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Direct sequencing of genomic DNA from diploid individuals leads to ambiguities 

on sequencing gels whenever there is more than one mismatching site in the se- 

quences of the two orthologous copies of a gene. While these ambiguities cannot 

be resolved from a single sample without resorting to other experimental methods 

(such as cloning in the traditional way), population samples may be useful for 

inferring haplotypes. For each individual in the sample that is homozygous for the 

amplified sequence, there are no ambiguities in the identification of the allele’s 

sequence. The sequences of other alleles can be inferred by taking the remaining 

sequence after “subtracting off’ the sequencing ladder of each known site. Details 

of the algorithm for extracting allelic sequences from such data are presented here, 

along with some population-genetic considerations that influence the likelihood 

for success of the method. The algorithm also applies to the problem of inferring 

haplotype frequencies of closely linked restriction-site polymorphisms. 

Introduction 

Although the acquisition of sequences of multiple alleles from natural populations 

provides the ultimate description of genetic variation in a population, the time and 

labor involved in obtaining sequence data has limited the number of such studies. 

Any means of acquiring sequence data from population samples that decreases this 

effort could be of great utility. The advent of the polymerase chain reaction (PCR) 

(Saiki et al. 1985; Scharf et al. 1986) has greatly accelerated the process of going from 

genomic DNA to sequence data, by eliminating the cloning step. Direct sequencing 

of PCR products can work very well for mtDNA or for DNA from isogenic or otherwise 

homozygous or hemizygous regions, but heterozygosity in diploids results in ampli- 

fication of both alleles. Using asymmetric amplification, with unequal concentrations 

of the two primers, one can obtain single-stranded DNA products that can be directly 

sequenced. In a heterozygote, asymmetric PCR results in amplification products of 

both homologues. The resulting superimposition of the two sequencing ladders for 

the two alleles produces a vast number of possible haplotypes for any heterozygous 

individual. If there are n such “ambiguous” sites in an individual, then there are 2” 

possible haplotypes. The challenge is to devise a scheme whereby haplotypes can be 

inferred from a series of these ambiguous sequences constructed from samples of 

diploid natural populations. 

The Algorithm 

Suppose that we have a series of sequences from diploids with many ambiguous 

Even with highly polymorphic sequences, a sample of sufficient size from a 
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112 Clark 

population will have some homozygotes or individuals with just one heterozygous 

site. A homozygote is recognized by a lack of ambiguous sites on the sequencing gel, 

and, as soon as a homozygote is found, we have unambiguously identified a haplotype. 

If an individual has a single heterozygous site, then we have unambiguously identified 

two haplotypes. The algorithm begins by finding all homozygotes and single-site het- 

erozygotes and tallying the resulting known haplotypes. 

For each known haplotype, we then look at all the remaining unresolved sequences 

and ask whether the known haplotype can be made from some combination of the 

ambiguous sites. Each time such a haplotype is found, we immediately recover the 

complement of the haplotype as another potential haplotype. This chain of inference 

continues until all haplotypes have been recovered, or until no more new haplotypes 

can be found. 

Suppose, for example, that one observes a sequencing gel with the sequence 

ATGGTAC. If this sequence has no ambiguous sites, then we infer that this is a true 

haplotype (the individual must have been homozygous at all seven sites). If one also 

observes the sequence ATEGFAC, then it is clear that the two ambiguous sites could 

result in any of four possible haplotypes. Because the original known haplotype is one 

of these, we assume that the genotype had this haplotype. The homologous allele that 

the genotype must have had in order to give the observed ambiguous phenotype is 

ATCGCAC. 

Figure 1 is a diagram of the chain of inference used by the algorithm. Suppose 

that Al Al is a homozygote for haplotype Al, where Al represents a sequence of arbitrary 

FIG. l.-Diagram showing the cascade of inferences in the haplotype-inferring algorithm. First a ho- 

mozygote is identified, yielding a definitive haplotype. If any other ambiguous sequence could have this 

haplotype as one of its two haplotypes, then the remaining bands determine the other haplotype. This chain 

is continued either until all haplotypes are resolved or until one identifies sequences that cannot be derived 

from any of the known haplotypes (as in genotype &A,). 
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Inferences from Direct Sequencing 113 

length. Let AlAz be a heterozygote that would produce a superimposed sequencing 

ladder with potentially many ambiguous sites, but among the possible haplotypes lies 

the combination of AIAz. Observation of this fact would give us both haplotypes, Al 

and AZ, and we could then search for occurrence of either Al or A2 from among the 

remaining ambiguous sequences. In summary, the algorithm is as follows: (1) Identify 

all homozygotes and single-site heterozygotes. Consider their haplotypes as “resolved.” 

(2) Determine whether any of the resolved haplotypes could be one of the alleles in 

each of the remaining ambiguous sequencing ladders. If not, then stop; otherwise 

continue. (3) Each time a resolved haplotype is identified as one of the possible alleles 

in an ambiguous ladder, identify the homologue as the sequence with the other set of 

bands at each ambiguous site. Consider this newly identified homologue as resolved, 

and go to step 2. By performing these steps with different orderings of the data, the 

uniqueness of the solution can be determined. The solution that resolves the most 

haplotypes is almost always valid (see below). A simple implementation of the algorithm 

designed for inferring sequences is available from the author (please send formatted 

5.25” diskette). 

The algorithm works on samples that are polymorphic for insertions and deletions, 

but implementing the algorithm on a computer can be cumbersome if it must be able 

to handle multiple nested insertions and deletions. In the simple case of presence/ 

absence of one insertion, a heterozygote would produce a sequencing ladder with 

many ambiguous sites 3’ from the insertion. If either haplotype of this heterozygote 

had been identified in a homozygote, both haplotypes could be correctly inferred. 

While the algorithm should work in principle, there are three problems that can 

arise: ( 1) One may fail to recover any homozygotes or single-site heterozygotes and 

may never get the cascade started. (2) There may be unresolved haplotypes left at the 

end (such as A6 and A7 in the example in fig. 1). (3) Haplotypes might be erroneously 

inferred if a crossover product of two actual haplotypes is identical to another true 

haplotype. The likelihoods of these problems can be estimated from population genetics 

theory and will clearly depend on such factors as the average heterozygosity per nu- 

cleotide site, the length of the DNA sequence observed, sample size, and rates of 

recombination among sites. 

How Many Ambiguous ,Sites Will There Be? 

To examine how many ambiguous sites there will be, note that the infinite-site 

model (Kimura 1969, 197 1) allows one to estimate the number of mismatching sites 

between a pair of genes drawn at random from a natural population of diploids in 

steady state between mutation and drift. Under the infinite-site model, the expected 

number of mismatching sites for a DNA sequence of L nucleotides is given by 0 

= LO,,, where (!lnt is 4AQ.t (Kimura 1969; Watterson 1975). Here N is the effective 

population size and p is the neutral mutation rate per nucleotide site per generation. 

Several studies of restriction-site variation in natural populations of Drosophila 

melanogaster have allowed estimation of the magnitude of heterozygosity per nucleo- 

tide. In the Adh region, On1 has been estimated at 0.006 (Kreitman 1983; Aquadro et 

al. 1986; Kreitman and Aquade 1986a, 19863; Simmons et al. 1989), and other chro- 

mosomal regions appear to exhibit similar levels of heterozygosity, including Notch 

at 0.007 (Schaeffer et al. 1988), Amy at 0.006 (Langley et al. 1988), the 87A heat- 

shock region at 0.002 (Leigh Brown 1983), white at 0.004-0.008 (Langley and Aquadro 

1987; Miyashita and Langley 1988), zeste-tko at 0.004 (Aguade et al. 1989b), and rosy 
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114 Clark 

at 0.003 (Aquadro et al. 1988). One exceptional region spans the X-linked yellow- 

achaete-scute genes, with a per-nucleotide heterozygosity of 0.0003 (Aguade et al. 

1989a). Other species appear to exhibit higher levels of heterozygosity, with the rosy 

region of D. simulans having a heterozygosity of 0.019 (sixfold that of melanogaster; 

Aquadro et al. 1988) and A& in D. pseudoobscura having a per-nucleotide hetero- 

zygosity of 0.02 1 (Schaeffer et al. 1987). Other estimates of heterozygosity at the nu- 

cleotide level include those of P-globin and growth hormone in man (0.002 each), 

factor IX in man (0.0002), and growth hormone in pig (0.007) (Nei and Hughes, 

accepted). 

When 8,, = O.O05/nucleotide site is taken as an average for D. melanogaster, an 

upper bound for the value of 8 can be estimated as 0.00% If the mutation rate is 

homogeneous across a gene, doubling the size of a gene should double the total mutation 

rate, but this yields an upper bound for the value of 8 because the mutation-drift 

process generates correlations of heterozygosity across sites. Fragment lengths of 400, 

1,000, and 2,000 nucleotides, taken from a population having 8,, = 0.005, would have 

8’s of 2, 5, and 10, respectively. The distribution of the number of mismatching sites 

expected when two genes are drawn from a population was calculated by Watterson 

(1975) as follows: 

Pr(2 sequences have m mismatches) = L 
(e+&ifi)m * 

For a typical Drosophila gene of length 1,000 bp, we expect that the average direct- 

sequencing gel would reveal five ambiguous sites per individual (if we ignore for now 

the effects of insertion and deletion). Figure 2 gives the distribution of the number of 

mismatches for a part of the parameter space that might be reasonable for a typical 

population sample of D. melanogaster. 

Can the Algorithm Get Started? 

Without homozygotes or single-site heterozygotes, the algorithm cannot get 

started, so it is important to consider what population genetics theory says about the 

likelihood of recovering homozygotes. According to the infinite-allele model, in a 

population that is in steady state, with a balance between the rate of gain of alleles by 

mutation and loss due to drift, the probability that two genes will be identical is F 

= l/( 1 + Cl), so the chance of having two different alleles is 1 - F. The probability of 

drawing n diploids and getting no homozygotes is complicated by the fact that we are 

drawing without replacement, so that subsequent samples are not independent of one 

another. To calculate the probability of drawing n diploids and getting no homozygotes, 

we must exhaustively enumerate all possible configurations of alleles in a sample and 

determine their probabilities with the Ewens (1979, p. 95) sampling formula. The 

probability that we are after is the sum of the probabilities of the configurations weighted 

by the probability that each configuration lacks homozygotes. In the case of a sample 

of two diploids, the configurations may be (AI/AZ, As/Ad}, (A,/Az, AJA3), {Al/ 

AZ, AI/A& {A1/A2, A3/A3), (AI/AI, AZ/A& (AI/AI, AJA& and {AI/AI, Al/ 
Ai }. Only the first three of these configurations lack homozygotes, and their respective 

probabilities (from the Ewens sampling formula) are e3/S, 402/S, and 20/S, where S 

= [( 1+@(2+Cl)(3+@]. The probability of obtaining no homozygotes in a sample of 

two diploids is the sum of these probabilities, or 
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Inferences from Direct Sequencing 115 

0.2 

10 20 30 40 

Number of mismatches 
FIG. 2.-Probability density of the number of mismatches between two sequences drawn from a pop 

ulation at steady state under the infinite-site model. The curve for 8 = 2 is truncated and would meet the 

y-axis at 0.333 [the probability of no mismatches is l/( l+e)]. 

Pr (no homozygotes) = 
e3 + 4e2 + 28 

(i+e)(2+8)(3+8) * 

For larger sample sizes, one must determine the probability of all partitions of all 

configurations of alleles having no homozygotes, and this is a very cumbersome cal- 

culation. For large population sizes (large O), successive samples from a population 

become nearly independent. The chance of drawing one homozygote is l/( 1 +e), and 

Watterson’s distribution gives the chance of drawing a single-site heterozygote as being 

8/( 1 +e>‘. If approximate independence is assumed, the chance of drawing n individuals 

and having none of them be either a homozygote or a single-site heterozygote (i.e., 

the probability of failing to get the algorithm started) is 

Pr(failure) = I- L - - 
[ 

8 n 

i+e 1 (l+ey * 
This approximation becomes very good when 8 > 0.5. As Figure 3 indicates, even 

with a highly diverse segment of DNA, homozygotes or single-site heterozygotes will 

be recovered if the sample is large enough. For example, even if 8 is as large as 10, 

the chance of failing to get the algorithm started is < 1% with a sample of 24 individuals. 

These calculations were based on the infinite-site model, and recombination would 

result in a greater allelic diversity and lower chance of obtaining no homozygotes. 

Simulations will address this issue. In the case of organisms that can be reared in the 

laboratory, one can use either isofemale lines or lines that are otherwise somewhat 

inbred to increase the likelihood of encountering homozygotes. Direct sequencing can 
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0.15 

0 

\\ 

8=1 

e=5 

10 20 30 40 50 60 

Sample size 

FIG. 3.-Probability of failing to start the algorithm (owing to a lack of homozygotes or single-site 

heterozygotes) as a function of 0 and the sample size (the number of diploid genotypes). The curves indicate 

the probability of obtaining no homozygotes or single-site heterozygotes for given values of 8 and sample 

size according to the infinite-site model. 

detect homozygotes much more quickly than can the classical method of chromosome 

extraction. 

Will There Be Orphaned Alleles? 

If a genotype AiAj is found such that neither haplotype Ai nor Aj occurs in a 

homozygote or any other heterozygote, then these haplotypes cannot be resolved and 

will be referred to as “orphans.” Simulations were performed to explore the fraction 

of times that orphans will be encountered under a range of values of 8 and a range of 

sample sizes. Samples of 2n gametes were drawn from the frequency distribution 

expected under the infinite-allele model, constructed with the algorithm of Stewart 

(1977). These 2n gametes were combined to form n diploid genotypes. Homozygotes 

were identified, and paths connecting alleles were constructed, in an attempt to connect 

all alleles to a homozygote. If orphaned alleles remain, then this sample is scored as 

an orphaned sample. A total of 1,000 samples was drawn, each from a distinct real- 

ization of the Ewens distribution constructed for each combination of 8 and n that is 

indicated in table 1. There are two noteworthy trends in table 1. First, larger values 

of 8 result in a higher chance of obtaining orphans (for a given sample size) because 

larger 0 results in greater allelic diversity at steady state. Second, as the sample size 

increases, orphans are less likely to remain, because large samples are more likely to 

contain paths connecting all alleles to homozygotes. With regard to the diagram shown 

in fig. 1, if the sample size were expanded, ambiguous genotype &A7 would be resolved 

when genotypes such as AIA6 are found. The feature of being able to sample more 

individuals until all haplotypes are resolved has considerable practical importance. 
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Inferences from Direct Sequencing 117 

Table 1 

Fraction of Samples with Any Orphaned Alleles, and Average Frequency of Orphaned Alleles 

SAMPLE SIZE 

(no. of individuals) 
. 

0 10 20 50 100 

1 . . . . . . . . . . . <O.OOl (<O.OOl) <O.OOl (<O.OOl) <o.oo 1 (<O.OO 1) 0.002 (<O.OO 1) 

2 . . . . . . . . . . . 0.008 (0.008) <o.oo 1 (CO.00 1) <o.oo 1 (<O.OO 1) 0.003 (CO.00 1) 

5 . . . . . . . . . . . 0.053 (0.205) 0.035 (0.008) 0.011 (0.001) 0.004 (<O.OOl) 

lo.......... 0.204 (0.078) 0.102 (0.029) 0.037 (0.003) 0.011 (<O.OOl) 

20.......... 0.325 (0.118) 0.276 (0.092) 0.119 (0.018) 0.057 (0.001) 

NOTE.-Figures represent the fraction of 1 ,ooO samples, drawn from simulations of the infinite-allele model, that have 

any orphaned alleles after the method sketched in fig. 1 is applied. Figures in parentheses are the average frequencies of 

orphaned alleles in the samples. 8 is the expected number of mismatching sites in a pair of alleles. 

Will There Be Anomalous Matches? 

An example will best illustrate the nature of this problem. Suppose one observes 

a homozygote for sequence ATTGCTGA. If one also observes a sequencing ladder 

with four ambiguous sites, composed of haplotypes ATCGCTAA and AGTGCGGA, 

the originally identified homozygous haplotype may be anomalously identified as part 

of this haplotype pair. If this happens, then the other haplotype inferred from this 

haplotype pair may be erroneous, and there will follow a cascade of errors. 

To determine the frequency of such anomalous matches, the infinite-site model 

was simulated using a tree-based algorithm (Hudson 1983) provided by Dick Hudson. 

For given values of 8, n, and the recombination rate across the sequence, this algorithm 

gives a sample from a steady-state population obeying the assumptions of the infinite- 

site model. These samples were then presented to the computer algorithm that performs 

the haplotype-inference algorithm outlined above (table 2). There are no striking trends 

in the frequency of anomalous matches depending on either 0 or sample size. Larger 

samples might encounter more genotypes that could anomalously match alleles, but 

homozygotes that resolve the ambiguity are also found in larger samples. There appears 

to be only a minor effect of recombination in this portion of the parameter space. 

The relatively minor effect of recombination is consistent with Hudson’s (1983) sim- 

ulations, which showed that, while recombination increases heterozygosity and the 

number of alleles, there is little effect of recombination on the expected heterozygosity 

conditioned on the number of alleles. The effectiveness of the algorithm appears to 

depend on the conditional heterozygosity, such that samples with more alleles can be 

resolved if there is higher heterozygosity. A higher heterozygosity assures that more 

of the common alleles are found in heterozygotes with rare alleles, so that, once the 

chain gets started (by finding one homozygote), it continues to resolve more alleles. 

From the simulations described above, in each case when anomalous matches 

were found the computer routine tested whether the resulting false haplotype could 

be pulled from the sample of ambiguous sequences. In no case were any false com- 

plementary haplotypes found in the sample, and, in every case in which anomalous 

matches were obtained, that solution had orphaned alleles. In no case was a solution 

that obtained anomalous matches the solution with the fewest orphans. This empirically 

demonstrates a parsimony rule that the solution with the fewest orphans is the valid 
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Table 2 

Fraction of Samples with Unresolved Anomalous Matches, and Frequency 

of Anomalous Haplotypes 

SAMPLE SIZE 

(no. of individuals) 

8 10 20 50 100 

I..... 

2..... 

5..... 

lo.... 

20.... 

. . . 

. . . 

. 

. . . 

0.09 (0.07) 

0.07 (0.09) 

0.15 (0.14) 

0.14 (0.11) 

0.18 (0.22) 

0.10 (0.21) 

0.00 (0.07) 

0.05 (0.13) 

0.00 (0.20) 

0.02 (0.02) 

0.06 (0.04) 0.06 (0.06) 0.08 (0.09) 

0.06 (0.05) 0.07 (0.08) 0.08 (0.08) 

0.14 (0.10) 0.12 (0.14) 0.15 (0.15) 

0.22 (0.14) 0.12 (0.13) 0.17 (0.17) 

0.23 (0.00) 0.17 (0.23) 0.20 (0.34) 

0.23 (0.33) 0.20 (0.24) 0.26 (0.17) 

0.17 (0.00) 0.13 (0.22) 0.20 (0.34) 

0.14 (0.31) 0.16 (0.28) 0.29 (0.30) 

0.00 (0.00) 0.15 (0.24) 0.20 (0.34) 

0.02 (0.00) 0.15 (0.28) 0.35 (0.19) 

NOTE.-Figures in each cell report the fraction of 100 samples, drawn from the infinite-site algorithm of Hudson 

(1983), that have anomalous matches and are not directly related to a homozygous allele. Figures in parentheses are the 

average frequency of anomalously matched alleles. Within each cell the upper figures are for no recombination, and the 

lower figures represent 4Nr = 0.5. 

solution and suggests that when a solution resolves all haplotypes it is likely to be 

unique. XT 

The results of figure 3 and tables 1 and 2 can be summarized as follows: If no 

homozygotes or single-site heterozygotes are found, the method cannot even get started, 

and more sampling is needed. The probability of this difficulty is given in figure 3. 

Once the algorithm gets started (by finding homozygotes or single-site heterozygotes), 

then the chain of inference may be broken before all alleles are resolved. The probability 

of this problem is reported in table 1. While anomalous matches occur quite often 

(table 2), whenever they occur they result in anomalous complementary haplotypes 

that do not occur in the sample, and they thereby result in premature termination of 

the cascade of inference. In the simulations, the solution with the fewest orphans and 

fewest anomalous matches always resolved the greatest number of true haplotypes. 

Tests of the Algorithm by Using Adh and Est-6 Sequences 

Kreitman ( 1983) reported 43 polymorphic sites in a sample of 11 alleles of Adh 

in Drosophila melanogaster and a total of nine different haplotypes. Cooke and Oake- 

shott (1989) reported 52 polymorphic sites in sequences of 13 alleles of Est-6 in D. 

melanogaster and resolved 12 different haplotypes. While neither study represents a 

sample from a natural population, these data can be used to illustrate the algorithm 

with the structure of linkage disequilibrium among sites that is observed in nature. 

Samples of the haplotypes were drawn at random to form n = 10, 20, 50, and 100 

diploid genotypes. The haplotype pairs of each genotype were randomized by swapping 

nucleotides at ambiguous sites, thus discarding all linkage phase information from 

the sample. These data were then presented to a computer routine that performs the 

haplotype-inferring algorithm described above. 

In all cases, when the sample size was >20, all the haplotypes in the sample were 

resolved. Many of the samples of 20 did not contain all alleles, but the alleles in the 
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Inferences from Direct Sequencing 119 

sample were successfully identified. Although all haplotypes were successfully identified, 

most samples could admit anomalous matches. Whenever an anomalous match was 

obtained, however, not all haplotypes were subsequently resolved. With samples of 

10, fewer than half of the haplotypes were resolved, and in -40% of these cases no 

homozygotes were recovered, so no haplotypes were resolved. 

The tests that resampled 50 or 100 genotypes from Kreitman’s sequences were 

not quite legitimate because with samples of this size one would expect to encounter 

more rare haplotypes. In addition, because the sequences were not obtained from one 

population, the alleles are likely to exhibit more differences than the infinite-site model 

would predict for a panmictic population (the sample is thus biased in favor of the 

algorithm working successfully). Nevertheless, the success at correctly resolving se- 

quences with experimentally acceptable sample sizes is consistent with the theoretical 

conclusions and provides considerable encouragement for applying the method. 

Other Approaches 

The algorithm described here is intended to be able to resolve ambiguous se- 

quences in the situation where there is only one unique pair of true haplotypes that 

correspond to a given ambiguous sequencing gel. If one were looking at only a few 

polymorphic sites, and if several of the linkage phases are present in the population, 

then a given sequence might be one of several haplotype pairs. In this situation, one 

needs to apply such methods as gene counting and the EM algorithm for frequency 

estimation (Dempster et al. 1977). For this purpose, large sample sizes are needed to 

obtain accurate frequency estimates. This problem would be more likely to arise if 

one were examining variation at a small number of loosely linked restriction sites, as 

might be done in studies of human polymorphism. In this situation, family data could 

increase the likelihood of being able to resolve linkage phases. With tightly linked, 

polymorphic restriction sites, where multisite linkage phases may still be unique, the 

algorithm might be quite effective. 

There are also two direct experimental procedures for obtaining haplotype data 

by using PCR. The first is to isolate single sperm cells by micromanipulation and to 

amplify the DNA from these individual cells (Li et al. 1988). While this method has 

remarkable advantages for mapping (Boehnke et al. 1989), it may not always be prac- 

tical to obtain sperm, and the data do not represent a population sample. Another 

experimental approach is to dilute genomic DNA down to the point where each reaction 

has an average of one DNA molecule (with replicate samples having a Poisson distri- 

bution about this mean). When these samples are amplified, some will reveal unam- 

biguous haplotype information (Ruano et al., accepted). Each of these two experimental 

methods and the inferential method reported here will be optimal under different 

circumstances. 

Discussion 

While PCR has achieved remarkable popularity, its application to obtain direct 

sequences of multiple alleles has been largely limited to studies of haploid or otherwise 

homozygous or hemizygous genetic loci. Samples from diploids may produce ambig- 

uous sequences, so direct sequencing has been applied only rarely to diploid material. 

Population genetic theory shows that for realistic levels of DNA sequence diversity 

an acceptable sample size will afford an excellent chance of resolving the sequences 

of alleles in the sample. The method is particularly well suited to studies of DNA 
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polymorphism in organisms in which chromosome extractions cannot be done and 

in which small quantities of DNA must be used. Because direct sequencing obviates 

the need for cloning, massive volumes of sequence data can be obtained, and, as 

sequencing itself becomes mechanized, the demand for automating basic analyses 

will grow. 

Perhaps the most encouraging aspects of the present report are the observation 

of the high frequency with which simulation data are successfully resolved and the 

relatively small sample sizes needed to resolve known sequences of Drosophila genes. 

It is also useful to note that, if a given sample fails to resolve all haplotypes, increasing 

the sample size is likely to improve the chances of resolving all alleles. 

While intragenic recombination does not seem to affect, to any great degree, the 

ability of the algorithm to resolve haplotypes, it should be recognized that samples of 

large fragments (large 0) are very likely to admit anomalous matches and that in these 

cases the confidence in the inferred haplotypes is weakened. Simulation results suggest 

that the principle of parsimony (minimum number of orphans) will yield the most 

accurate assignment of haplotypes. The algorithm works even with samples in which 

there is sufficient recombination to produce all four gametic types for most pairs of 

polymorphic sites. While this may seem counterintuitive, the algorithm depends more 

on high-order linkage disequilibrium to resolve haplotypes. What is more important 

than pairwise disequilibria is that only a small fraction of the possible haplotypes are 

actually found in a given sample. Despite the power of the method, the parsimony 

rule is only an observation based on simulations, and, if absolute confidence in all 

haplotypes is necessary, this algorithm should only be applied in situations in which 

anomalous matches are unlikely. 

In the worst case-when there are orphan alleles and/or unresolvable anomalous 

matches-these problems are more likely to occur with rare alleles, since common 

alleles are more likely to be resolved through homozygotes or short paths to homo- 

zygotes. Many of the tests one might want to perform on population data might still 

be applicable when all but a few rare alleles are identified. Gene genealogies can be 

constructed for the known alleles, and orphans might be placed in the tree by a min- 

imum-distance rule. Many evolutionary inferences can be made from the distribution 

of polymorphic sites alone. 
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