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ABSTRACT

Bacteria and archaea reproduce clonally, but sporadically import DNA into their chromosomes from
other organisms. In many of these events, the imported DNA replaces an homologous segment in the
recipient genome. Here we present a new method to reconstruct the history of recombination events that
affected a given sample of bacterial genomes. We introduce a mathematical model that represents both
the donor and the recipient of each DNA import as an ancestor of the genomes in the sample. The model
represents a simplification of the previously described coalescent with gene conversion. We implement a
Monte Carlo Markov chain algorithm to perform inference under this model from sequence data
alignments and show that inference is feasible for whole-genome alignments through parallelization.
Using simulated data, we demonstrate accurate and reliable identification of individual recombination
events and global recombination rate parameters. We applied our approach to an alignment of 13 whole
genomes from the Bacillus cereus group. We find, as expected from laboratory experiments, that the
recombination rate is higher between closely related organisms and also that the genome contains several
broad regions of elevated levels of recombination. Application of the method to the genomic data sets
that are becoming available should reveal the evolutionary history and private lives of populations of
bacteria and archaea. The methods described in this article have been implemented in a computer
software package, ClonalOrigin, which is freely available from http://code.google.com/p/clonalorigin/.

BACTERIA and their distant relatives the archaea
make up the majority of cellular living organisms.

Short generation times combine with enormous
population sizes to create tremendous evolutionary
potential. It is currently not feasible to track individual
organisms in natural conditions to directly observe
their evolution. Instead, genomic deoxyribonucleic
acid (DNA) sequencing provides a window onto how
bacteria disperse, diversify, and adapt because DNA
contains information of how organisms are related. In
bacteria and archaea, genomic DNA is replicated as
part of reproduction by binary fission. Changes in
genomic DNA can accumulate because replication is
unfaithful or due to DNA damage, but might also be
introduced by recombining a segment of foreign DNA
into the chromosome. Three mechanisms can lead to
the introduction of foreign DNA into a bacterial or an
archaeal cell: transduction, conjugation, and trans-
formation. The transduction process transfers DNA via

phage infection (Canchaya et al. 2003). Conjugation
requires two cells to come in contact for DNA to be
transmitted from one to the other (Chen et al. 2005).
Transformation is the uptake of naked DNA from the
environment and is regulated by a complex machinery
(Claverys et al. 2009). Recombination through these
three processes has been found to occur frequently in
many groups of bacteria and to be a driving force in their
evolution and adaptation (Didelot and Maiden 2010).
Recombination in bacteria is analogous to gene

conversion rather than crossing over in sexually repro-
ducing organisms (McVean et al. 2002), in the sense
that the recipient and donor cells make asymmetric
contributions to the genetic makeup of the resulting
bacterium: typically the donor contributes only a small
contiguous segment of DNA whereas the recipient
contributes the rest of the genome. For a given set of
bacterial isolates, it is thus possible to define its clonal
genealogy (Guttman 1997) irrespective of how fre-
quently recombination happened, by tracing back in
time the ancestry of the isolates following the line of
ancestry of the recipient (and not that of the donor)
whenever recombination took place. The clonal gene-
alogy is a bifurcating tree where each leaf is an isolate
and each internal node represents the most recent
common ancestor of the samples below it. Homologous
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DNA that has been inherited by strict vertical descent
evolved according to this clonal tree [this is the so-called
clonal frame (Milkman and Bridges 1990)]. However,
recombination leads to different parts of the genome
having different relationships, each of which can be
represented by their own ‘‘local tree.’’ Parts of each local
tree may be identical to the clonal tree, reflecting ver-
tical descent of DNA, while other parts of the tree can
look entirely different due to recombination events
bringing in DNA from a different source. Direct evi-
dence for this phenomenon can be found in multilocus
sequence typing studies (MLST) (Maiden 2006), where
the phylogenies reconstructed at the various loci can be
very different from one another, for example in Heli-
cobacter (Achtman et al. 1999), Bacillus (Priest et al.
2004), or Salmonella (Falush et al. 2006).

In previous work, we developed a method to infer the
clonal genealogy of a group of organisms, while simulta-
neously identifying for each branch of that genealogy the
genomic locations where recombination occurred. The
implementation of that method in software is called
ClonalFrame (Didelot and Falush 2007). ClonalFrame
has proved useful to identify interesting patterns of
recombination in a wide variety of organisms includ-
ing Campylobacter (Sheppard et al. 2008), Neisseria
(Didelot et al. 2009d), and Francisella (Larsson et al.
2009).

Toperformefficient inference, ClonalFramedoes not
model the source of specific recombination events
(Didelot and Falush 2007). However, this simplifica-
tion has two important drawbacks. First, ClonalFrame
can identify only recombination events that introduced
anumberof substitutions higher than expected through
mutation alone andwill miss events that introduce fewer
changes (Didelot and Falush 2007). It does not
explicitly account for other signals of recombination,
most importantly homoplasy, which occurs when segre-
gating nucleotides at pairs of sites are not consistent with
a single tree (Maynard Smith and Smith 1998). The
signal of homoplasy could be correctly interpreted if the
source of recombination events was modeled. Second,
because ClonalFrame does not provide any information
about the source of the recombination events it identi-
fies, it cannot be used to infer patterns of gene flow
between groups of bacteria. One solution is to post-
process the output of ClonalFrame by giving each
recombination event a likely origin (Didelot et al.
2009a), but this is not as accurate as detecting events
and origins at the same time.

Here we introduce a model similar to ClonalFrame,
but where the origin of each recombination event is
explicitly modeled as a point on the clonal genealogy.
The model can therefore be described informally as a
tree representing the clonal genealogy, with some
additional ‘‘recombinant edges’’ going from one point
of the tree to another (Figure 1A) and affecting a subset
of the genome. A recombinant edge ‘‘arrives’’ on the

tree at the time that recombination occurred from an
(unsampled) contemporary bacterium. The ancestry of
the unsampled bacterium is followed back in time to its
most recent common ancestor with an isolate in our
sample giving its ‘‘departure’’ time. The local tree at any
given site can be traced back by considering only the
recombinant edges affecting the site (Figure 1B).

We show how inference can be performed under this
new model and demonstrate that it outperforms Clo-
nalFrame in detecting recombination events in simu-
lated data sets of a closed recombining population. We
also illustrate the use of our new model on a data set
containing 13 whole genomes of Bacillus. The software
we developed to perform inference under our new
model is called ClonalOrigin and is freely available from
http://code.google.com/p/clonalorigin/.

Figure 1.—Illustration of our model for a single region of
300 bp and a sample of four isolates. (A) The full graph of
ancestry, with the clonal genealogy shown in thick black lines
and two recombination events shown in red and blue. The red
event, for example, affected the positions 50–200 of an ances-
tor of the first isolate at the point b1, and the donor last shared
clonal ancestry with the sample at the point a1. (B) The local
trees for each site. Points ai are denoted as ‘‘departures’’ of
recombinant edges from the tree and bi are ‘‘arrivals,’’ with
bi occurring closer to the observed sequences at the tips.
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MODEL AND METHODS

Model: Weuse a tree tomodel the clonal genealogy of
organisms and consider recombination events as local-
ized changes to this tree affecting a small region ofDNA,
resulting in differing local trees for each site. A concep-
tual representation of this model is given in Figure 1,
and the meanings of the mathematical symbols used in
the description below are summarized in Table 1.

The tree T represents the clonal genealogy of the
sample of N bacteria under study. We assume a co-
alescent prior for T (Kingman 1982), which means that
if t2, . . . , tN denote the length of time during which the
sample has 2, . . . , N ancestors, respectively, then the
probability of the entire genealogy (i.e., the coalescence
times plus the tree topology) is given by

PðT Þ ¼
Y

N

i¼2

exp �
i
2

� �

t i

� �

: ð1Þ

The tree T has total branch length T ¼
P

N
i¼2 it i , and

along the branches of the clonal genealogy, recombina-

tion events occur independently at a constant rate r/2.
Therefore the distribution of the total number R of
recombination events is

R j T ; r � Poisson
rT

2

� �

: ð2Þ

Each of the i ¼ 1,. . ., R recombination events is
characterized by four variables: (1) an arrival point bi
on the clonal genealogy, (2) a departure point ai on the
clonal genealogy, (3) the site xi where the recombina-
tion starts along the observed genetic material, and (4)
the site yi where the recombination ends along the
observed genetic material.
The pair (ai, bi) can be represented as a recombinant

edge linking two points of the clonal genealogy with bi
occurring closer to the observed sequences at the tips
than ai (Figure 1A). Since recombination happens at a
constant rate on the clonal genealogy, the arrival points
are independent and identically distributed uniformly
on the clonal genealogy; i.e.,

Pðbi j T Þ ¼
1

T
: ð3Þ

Given an arrival point, the recombinant edge recon-
nects with the clonal genealogy at a rate equal to the
number of ancestors in the clonal genealogy, as ex-
pected under the coalescent model. ai is therefore
distributed as

Pðai j bi ; T Þ ¼ expð�Lðai ; biÞÞ; ð4Þ

where L(ai, bi) is the sum of the branch lengths of T
found between the time of ai and that of bi.
We assume that when recombination occurs, it affects

a region that is uniformly distributed along the genome
and of length geometrically distributed with mean d.
Therefore when B blocks of the genome are under
study for a total sequence length of L, the priors for xi
and yi are given by

Pðx i ¼ s j dÞ

¼

d
Bd1L�B

if s is at the beginning of a block

1
Bd1L�B

otherwise

(

ð5Þ

and:

Pðyi ¼ s j xi ; dÞ

¼
d�1ð1� d�1Þs�xi if s is before the endof the block

ð1� d�1Þs�xi 1 1 if s is the endof the block

(

ð6Þ

(Didelot and Falush 2007). Let R denote the (un-
ordered) list of all recombination events including all
their properties. Combining Equations 2–6, we get the
complete distribution of R:

TABLE 1

Table of symbols

Symbol Description

Symbols used for the data
D Aligned sequence data
N Number of isolates
L Total length of the alignment
B Number of blocks in the alignment
Db Data contained in block b
Ds Data at site s

Symbols used for the clonal genealogy
T Clonal genealogy
ti Length of time during which there were i

ancestors in the clonal genealogy
T Sum of branch lengths of the clonal genealogy

Symbols used for the recombination events
R Set of recombination events and their properties
R Number of recombination events
Rb Recombination events affecting block b
ai Departure point of the recombination event i
bi Arrival point of the recombination event i
xi First site affected by the recombination event i
yi Last site affected by the recombination event i
Ts Local tree at site s

Symbols used for the remaining parameters
u/2 Rate of mutation on the branches of the clonal

genealogy and the recombinant edges
us/2 Per-site rate of mutation
r/2 Rate of recombination on the branches of the

clonal genealogy
rs/2 Per-site rate of recombination
d Mean of the geometric distribution modeling

the length of recombinant segments
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PðR j T ; r; dÞ

¼ PðR j r; T ÞR !

Y

R

i¼1

Pðx i j dÞPðyi j xi ; dÞPðbi j T ÞPðai j bi ; T Þ

¼ expð�rT=2Þðr=2ÞR
Y

R

i¼1

Pðx i j dÞPðyi j xi ; dÞexpð�Lðai ; biÞÞ:

ð7Þ

On each branch of the clonal genealogy and each
recombinant edge mutation events occur at rate u/2.
For simplicity we assume the model of Jukes and
Cantor (1969), where all substitutions are equally
likely, but our model can equally be used with other
mutational processes (Whelan et al. 2001).

In this framework, time is measured in nondimen-
sional ‘‘coalescent units,’’ with per-generation rates
given by ug ¼ u/2Ne for mutation and rg ¼ r/2Ne for
recombination, whereNe is the effective population size
(which does not need to be known). It is also useful
to define the per-site mutation rate us ¼ u/L and per-
site recombination rate rs ¼ r/[(d � 1)B 1 L].

Bayesian inference: LetDdenote the set of sequences
for which we want to perform inference, related by a
known clonal genealogy T. We assume for the moment
that the values of the parameters u, r, and d are also
known. We want to perform inference on the posterior
distribution:

PðR jD; T ; u; r; dÞ}PðR j T ; r; dÞPðD j T ;R; uÞ: ð8Þ

The first term (the prior) is given by Equation 7. To
compute the second term (the likelihood), we define
the local tree Ts of each site s ¼ 1,. . ., L as the tree
obtained by following the recombinant edges for which
xi # s # yi (cf. Figure 1B) and the clonal genealogy
otherwise. The data Ds observed at site s depend on the
ancestry graph only through the local tree Ts and
therefore the likelihood can be decomposed as

PðD j T ;R; uÞ ¼
Y

L

s¼1

PðDs jT s ; uÞ; ð9Þ

where each of the terms in the product can be computed
using the pruning algorithm of Felsenstein (1981).
This algorithm provides a natural way of dealing with
gaps in the alignment by treating them as missing data.

To perform inference, we use a Monte Carlo Markov
chain (MCMC) with reversible jumps (Green 1995).
Briefly, our update scheme is made of two reversible-
jump moves: a ‘‘remove’’ move, which proposes to re-
move an existing recombinant edge chosen uniformly
at random, and an ‘‘add’’ move, which proposes to add a
recombination event with properties proposed accord-
ing to their priors as defined in Equations 3–6. These
two moves are accepted according to their Metropolis–
Hastings–Green ratio as described in appendix a. We
also use nontransdimensional moves proposing to
update the departure point, arrival point, starting site,

and finishing site of an existing recombinant edge, as
described in appendix a.

Inference using whole genomes: The previous sec-
tion described how to infer the recombination events
R from some dataD, assuming knowledge of T, u, r, and
d. Direct inference could in principle be done when
those quantities are unknown by adding MCMC moves
for those parameters, including phylogenetic updates as
originally proposed by Yang and Rannala (1997) and
by Mau and Newton (1997). However, because we are
primarily interested in inference using whole genomes,
such a scheme would be unable to converge because the
combined parameter space is extremely large and a
parallelization scheme is difficult to implement effi-
ciently. When T, u, r, and d are known, inference can
be greatly simplified by noting that the recombination
events affecting the various alignment blocks b ¼ 1, . . . ,
B are independent. In other words, if Db denotes
the subset of the data corresponding to the block b
and Rb denotes the subset of recombination events
affecting the block b, then we have

PðR jD; T ; u; r; dÞ ¼
Y

B

b¼1

PðR b jDb ; T ; u; r; dÞ: ð10Þ

Thus inference when T, u, r, and d are known can be
done even for a large genomic alignment by paralleliza-
tion of the inference of the recombination events for
each alignment region. Alignment regions are induced
by genomic rearrangement processes (Darling et al.
2004) and it is convenient to treat them as independent
(given T, u, r, and d) as previously proposed (Didelot
and Falush 2007). Furthermore, when whole genomes
are being used, the statistical uncertainty on T, u, r, and
d is likely to be small. We therefore decompose the
inference for whole-genome alignments into a three-
step process:

Step 1. Infer the clonal genealogy T given the data D.
Step 2. Infer the mutation rate u, recombination rate

r, and average tract length of recombination d given
the data D and the clonal genealogy T inferred
in step 1.

Step 3. Infer independently for each alignment block b
the recombination events Rb affecting b given the data
Db, the clonal genealogy T inferred in the first step,
and the parameters u, r, and d inferred in the second
step.

In practice, we perform step 1 using the ClonalFrame
algorithm (Didelot and Falush 2007). Step 2 is per-
formed by running the inference under our model for
each alignment block independently, with u, r, and d

treated as additional parameters (cf. appendix b for the
corresponding MCMC moves). The median value in-
ferred for all blocks is then used as a constant value of u,
r, and d when performing step 3.
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RESULTS

Relationship with the ancestral recombination graph:
Although we have described our model independently,
it is natural to think about it as a simplification of the
ancestral recombination graph (ARG) with gene con-
version (Wiuf and Hein 2000; Didelot et al. 2009c).
Our model is in fact equivalent to an ARG model in
which nonclonal lines of ancestry are not allowed to
either recombine or coalesce with each other. These two
simplifications can be justified if we consider that the
recombination rate (r) is relatively low. Nonclonal lines
carry little ancestral material (of order d/L) and there-
fore have a low effective recombination rate, so that they
are unlikely to recombine in the full ARGmodel into two
ancestors with nonempty ancestral material. Further-
more, two nonclonal lines that coalesce in the ARG are
unlikely to carry overlapping ancestral material and
ignoring such events has been shown to have little effect
in the crossover ARG (McVean and Cardin 2005;
Marjoram and Wall 2006).

The simplifications in our model relative to the ARG
are motivated by our desire to perform inference
under the model for very large data sets. Inference
under the full ARG process is difficult for data sets of
nontrivial size (Stumpf and McVean 2003), but our
simplification implies that each recombinant edge can
be added and removed independently in the MCMC,
which greatly simplifies inference. Furthermore, the
blockwise-independence property of our model in
Equation 10 allows inference to be performed in-
dependently for each region of an alignment, but this
property does not hold for the full ARG model since
two recombinant edges affecting different regions may
coalesce with each other.

To test our approximation, we simulated data under
both ourmodel and the ARGusing SimMLST (Didelot
et al. 2009c). In each simulation we considered two loci,

with a per-site mutation rate us ¼ 0.01 and a recombi-
nation tract length d ¼ 500 bp. Table 2 shows the aver-
age value under both models of the following data
statistics often used to study recombination: number of
segregating sites S, number of unique alleles H (Wall

2000), measure of linkage between the loci r2 (Hill and
Robertson 1968), and measure of homoplasy between
the loci A (Maynard Smith and Smith 1998). When
r ¼ 0 (first row of Table 2), the two models reduce to a
tree model and are formally equivalent. For low values
of the recombination rate (r/u ¼ 0.5 or 1) the two
models are indistinguishable on the basis of the sum-
mary statistics considered. As the recombination rate
increases, we find that the approximate model gener-
ates systematically higher values of S,H, and A (Table 2).
This explains why when inference is performed under
our model using data from the ARG, the recombination
rate tends to be overestimated (cf. next section). The
measure r2 of the linkage remains the same between the
twomodels even for higher values of the recombination
rate (Table 2).
Application to simulated data: We used SimMLST to

simulate sequence data under the ARG model for a
representative range of parameters. We then applied
our algorithm to infer the recombination events and
rate r given the tree, the mutation rate u, and the
recombination tract length d. We consider sequences of
length 10,000 bp, which is characteristic of genomic
alignment block sizes.
Inference on an ARG withN¼ 10 sequences, u¼ 300,

r ¼ 50, and d ¼ 236 bp is considered in Figure 2. There
are no instances of confidently inferred but incorrect
recombination events in this (typical) example, with
false-positive recombination intensity being limited to
two types. First, the boundary of the recombination
region is sometimes imperfectly found (e.g., on branch 1
around 5200 bp), and second, the origin may be
incorrect (e.g., parent of sequences 2 and 8, 100 bp).
In both of these cases the error is ‘‘small’’ in the sense
that the prediction is close to the true value. Several
kinds of uncertainty are captured: the event itselfmay be
uncertain, the arrival branch may be unclear (e.g., an
arrival at sequences 9 and 10 or their parent at 5500 bp),
the recombination may have poorly defined bound-
aries, or the origin may be poorly determined. In the
older part of the ancestry, the inference becomes less
certain because the data become less informative. In
addition to making no false-positive claims about re-
combination event arrival in this example, ClonalOrigin
captures a much larger set of the recombined regions
than does ClonalFrame. Many events in the full ARG do
not change the tree topology, or contain no mutations,
and are therefore undetectable. The inferred recom-
bination rate in the ClonalOrigin model has mean
r ¼ 62.5 [95% confidence interval (45.5, 83.6)] and in
the ClonalFrame model has mean r ¼ 25.4 [95%
confidence interval (16.0, 37.6)].

TABLE 2

Comparison with the ancestral recombination graph

S H r2 A

r/u Full Approx Full Approx Full Approx Full Approx

0.0 8.7 8.8 7.0 7.1 0.19 0.18 0.0 0.0
0.5 8.7 8.8 7.5 7.5 0.14 0.14 0.9 0.9
1.0 8.7 8.9 7.8 7.9 0.11 0.12 1.7 1.7
1.5 8.8 8.9 8.1 8.1 0.10 0.10 2.2 2.4
2.0 8.7 9.0 8.3 8.4 0.08 0.09 2.6 2.9
2.5 8.7 9.1 8.4 8.6 0.08 0.08 2.9 3.3
3.0 8.8 9.2 8.6 8.8 0.07 0.07 3.3 3.7
3.5 8.7 9.3 8.7 8.9 0.07 0.07 3.4 4.1
4.0 8.7 9.3 8.8 9.0 0.06 0.07 3.6 4.3
4.5 8.7 9.5 8.9 9.2 0.06 0.06 3.8 4.8
5.0 8.8 9.5 9.0 9.3 0.06 0.06 4.0 5.1

Approx, approximate.
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Having established that our algorithm can correctly
recover simulated recombination events, we consider
how many events we capture as we vary other parame-
ters. In Figure 3 we consider the inferred r for a range of
ARGs simulated with N ¼ 20, d ¼ 236, and varying r ¼
(25, 50, 75, 100, 150, 200, 250, 300, 400) and u ¼ (50,
100, 200, 300, 400, 500). We average over 10 ARGs for
each set of parameters to reduce variability, which can
be very large under the ARGmodel. ClonalOrigin infers
rmuch closer to the true value than does ClonalFrame,
which tends to underestimate r by roughly a factor of 2
because it misses events that have origins close to the
departure point on the tree. ClonalOrigin infers the
correct recombination rate for low r and overestimates
r when the mutation rate u is high. We conjecture that
this happens because the full ARG model allows recom-
bination events to recombine and coalesce, for which
ClonalOrigin infers additional events to represent the
resulting mosaic of origins. Such mosaic imports to the
clonal lineage becomemore common as recombination
rate increases and are easier to detect as mutation rate
increases. Therefore the recombination rate inferred by

ClonalOrigin corresponds to the true recombination
rate in the limit of small r (and large L), but should be
interpreted in terms of the number of distinct recom-
bined tracts (rather than recombination events) as r

increases.
Application to a Bacillus genomic data set: Bacteria

from the Bacillus cereus group live predominantly in the
soil, feeding from dead organic matter, but occasionally
infect humans where they can inflict diseases ranging
from food poisoning to deadly anthrax (Stenfors
Arnesen et al. 2008). MLST has been applied to the
B. cereus group to investigate its population structure
and history (Priest et al. 2004; Sorokin et al. 2006).
Three major phylogenetic clades have been found,
which do not agree with species designations (Priest
et al. 2004; Sorokin et al. 2006; Didelot et al. 2009a).
Analysis of MLST data using ClonalFrame found that
recombination occurs at a rate approximately one-fifth
of that of mutation (r/u � 0.2) and results in a greater
number of substitutions being introduced (r/m � 1.5)
(Didelot and Falush 2007; Didelot et al. 2009a; Vos
and Didelot 2009).

Figure 2.—Results on simulated data for a single simulation. The clonal genealogy is shown on the left, and each node is given a
color. Each horizontal row on the right represents the arrival of recombination on the branch of the clonal genealogy it is aligned
with. For each row, the x-axis represents the sequence measured in base pairs and the y-axis represents the probability of recom-
bination on a scale from 0 (where the magenta line is most of the time) to 1 ( just below the light gray line). ClonalFrame inference
is represented by a thin magenta line. ClonalOrigin inference is shown in solid colors according to their reconstructed origin.
Small bars above each row correspond to the true recombined regions in the ARG and are colored according to their origin (or in
very light gray to represent absence of recombination). For example, on the branch above genome 9, two real events have oc-
curred, both from an ‘‘orange’’ origin. The first one (around position 900) was fairly short and therefore stayed undetected.
The second one (around position 5200) was detected by ClonalFrame with posterior probability close to 100% and by ClonalOr-
igin with posterior probability �50% and an origin very likely to be orange but that could also be brown or red.
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Since the sequencing of the first genome of B. cereus
by Ivanova et al. (2003), several more isolates have
been fully sequenced (Rasko et al. 2004; Han et al. 2006;
Challacombe et al. 2007; Ravel et al. 2009; Xiong et al.
2009). We collected 13 such genomes (9 from clade 1, 3
from clade 2, and 1 from clade 3), summarized in Table
3, and aligned them using progressiveMauve (Darling
et al. 2004, 2010). We found B ¼ 1218 blocks of
homologous sequence shared between all genomes,
with lengths ranging from 502 to 55,619 bp and com-
bined length L ¼ 3,636,155 alignment columns. Cumu-
lative alignments of subsets of those 13 genomes
indicated that most of the material shared between
them is likely to be part of the core genome shared by all
members of the group (supporting information, Figure
S1). We applied GenoPlast (Didelot et al. 2009b) to the
material not shared by all genomes and found that the
rates of gain and loss of material have been approxi-
mately constant during the evolution of the sample,
except for a recent acceleration of the rate of gain for
the genomes in clade 1 (Figure S2).

Application of the step-by-step methodology: The
first step of our analysis was to reconstruct the clonal
genealogy of the sample using ClonalFrame (Didelot
and Falush 2007). A unique tree topology was inferred,
with little uncertainty in the branch lengths (Figure S3).
The same topology was also found when using UPGMA,
neighbor joining, maximum likelihood, or minimum
evolution (Figure S4). ClonalFrame found that many

recombination events happened during the evolution
of the sample, as shown in Figure S3. These were found
to happen at rate r/u� 0.21 with an interquartile range
(IQR) of (0.20; 0.23) relative to mutation, to be of
average length d ¼ 171 bp [IQR (168; 175)], and to
result in r/m ¼ 2.41 [IQR (2.37; 2.45)] more substitu-
tions introduced by recombination than by mutation.
We then applied our new model to infer the re-

combination events (Rb), mutation rate, recombination
rate, and recombination tract length independently for
each block of the alignment. The values inferred for
each block are shown in Figure 4. The median value for
the recombination tract length d was 236 bp [IQR (131;
537)]. A few blocks, however, took extremely low or high
values, reflecting the limited information available on d

when working with a single block. The median value for
the per-site mutation rate (us/2) was 0.0219 [IQR
(0.0171; 0.0277)]. This was found to be fairly constant
throughout the blocks. The median value for the per-
site recombination rate (rs/2) was 0.0087 [IQR (0.0047;
0.0173)]. Higher rates of recombination were found in
three regions of the genome (Figure 4). The median
inferred value of r/uwas 0.4051, which is almost twice as
high as found by ClonalFrame. This reflects the higher
sensitivity of our new model to detect recombination.
Finally we completed the analysis by applying our new

model again with values of d, us, and rs fixed to the
median values of the previous paragraph.
Patterns of recombination inferred across the

genomes: We estimated that �240,000 recombination
events occurred since the 13 genomes shared a common
clonal ancestor, but most of these events affected the
deep branches of the clonal genealogy, where the
statistical uncertainty about each event is very high.
Figure 5 shows the numbers of recombination events
found by our analysis for any recipient/donor combi-
nation of branches, relative to their expectation under
the inferred recombination rate using Equation 7. The
main pattern in Figure 5 is that genomes recombine

Figure 3.—Inferred values of r relative to true values for
many simulated data sets across various parameter values.
Shown are values for ClonalFrame (magenta) and ClonalOr-
igin (blue). For each of the six values of u we plot the median
(thick line) and interquartile range (thin line) of the ratio of
inferred r/true r, considering the combined results for 10 dif-
ferent instances of the ARG. Lines are labeled by the order
they appear at r ¼ 400. The true value of 1 is shown as a hor-
izontal line for comparison.

TABLE 3

Genomes of the Bacillus cereus group used in this study

Genome Clade Length GenBank

1 B. anthracis Ames 0581 1 5503926 NC_007530
2 B. cereus 03BB102 1 5449308 NC_012472
3 B. cereus AH187 1 5599857 NC_011658
4 B. cereus AH820 1 5588834 NC_011773
5 B. cereus ATCC 10987 2 5432652 NC_003909
6 B. cereus ATCC14579 2 5427083 NC_004722
7 B. cereus B4264 2 5419036 NC_011725
8 B. cereus G9842 1 5736823 NC_011772
9 B. cereus Q1 1 5506207 NC_011969

10 B. cereus ZK 1 5843235 NC_006274
11 B. thuringiensis Al Hakam 1 5313030 NC_008600
12 B. thuringiensis konkukian 1 5314794 NC_005957
13 B. weihenstephanensis KBAB4 3 5872743 NC_010184
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more within clades than between clades. The pattern is
particularly visible in clade 1 and exists despite our
algorithm having increased power to detect recombina-
tion betweenmore divergent sequences. This result may
not be surprising considering that recombination in
bacteria is sequence identity dependent in the labora-
tory (e.g., Majewski 2001). In the B. cereus group,
genetic exchanges have previously been found to occur
more often within than between clades usingMLSTdata
(Didelot et al. 2009a). Figure 5 also contains evidence
for a weaker sexual isolation between the two subclades
of clade 1, consisting, respectively, of genomes (1, 2, 4,
10, 11, 12) and (3, 5, 9).

The imports inferred on the branch ancestral to
genomes 2 and 11 are atypical for two reasons. First, this
branch has imported approximately two times more
material from external sources (i.e., origins above the
most recent common ancestor of our sample) than
expected under the prior, even though the dependency
of recombination to sequence identity should limit the

frequency of such imports. Second, many imports have
been detected coming from genomes 1 and 4. Even
though such imports represent within-clade recombi-
nation, their increased number relative to the prior
seems to go beyond the general increase caused by
homology dependency for the rest of the genomes in
this small data set. This increase is evenly distributed
along the genome (Figure S5).

Figure 6 shows the number of recombination event
boundaries found for each region of the alignment. The
number of recombination events is higher than average
in four regions at positions 0.8, 1.8, 3.2, and 4.9 Mbp
along the genome of ATCC14579. This result confirms
that the variation observed when inferring r in step 2 (cf.
Figure 4) was not just caused by a lack of information.
Such hotspots of recombination have previously been
described in genomic regions under strong positive
selection, for example in Streptococcus (Lefebure and
Stanhope 2007; Muzzi et al. 2008) and in Escherichia coli
(Milkman et al. 2003; Touchon et al. 2009). Here the

Figure 4.—Scatterplots for all
blocks of the stage 2 analysis of
Bacillus, showing the inferred val-
ues of the log-average tract length
(log(d)), the mutation rate per
site (us/2), and recombination
rate per site (rs/2). A density plot
of the scatterplot is shown using
gray shading. The median for
all blocks is shown in red.
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two peaks at 0.8 and 1.8 Mbp correspond to regions of
important change in GC content (Ivanova et al. 2003).
The peak at 3.2 Mbp contains a large number of genes
annotated with antibiotic and other drug resistance
(Ivanova et al. 2003) that may be under positive
selection. The peaks at 0.8 and 4.8 Mbp are also located
near rrn operons (Ivanova et al. 2003) and a tRNA gene
array that harbors the integration site for a Bacillus site-
specific integrative conjugative element (Grohmann
2010).

Recombination events inferred in specific regions:
Figure 7 shows the recombination events found in the
first 2000bpof the twoblocks shownbyablueandagreen
dot (respectively) in Figure 6. The first region is located
right at the beginning of the sequence of genome
ATCC14579, which corresponds to the origin of replica-
tion, where recombination is not particularly prevalent
(Figure 6). This region contains the dnaA gene and the
beginning of the BC0002 gene (Ivanova et al. 2003),
whichbothplayessential roles inDNAreplication.Oneof

Figure 5.—Heat map for the Bacillus stage 3 analysis showing the number of recombination events inferred relative to its ex-
pectation under our prior model given the stage 2 inferred recombination rate, for each donor/recipient pair of branches. The
cells in very light gray are the ones for which the ratio would be meaningless because there are less than three observed and
expected events.
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the clearest recombination events detected in this region
is an import into genome 11 from the cluster containing
genomes 1, 4, and 12 that spans the entire region shown
in Figure 7. In another clear event, genome 10 imported
the first �1000 bp also from the cluster 1, 4, 12. The
ancestorofgenomes2and11 imported the secondhalf of
the region from an ancestor of clade 1. The first�100 bp
(i.e., before the start of gene dnaA) may have been
imported by any of the three genomes of clade 2 from a
member of clade 1. With this single (unclear) exception,
therehavebeenno intercladeevents in this region.There
are, however, many branches and genomic locations for

which no recombination was found at all, for example on
the branches above genomes 1, 3, 4, and 9.

The second region shown in Figure 7 is located in the
third hotspot of recombination at 3.2 Mbp (Figure 6).
This region contains the end of the BC3152 gene that
produces an arsenate reductase, the BC3153 gene that
produces an arsenic-resistance protein, the BC3154
gene that produces a lactoylglutathione lyase, and the
beginning of the BC3155 gene that produces an arsenic-
resistance operon repressor (Ivanova et al. 2003). We
found many recombination events in this region, and
no single branch of the clonal genealogy remains

Figure 6.—Scatterplot of the stage 2 analysis
of Bacillus showing the number of recombina-
tion event boundaries per site for each block
in the alignment of Bacillus. Details of the two
blocks shown by a blue and a green dot are
shown in Figure 7.

Figure 7.—Results of our stage 3 analysis for two example regions of the Bacillus alignment. The representation is the same as
in Figure 2. The two regions are shown by a blue and a green dot, respectively, in Figure 6.
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unaffected (Figure 7). Some of these events represent
interclade recombination, for example the import of the
last �400 bp of genome 12 (which belongs to clade 1)
from clade 2 or the import centered on position 1400 bp
of genome 6 (which belongs to clade 2) from clade 1.
Some events have a very clearly defined origin, for
example the import of the first �600 bp of genome 4
from the ancestor of genomes 3 and 9, whereas others
present more uncertainty, for example the import at
position 100 bp on genome 5 that could come from at
least six branches. This second region contrasts with the
first one shown in Figure 7 in several respects: the
number of recombination events is higher, their tract
lengths are on average shorter, and interclade events are
more frequent. Since the genes in this second region
are involved in resistance to arsenic and its compounds
(which are often used as pesticides, herbicides, or
insecticides), these genes are likely to be under positive
selective pressure (Petersen et al. 2007), which often
implies a higher rate of recombination (Lefebure and
Stanhope 2007; Muzzi et al. 2008; Orsi et al. 2008;
Touchon et al. 2009).

DISCUSSION

Recombination and its consequences have previously
been detected and quantified in many different ways.
The standard population genetic approach starts with
the assumption of a randomly mating population and
inference of the rates of mutation and recombination.
Information on recombination comes in particular
from the patterns of linkage disequilibrium, which have
been used to build detailed maps of recombination
rates in humans and other eukaryotes (McVean et al.
2002, 2004; Myers et al. 2005; Winckler et al. 2005).
This technique has also been applied to bacteria and
archaea ( Jolley et al. 2005; Wirth et al. 2007; Tanabe
et al. 2009; Touchon et al. 2009).

In bacteria and archaea the standard population
genetic framework is problematic because of the ab-
sence of a mating pool with defined boundaries or
homogeneous rates of exchange (Didelot andMaiden

2010). Recombination occurs in a clonal context, due
to the asymmetry of the contributions of donor and
recipient cells. These features of prokaryote repro-
ductive biology have motivated us to develop special-
ized methods of inference. Building on Didelot and
Falush (2007), we discuss a newmethod, ClonalOrigin,
to infer recombination from an alignment of whole
bacterial genome sequences. We presented an applica-
tion to 13 genomes of B. cereus, which revealed in-
teresting variation in recombination rates both across
lineages (Figure 5) and across the genome (Figure 6).

The size of genomic data sets means that statistical
inference can be computationally challenging. Clona-
lOrigin is based on amodel under which recombination
patterns in different alignment blocks can be analyzed

independently, facilitating parallelization of most cal-
culations. Inference is decomposed into a three-step
process that infers successively the clonal genealogy,
global parameters, and recombination events. For the
first step we used ClonalFrame (Didelot and Falush
2007), which is not strictly statistically correct since it is
based on a different model. There is, however, typically
little ambiguity about the clonal genealogy when work-
ing with whole genomes, as shown here by the similarity
between the clonal genealogy reconstructed by Clonal-
Frame and the results of a variety of simpler phyloge-
netic algorithms (Figure S4). Furthermore, small
differences in clonal genealogies should not affect the
results of the second and third step significantly. For the
second step we used the median of the global parame-
ters found by each alignment block when uncondi-
tioned, which once again is not strictly correct but likely
to be close to the truth given the large amount of ge-
nomic sequence considered (.3 Mbp) and the relative
stability in their inferred values across blocks (Figure 4).
Step 3 introduces no further approximation.
ClonalOrigin follows the standard population genetic

approach in estimating values of u and r, which are
assumed to be constant across the genome. However,
the inferred number and size of events on specific
branches of the clonal genealogy may differ substan-
tially from the expectation given by u and r. Our model
assumes that recombination events are distributed as if
the isolates in the sample were uniformly drawn from a
randomly mating population (Equation 4), but the
inferred events can follow a very different pattern,
which provides considerable information on the diverse
biological processes influencing recombination rates.
Furthermore, although we do not attempt it here, it is
possible in principle to infer the DNA substitutions
introduced by each recombination event and hence to
study its biological consequences, for example in
facilitating the spread of beneficial alleles.
Instead of looking at the output for patterns of

deviation from prior expectation, it would be more
statistically powerful to account for such possibilities in
our model. Since our model is based on the coalescent
(Kingman1982), it caneasily be extended to account for
a number of additional biological processes, such as
population dynamics (Griffiths and Tavare 1994) or
population structure (Nielsen and Wakeley 2001;
Wilson et al. 2003). Such extensions would introduce
new parameters that would appear in both the prior for
the clonal genealogy (Equation 1) and the prior for
recombinant edges (Equation 7) and would therefore
make the decomposition into three inference steps
problematic. An interesting alternative would be to
leave inference as it is and investigate extensions of the
model in a postprocessing step using importance
sampling (Meligkotsidou and Fearnhead 2007).
The model we described assumed a constant rate of

mutation and recombination along the genome. This
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assumption held approximately in our example butmay
not always be appropriate. The model could therefore
be extended, for example using a changepoint process
for the mutation and recombination rates along the
genome, as used for example in LDhat (McVean et al.
2004) or DualBrothers (Minin et al. 2005). This would
be computationally feasible under the current three-
step process by fitting a changepoint model to the rates
instead of taking the median for the third step.

A key difference of the model underlying ClonalOr-
igin in comparison with our previous effort ClonalFrame
(Didelot and Falush 2007) is that the origin of
recombination events is explicitly modeled. We showed
that this difference makes ClonalOrigin more accurate
than ClonalFrame (Figures 2 and 3) when detecting
recombination from the ancestral recombination graph
model (Wiuf and Hein 2000; Didelot et al. 2009c).
Furthermore, it allows a quantification of the genetic flux
between lineages (Figure 5) that would not be possible
otherwise. Although ClonalOrigin can still detect exter-
nal imports, ClonalFrame is a more appropriate model
whenmostDNA imports are froman external source into
the sampled population. In such a scenario, the attempts
made by ClonalOrigin at inferring the origin of the
imports may be detrimental to the detection of these
recombination events compared to ClonalFrame, which
makes no such attempt (Didelot and Falush 2007). A
cross between the two models could therefore be
envisaged, where some events would have an origin as
defined by ClonalOrigin and others would introduce
novel polymorphism as in ClonalFrame.
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APPENDIX A: DETAILS OF THE MCMC MOVES

Reversible-jump moves: We use two reversible-jump moves: a ‘‘remove’’ move that proposes removal of an existing
recombination event chosen uniformly at random and an ‘‘add’’ move that proposes adding a recombination event
with properties a*, b*, x*, y* proposed according to their priors as described in Equations 3–6.

These two moves are accepted according to the Metropolis–Hastings–Green ratio

a ¼ min 1;
PðD jR9Þ

PðD jRÞ

PðR9Þ

PðRÞ

Q ðR9/RÞ

Q ðR/R9Þ
Jacobian

� �

; ðA1Þ

where R is the old value of the parameter and R9 is the proposed value. The Jacobian is equal to one because no
transformation of parameter is being done. The first term of the product is the ratio of likelihoods that is calculated
using Equation 9. The second term is the ratio of priors that is calculated using Equation 7. This leaves only to calculate
the third term, i.e., the ratio of proposal distributions. For the add move we have (cf. Equation 7)

Q ðR9/RÞ ¼
1

R 1 1
and Q ðR/R9Þ ¼

Pðx*ÞPðy* j x*Þexpð�Lða*; b*; ÞÞ

T
ðA2Þ

so that the acceptance ratio is
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a ¼ min 1;
PðD jR9Þ

PðD jRÞ

rT

2ðR 1 1Þ

� �

: ðA3Þ

For the remove move, if we note the recombinant edge proposed to be removed with a*, we have

Q ðR9/RÞ ¼ Pðx*ÞPðy* j x*Þ
expð�Lða*; b*ÞÞ

T
and Q ðR/R9Þ ¼

1

R
ðA4Þ

so that the acceptance ratio is

a ¼ min 1;
PðD jR9Þ

PðD jRÞ

2R

rT

� �

: ðA5Þ

Update of the start and end points of a recombination event: We describe themove we used to propose increasing
the starting site x of a given recombination event. Equivalent moves were also used to propose decreasing x and
to propose increasing or decreasing the ending site y. We update x by adding to it an amount d 2 [0, D] (where D is a
fixed quantity; we used D ¼ 10). The move can thus be written x/ x 1 d. d is proposed according to its relative
posterior probability in [0, D]; i.e.,

Q ðx/x1 dÞ ¼
PðD j x1 dÞPðx1 dÞ

P

D
j¼0 PðD j x1 jÞPðx1 jÞ

: ðA6Þ

The terms P(x1 d ) follow fromEquations 5 and 6. The terms P(D j x1 d ) are calculated as follows. If the likelihood
at site s is Ls with the recombinant edge and L9s without it, the likelihood for moving x / x 1 d is
PðD j x1 dÞ ¼ PðD j xÞ 3

Q

d
k¼1ðL

0
x1k=Lx1kÞ. We thus calculate Lx1K and L9x1K for all k 2 [0, D] and all values

of the terms P(D j x 1 d ) follow.
We therefore sample from the proposal distribution Q(x/ x 1 d) and accept with probability

a ¼ min 1;

P

D
j¼0PðD j x1 jÞðPðx1 jÞÞ

P

0
j9¼�D PðD j x1 d � j9ÞPðx1 d � j9Þ

 !

: ðA7Þ

Update of departing and arrival points of a recombination event: We propose a new value of the departing or
arrival point of a recombination event by adding a perturbation e�Normal(0, 0.01) to its age. If the age is decreased,
at each bifurcation crossed one of the two daughter branches is followed so that the probability of choosing a given
branch at the new time is 2n, where n is the number of bifurcations between the old and the new point. If the age is
increased, then let�n denote the number of bifurcations of the clonal genealogy between the old and the new point.
The Metropolis–Hastings acceptance probability of this move is therefore

a ¼ min 1; 2n
PðD jR9Þ

PðD jRÞ

PðR9Þ

PðRÞ

� �

; ðA8Þ

where the ratio of the prior can be calculated using Equation 7 and the ratio of likelihoods can be calculated by
applying Equation 9 only for the sites affected by the recombination event.

APPENDIX B: ADDITIONAL MOVES FOR THE PARAMETERS u, r, AND d

Here we describe the additional moves of the MCMC required when u, r, and d are treated as additional parameters
as is required in step 2 of the analysis.

Update of u: We used an improper Uniform prior on [0, ‘) for the mutation rate u and updated its value by
proposing the addition of a perturbation e drawn from Uniform([�5; 5]). Since this proposal is symmetric and the
prior is uniform, the Metropolis–Hastings acceptance ratio for this move reduces to a ratio of likelihoods that can be
computed using Equation 9.

1448 X. Didelot et al.



Update of r:Weuse a Gamma(a,b) prior for the recombination rate r. This has the advantage to be conjugate with
the distribution of the number of recombination events R given r, which is Poisson(rT/2). Thus we can deduce that
the posterior distribution of r is Gamma(R 1 a, (1/b 1 T/2)�1). We update r by proposing from this distribution,
which is a Gibbs move. In the examples shown we used an improper Uniform prior on [0, ‘) for r that is obtained by
taking a ¼ 1 and b ¼ ‘ and thus the posterior distribution becomes Gamma(R 1 1, 2/T ).

Update of d: Given Equations 5 and 6, the likelihood of the mean length of imports d is of the form

LðdÞ ¼
dX ð1� 1=dÞY

ðbd1L � bÞR
; ðB1Þ

where R is the number of recombinant edges, Y ¼
P

R
i¼1 yi � x i

� �

plus the number of import ends falling on block
ends, and X is the number of import starts falling on block starts, minus the number of import ends falling before
block ends. We assumed an improper Uniform prior on (0, ‘), so that the expression above is the posterior
distribution for d. The update can thus be done by proposing, adding a small perturbation e drawn from
Uniform([�5; 5]) and accepting according to the ratio L(d9)/L(d).
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FIGURE S1.—Extent of the genomic regions found in all genomes of Bacillus (blue), or at least one genome (red), as a function 

of the number of genomes being aligned.  
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FIGURE S2.—Result of GenoPlast. The quantity of solid red and blue on the tree is proportional to the rates of gain and loss of 

material, with the 95% credibility interval for each rate shown by two lines of the corresponding color.  

 



X. Didelot et al. 4 SI

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

FIGURE S3.—Result of ClonalFrame. The clonal genealogy is shown on the left hand side, and the recombination events 

affecting each of its branches on the right hand side. The intensity of color is proportional to the probablility of recombination at 

a given position, and regions that are not in the alignment are shown in light gray.  
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FIGURE S4.—Genealogies reconstructed from the Bacillus alignment using (A) UP-GMA, (B) Neighbor-Joining, (C) Minimum 

evolution and (D) Maximum parsimony.
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FIGURE S5.—Scatterplot of the number of recombination events boundaries per site for each block in the alignment of Bacillus 

when looking only at events from the branches above genomes 1 or 4 to the branch above the ancestor of 2 and 11.  


