
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Oct 2007

Inference of Genetic Regulatory Networks with Recurrent Neural Inference of Genetic Regulatory Networks with Recurrent Neural

Network Models using Particle Swarm Optimization Network Models using Particle Swarm Optimization

Rui Xu
Missouri University of Science and Technology

Donald C. Wunsch
Missouri University of Science and Technology, dwunsch@mst.edu

Ronald L. Frank
Missouri University of Science and Technology, rfrank@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Biology Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
R. Xu et al., "Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using
Particle Swarm Optimization," IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.
4, no. 4, pp. 681-692, Institute of Electrical and Electronics Engineers (IEEE), Oct 2007.
The definitive version is available at https://doi.org/10.1109/TCBB.2007.1057

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized administrator
of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F752&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F752&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TCBB.2007.1057
mailto:scholarsmine@mst.edu

Rui Xu1, Donald C. Wunsch II1, and Ronald L. Frank2

1Applied Computational Intelligence Laboratory, Department of Electrical and Computer

Engineering, University of Missouri – Rolla, Rolla, MO 65409-0249 USA
2Department of Biological Science, University of Missouri – Rolla, Rolla, MO 65409-0249

USA

Abstract – Genetic regulatory network inference is critically important for revealing fundamental cellular
processes, investigating gene functions, and understanding their relations. The availability of time series gene
expression data makes it possible to investigate the gene activities of whole genomes, rather than those of
only a pair of genes or among several genes. However, current computational methods do not sufficiently
consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear
system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO)
approach to infer genetic regulatory networks from time series gene expression data. Under this framework,
gene interaction is explained through a connection weight matrix. Based on the fact that the measured time
points are limited and the assumption that the genetic networks are usually sparsely connected, we present a
PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time
series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine
the network parameters. Our approach has been applied to both synthetic and real data sets. The results
demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of
the gene expression time series and revealing potential regulatory interactions between genes.

Index Terms —Genetic regulatory networks, Recurrent neural networks, Particle swarm optimization, Time
series gene expression data.

I INTRODUCTION

With the rapid advancement of DNA microarray technologies [10, 29], inferring genetic

regulatory networks from time series gene expression data has become critically important to

revealing fundamental cellular processes, investigating functions of genes and proteins, and

understanding complex relations and interactions between genes [6, 21, 49]. In the context of the

data generated from microarray technologies, i.e., transcriptional regulation of protein-coding

genes, a genetic regulatory network consists of a set of DNA, RNA, proteins, and other

molecules, and it describes regulatory mechanisms among these components. Although

Inference of Genetic Regulatory Networks
with Recurrent Neural Network Models

Using Particle Swarm Optimization

Digital Object Indentifier 10.1109/TCBB.2007.1057 1545-5963/$25.00 © 2007 IEEE

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

regulation of gene expression can occur at any step along the cellular information flow from

DNA to RNA to protein, one of the most common and well-studied steps is the initiation of

transcription (RNA synthesis from a DNA template). Eventually, a more complete

understanding of gene expression will have to take into consideration that regulation can occur

at other levels, e.g., mRNA splicing, translational and post-translational control, including

microRNAs that do not encode protein but can interact with DNA or RNA to affect expression.

However, the complexity of genetic networks consisting of protein-coding genes that affect

other protein-coding genes is vast enough to warrant current studies aimed at data from

microarrays. Advancements at this level will facilitate even more complex networks that

incorporate proteomic and metabolomic data. All cells for a specific organism include identical

genetic information, so it is the regulatory network that determines which subset of genes is

expressed, to what level, and in response to what conditions of the cellular environment. For

example, genes encoding digestive enzymes are expressed in the gut but not in the skin, and

their level of expression increases in the presence of food. This control is achieved through the

actions of regulatory proteins, called transcription factors, that activate or inhibit the

transcription rate of certain genes by binding to their transcriptional regulatory sites. Therefore,

the transcription of a specific gene, or the control of its expression, can be regarded as a

combinatorial effect of a set of other genes. In other words, when we say that gene g1 regulates

gene g2, we actually mean that the transcription factors encoded by g1, translated from its

mRNA products, control the transcription rate of g2. Other activities, such as RNA splicing and

posttranslational modification of proteins, are also constituents of the entire regulatory system.

However, due to limited data availability, we can only focus on the transcription (mRNA) level

at the current stage instead of the protein level. Despite such restrictions, simplification has the

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

advantage of measurements over a very large scale, and the use of mRNA expression-based

microarrays has led to many interesting and important results [1, 6, 21, 32].

Classical molecular methods, such as Northern blotting, reporter genes, and DNA

footprinting, have provided great insight into the regulatory relationships between a pair of

genes or among a few preselected genes, which is far from sufficient for exploring their

complicated regulatory mechanisms. DNA microarray technologies provide an effective and

efficient way to measure the gene expression levels of up to tens of thousands of genes

simultaneously under many different conditions; such technologies have already been

successfully applied to gene function prediction, disease diagnosis, drug development, and

patient survival analysis [30, 48, 50]. Particularly, time series gene expression data, which

measure the mRNA abundance of genes through a number of time points, make it possible to

investigate gene relations and interactions when taking the entire genome into consideration [6,

21].

Several computational models have been proposed to infer regulatory networks through the

analysis of gene expression data [5, 7, 12, 14-17, 20, 23, 28, 31, 33, 36-38, 40-43, 45]. Boolean

networks are binary models, which consider that a gene has only two states: 1 for active and 0

for inactive [15, 23, 28, 36]. The effect of other genes on the state change of a given gene is

described through a Boolean function. Although Boolean networks make it possible to explore

the dynamics of a genetic regulatory system, they ignore the effect of genes at intermediate

levels and inevitably cause information loss during the discretization process. Furthermore,

Boolean networks assume the transitions between genes’ activation states are synchronous,

which is biologically implausible. Investigations of the dynamic behaviors under an

asynchronous framework are given in [16] and [17]. Bayesian networks are graph models that

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

estimate complicated multivariate joint probability distributions through local probabilities [12].

Under this framework, a genetic regulatory network is described as a directed acyclic graph that

includes a set of vertices and edges. The vertices are related to random variables and are

regarded as genes or other components while the edges capture the conditional dependence

relation and represent the interactions between genes. Bayesian networks are effective in dealing

with noise, incompleteness, and stochastic aspects of gene expression data. However, they do

not consider dynamical aspects of gene regulation and leave temporal information unaddressed.

Recently, dynamic Bayesian networks (DBN) have attracted more attention [20, 33, 40]. DBN

can model behaviors emerging temporally and can effectively handle problems like hidden

variables, prior knowledge, and missing data. For linear additive regulation models [5, 7, 37-38],

the expression level of a gene at a certain time point can be calculated by the weighted sum of

the expression levels of all genes in the network at a previous time point. Although linear

additive regulation can reveal certain linear relations in the regulatory systems, it lacks the

capability to capture the nonlinear dynamics between gene regulations.

Considering the limitations of the above methods, we discuss the inference of genetic

regulatory networks from time series gene expression in the framework of recurrent neural

networks [27]. In using RNNs for genetic network inference, we are mainly concerned with their

ability to interpret complex temporal behavior, which is an important characteristic of time

series gene expression data and makes them different from static expression data [1].

Generalized RNNs can be considered as signal processing units forming a global regulatory

network. The recurrent structure of RNNs effectively reflects the existence of feedback, which is

essential for gene regulatory systems. D’haeseleer discussed a realization of RNNs in modeling

gene networks using synthetic data [5]. Vohradský investigated the dynamic behaviors of a 3-

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

gene network in the framework of RNNs [41]. Several more RNN-based applications can also

be found in [31], [38], and [45].

Commonly, back-propagation through time (BPTT) [46] and evolutionary algorithms (EAs)

[11, 51] are used for RNN training, i.e., learning the functional and structural parameters of

regulatory networks. BPTT may be derived by unfolding the temporal operation of the network

into a layered feedforward network, the topology of which grows by one layer at every time step

[18]. By using BPTT, we find the derivatives of a cost function with respect to the individual

weight of the network. These derivatives can be used to do gradient descent on the weights,

updating them in the direction that minimizes the error. However, the requirement that the

derivatives must be computed limits its application because the derivatives are not always

available. EAs are inspired by the process and principles of natural evolution and refer to a class

of population-based stochastic optimization search algorithms [51]. The major technologies of

EAs include genetic algorithms (GAs), evolution strategies (ES), and evolutionary programming

(EP), each of which focuses on a different facet of natural evolution [11, 51]. Particularly, gene

regulatory network inference with GAs has already been reported by Wahde and Hertz [42-43]

and Keedwell and Narayanan [24]. As an example, Wahde and Hertz used GAs to identify the

network parameters in inferring gene regulatory interactions during the development of the

central nervous system of rats [42-43]. More broadly, a survey on the application of EAs in

classifying biological data was offered by Wahde and Szallasi [44].

Here, we use particle swarm optimization, a variant of evolutionary computation technology

for global optimization, for RNN training [9, 26]. In contrast to other EAs, PSO has a random

velocity associated with each potential solution, which is considered to be flown through the

problem space [26]. Similar to the state-of-the-art EAs, PSO is implemented with a memory

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

mechanism, which can retain the information of previous best solutions that may get lost during

the population evolution. PSO has many other desirable characteristics, such as flexibility in

balancing global and local searches, computational efficiency for both time and memory, no

need for encoding, and ease of implementation. PSO is particularly useful in evolving neural

networks when many local optima exist, a circumstance in which traditional gradient-based

search algorithms get stuck easily [26]. It has been shown that PSO requires less computational

cost and can achieve faster convergence than conventional back-propagation in training

feedforward neural networks for nonlinear function approximation [13]. Juang [22] and Cai and

Wunsch [3] combined PSO with EAs in training RNNs for dynamic plant control and engine

data classification, respectively. A comparison of PSO and GA in evolving RNNs was also

given by Settles et al. [35]. In addition to RNN weight evolution, we also use PSO for RNN

architecture evolution in this study. In other words, we search the gene regulatory network

(modeled by RNNs) structures in order to unveil the potential and meaningful ones that fit well

with the time series data, and we then investigate the interactions between genes. Since genetic

regulatory networks are usually assumed to be sparsely connected, this strategy offsets the effect

of the insufficient data points of time series to some extent. PSO proves to be a powerful tool to

explore sophisticated problem spaces [9, 26], which makes it one of several alternatives that can

be explored for regulatory network inference.

The paper is organized as follows. Section II describes the model for regulatory network

inference, together with the RNN training algorithm. In Section III, we show how to use PSO to

select the potential network structures. Section IV illustrates applications to both the synthetic

data and the real data - the SOS DNA repair system. We conclude the paper in Section V.

II. RECURRENT NEURAL NETWORKS

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

A. Model

For a continuous time system, the genetic regulation model can be represented through a

recurrent neural network formulation [5, 31, 38, 41, 45],

1 1
()

N K
i

i ij j ik k i i i
j k

de
f w e v u e

dt
τ β λ

= =

= + + −∑ ∑ , (1)

where ei is the gene expression level for the ith gene (1≤i≤N, N is the number of genes in the

system), f() is a nonlinear function (usually, a sigmoid function is used () 1/(1)zf z e−= +), wij

represents the effect of the jth gene on the ith gene (1≤i,j≤N), uk is the kth (1≤k≤K, K is the

number of external variables) external variable, which could represent the externally added

chemicals, nutrients, or other exogenous inputs, vik represents the effect of the kth external

variable on the ith gene, τ is the time constant, β is the bias term, and λ is the decay rate

parameter. A negative value of wij represents the inhibition of the jth gene on the ith gene, while a

positive value indicates the activation controls. When wij is zero, there is no influence of the jth

gene on the expression change of the ith gene. The effects of other factors can be added into the

formula based on the specific situation. Note that this model is a natural extension of the linear

additive model in [7, 37] in order to explicitly account for the nonlinear dynamics of the

networks. Several applications based on the model in Eq. 1 have been reported in the literature

[5, 31, 38, 41, 45].

This model can also be described in a discrete form (for computational convenience, since

we only measure at certain time points):

1 1

() () 1 (() ()) () ,
N K

i i
ij j ik k i i i

j ki

e t t e t
f w e t v u t e t

t
β λ

τ = =

⎛ ⎞+ Δ −
= + + −⎜ ⎟Δ ⎝ ⎠

∑ ∑ or,

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1 1
() (() ())

1 ()

N K

i ij j ik k i
j ki

i
i

i

te t t f w e t v u t

t
e t

β
τ

λ
τ

= =

Δ
+ Δ = + +

⎛ ⎞Δ
+ −⎜ ⎟
⎝ ⎠

∑ ∑
. (2)

Fig. 1 depicts a recurrent neural network, which is unfolded in time from t=0 to T with an

interval Δt, for modeling a genetic network. Here, each node corresponds to a gene, and a

connection between two nodes defines their interaction. The weight values can be either

positive, negative, or zero, as mentioned above. Fig. 2 illustrates a node in the recurrent neural

network, which realizes Eq. 2.

● ● ●

t=0 t=Δt t=T

1

2

3

●
●
●

n

4

1

2

3

●
●
●

n

4

1

2

3

●
●
●

n

4

Fig 1. The description of a genetic network through a recurrent neural network model. This
network is unfolded in time from t=0 to T with an interval Δt. Here, the regulatory network
is shown in a fully connected form, although, in practice, the network is usually sparsely
connected.

ΣwiNeN(t)

vik

uk(t)

…

e1(t)

wi1

wij

ej(t)

…

βi

f(•)
Δt/τi

Σ

(1-λiΔt/τi)ei(t)

ei(t+Δt)

Fig. 2. A node (neuron) in the recurrent neural network model, based on Eq. 2.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

It is usually difficult to obtain the measurements of the external variables, so it is a common

practice to ignore the term
1

()
K

ik k
k

v u t
=
∑ . Although this simplification inevitably affects the

accuracy of the models, studies based on it still provide many interesting insights into gene

networks, as demonstrated in [31, 37, 42, 45]. From the following section, we can see that the

inclusion of these exogenous inputs does not affect the derivation of the learning algorithm. For

computational simplicity, we also assume that the decay rate parameter λ is 1. The final model

we process in the paper is represented as

1
() (()) 1 ()

N

i ij j i i
ji i

t t
e t t f w e t e tβ

τ τ=

⎛ ⎞Δ Δ
+ Δ = × + + −⎜ ⎟

⎝ ⎠
∑ . (3)

B. Training algorithm

Although the model has already been reported in the literature, the difficulty of RNN

training limits its further application for gene network inference, as aforementioned. Here, we

propose to use a different training strategy, particle swarm optimization, to determine the

unknown network parameters.

PSO consists of a swarm of particles, each of which represents a candidate solution. Each

particle i with a position represented as xi moves in the multidimensional problem space with a

corresponding velocity vi. The basic idea of PSO is that each particle randomly searches through

the problem space by updating itself with its own memory and the social information gathered

from other particles. These components are represented in terms of two best locations during the

evolution process: one is the particle’s own previous best position, recorded as vector pi,

according to the calculated fitness value, and the other is the best position in the whole swarm,

represented as pg. Also, pg can be replaced with a local best solution obtained within a certain

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

local topological neighborhood. Fig. 3 depicts the vector representation of the PSO search space.

The corresponding canonical PSO velocity and position equations are written as,

1 1

2 2

(1) () (())
(())

i I i i i

g i

t W t c t
c t

η
η

+ = × + × × −
+ × × −

v v p x
p x

, (4)

(1) () (1)i i it t t+ = + +x x v , (5)

where WI is the inertia weight, c1 and c2 are the acceleration constants, and η1 and η2 are uniform

random functions in the range of [0, 1].

In the context of RNN training with PSO, a set of M particles X=(x1,x2,…, xM), where the ith

particle (candidate solution) can be represented as a D-dimensional vector

(),11 , 1 ,12 ,1 , ,1 , ,1 ,,..., , ,..., ,..., , ,..., , ,...,i i i N i i N i NN i i N i i Nw w w w w β β τ τ=x with D=N(N+2), are included in

the swarm. The velocity associated with each particle is described as ()1 2 , ,...,i i i iDv v v=v . A

fitness function, which is used to measure the deviation of network output e(t) from the real

measurement (target) d(t), is defined as

xi(t) WIvi(t)

c1η1(pi-xi(t))

c2η2(pg-xi(t))

xi(t+1)

vi(t+1)

Fig.3. Concept of a swarm particle’s position. xi(t) and vi(t) denote the particle’s position
and the associated velocity vector in the searching space at generation t, respectively.
Vectors c1η1(pi-xi(t)) and c2η2(pg-xi(t)) describe the particle’s cognitive and social activities,
respectively. The new velocity vi(t+1) is determined by the momentum part, cognitive part,
and social part, given in Eq. 4. The particle’s position at generation t+1 is updated with xi(t)
and vi(t+1), given in Eq. 5.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

0 1

1() (() ())
T N

i i i
t i

Fit e t d t
TN = =

= −∑∑x . (6)

More elaborate error terms can be added easily based on the specific requirement of the problem

at hand. Here, we use a batch mode for training, which means the parameter updates are

performed after all input data points are presented to the model [13, 18]. The basic procedure of

PSO-based RNN training can be summarized as follows:

i). Initialize a population of particles with random positions and velocities of D dimensions.

Specifically, the connection weights, biases, and time constants are randomly generated

with uniform probabilities over the range [wmin, wmax], [βmin, βmax], and [τmin, τmax],

respectively. Similarly, the velocities are randomly generated with uniform probabilities in

the range [-Vmax, Vmax], where Vmax is the maximum value of the velocity allowed.

ii). Calculate the estimated gene expression time series based on the RNN model, and evaluate

the optimization fitness function for each particle.

iii). Compare the fitness value of each particle Fit(xi) with Fit(pi). If the current value is better,

reset both Fit(pi) and pi to the current value and location.

iv). Compare the fitness value of each particle Fit(xi) with Fit(pg). If the current value is better,

reset Fit(pg) and pg to the current value and location.

v). Update the velocity and position of the particles with Eqs. 4 and 5.

vi). Return to step ii until a stopping criterion is met, which usually occurs upon reaching the

maximum number of iterations or discovering high-quality solutions.

PSO has only four major user-dependent parameters. The inertia weight WI is designed as a

tradeoff between the global and local search. Larger values of WI facilitate global exploration

while lower values encourage a local search. WI can be fixed to some certain value or can vary

with a random component, such as

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

max 2IW W η
= − , (7)

where η is a uniform random function in the range of [0,1]. As an example, if Wmax is set as 1,

Eq. 7 makes WI vary between 0.5 and 1, with a mean of 0.75. In this paper, these two strategies

are referred to as PSO-FIXEW and PSO-RADW, respectively. c1 and c2 are known as the

cognitive and social components, respectively, and are used to adjust the velocity of a particle

towards pi and pg. Commonly, both parameters are set to 2.0 based on past experience [9, 26].

During the evolutionary procedure, the velocity for each particle is restricted to a limit Vmax, like

in velocity initialization. When the velocity exceeds Vmax, it is reassigned to Vmax. If Vmax is too

small, particles may become trapped into local optima, but if Vmax is too large, particles may

miss some good solutions. Vmax is usually set to around 10-20% of the dynamic range of the

variable on each dimension [26].

III. MODEL SELECTION

One of the major obstacles for genetic network inference is the “curse of dimensionality” [5,

38], which describes the exponential growth in computational complexity and the demand for

more time points as a result of high dimensionality in the feature space [18]. Typically, the gene

expression data currently available contain measurements of thousands of genes, but only with a

limited number of time points (less than 50). This situation limits the application of many data-

driven computational models and makes it very difficult to infer a fully determined large-scale

regulatory network and make accurate predictions of future expression levels. Several strategies

have been employed for limiting an effective number of parameters, including clustering [31,

42], interpolation [2, 4-5], adding noisy duplicates [39], and thresholding [38-39]. For RNN

training, strategies like weight decays and pruning algorithms can be used [18]. Clustering

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

algorithms are used to generate clusters of co-expressed genes based on their expression

profiles. For each cluster, the mean time series is then calculated for further analysis. The

disadvantage of this method is that it only identifies relations between groups of genes instead of

Output the optimum
solutions

Set the PSO parameters

Initialize a swarm of genetic
networks (structure, connection

weights, biases, and time constants)

Start

Meet the
stop criterion

Yes

No

Update velocities and
positions for structures

Evolution of structures

Evolution of connection weights
and other parameters

Calculate and evaluate
fitness function

Update corresponding
velocities and positions

Fig. 4. Flowchart for genetic regulatory network inference with PSO. Both structures and
connection weights, together with other parameters, are evolved.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

individual genes, which biologists are more interested in. Interpolation techniques have the

disadvantage that they may not sufficiently capture changes between two time points, and they

“tend to reduce dimensionality problem only marginally regardless of the number of time points

added” [39]. The effectiveness of adding noisy duplicates and thresholding is also limited

because these strategies do not provide any additional information on expression level changes.

Fortunately, biological knowledge of genetic regulatory networks assumes that a gene is

only regulated by a limited number of genes [5, 33, 38]. In other words, the regulatory networks

are sparsely connected rather than fully connected, and most weight values are zeroes. It is

reasonable to identify the weights whose values are non-zeroes from these data, which indicate

the potential interactions between genes, and furthermore, whether the interaction is activation

or inhibition, based on the sign of the weights. However, it may not be possible to accurately

recover the values of the weights due to the limited availability of the time points. Wahde and

Hertz proposed a two-step procedure for genetic regulatory network inference [43]. The goal of

the first step is to unravel the possible interactions between genes by iteratively searching non-

significant network parameters, i.e., to determine what weight values are non-zeroes. With the

results of the first stage, the non-zero weights can be further fine-tuned, while the non-

significant weights are clamped to zero. This procedure is repeated for different values of the

maximum allowed weight. This reverse engineering procedure provides a way to identify and

understand the regulatory mechanism in a genetic network. However, identifying the non-

significant network parameters is not a trivial task, and there is no effective criterion for

guidance. A feedforward neural network and genetic algorithm-based hybrid system was

proposed in a recent paper by Keedwell and Narayanan [24]. Here, we use PSO to search the

network structure space and find meaningful weights that indicate the regulatory relations. This

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

strategy can avoid the exhaustive enumeration of all possible connectivity (although generally

much less than N, the search space is still large), and has the potential to be extended to solve

the problem for large-scale regulatory network inference.

Since our goal is to choose a subset of network connections from a large solution space, we

employ a discrete binary version of PSO in this context [25]. The major change from the

continuous version in Section III lies in the interpretation of the meaning of the particle velocity.

As aforementioned, for a set of particles ()1 2, ,..., M=X x x x , the velocity of the ith particle

()1 2, ,...,i i i idx x x=x is represented as ()* * * *
1 2, ,...,i i i idv v v=v , where d=N2. The possible value for

each bit xil (1≤i≤N, 1≤l≤d) is either one or zero, which indicates whether there exists an

interaction between a pair of genes (1 for yes and 0 for no). The velocity vil
* associated with it is

defined as the probability that xil takes the value of one, and it is calculated by the logistic

probability law

1 1

2 2

(1) () (())

(())
il

il

il I il i il

g il

v t W v t c p x t

c p x t

η

η

+ = × + × × −

+ × × −
, (8)

* (1) 1/(1 exp((1)))il ilv t v t+ = + − + , (9)

*
31 if (1)

(1)
0, otherwise

il
il

v t
x t

η δ⎧ + < +
+ = ⎨

⎩
, (10)

where η3 is a sample of a random variable uniformly distributed in the range of [0, 1], and δ is a

parameter that limits the total number of connections selected to a certain range. Compared to

the original binary PSO in [25], we add the parameter δ in order to control the connectivity more

flexibly. If the value of δ is large, the number of connections for a node becomes smaller, and

vice versa. Like the continuous PSO, the velocity is also restricted to a limit Vmax. In this case,

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

this restricts the probability that a bit in a particle takes on the value of one to a certain range.

Usually, the smaller Vmax is, the higher the mutation rate [25].

The inference procedure for the genetic regulatory networks of interest is described through

a flowchart in Fig. 4. The algorithm consists of two major steps, i.e., the evolution of the

network architecture and the evolution of the corresponding weights, together with other

parameters (bias and time constant). For a given network construction, PSO is used to determine

the parameters of the genetic networks. A sufficient number of runs are required to assure the

quality of the inferred networks. Based on the values of the fitness function and the best

networks obtained previously, network structures evolve through another PSO procedure, which

aims to explore the meaningful connection relations between network nodes (genes). The

procedure iterates until the stop criterion is met. During the algorithm’s run, we can also use the

strategy introduced by Wahde and Hertz [43] to clamp the structure parameters of significant

weights to one when we are highly confident of the presence of gene interactions, or we could

clamp the parameters to zero when we are highly confident of the nonexistence of the

corresponding connections. This means the entire algorithm may need to be repeated a certain

number of times in order to effectively model the regulatory systems.

Since the data are sparse and quite limited, it is meaningless to determine a particular

network with the highest fitness value. Rather, potential information could be unveiled by

sampling a set of networks and identifying the connection appearing with the highest frequency,

as described in a Markov chain Monte Carlo simulation-based method [20]. In our study, we

follow the same strategy and determine the network structures based on a large set of sampling

networks. In order to estimate the number of connections that a particular network may have, we

use a heuristic based on the assumption that the number of times that a nonexistent connection is

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

observed in the inferred networks follows a binomial distribution with a probability p [47]. We

set the level of significance at 0.05, which means the probability of exactly m observations of a

nonexistent connection in M sampling networks is less than or equal to 0.05, or

() (1) 0.05m m M m
MP m C p p −= − ≤ . We then count the total number of connections NC that occur

more than m times, which varies with different values of p. Using this information, we can draw

a plot reflecting the relation of NC and p. We select the value of p that corresponds to an abrupt

change of the curve as the estimated probability of the false occurrence of a connection.

Accordingly, the value of NC, denoted as NC*, provides an estimate of the real number of

connections in the network.

Fig. 5. Typical gene behaviors of the synthetic data in terms of expression level over time.
X-axis: time, Y-axis: gene expression level.

Table I. The synthetic genetic network used to generate the data. Half of the weights are non-
zeroes.

wij βi τi

20.0 -20.0 0.0 0.0 0.0 10.0

15.0 -10.0 0.0 0.0 -5.0 5.0

0.0 -8.0 12.0 0.0 0.0 5.0

0.0 0.0 8.0 -12.0 0.0 5.0

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IV. RESULTS

We perform the proposed PSO/RNN method on both a synthetic and a real data set. By

using an artificial data set, we have a clearer view of the performance of the model and

algorithm, and we can investigate more effectively the properties of the algorithm as it is

possible to compare the learned models with the known regulatory system, which is usually

infeasible or incomplete for real data. For the real data set, we show that PSO/RNN can provide

meaningful insight into the potential gene interactions in the network.

A. Artificial Data Set

We first apply the algorithm to a simplified synthetic genetic network with 4 genes, used in

[42]. The goal is to recover the basic genetic regulatory networks from the generated time series

gene expression data. The interaction weight matrix W, the bias β, and the time constant τ for

the network are set as in Table I. The network is simulated from a random initial state for each

gene. We generate three curves with 300 time points for each curve, based on Eq. 3, at a time

resolution of Δt=0.1. The typical behaviors of some simulated genes are depicted in Fig. 5. It is

clear that, because we do not consider stimuli from the external environment, the expression

levels for these genes quickly get saturated. For the real data, the data points generally are not

sufficient; therefore, we only use 50 points from each curve to train the regulatory systems,

mostly taken from the early stage of the process. For the purpose of comparison, we also

perform an experiment for a single time series with 150 time points.

The algorithm is written in C++. It takes about 6 seconds to run 1,000 training epochs with

150 time points on a 2.4GHz Intel Pentium 4 processor with 512M of DDR RAM. Moreover,

the code has not been optimized for computational speed. For a large-scale data analysis with

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

hundreds or thousands of genes, parallel technology can be implemented for speedup thanks to

the parallel nature of neural networks.

The performance of PSO is dependent on parameter selection. An optimization strategy has

been proposed to use another PSO to explore optimal parameter values [8]. However, the

computational price may become quite expensive in this situation. We tested the PSO

performance with the commonly used values of c1 and c2 [8-9], together with both PSO-FIXEW

and PSO-RADW methods, on the artificial data set. We fixed the WI at 0.7 for PSO-FIXEW,

and for PSO-RADW, we chose Wmax equal to 1 so that WI varies in the range of [0.5,1]. We

compared the performance in terms of the number of iterations required to reach a pre-specified

error. We further set the maximum number of iterations allowed as 500. If PSO reaches the

expected error threshold within 500 iterations, we say that PSO has converged. The results over

200 runs are summarized in Table II, which consists of the number of times that the iteration

exceeds the allowed maximum and the average number of epochs if PSO has converged. As

indicated in the table, PSO-RADW performs better than PSO-FIXEW for most of the cases. By

further considering the effect of the parameters c1 and c2, the best performance is achieved when

Table II. Parameter effects on PSO performance (average over 200 runs). The parameters are
compared in terms of the number of times that the iteration exceeds the allowed maximum and

the average number of epochs if PSO has converged.
Performance

c1 c2 WI >500 iterations Average number
of iterations

Fixed at 0.7 16 53.6 2 2
1-rand/2 8 46.9

Fixed at 0.7 104 33.7 0.5 2
1-rand/2 81 46.6

Fixed at 0.7 101 158.0 2 0.5
1-rand/2 54 122.8

Fixed at 0.7 180 32.2 0.5 0.5
1-rand/2 151 18.3

Fixed at 0.7 19 56.5 1.5 2.5
1-rand/2 9 51.1

Fixed at 0.7 12 51.5 2.5 1.5
1-rand/2 7 50.4

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

PSO-RADW is used and c1 and c2 are both set as 2, where the expected error can be reached

within 46.9 iterations on average, except for 8 runs that did not converge. The results when c1

and c2 are set as 2.5 and 1.5 or 1.5 and 2.5 show that a few more iterations, on average, are

required. All three cases are comparable in terms of the number of times that PSO has not

converged. For other commonly used parameters, convergence depends more on the

initialization and is not consistently stable. Based on the results, we used PSO-RADW with

Wmax at 1 and set both c1 and c2 to 2 in our further experiments.

We performed a random search of the network structure, where a connection between a pair

of genes is considered to exist with a probability of 0.5 and the network weights are evolved for

100 iterations using PSO. The average number of iterations for reaching an error level at 10-4

using PSO search in 100 runs is 187. This number increases to 1,116 when random search is

used in 100 runs. We further decreased the probability of interaction to favor the creation of

networks with smaller number of connections. This change achieves certain improvements in

the random search method, and the best result we obtained is 892 in 100 runs when the

probability is set as 0.3. In another experiment, we added a mechanism in the random search to

keep track of all generated structures, and this method generates every structure once, at most.

We did not observe significant improvement in this variant. The average number of iterations in

100 runs is 967. We also compared the performance of PSO in network structure search with

GA. In this experiment, the RNNs are still trained with PSO, but the network structures are

searched using GA. The population size of GA is also 30. A binary tournament selection is used,

and the uniform crossover rate is set as 0.8. The mutation probability is chosen at 0.01. The

average number of generations of GA in reaching the 10-4 error level is 206 in 100 runs, 19

iterations more than PSO. However, we also observe some cases where GA achieves very fast

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

convergence (within 80 generations). As discussed in [35], PSO and GA have different search

capabilities, and the understanding of this difference is important for future research.

We ran our algorithm 200 times with different random initial values for the weights, biases,

and time constants. Performance is discussed based on the averages across all these

experiments, unless otherwise indicated. The best solution of each run, i.e., pg, was used for

further analysis, which leads to 200 solutions in total. Each swarm consists of 30 particles, with

the network structures and the network weights evolved for 100 and 1,000 generations,

respectively. We set δ equal to 0.2, which usually leads to the possible connectivity varying

between 3 and 12. The initial values for the weights (including biases) and time constants lie

between -1 and 1 and 1 and 15, respectively. We estimate the possible number of connections

NC* in the network using the statistical heuristic described in Section III, and we further identify

the potential NC* connections based on the observance frequencies. Moreover, the activation or

inhibition relation is determined according to the signs of the mean values of the weights: plus

(a) (b)
Fig. 6. The total number of connections NC that occur more than m times with the level of
significance at 0.05 vs. the probability p that a nonexistent connection is observed in a network.
(a) Three time series are used; (b) One time series is used.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

corresponds to activation while minus represents inhibition. The remaining connections are

considered non-existent, with zero weights in the connection weight matrix.

Fig. 6 depicts the changes of NC as a function of the probability p when three time series or

a single time series were used. As we can see, using three time series, when the value of p is

greater than 0.15, the value of NC does not decrease as quickly as when p is less than 0.15.

Therefore, the estimated value for the possible number of connections NC* in this network is 8.

Similarly, we estimate that there are 9 potential connections in the network when a single time

series is used. Table III summarizes the identified weight connection matrices, obtained from

either a single time series or multiple time series, together with the original weight matrix.

Compared with the original weight matrix, the result with three time series demonstrates that the

proposed model can recover all eight relations existing in the network without any false

positives, which refer to non-existent relations that the model wrongly identifies as existing

ones. Particularly, all 200 solutions identify the activation relation of gene 4 to gene 3 and the

Table III. The generated connection matrix (upper panel) and the learned connection matrix
with the single series (second panel) and multiple series (lower panel). Each element wij in the
matrix represents the relation between the ith and jth gene, as activation (+), inhibition (-), and
absence of regulation (0). The values in parentheses indicate the percentage of the occurrence

of connections in the networks within 200 runs.
wij (f%)

+ - 0 0
+ - 0 0
0 - + 0
0 0 + -

0 (11.5) + (27.5) - (25.5) - (44.0)
0 (3.0) - (20.0) - (17.5) - (52.0)
0 (1.0) 0 (10.0) 0 (4.5) 0 (8.0)
0 (2.5) + (55.0) + (32.5) - (59.5)

+ (29.0) + (34.0) 0 (5.5) 0 (7.0)
+ (83.5) - (98.0) 0 (3.5) 0 (3.0)
0 (16.5) - (60.5) + (99.5) 0 (15.0)
0 (10.0) 0 (8.5) + (100) - (100)

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

self-inhibition of gene 4. The only mistake lies in the inhibition of genes 1 to gene 2, which is

identified as activation in the constructed network. In contrast, using a single time series is

ineffective, even though the mean square error is small (at the level of 10-5). Only four out of

eight non-zero weights are correctly identified, but with five false positives. Also, the identified

relation between gene 1 and 2 is wrongly regarded as activation. These results agree with the

conclusion in [42-43] that by using more time series, more information is provided to the model,

and therefore, better results usually can be achieved.

B. SOS Data Set

We employed PSO/RNN to analyze the SOS DNA Repair network in bacterium Escherichia

coli depicted in Fig. 7 [34]. The SOS system consists of around 30 genes regulated at the

DNA Damage

LexA

Single Stranded DNA

RecA RecA*

LexA
Cleavage recA

lexA

umuD ruvA … uvrA

Fig. 7. The bacterial E. coli SOS DNA Repair network. Inhibitions are represented by -•,
while activations are represented by →. When damage occurs, the protein RecA, which
functions as a sensor of DNA damage, becomes activated and mediates cleavage of the LexA
protein. The LexA protein is a repressor that blocks transcription of the SOS repair genes. The
drop in LexA protein levels causes the activation of the SOS genes. After the damage is
repaired or bypassed, the cleavage activity of RecA drops, causing the accumulation of LexA
protein. Then, LexA binds sites in the promoter regions of these SOS genes and represses their
expression. The cells return to their original states [34].

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

transcriptional level. For the data set, four experiments have been conducted with different light

intensities (Experiments 1 & 2: UV=5 Jm-2, Experiments 3 & 4: UV=20 Jm-2). Each experiment

includes the expression measurements for 8 major genes (uvrD, lexA, umuD, recA, uvrA, uvrY,

ruvA, and polB) through 50 time points, sampled every 6 minutes. Therefore, the data set

consists of 4 subsets, each of which is represented as a matrix ETi, i=1,…,4. To our knowledge,

this is one of the most useful data sets that fits the current computational models, as indicated in

[33]. Like before, we performed analyses on both single time series and multiple time series.

Fig. 8 shows the real gene expression profiles and the learned mean expression profiles for

Exp. 2. We can see that the proposed model can effectively capture the dynamics of most genes

(lexA, recA, uvrA, uvrD, and umuD) in the system, with the major change trends of the gene

expression levels reflected in the learning curves. The expression profiles for genes uvrY, ruvA,

and polB oscillate dramatically between the maximum value and zero, and the obtained models

generally use their means to represent the profiles because of the definition of the fitness

function. One possible strategy is to add an additional item in the fitness function in order to

(a) (b)
Fig. 8. (a) The measured gene expression profiles for Exp. 2; (b) the learned mean expression
profiles with PSO. The average mean square error between the real profiles and learned profiles
(both are normalized into the range [0, 1]) is 0.022.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

track the difference between two time points. The reader should note that reconstructing the

correct dynamics is easier than reconstructing the correct regulatory network structure because

genetic regulatory network inference is an ill-posed problem – there is no unique solution that

will satisfy the data upon which the inference is based. This inherent difficulty is a limitation of

our approach, as well as of any other approach we are aware of.

In order to infer the potential interactions between genes, we ran the algorithm 200 times

with population size set as 30 and examined the best solution of each run as we did for the

artificial data. We evolved the network structures and the network weights for 300 and 2000

generations, respectively, and the parameter δ was set equal to 0.4, which limits the possible

number of connectivity to 5-15. The initial values for the weights and bias were between -1 and

1, while the initial values for the decay rates were between 1 and 10.

Based on the curve depicted in Fig. 9, we observe that there are two positions suggesting the

possible number of connections in the inferred network. If we choose p at 0.16, the estimated

number of connections in the network is 16, which includes all the 9 true relations in the system,

together with 7 false positives. If we operate in a more conservative way, we decide the possible

Fig. 9. Estimation of the number of connections in the SOS network.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

number of connections in the network is 7. In this case, 5 true positives are identified with only

2 false positives. The highest observance frequency is 52.5%, corresponding to the inhibition of

lexA on umuD. The other 4 connections that are correctly identified include the inhibition of

lexA on uvrD, recA, uvrA, and polB. The false positives are between the gene pairs ruvA – lexA

and uvrA – lexA. Clearly, PSO/RNN can provide meaningful insight into unveiling the most

significant connections in genetic regulatory networks. However, when we used more

experimental time series, such as 2 or even all 4 series, we did not observe improved results. On

the contrary, sometimes, the results degraded. The reason may be that the proposed model does

not consider time delay and other potential factors, which are ubiquitous in gene regulatory

activities. If, on the other hand, more time series are introduced into the model, which oscillate

abruptly and are not smooth, the model needs to include more additional parameters in order to

handle and interpret the increasing complexities. Experimental results for the SOS network

using RNN trained with BPTT [19] and dynamic Bayesian networks [33] are also reported.

They both correctly identify 4 gene relations with 3 positives. In this context, RNN/PSO unveils

more true connections in the SOS networks, with fewer false positives, than the other two

methods. However, due to the limitation of the available data, we expect the properties of the

methods can be more effectively investigated with higher quality data.

V. CONCLUSIONS

One of the central tasks in molecular genetics is to understand gene regulatory mechanisms.

Inference of genetic regulatory networks based on the time series gene expression data from

microarray experiments has become an important and effective way to achieve this goal. Herein,

we employ recurrent neural networks to model the regulatory systems, and further, to reveal the

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

potential interactions between genes. Particle swarm optimization is used for both network

training and architecture identification. The simulation results on both the artificial and real data

demonstrate that the proposed method is very promising in capturing the nonlinear dynamics of

genetic regulatory systems and unveiling the potential gene interaction relation. Given the

similarity between RNNs and gene networks, we believe that RNNs will play an important role

in exploring the mystery of gene regulation relationships. However, currently, the major limiting

factor for genetic regulatory network analysis is the paucity of reliable gene expression time

series data. Current research can only focus on the modeling of networks from synthetic data, or

the simulation of small-scale real networks, with only several genes or gene clusters. No attempt

has been made to infer large-scale genetic regulatory networks due to this restriction. Having

high quality time series gene expression data with a sufficient number of time points is

particularly important in further investigating and evaluating the performance of current

computational models. Naturally, the number of data points will be practically determined by

the particular network and system being studied, and the smaller that interval, the better the

resolution. However, the minimum time interval between data points to resolve individual

effects between genes for a given genetic regulatory network will have to take into

consideration the number of genes involved, the speed of the regulatory response, and the

magnitude of the regulatory effects of one gene upon another. Protein and metabolite data also

need to be combined with gene expression data to provide more reasonable and accurate

modeling. The role that external variables play (affectors of expression that originate and act

downstream from transcription) will vary from system to system. However, ignoring these

variables at this stage will not invalidate the inferred regulatory network because the networks

being studied, by definition, are largely controlled via transcription. When additional proteomic

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

and metabolomic data can be integrated into the data set, the inferred regulatory network will

have the same basic relationships but with more details apparent.

For the RNN model, we consider several further extensions. First, genetic networks are

known to be robust to noise, and gene expression levels in the regulatory systems will not be

affected dramatically due to the small perturbation caused by some internal factors or the

external environment. This characteristic raises the question of increasing the robustness and

redundancy of current models. Second, time delay is an important property of genetic regulatory

networks, which is, however, not well addressed yet. RNNs are powerful in dealing with

temporal information and well suited to handle this type of problem. However, this will

introduce more parameters into the model and asks for more training data. Generating a

synthetic system that can simulate some well-known gene networks may allow for preliminary

investigation. Last but not least, prior information about genes can be combined into the model

in order to remove some impossible connections and simplify computation. For example, genes

that are co-regulated may share similar expression patterns and have common motifs. This

information can be used to eliminate false positives.

ACKNOWLEDGEMENT

Partial support for this research from the National Science Foundation, and from the M.K.

Finley Missouri endowment, is gratefully acknowledged. The author would also like to thank

the Editor and the anonymous reviewers for their valuable comments.

REFERENCE

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[1] Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioinformatics, vol. 20, no. 16,

pp. 2493-2503, 2004.

[2] Z. Bar-Joseph, G. Gerber, D. Gifford, T. Jaakkola, and I. Simon, “A new approach to

analyzing gene expression time series data,” In Proceedings of the 6th Annual International

Conference on Research in Computational Molecular Biology (RECOMB), pp 39-48, 2002.

[3] X. Cai and D. Wunsch, “Engine data classification with simultaneous recurrent network

using a hybrid PSO-EA algorithm,” In Proceedings of 2005 IEEE International Joint

Conference on Neural Networks, vol. 4, pp. 2319-2323, 2005.

[4] M. Dasika, A. Gupta, and C. Maranas, “A mixed integer linear programming framework for

inferring time delay in gene regulatory networks,” In Proceedings of the Pacific Symposium on

Biocomputing, pp. 474-485, 2004.

[5] P. D'haeseleer, “Reconstructing gene network from large scale gene expression data,”

Dissertation, University of New Mexico, 2000.

[6] P. D'haeseleer, S. Liang, and R. Somogyi, “Genetic network inference: From co-expression

clustering to reverse engineering,” Bioinformatics, vol. 16, no. 8, pp. 707-726, 2000.

[7] P. D'haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear modeling of mRNA

expression levels during CNS development and injury,” In Proceedings of the Pacific

Symposium on Biocomputing (PSB'99), pp. 41-52, 1999.

[8] S. Doctor, G. Venayagamoorthy, and V. Gudise, “Optimal PSO for collective robotic search

applications,” In Proceedings of Congress on Evolutionary Computation 2004, vol. 2, pp. 1390-

1395, 2004.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[9] R. Eberhart and Y. Shi, “Particle swarm optimization: Developments, applications and

recourses,” In Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81-

86, 2001.

[10] M. Eisen and P. Brown, “DNA arrays for analysis of gene expression,” Methods Enzymol,

vol. 303, pp. 179-205, 1999.

[11] D. Fogel, “An introduction to simulated evolutionary optimization,” IEEE Transactions on

Neural Networks, vol. 5, no. 1, pp. 3-14, 1994.

[12] N. Friedman, M. Linial, I. Nachman, and D. Pe’er, “Using Bayesian networks to analyze

expression data,” Journal of Computational Biology, vol. 7, pp. 601-620, 2000.

[13] V. Gudise and G. Venayagamoorthy, “Comparison of particle swarm optimization and

backpropagation as training algorithms for neural networks,” In Proceedings of the 2003 IEEE

Swarm Intelligence Symposium, pp. 110-117, 2003.

[14] J. Hallinan, “Cluster analysis of the p53 genetic regulatory network: Topology and biology.

In Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and

Computational Biology, pp. 1-8, 2004.

[15] J. Hallinan and P. Jackway, “Network motifs, feedback loops and the dynamics of genetic

regulatory networks,” In Proceedings of the IEEE Symposium on Computational Intelligence in

Bioinformatics and Computational Biology, pp. 1-7, 2005.

[16] J. Hallinan and J. Wiles, “Evolving genetic regulatory networks using an artificial

genome,” In Proceedings of the 2nd Asia-Pacific Bioinformatics Conference (APBC2004), vol.

29, pp. 291-296, 2004.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[17] J. Hallinan and J. Wiles, “Asynchronous dynamics of an artificial genetic regulatory

network,” In Proceedings of the 9th International Conference on the Simulation and Synthesis of

Living Systems (ALife9), 2004.

[18] S. Haykin, “Neural networks: A comprehensive foundation,” 2nd Ed., Prentice Hall, New

Jersey, 1999.

[19] X. Hu, A. Maglia, and D. Wunsch II, “A general recurrent neural network approach to

model genetic regulatory networks,” In Proceedings of the 27th Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, pp. 4735-4738, 2005.

[20] D. Husmeier, “Sensitivity and specificity of inferring genetic regulatory interactions from

microarray experiments with dynamic Bayesian networks,” Bioinformatics, vol. 19, no. 17, pp.

2271- 2282, 2003.

[21] H. De Jong, “Modeling and simulation of genetic regulatory systems: A literature review,”

Journal of Computational Biology, vol. 9, pp. 67-103, 2002.

[22] C. Juang, “A hybrid of genetic algorithm and particle swarm optimization for recurrent

network design,” IEEE Transaction on Systems, Man, and Cybernetics, Part B, vol. 34, no. 2,

pp. 997-1006, 2004.

[23] S. Kauffman, “The origins of order: Self-organization and selection in evolution,” Oxford

University Press, New York, 1993.

[24] E. Keedwell and A. Narayanan, “Discovering gene networks with a neural-genetic hybrid,”

IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 2, no. 3, pp. 231-

242, 2005.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[25] J. Kennedy and R. Eberhart, “A discrete binary version of the particle swarm optimization,”

In Proceedings of International Conference on System, Man, and Cybernetics, vol. 5, pp. 4104-

4108, 1997.

[26] J. Kennedy, R. Eberhart, and Y. Shi, “Swarm intelligence,” Morgan Kaufmann Publishers,

2001.

[27] J. Kolen and S. Kremer, “A field guide to dynamical recurrent networks,” IEEE Press,

2001.

[28] S. Liang, S. Fuhrman, and R. Somogyi, “REVEAL: A general reverse engineering

algorithm for inference of genetic network architectures,” In Proceedings of the Pacific

Symposium on Biocomputing (PSB'98), vol. 3, pp. 18-29, 1998.

[29] R. Lipshutz, S. Fodor, T. Gingeras, and D. Lockhart, “High density synthetic

oligonucleotide arrays,” Nature Genetics, vol. 21, pp. 20-24, 1999.

[30] G. McLachlan, K. Do, and C. Ambroise, “Analyzing microarray gene expression data,”

John Wiley & Sons, Inc., Hoboken, NJ, 2004.

[31] E. Mjolsness, T. Mann, R. Castaño, and B. Wold, “From co-expression to co-regulation: An

approach to inferring transcriptional regulation among gene classes from large-scale expression

data,” In Advances in Neural Information Processing Systems 12, pp. 928-934, MIT Press, 2000.

[32] I. Ong, J. Glasner, and D. Page, “Modeling regulatory pathways in E.coli from time series

expression profiles,” In Proceedings of the 10th International Conference on Intelligent Systems

for Molecular Biology (ISMB02), pp. 1-8, 2002.

[33] B. Perrin, L. Ralaivola, A. Mazurie, S. Battani, J. Mallet, and F. d’Alchė-Buc, “Gene

networks inference using dynamic Bayesian networks,” Bioinformatics, vol. 19, Suppl.2, pp.

ii138- ii148, 2003.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[34] M. Ronen, R. Rosenberg, B. Shraiman, and U. Alon, “Assigning numbers to the arrows:

Parameterizing a gene regulation network by using accurate expression kinetics,” Proceedings

of the National Academic Sciences, vol. 99, no. 16, pp.10555-10560, 2002.

[35] M. Settles, B. Rodebaugh, and T. Soule, “Comparison of genetic algorithm and particle

swarm optimizer when evolving a recurrent neural network,” In Proceedings of the Genetic and

Evolutionary Computation Conference 2003, vol. 2723, pp. 148-149, 2003.

[36] I. Shmulevich, E. Dougherty, and W. Zhang, “From Boolean to probabilistic Boolean

networks as models of genetic regulatory networks,” Proceedings of the IEEE, vol. 90, no. 11,

pp. 1778- 1792, 2002.

[37] E. van Someren, L. Wessels, M. Reinders, “Linear modeling of genetic networks from

experimental data,” In Proceedings of the 8th International Conference on Intelligent Systems for

Molecular Biology (ISMB00), pp. 355-366, 2000.

[38] E. van Someren, L. Wessels, and M. Reinders, “Genetic network models: A comparative

study,” In Proceedings of SPIE, Micro-arrays: Optical Technologies and Informatics (BIOS01),

vol. 4266, pp. 236-247, 2001.

[39] E. van Someren, L. Wessels, M. Reinders, and E. Backer, “Robust genetic network

modeling by adding noisy data,” In Proceedings of the 2001 IEEE-EURASIP Workshop on

Nonlinear Signal and Image Processing (NSIP01), 2001.

[40] Y. Tamada, S. Kim, H.Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano,

“Estimating gene networks from gene expression data by combining Bayesian network model

with promoter element detection,” Bioinformatics, vol. 19, Suppl.2, pp. ii227- ii236, 2003.

[41] J. Vohradský, “Neural network model of gene expression,” The FASEB Journal, vol. 15,

pp. 846-854, 2001.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[42] M. Wahde and J. Hertz, “Coarse–grained reverse engineering of genetic regulatory

networks,” Biosystems, 55, 129–136, 2000.

[43] M. Wahde and J. Hertz, “Modeling genetic regulatory dynamics in neural development,”

Journal of Computational Biology, 8, 429-442, 2001.

[44] M. Wahde and Z. Szallasi, “A survey of methods for classification of gene expression data

using evolutionary algorithms,” Expert Review of Molecular Diagnostics, vol. 6, no. 1, pp. 101-

110, 2006.

[45] D. Weaver, C. Workman, and G. Stormo, “Modeling regulatory networks with weight

matrices,” In Proceedings of the Pacific Symposium on Biocomputing, pp. 112-123, 1999.

[46] P. J. Werbos, “Backpropagation through time: What it does and how to do it,” Proceedings

of IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.

[47] J. Xu and B. Nelson, Personal Communications, Department of Industrial Engineering and

Management Sciences, Northwestern University, 2006.

[48] R. Xu, X. Cai, and D. Wunsch II, “Gene expression data for DLBCL cancer survival

prediction with a combination of machine learning technologies,” In Proceedings of the 27th

Annual International Conference of IEEE Engineering in Medicine and Biology Society, pp.

894-897, 2005.

[49] R. Xu, X. Hu, and D. Wunsch II, “Inference of genetic regulatory networks from time

series gene expression data,” In Proceedings of International Joint Conference on Neural

Networks 2004, vol.2, pp.1215-1220, 2004.

[50] R. Xu and D. Wunsch II, “Survey of clustering algorithms,” IEEE Transactions on Neural

Networks, vol.16, no.3, pp.645-678, 2005.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

[51] X. Yao, “Evolving artificial neural networks,” Proceedings of the IEEE, vol. 87, no.9,

pp.1423-1447, 1999.

Rui Xu received the B.E. degree in electrical engineering from Huazhong University of
Science and Technology, Wuhan, Hubei, China, in 1997, the M.E. degree in electrical
engineering from Sichuan University, Chengdu, Sichuan, in 2000, and the Ph.D. degree in
electrical engineering from the University of Missouri - Rolla in 2006. His research interests
include machine learning, neural networks, pattern classification and clustering, and
bioinformatics. He is a member of the IEEE.

Donald C. Wunsch II received the B.S. degree in applied mathematics from the University of
New Mexico, Albuquerque, and the M.S. degree in applied mathematics and the Ph.D. degree
in electrical engineering from the University of Washington, Seattle.
He is the Mary K. Finley Missouri Distinguished Professor of Computer Engineering at the
University of Missouri - Rolla, where he has been since 1999. His prior positions were
Associate Professor and Director of the Applied Computational Intelligence Laboratory at
Texas Tech University, Senior Principal Scientist at Boeing, Consultant for Rockwell
International, and Technician for International Laser Systems. He has well over 200

publications and has attracted over $5 million in research funding. He has produced eleven Ph.D. recipients – six in
electrical engineering, four in computer engineering, and one in computer science.
Dr. Wunsch has received the Halliburton Award for Excellence in Teaching and Research, and the National Science
Foundation CAREER Award. He served as voting member of the IEEE Neural Networks Council, Technical
Program Co-Chair for IJCNN 02, General Chair for IJCNN 03, International Neural Networks Society Board of
Governors Member, and 2005 President of the International Neural Networks Society.

Ronald L. Frank received the B.S. degree in biology from Houghton College in Houghton,
New York in 1978, the M.S. degree in 1981 and Ph.D. degree in genetics in 1985 from The
Ohio State University, Columbus, OH. He is currently Associate Professor of Biological
Sciences at University of Missouri-Rolla where he has been since 1988. Prior to UMR he was
an ARS Post-doctoral Fellow at the Beltsville Agricultural Research Center in Maryland. Dr.
Frank’s research interests are in structure, expression and evolution of gene families in
soybean. He teaches Molecular Genetics and Evolution classes at UMR and is a voting
member of the Genetics Society of America.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

	Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using Particle Swarm Optimization
	Recommended Citation

	Microsoft Word - $ASQgeneticpso_1.doc

