover, 

the code has not been optimized for computational speed. For a large-scale data analysis with 
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hundreds or thousands of genes, parallel technology can be implemented for speedup thanks to 

the parallel nature of neural networks. 

The performance of PSO is dependent on parameter selection. An optimization strategy has 

been proposed to use another PSO to explore optimal parameter values [8]. However, the 

computational price may become quite expensive in this situation. We tested the PSO 

performance with the commonly used values of c1 and c2 [8-9], together with both PSO-FIXEW 

and PSO-RADW methods, on the artificial data set. We fixed the WI at 0.7 for PSO-FIXEW, 

and for PSO-RADW, we chose Wmax equal to 1 so that WI varies in the range of [0.5,1]. We 

compared the performance in terms of the number of iterations required to reach a pre-specified 

error. We further set the maximum number of iterations allowed as 500. If PSO reaches the 

expected error threshold within 500 iterations, we say that PSO has converged. The results over 

200 runs are summarized in Table II, which consists of the number of times that the iteration 

exceeds the allowed maximum and the average number of epochs if PSO has converged. As 

indicated in the table, PSO-RADW performs better than PSO-FIXEW for most of the cases. By 

further considering the effect of the parameters c1 and c2, the best performance is achieved when 

Table II. Parameter effects on PSO performance (average over 200 runs). The parameters are 
compared in terms of the number of times that the iteration exceeds the allowed maximum and 

the average number of epochs if PSO has converged. 
Performance 

c1 c2 WI >500 iterations Average number 
of iterations 

Fixed at 0.7 16 53.6 2 2
1-rand/2 8 46.9 

Fixed at 0.7 104 33.7 0.5 2 
1-rand/2 81 46.6 

Fixed at 0.7 101 158.0 2 0.5 
1-rand/2 54 122.8 

Fixed at 0.7 180 32.2 0.5 0.5 
1-rand/2 151 18.3 

Fixed at 0.7 19 56.5 1.5 2.5 
1-rand/2 9 51.1 

Fixed at 0.7 12 51.5 2.5 1.5 
1-rand/2 7 50.4 
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PSO-RADW is used and c1 and c2 are both set as 2, where the expected error can be reached 

within 46.9 iterations on average, except for 8 runs that did not converge. The results when c1

and c2 are set as 2.5 and 1.5 or 1.5 and 2.5 show that a few more iterations, on average, are 

required. All three cases are comparable in terms of the number of times that PSO has not 

converged. For other commonly used parameters, convergence depends more on the 

initialization and is not consistently stable. Based on the results, we used PSO-RADW with 

Wmax at 1 and set both c1 and c2 to 2 in our further experiments. 

We performed a random search of the network structure, where a connection between a pair 

of genes is considered to exist with a probability of 0.5 and the network weights are evolved for 

100 iterations using PSO. The average number of iterations for reaching an error level at 10-4

using PSO search in 100 runs is 187. This number increases to 1,116 when random search is 

used in 100 runs. We further decreased the probability of interaction to favor the creation of 

networks with smaller number of connections. This change achieves certain improvements in 

the random search method, and the best result we obtained is 892 in 100 runs when the 

probability is set as 0.3. In another experiment, we added a mechanism in the random search to 

keep track of all generated structures, and this method generates every structure once, at most. 

We did not observe significant improvement in this variant. The average number of iterations in 

100 runs is 967. We also compared the performance of PSO in network structure search with 

GA. In this experiment, the RNNs are still trained with PSO, but the network structures are 

searched using GA. The population size of GA is also 30. A binary tournament selection is used, 

and the uniform crossover rate is set as 0.8. The mutation probability is chosen at 0.01. The 

average number of generations of GA in reaching the 10-4 error level is 206 in 100 runs, 19 

iterations more than PSO. However, we also observe some cases where GA achieves very fast 
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convergence (within 80 generations). As discussed in [35], PSO and GA have different search 

capabilities, and the understanding of this difference is important for future research. 

We ran our algorithm 200 times with different random initial values for the weights, biases, 

and time constants. Performance is discussed based on the averages across all these 

experiments, unless otherwise indicated. The best solution of each run, i.e., pg, was used for 

further analysis, which leads to 200 solutions in total. Each swarm consists of 30 particles, with 

the network structures and the network weights evolved for 100 and 1,000 generations, 

respectively. We set δ equal to 0.2, which usually leads to the possible connectivity varying 

between 3 and 12. The initial values for the weights (including biases) and time constants lie 

between -1 and 1 and 1 and 15, respectively. We estimate the possible number of connections 

NC* in the network using the statistical heuristic described in Section III, and we further identify 

the potential NC* connections based on the observance frequencies. Moreover, the activation or 

inhibition relation is determined according to the signs of the mean values of the weights: plus 

(a) (b) 
Fig. 6. The total number of connections NC that occur more than m times with the level of
significance at 0.05 vs. the probability p that a nonexistent connection is observed in a network.
(a) Three time series are used; (b) One time series is used.  
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corresponds to activation while minus represents inhibition. The remaining connections are 

considered non-existent, with zero weights in the connection weight matrix.  

Fig. 6 depicts the changes of NC as a function of the probability p when three time series or 

a single time series were used. As we can see, using three time series, when the value of p is 

greater than 0.15, the value of NC does not decrease as quickly as when p is less than 0.15. 

Therefore, the estimated value for the possible number of connections NC* in this network is 8. 

Similarly, we estimate that there are 9 potential connections in the network when a single time 

series is used. Table III summarizes the identified weight connection matrices, obtained from 

either a single time series or multiple time series, together with the original weight matrix. 

Compared with the original weight matrix, the result with three time series demonstrates that the 

proposed model can recover all eight relations existing in the network without any false 

positives, which refer to non-existent relations that the model wrongly identifies as existing 

ones. Particularly, all 200 solutions identify the activation relation of gene 4 to gene 3 and the 

Table III. The generated connection matrix (upper panel) and the learned connection matrix 
with the single series (second panel) and multiple series (lower panel). Each element wij in the 
matrix represents the relation between the ith and jth gene, as activation (+), inhibition (-), and 
absence of regulation (0). The values in parentheses indicate the percentage of the occurrence 

of connections in the networks within 200 runs. 
wij (f%)

+ - 0 0
+ - 0 0
0 - + 0
0 0 + -

0 (11.5) + (27.5) - (25.5) - (44.0) 
0 (3.0) - (20.0) - (17.5) - (52.0) 
0 (1.0) 0 (10.0) 0 (4.5) 0 (8.0) 
0 (2.5) + (55.0) + (32.5) - (59.5) 

+ (29.0) + (34.0) 0 (5.5) 0 (7.0) 
+ (83.5) - (98.0) 0 (3.5) 0 (3.0) 
0 (16.5) - (60.5) + (99.5) 0 (15.0) 
0 (10.0) 0 (8.5) + (100) - (100) 
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self-inhibition of gene 4. The only mistake lies in the inhibition of genes 1 to gene 2, which is 

identified as activation in the constructed network. In contrast, using a single time series is 

ineffective, even though the mean square error is small (at the level of 10-5). Only four out of 

eight non-zero weights are correctly identified, but with five false positives. Also, the identified 

relation between gene 1 and 2 is wrongly regarded as activation. These results agree with the 

conclusion in [42-43] that by using more time series, more information is provided to the model, 

and therefore, better results usually can be achieved. 

B. SOS Data Set 

We employed PSO/RNN to analyze the SOS DNA Repair network in bacterium Escherichia 

coli depicted in Fig. 7 [34]. The SOS system consists of around 30 genes regulated at the 

DNA Damage 

LexA 

Single Stranded DNA 

RecA RecA* 

LexA 
Cleavage recA 

lexA 

umuD ruvA … uvrA 

Fig. 7.  The bacterial E. coli SOS DNA Repair network. Inhibitions are represented by -•,
while activations are represented by →. When damage occurs, the protein RecA, which
functions as a sensor of DNA damage, becomes activated and mediates cleavage of the LexA
protein. The LexA protein is a repressor that blocks transcription of the SOS repair genes. The
drop in LexA protein levels causes the activation of the SOS genes. After the damage is
repaired or bypassed, the cleavage activity of RecA drops, causing the accumulation of LexA
protein. Then, LexA binds sites in the promoter regions of these SOS genes and represses their
expression. The cells return to their original states [34]. 
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transcriptional level. For the data set, four experiments have been conducted with different light 

intensities (Experiments 1 & 2: UV=5 Jm-2, Experiments 3 & 4: UV=20 Jm-2). Each experiment 

includes the expression measurements for 8 major genes (uvrD, lexA, umuD, recA, uvrA, uvrY,

ruvA, and polB) through 50 time points, sampled every 6 minutes. Therefore, the data set 

consists of 4 subsets, each of which is represented as a matrix ETi, i=1,…,4. To our knowledge, 

this is one of the most useful data sets that fits the current computational models, as indicated in 

[33]. Like before, we performed analyses on both single time series and multiple time series. 

Fig. 8 shows the real gene expression profiles and the learned mean expression profiles for 

Exp. 2. We can see that the proposed model can effectively capture the dynamics of most genes 

(lexA, recA, uvrA, uvrD, and umuD) in the system, with the major change trends of the gene 

expression levels reflected in the learning curves. The expression profiles for genes uvrY, ruvA,

and polB oscillate dramatically between the maximum value and zero, and the obtained models 

generally use their means to represent the profiles because of the definition of the fitness 

function. One possible strategy is to add an additional item in the fitness function in order to 

(a) (b) 
Fig. 8. (a) The measured gene expression profiles for Exp. 2; (b) the learned mean expression
profiles with PSO. The average mean square error between the real profiles and learned profiles
(both are normalized into the range [0, 1]) is 0.022. 
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track the difference between two time points. The reader should note that reconstructing the 

correct dynamics is easier than reconstructing the correct regulatory network structure because 

genetic regulatory network inference is an ill-posed problem – there is no unique solution that 

will satisfy the data upon which the inference is based. This inherent difficulty is a limitation of 

our approach, as well as of any other approach we are aware of. 

In order to infer the potential interactions between genes, we ran the algorithm 200 times 

with population size set as 30 and examined the best solution of each run as we did for the 

artificial data. We evolved the network structures and the network weights for 300 and 2000 

generations, respectively, and the parameter δ was set equal to 0.4, which limits the possible 

number of connectivity to 5-15. The initial values for the weights and bias were between -1 and 

1, while the initial values for the decay rates were between 1 and 10.   

Based on the curve depicted in Fig. 9, we observe that there are two positions suggesting the 

possible number of connections in the inferred network. If we choose p at 0.16, the estimated 

number of connections in the network is 16, which includes all the 9 true relations in the system, 

together with 7 false positives. If we operate in a more conservative way, we decide the possible 

Fig. 9.  Estimation of the number of connections in the SOS network. 
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number of connections in the network is 7. In this case, 5 true positives are identified with only 

2 false positives. The highest observance frequency is 52.5%, corresponding to the inhibition of 

lexA on umuD. The other 4 connections that are correctly identified include the inhibition of 

lexA on uvrD, recA, uvrA, and polB. The false positives are between the gene pairs ruvA – lexA

and uvrA – lexA. Clearly, PSO/RNN can provide meaningful insight into unveiling the most 

significant connections in genetic regulatory networks. However, when we used more 

experimental time series, such as 2 or even all 4 series, we did not observe improved results. On 

the contrary, sometimes, the results degraded. The reason may be that the proposed model does 

not consider time delay and other potential factors, which are ubiquitous in gene regulatory 

activities. If, on the other hand, more time series are introduced into the model, which oscillate 

abruptly and are not smooth, the model needs to include more additional parameters in order to 

handle and interpret the increasing complexities. Experimental results for the SOS network 

using RNN trained with BPTT [19] and dynamic Bayesian networks [33] are also reported. 

They both correctly identify 4 gene relations with 3 positives. In this context, RNN/PSO unveils 

more true connections in the SOS networks, with fewer false positives, than the other two 

methods. However, due to the limitation of the available data, we expect the properties of the 

methods can be more effectively investigated with higher quality data.  

V. CONCLUSIONS 

One of the central tasks in molecular genetics is to understand gene regulatory mechanisms. 

Inference of genetic regulatory networks based on the time series gene expression data from 

microarray experiments has become an important and effective way to achieve this goal. Herein, 

we employ recurrent neural networks to model the regulatory systems, and further, to reveal the 
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potential interactions between genes. Particle swarm optimization is used for both network 

training and architecture identification. The simulation results on both the artificial and real data 

demonstrate that the proposed method is very promising in capturing the nonlinear dynamics of 

genetic regulatory systems and unveiling the potential gene interaction relation. Given the 

similarity between RNNs and gene networks, we believe that RNNs will play an important role 

in exploring the mystery of gene regulation relationships. However, currently, the major limiting 

factor for genetic regulatory network analysis is the paucity of reliable gene expression time 

series data. Current research can only focus on the modeling of networks from synthetic data, or 

the simulation of small-scale real networks, with only several genes or gene clusters. No attempt 

has been made to infer large-scale genetic regulatory networks due to this restriction. Having 

high quality time series gene expression data with a sufficient number of time points is 

particularly important in further investigating and evaluating the performance of current 

computational models. Naturally, the number of data points will be practically determined by 

the particular network and system being studied, and the smaller that interval, the better the 

resolution. However, the minimum time interval between data points to resolve individual 

effects between genes for a given genetic regulatory network will have to take into 

consideration the number of genes involved, the speed of the regulatory response, and the 

magnitude of the regulatory effects of one gene upon another. Protein and metabolite data also 

need to be combined with gene expression data to provide more reasonable and accurate 

modeling. The role that external variables play (affectors of expression that originate and act 

downstream from transcription) will vary from system to system. However, ignoring these 

variables at this stage will not invalidate the inferred regulatory network because the networks 

being studied, by definition, are largely controlled via transcription. When additional proteomic 
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and metabolomic data can be integrated into the data set, the inferred regulatory network will 

have the same basic relationships but with more details apparent. 

For the RNN model, we consider several further extensions. First, genetic networks are 

known to be robust to noise, and gene expression levels in the regulatory systems will not be 

affected dramatically due to the small perturbation caused by some internal factors or the 

external environment. This characteristic raises the question of increasing the robustness and 

redundancy of current models. Second, time delay is an important property of genetic regulatory 

networks, which is, however, not well addressed yet. RNNs are powerful in dealing with 

temporal information and well suited to handle this type of problem. However, this will 

introduce more parameters into the model and asks for more training data. Generating a 

synthetic system that can simulate some well-known gene networks may allow for preliminary 

investigation. Last but not least, prior information about genes can be combined into the model 

in order to remove some impossible connections and simplify computation. For example, genes 

that are co-regulated may share similar expression patterns and have common motifs. This 

information can be used to eliminate false positives.   
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