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Abstract 

Early diagnosis of irregular cardiac activity through existing tools such as Electrocardiogram and greater 
understanding of the underlying processes is critical for saving lives. Cardiac activity originates from a 
deterministic dynamical system of heart with trajectories following a linear map. Irregular cardiac activity 
observed in arrhythmia patients adds nonlinearities to the evolution function of the dynamical system 
underneath. Therefore, it is of great importance to quantitatively measure this non-linearity as a biomarker for 
impending cardiac diseases in patients. In this work, we formulated a novel mechanism named Neural Temporal 
Perturbation Field where perceived nonlinearities are modeled through deep neural network with perturbated 
inputs. Here, we examined the nonlinear state space by modeling the volatility of outputs for slightly adjusted 
inputs. We discovered that volatility characteristics clearly define a decision threshold that may be employed as 
a biomarker in clinical practice by applying our technique to data on normal and abnormal heart activity. Our 
approach resulted in the greater understanding of nonlinearity and volatility of irregular cardiac activity and as a 
biomarker achieved comparatively better accuracy than the state-of-the-art models. 
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Introduction 

Analysis of cardiac activity from mathematical perspectives; ranging from dynamical systems approach to 
machine learning; is essential to understand the underlying electromechanical system to design novel biomarkers 
for diagnosis and treatments. Cardiac activity is defined as an observable variable of electrical activity of the heart 
which originates from a complex dynamical system. Electrocardiography (ECG); though one of the most 
available approaches for recording said cardiac activity; is not enough for inferring conclusions about the 
underlying system due to its propensity towards false positive diagnosis. Nevertheless, proper diagnosis of 
cardiac diseases is imperative since sudden and unexpected cardiac death is the leading cause of death worldwide, 
accounting for almost 17 million deaths every year (Chugh, 2008).  

Traditional insights about cardiac activity are drawn from computational models of ECG where expert 
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assumptions are placed as priors. There are existing approaches in literature where said methodology is followed. 
Noponen et al. used invariant trajectories of the phase space to classify irregularities in cardiac activity. They 
hypothesized External impacts can be distinguished from genuine system changes using statistical shape theory. 
External effects are described as a transformation group operating on the phase space, and variance in trajectories 
not explained by transformations is compensated for using principal component analysis (Noponen, 2009). 
Shiogai et al. used nonlinear dynamics such as; Heart Rate Variability (HRV), Respiratory Sinus Arrhythmia 
(RSA) and Respiratory Frequency Variability (RFV); derived from ECG as a biomarker for cardiovascular aging. 
They also reviewed analyses of blood flow signals recorded with laser Doppler flowmetry and related it to the 
current understanding of how endothelial-dependent oscillations evolve with age (Shiogai, 2010). Some authors 
have used Bayesian networks to tap into the probabilistic nature of cardiac activity. de Oliveira et al. used dynamic 
Bayesian Network framework as a tool to classify heart beats in long term ECG records. Here, they devised a 
two layered decision support system where first layer performs segmentation and second layer performs 
classification (de Oliveira, 2011). ECG fiducial point extraction using dynamic Bayesian networks; such as 
extended Kalman Filter (KF), Hidden Markov Model (HMM) and switching Kalman Filter (sKF); was achieved 
(Akhbari, 2017).  

In previous works, ECG is studied as a deterministic system with certain nonlinear characteristics and 
as inputs to Bayesian networks for classification. While these approaches have been successful at explaining 
underlying dynamics, they don’t explain the underlying volatility induced due to added stochastic nature in 
irregular activity. To address that, we have devised an approach where a Temporal Perturbation Field is defined 
from ECG using a neural network and then a Bayesian Network is fitted on the said Neural Temporal 
Perturbation Field to calculate volatility, long-range and short-range dependency parameters for both regular 
and irregular cardiac activity.  

Materials and Methods 

Dataset 

In this work, electrocardiogram (ECG) recordings of 290 subjects (mean age 57.2) from the PTB Diagnostic 
Database are used (Bousseljot, 1995). The traditional 12 leads I ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6), as well 
as the three Frank lead (vx, vy, vz) ECGs, are all measured concurrently in each record with sampling rate 
1000Hz (Goldberger, 2000). We also devised a mechanism using Arduino Uno Micro-controller and AD8232 
Analog to Digital Converter based ECG Module to collect single channel ECG data ourselves as shown in Figure 
1. Analog data collected from ECG module are transmitted to local host server using the Arduino Uno micro-
controller with a sampling rate of 400Hz. We collected cardiac activity data from 8 subjects with mean age of 
21, mean weight of 71.5 and mean height of 176 cm. We deployed frequency filtering on the recorded data for 
three types of noise: 1. Wandering Noise (5-12 Hz) 2. Powerline Interference (<50Hz) 3. Motion Artifact (1-3 
Hz) 

Neural Field 

A field is a mathematical structure consisting of a number or tensor providing value for each realization across 
space and time. A neural field; according to the universal approximation theorem; is a field that is parameterized 

fully or in part by a neural network. Any field 𝑓(𝑥, 𝑡) is a neural field if and only if 𝑓𝜃 parametrized by 𝜃 is a  

Figure 1. System Diagram of the used system in data collection. 
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neural network (Xie, 2021). Continuity and adaptability are by design the key characteristics of neural fields. 
Unlike discrete parameterizations, which scale poorly with spatial and temporal resolution, the memory required 
for neural fields grows with the number of parameters in the neural network. While this increase in network 
complexity can be hard to adjust, but it removes the problem of not knowing complexity before-hand in other 
continuous parametrizations such as Fourier Series. Neural fields are often designed with activation functions 
who have well-defined gradients allowing for optimization algorithms such as gradient descent. Especially, in 
the case of over-parameterization, complex signals can be regressed and optimized using neural fields (Balda, 
2018). 

Neural temporal perturbation field 

In signal processing, perturbation analysis; also known as sensitivity analysis; is used to analytically quantify the 
deviation at a system's output that arises as a result of a known disturbance at the system's input and adversarial 
examples are used as perturbed version of training samples to test model performance. According to 
Perturbation theory, any deviation from the original output can be expressed as a power series of the perturbation 
parameter. In this work, a regression problem is studied using Perturbation analysis in the following manner. 

Given, 𝑁 samples {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁  drawn from joint probability distribution 𝑃𝑋𝑌 , a regression model finds the 

optimized parameters 𝜃 for a function 𝑓𝜃: ℝ
𝑀 → ℝ𝑀 such that expected loss 𝔼[ℒ(𝑓𝜃(𝑥), 𝑦)] is minimized 

where 𝑓𝜃 is a neural network with arbitrary number of layers.  

In this work, for 𝑁 samples from {(
𝑥𝑡

𝛿𝑡
,
𝑥𝑡+1

𝛿𝑡+1
)}

𝑡=1

𝑁

from some distribution 𝑃𝑥𝑡,𝑥𝑡+1
 with 𝑥𝑡 ∈ ℝ𝑀−1, our 

regression model finds 𝑓𝜃: ℝ
𝑀 → ℝ𝑀 with perturbation parameter 𝜂 such that expected loss in minimized [9]. 

During the training process, the neural network 𝑓𝜃 takes (
𝑥𝑡

𝛿𝑡
) as input where 𝑥𝑡 is the state vector at time 𝑡 and 

𝛿𝑡 is the cosine similarity between 𝑥𝑡 and 𝑥𝑡+1. The objective of 𝛿𝑡 is to provide 𝑓𝜃 with similarity information 

on the state vectors' evolution such that 𝑓𝜃: 𝛿𝑡 → 𝛿𝑡+1. As for the model architecture of 𝑓𝜃, we chose a Multi 

Layered Perceptron (MLP) with activation function 𝑔(𝑥) = tanh⁡(𝑥). From Figure 2-A, 𝑓𝜃 is trained with 

restrictive bounds with no regularizers such that 𝑓𝜃 is overfitted since our aim is not to find a generalized 
mapping for regression but to parametrize the evolution function through the transition probabilities from 

𝑃𝑥𝑡,𝑥𝑡+1
. During the testing process; as shown in Figure 2-A; perturbation is performed on the cosine similarity 

between adjacent state vectors while state vectors themselves are kept same. The perturbed similarity index is 
defined as follows. 

 𝛿̂𝑡~𝑁(𝜂𝛿𝑡 , 𝛽𝑡)                (1)  

where 𝑁(⁡. ) is the Gaussian distribution with mean 𝜂𝛿𝑡 and standard deviation 𝛽𝑡 which is defined as 𝛽𝑡 = 1 −
𝛿𝑡. The motivation behind this formulation is to explore the tangent space of any state vector during perturbation 

as shown in Figure 2-B. When the perturbation parameter 𝜂 = 0, 𝛿̂𝑡 returns values closer to zero and therefore, 

will result in perturbation in the tangent space of that state vector. When 𝜂 = 1, 𝛿̂𝑡 ≈ 𝛿𝑡 and it becomes similar 

to the testing case. Now, the perturbation field Ω at time 𝑡 and perturbation realization 𝑖,  

 Ω(𝑖, 𝑡) = 𝑓𝜃 (
𝑥𝑡

𝛿̂𝑡
𝑖) ; ∀𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇                 (2) 

where 𝛿̂𝑡
𝑖 is the 𝑖-th draw from distribution defined above. Perturbation Field Ω ∈ ℝ𝑇×𝐼×𝑀−1 is a tensor which 

is often intractable in volatility analysis. For mathematical comfort, we defined the flow field of Ω defined as 
follows. 
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 𝛥(𝑖, 𝑡) = 𝛻⃗  .⁡⁡𝛺(𝑖, 𝑡)                               (3) 

Figure 2. A. Structure of the MLP during training and Testing. 𝛿̂(𝑡) is the perturbed cosine similarity and 𝑋̂(𝑡) 
is output for the perturbed input. B. Direction of perturbation according to the tangent space of the 

underlying manifold. C. Flow of the Neural Temporal Perturbation Field for realizations 𝑖 ∈ 𝐼 and times𝑡 ∈ 𝑇. 

Bayesian network on perturbation field 

Flow of the Perturbation Field Δ ∈ ℝ𝑇×𝐼 has stochastic characteristics due to the probabilistic nature of 𝛿̂𝑡 and 

𝑓𝜃. A stochastic differential equation fitted on Δ theoretically should explain the probabilistic nature. But, since 

𝑓𝜃 is inherently the evolution function from 𝑥𝑡 to 𝑥𝑡+1, Δ has also deterministic ideals. To catch both 

deterministic and stochastic features of Δ, we define a Bayesian Network on Δ parametrized by autoregressive 

and volatility parameters 𝜎.  

From Figure 3-A, our proposed Bayesian Network has three nodes: 𝑋, 𝑌, 𝑍. 𝑋 defines the value of the 

flow field at time 𝑡 and realization 𝑖; therefore 𝑋 = Δ𝑡
𝑖 . 𝑌 = Δ𝑡

𝑖−1 and 𝑍 = Δ𝑡−1
𝑖  define field values at previous 

realization and previous time step respectively. From Figure 3-B, any value Δ𝑡
𝑖  in the field has a forward pass 

and downward pass to it. Therefore, we hypothesized that Δ𝑡
𝑖  can be explained as linear function of both passes 

while being parametrized by stochastic volatility. We define two Auto-Regressive models 𝐴𝑅𝑑(𝑤) and 𝐴𝑅𝑓(𝑤) 

of order 𝑤 for forward and downward passes respectively. To learn the parameters; especially 𝜎𝑓 and 𝜎𝑑 ; we 

employ Maximum Likelihood Estimation (MLE) scheme where random variables 𝑋, 𝑌 and 𝑍 are defined for Δ𝑡
𝑖 , 

Δ𝑡
𝑖−1 and Δ𝑡−1

𝑖  respectively as shown in Figure 3-A. Expressions of 𝐴𝑅 models for MLE estimation are defined 
as follows. 

 𝑃𝑋|𝑌(Δ𝑡
𝑖 |Δ𝑡

𝑖−1, … , Δ𝑡
𝑖−𝑤; 𝜃𝑑)~𝑁(𝐶𝑑 + ∑ 𝜙𝑑

𝑗
Δ𝑡

𝑖−𝑗
, 𝜎𝑑

𝑤
𝑗=1 )                             (4) 

 𝑃𝑋|𝑍(Δ𝑡
𝑖 |Δ𝑡−1

𝑖 , … , Δ𝑡−𝑤
𝑖 ; 𝜃𝑓)~𝑁(𝐶𝑓 + ∑ 𝜙𝑓

𝑗
Δ𝑡−𝑗

i , 𝜎𝑓
𝑤
𝑗=1 )               (5) 
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where 𝜃𝑓 = [𝐶𝑓 , Φ𝑓 , 𝜎𝑓] and 𝜃𝑑 = [𝐶𝑑, Φ𝑑 , 𝜎𝑑]. Here, forward pass and downward pass are evaluated separately 

to estimate Δ. But since both of the passes have influence over Δ, information from both probability distributions 

𝑃𝑋|𝑌 and 𝑃𝑋|𝑍 have to combined into 𝑃𝑋|𝑌,𝑍 to infer posterior probability. (See Appendix A) 

 𝑃𝑋|𝑌,𝑍 = 𝑃𝑋|𝑌𝑃𝑋|𝑍                  (6) 

Now, to find the optimum parameters, we have to maximize the log of the likelihood function ℒ(Θ|𝑋) of seeing 

the data given the parameters Θ = [𝜃𝑓 , 𝜃𝑑] (see Appendix B for full derivation of the log-likelihood function) 

 ℒ(Θ|𝑋) = ∑ ∑ [log 𝑃𝑋|𝑌(Δ𝑡
𝑖 ) + log 𝑃𝑋|𝑍(Δ𝑡

𝑖 )]
|𝑇|
𝑡=𝑤

|𝐼|
𝑖=𝑤                   (7) 

 Θ = argmax
Θ

ℒ(Θ|𝑋)                            (8) 

Figure 3. A. Graphical representation of the Bayesian Network. B. Perturbation Field viewed as a Bayesian 
Network. For any target value on the field (blue), there exists a forward pass and downward pass (shaded blue) 

to it. 

Results 

In this section, we give results of several experiments based on our approach described in previous section. We 
took cardiac activity data from ECG and analyzed it using our approach. Our principal objective was to compare 
Bayesian network parameters of Neural Temporal Perturbation Fields from normal and abnormal cardiac activity 

and devise new biomarkers. During optimization training of Θ, we added Mean Squared Error (MSE) as 
regularization to the Log-likelihood function to find global maxima since usually MLE alone approximates to 
local maxima.  

 ℒMSE =
1

𝐼×𝑇
∑ ∑ ‖Δ̂𝑡

𝑖 − Δ𝑡
𝑖 ‖

2𝑡∈𝑇𝑖∈𝐼                (9) 

 Θ = argmax
Θ

ℒ(Θ|𝑋) ∩ argmin ℒMSE                        (10) 

where Δ𝑡
𝑖  is the predicted value from the parameters in the log-likelihood step. From Figure 4-C, both forward 

and downward MSEs approaches zero as Log-Likelihood approaches local maxima. We also experimented with 
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 Table 1. Optimized Parameters for Normal and Abnormal Cardiac Activity 

 Parameters 

𝐶𝑓 𝜎𝑓 𝐶𝑑 𝜎𝑑 

Normal -0.21 3.67 -0.23 3.63 

Abnormal 1.20 5.91 1.37 6.01 

the 𝐴𝑅 order and discovered that, while it affects the initial MSE, the convergence time remains the same for 

both forward and downward passes (see Figure 4-D). Optimized weights Φ𝑓 and Φ𝑑 from normal and abnormal 

cardiac activity are shown in Figure 4-A. In normal activity, short range dependencies of order 2 𝐴𝑅 process 

(𝜙0 + 𝜙1) is mostly excitatory (positive weights) while in abnormal activity, mostly inhibitory. In the case of 

long- range dependencies, the opposite case is observed. The parameters 𝜎𝑓 and 𝜎𝑑 represent volatility of the 

Neural Perturbation Field. From Figure 4-B, it is seen that optimum value of parameters maximizes the 
likelihood. Table 1 shows that the bias and volatility of both forward and downward passes are higher in 
abnormal activity than in normal activity. 

Figure 4. A. Weight vectors of forward and downward passes for normal and abnormal cardiac activity. B. 

Optimization graph of Log-likelihood graph for volatility parameters 𝜎𝑓 and 𝜎𝑑 for forward and downward 

passes respectively. C. MSE for forward and downward passes and Log-likelihood for the whole model. D. 

Effect of 𝐴𝑅 order on MSE of forward (left) and downward passes (right). 
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Conclusion 

In this work, we have proposed a novel approach of studying cardiac activity through the lens of Perturbation 
Fields and Bayesian Networks. We found that our approach clearly explains the differences between regular and 
irregular cardiac activity through volatility, long-range and short-range dependencies in auto-regressive models. 
While previous approaches used Bayesian Networks as a mode of classification, we used that class of models to 
infer conclusions about the system from data. The advantage of our approach is that it can be applied to various 
kinds of biological and synthetic multi-variable time series data to draw conclusions form. In future works, we 
intend to explain brain activity using this approach while applying expertly selected priors to make the model 
more robust. 
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Appendix A 

To get 𝑃𝑋|𝑌,𝑍, firstly, we need to define the following according to the Bayes theorem. 

 𝑃𝑋|𝑌,𝑍 =
𝑃𝑋,𝑌,𝑍

𝑃𝑌,𝑍
               (11) 

Now, from Figure 2-A, 𝑃𝑋,𝑌,𝑍 can be written as following. 

 𝑃𝑋,𝑌,𝑍 = 𝑃𝑋,𝑌𝑃𝑋,𝑍                                       (12) 

Using Equation 13 and 14, we get 

 𝑃𝑋|𝑌,𝑍 =
𝑃𝑋,𝑌𝑃𝑋,𝑍

𝑃𝑌,𝑍
=

𝑃𝑋|𝑌𝑃𝑌𝑃𝑋|𝑍𝑃𝑍

𝑃𝑌,𝑍
              (13) 

 𝑃𝑌 and 𝑃𝑍 are independent of each other and therefore, 𝑃𝑌,𝑍 = 𝑃𝑌𝑃𝑍. 

 𝑃𝑋|𝑌,𝑍 = 𝑃𝑋|𝑌𝑃𝑋|𝑍                                     (14) 

Appendix B 

The log-likelihood function ℒ(Θ) can be detailed as follows. 

 ℒ(Θ|X) = log∏ ∏ 𝑃𝑋|𝑌(Δ𝑡
𝑖 )𝑃𝑋|𝑍(Δ𝑡

𝑖 )
|𝑇|
𝑡=𝑤

|𝐼|
𝑖=𝑤   

                = ∑ ∑ log[𝑃𝑋|𝑌(Δ𝑡
𝑖 )𝑃𝑋|𝑍(Δ𝑡

𝑖 )]
|𝑇|
𝑡=𝑤

|𝐼|
𝑖=𝑤                            (15) 

                                                                 = ∑ ∑ [log𝑃𝑋|𝑌(Δ𝑡
𝑖 ) + log 𝑃𝑋|𝑍(Δ𝑡

𝑖 )]
|𝑇|
𝑡=𝑤

|𝐼|
𝑖=𝑤  

 

 


