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ABSTRACT

Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms
(or splicing variants) is a difficult problem. Traditional experimental methods for this
purpose are time consuming and cost ineffective. The emerging RNA-Seq technology pro-
vides a possible effective method to address this problem. Although the advantages of RNA-
Seq over traditional methods in transcriptome analysis have been confirmed by many
studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa
reads) has remained computationally challenging. In this work, we propose a method to
calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads
using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) informa-
tion. We first formulate the relationship among exons, isoforms, and single-end reads as a
convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for
isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the iso-
forms are known and infer novel isoforms from scratch. Our experimental tests on known
mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is
able to calculate the expression levels of isoforms with an accuracy comparable to the state-
of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both sim-
ulated and real reads show that it achieves a good precision and sensitivity in inferring
isoforms when given accurate exon-intron boundary, TSS, and PAS information, especially
for isoforms whose expression levels are significantly high. The software is publicly available
for free at http://www.cs.ucr.edu/*jianxing/IsoInfer.html.

Key words: alternative splicing, convex quadratic programming, deep sequencing, isoform in-

ference, RNA-Seq.

1. INTRODUCTION

Transcriptome study (or transcriptomics) aims to discover all the transcripts and their quantities in a

cell or an organism under different external environmental conditions. A large amount of work has been

devoted to transcriptomics, which includes the international projects EST (Boguski et al., 1994; Boguski,

1995), FANTOM (The FANTOM Consortium, 2005), and ENCODE (The ENCODE Project Consortium,

2007; Weinstock, 2007). Many technologies have been introduced in recent years, including array-based

experimental methods such as tiling arrays (Bertone et al., 2004), exon arrays (Kwan et al., 2008), and
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exon-junction arrays ( Johnson et al., 2003; Kapranov et al., 2007); and tag-based approaches such as MPSS

(Brenner et al., 2000; Reinartz et al., 2002), SAGE (Velculescu et al., 1995; Harbers and Carninci, 2005),

CAGE (Shiraki et al., 2003; Kodzius et al., 2005), PMAGE (Kim et al., 2007), and GIS (Ng et al., 2005).

However, due to various constraints intrinsic to these technologies, the speed of advance in transcriptomics is

far from being satisfactory, especially on eukaryotic species because of widespread alternative splicing

events.

Applying next generation sequencing technologies to transcriptomes, the recently developed RNA-Seq

technology is quickly becoming an important tool in functional genomics and transcriptomics. It can be

used to identify all genes and exons and their boundaries (Nagalakshmi et al., 2008; Trapnell et al., 2009),

and to study gene functions and perform transcriptome analysis (Graveley, 2008). For example, based on an

unannotated genomic sequence and millions of short reads from RNA-Seq, Yassour et al. (2009) developed

a general method for the discovery of a complete transcriptome, including the identification of coding

regions, ends of transcripts, splice junctions, and splice site variations. Their application of the method to

S.cerevisiae (yeast) showed a high degree of agreement with the existing knowledge of the yeast tran-

scriptome. Besides yeast (Wilhelm et al., 2008; Nagalakshmi et al., 2008), RNA-Seq has been applied to

the transcriptome analysis of mouse (Cloonan et al., 2008; Mortazavi et al., 2008) and human (Marioni et

al., 2008; Sultan et al., 2008). These results demonstrate that RNA-Seq is a powerful quantitative method to

sample a transcriptome deeply at an unprecedented resolution. Moreover, DNA sequencing technologies

are under fast development. Some of them now could provide, for example, long reads, paired-end reads,

and DNA-strand-sequencing of mRNA transcripts. For a comprehensive analysis of the advantages of

RNA-Seq over traditional methods in genome-wide transcriptome analysis and the challenges faced by this

technology, see Wang et al. (2008b).

Very recently, several methods have been proposed to characterize the expression level of each transcript

(Lacroix et al., 2008; Jiang and Wong, 2009) using RNA-Seq data. In Lacroix et al. (2008), the authors

showed that short (single-end or paired-end) read sequences cannot theoretically guarantee a unique so-

lution to the transcriptome reconstruction problem (i.e., the reconstruction of all expressed isoforms and

their expression levels) in general even if the reads are sampled perfectly according to the length of each

transcript (without random distortions and noise). However, under the same assumption, the authors also

showed that paired-end reads could help reconstruct the transcripts uniquely and determine their expression

levels for most of the currently known isoforms of human, and single-end reads could allow us to determine

the expression levels correctly if all the isoforms are known. However, these results are mostly of theo-

retical interest because sequence read data are random in nature and may contain noise in practice. Jiang

and Wong (2009) presented a more practical way to estimate the expression levels of known isoforms. The

method uses maximum likelihood estimation followed by importance sampling from the posterior distri-

bution.

The availability of all the isoforms is the basis of accurate estimation of isoform expression levels ( Jiang

and Wong, 2009), which could then be used to calculate all the splicing variants quantitatively and

qualitatively. Variations in isoform expression levels and splicing junctions could provide useful insight in

many studies such as the study of diseases (Pagani and Baralle, 2004; Srebrow and Kornblihtt, 2006) and

drug development (Williams, 2005).

A lot of effort has been devoted to the identification of transcripts/isoforms from the more traditional

EST, cDNA data. Instead of a comprehensive review, we will just name a few results below. To enumerate

all possible isoforms, a core ingredient is the splicing graph (Heber et al., 2002; Sammeth et al., 2008a). A

predetermined parameter ‘‘dimension’’ decides how many transcripts are compared simultaneously. The

parameter is usually fixed to two, but recently, Sammeth et al. (2008a) extended the method to arbitrary

dimensions. There are several methods that assemble transcripts from EST data using the splicing graph

and its variations (Xing et al., 2004; Bonizzoni et al., 2009). Newly proposed experimental methods in

Djebali et al. (2008) and Salehi-Ashtiani et al. (2008) could be used to identify new isoforms. However, it is

still unclear whether these methods can be applied in a large scale.

RNA-Seq has shown great success in transcriptome analysis, but it has not been used to infer isoforms.

Although it is straightforward to infer the existence of novel isoforms from RNA-Seq data that exhibit

novel transcribed regions (Mortazavi et al., 2008; Bertone et al., 2004), it is not so obvious how to use

RNA-Seq data to infer the existence of novel isoforms in known transcribed regions, because the observed

reads could be sampled from either known or unknown isoforms. The problem has remained challenging

for two reasons. The first is that RNA-Seq reads are usually very short. The second is due to the randomness

306 FENG ET AL.



and biases of the reads sampled from all the transcripts. In fact, to our best knowledge, there has been no

published work to computationally infer isoforms from (realistic) short RNA-Seq reads.

Due to the high combinatorial complexity of isoforms of genes with a (moderately) large number of

exons, the inference of isoforms from short reads (and other available biological information) should be

realistically divided into two sub-problems. The first is to discover all the exon-intron boundaries as well as

the transcription start site (TSS) and poly-A site (PAS) of each isoform. As mentioned above, there are

several effective methods for detecting exon-intron boundaries from RNA-Seq read data (Nagalakshmi

et al., 2008; Trapnell et al., 2009). The identification of TSSs and PASs is an indispensable part of many

large genomics projects such as The FANTOM Consortium (2005) and The ENCODE Project Consortium

(2007). The technology of GIS-PET (Gene Identification Signature/Paired-End Tags) can also be used to

identify TSS-PAS pairs (Ng et al., 2005; Fullwood et al., 2009). The second sub-problem is to find

combinations of exons that can properly explain the RNA-Seq data, given the exon-intron boundary and

TSS-PAS pair information.

In this paper, we are concerned with the second sub-problem in isoform inference. Assuming that the

exon-intron boundary and TSS-PAS pair information is given, we propose a method (called IsoInfer) to

infer isoforms from short RNA-Seq reads (e.g., Illumina/Solexa data). Although our method works for

single-end data and data with both single-end and paired-end reads, we will use single-end reads as the

primary source of data and paired-end reads as a secondary data which can be used to filter out false

positives. We formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic

program, and design an efficient algorithm to search for isoforms. Our method can calculate the expression

levels of isoforms accurately if all the isoforms are known. To demonstrate this, we have compared IsoInfer

with the simple counting method in Pan et al. (2008) and Wang et al. (2008a) and the method in Jiang and

Wong (2009) on simulated expression levels and reads, and found that our method is much more accurate

than the simple counting method and has a comparable accuracy as the method in Jiang and Wong (2009)

but is 60 times faster. Most importantly, IsoInfer can infer isoforms from scratch when they are sufficiently

expressed, by trying to find a minimum set of isoforms to explain the read data. Our experimental tests on

both simulated and real reads show that it is possible to infer the precise combination of exons in a

sufficiently expressed isoform from RNA-Seq short read data with a reasonably good accuracy, when

accurate exon-intron boundary and TSS-PAS pair information is provided. To our best knowledge, this is

the first computational method to infer isoforms from short RNA-Seq reads.

2. METHODS

2.1. Assumptions and terminology

Traditionally, only five types of alternating splicing (AS) events have been proposed, including exon

skipping, mutually exclusive exons, intron retention, and alternative donor and acceptor sites (Breitbart

et al., 1987). However, these events are not adequate to describe complex AS events as more experimental

knowledge has become available (Sammeth et al., 2008b). In this work, we describe isoforms or AS events

in a much general way, which is referred to as a ‘‘bit matrix’’ in Sammeth et al. (2008b).

The exon-intron boundaries of a gene divide the gene into disjoint segments, as shown in Figure 1. A

segment is expressed if it has mapped reads. Thus, every expressed isoform consists of a subset of

expressed segments. Two segments are adjacent if they are adjacent in the reference genome (i.e., they

share a common boundary). For example, in Figure 1, s2 and s3 are adjacent but s1 and s2 are not. Any two

segments may form a segment junction which is not necessarily an exon junction in the traditional sense.

For example, s2 and s3 form a segment junction, which is not an exon junction. In the following, ‘‘junction’’

refers to ‘‘segment junction’’ unless otherwise stated.

FIG. 1. Expressed segments. Every exon-intron

boundary introduces a boundary of some segment.

Every expressed segment is a part of an exon.
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As stated in the introduction, we first assume that exon-intron boundaries are known. Our second

assumption is that the short reads are uniformly randomly sampled from all the expressed isoforms (i.e.,

mRNA transcripts). We have to further assume that the short reads have been mapped to the referenced

genome. The mapping of RNA-Seq reads can be done by many recent tools, for example, Bowtie

(Langmead et al., 2009), Maq (Li et al., 2008a), SOAP (Li et al., 2008b), RNA-MATE (Cloonan et al.,

2009), and mrFAST (Alkan et al., 2009). The mapping of multi-reads (i.e., reads that match several

locations of the reference genome) is addressed in Mortazavi et al. (2008) and Hashimoto et al. (2009). We

will use Bowtie in our work due to its efficiency and accuracy. The last assumption concerns paired-end

reads, which will be discussed in Section 2.3.

2.2. Quadratic programming formulation

G denotes the set of all the genes. Each g gene defines a set of expressed segments Sg¼fs1, s2, . . . , sjSgjg
(given exon-intron boundaries), where the expressed segments are sorted according to their positions in the

reference genome. The junctions on this gene are all the pairs of expressed segments (si,sj), 1� i< j� jSgj.
The length of segment si is li. Denote the set of all known isoforms of this gene as Fg. Each isoform f 2 Fg

consists of a subset of expressed segments. The expression level (i.e., the number of reads per base) of

isoform f is denoted by xf. The sum of the length of all transcripts, weighted by their expression levels, over

all genes, is L0¼C �
P

g2G
P

s2f , f2Fg
lsxf , for some constant C that defines the linear relationship between

the expression level and the number of transcripts corresponding to an isoform. C can be inferred from data

as shown in Mortazavi et al. (2008).

From now on, we will consider a fixed gene g and omit the subscript g when there is no ambiguity. Let M

be the total number of single-end reads mapped to the reference genome and di the number of reads falling

into expressed segment si. Under the uniform sampling assumption, di is the observed value of a random

variable (denoted as ri) that follows the binomial distribution B(M,pi), where pi¼Cyili/L0 and yi¼
P

si2f xf .

Because M is usually very large, pi is very small and Mpi is sufficiently large in most cases, the binomial

distribution can be approximated by a normal distribution N(li, r
2
i ), with li¼Mpi, r2

i ¼Mpi(1� pi)

� Mpi¼ li, similar to the approximation in Jiang and Wong (2009). Therefore, the random variables
ri �li

ri
,

for every expressed segment si, follow the same distribution approximately. Define �i¼ jri� lij. Then, the

variable �
ri

also follows the same distribution approximately for every si.

Let L1 denote the length of a single-end read. In order to map reads to junctions, we will also think of

each junction (si,sj) as a segment of length 2L1� 2, consisting of the last L1� 1 bases of si and the first

L1� 1 bases of sj. Denote the set of the junctions as J¼fsjSj þ 1, sjSj þ 2, . . . , sjSj þ jJjg. The relationship

among the expressed segments of gene g, its expressed isoforms, and the single-end reads mapped to each

expressed segment and junction can be captured by the following quadratic program (QP):

min z¼
X

si2S[J

�i

ri

� �2

s:t:
X
si2f

xf liþ �i¼ di, si 2 S [ J

xf � 0, f 2 F

where si is the standard deviation in the normal distribution N(li, r
2
i ) and will be empirically estimated

from di.

Note that if each ri follows the normal distribution strictly, then the random variables �i

ri
is i.i.d. and thus

the solution of the above QP would correspond to the maximum likelihood estimation of the xf’s if each si

is fixed (Bishop, 2007), and the objective function z is a random variable obeying the w2 distribution with

freedom jSj þ jJj. This QP can be easily shown to be a convex QP by a simple transformation and solved in

polynomial time by a public program QuadProgþþ which implements the dual method of Goldfarb and

Idnani (Goldfarb, 1983) for convex quadratic programming. Since si is unknown, we use the empirical

estimate of si,
ffiffiffiffi
di

p
, for si as an approximation. Let QPsolver denote the above algorithm for solving the

convex QP program. Given S,F, and di’s, QPsolver returns the values of xi’s and z.

When the isoforms in F are given, minimizing the objective function means to find a combination of the

expression level (xf) of each isoform in F such that the observed values (di’s) can be explained the best. In
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this case, the value of the objective function serves as an indicator of whether the isoforms in F can explain

the observed data. More specifically, p-value(z) denotes the probability of P(Z� z), where Z is a random

variable following the w2 distribution with freedom jSj þ jJj. We empirically choose a cutoff of 0.05. If

p-value(z) is less than 0.05 we conclude that F cannot explain d.

2.3. Paired-end reads

Figure 2 (left) illustrates some concepts concerning paired-end reads. A paired-end read consists of a pair

of short (single-end) reads separated by a gap. The figure also defines the read length, span, start position,

center position and end position of a paired-end read. If the span of a paired-end read is a random variable

following some probability distribution h(x), then three possible strategies for generating paired-end reads

will be considered in this article:

� Strategy (a): The start position of a paired-end read is uniformly and randomly sampled from all the

expressed isoforms. Then the span of this paired-end is generated following the distribution h(x). If the

end position of this paired-end read falls out of the isoform, the paired-end read is truncated such that

the end position of this read is at the end of the isoform.
� Strategy (b): The center position of a paired-end read is uniformly and randomly sampled from all the

expressed isoforms. Then the span of this paired-end is generated following the distribution h(x). This

strategy was used in Korbel et al. (2009). Again, if the start (or end) position of this paired-end read

falls out of the isoform, the paired-end read is truncated such that the start (or end, respectively)

position of this read is at the start (or end, respectively) of the isoform.
� Strategy (c): The end position of a paired-end read is uniformly and randomly sampled from all the

expressed isoforms. Then the span of this paired-end is generated following the distribution h(x). If the

start position of this paired-end read falls out of the isoform, the paired-end read is truncated such that

the start position of this read is at the start of the isoform.

Let w1,w2,w3 be the lengths of three consecutive intervals on an isoform as shown in Figure 2 (right).

When any of the strategies (a–c) is applied to generate a certain number of paired-end reads, the following

Theorem 1 gives a non-trivial upper bound on the probability of not observing any reads with start positions

in the first interval and end positions in the third interval.

Theorem 1. Suppose that the expression level of this isoform is a RPKM (i.e., reads per kilobase of

exon model per million mapped reads) (Mortazavi et al., 2008), and the span of each paired-end read

follows some distribution h(x). If M paired-end reads are generated by any of the strategies (a–c), the

probability that there are no paired-end reads that have start positions in the first interval and end

positions in the third interval is upper bounded by

PM, h, a(w1, w2, w3)¼ (1�P0)M � e�MP0

where P0¼ 10� 9a
P

0�i5w1

R u(i)

l(i)
h(x)dx, l(i)¼w1� iþw2, and u(i)¼w1� iþw2þw3.

Proof. For simplicity, we assume that the distributions involved in the following proof are discrete. Let

q(x) be the probability that the span of a randomly generated paired-end read is x, and p(x) the probability

of a uniformly randomly selected position from all isoforms being at position x on the given isoform. Every

paired-end read can be represented by its start (or center or end) position and span uniquely. Denote the set

of all possible start positions as C and the set of all possible spans as O. Let V�C ·O defines the set of

paired-end reads that have start positions in the first interval and end positions in the third interval. Under

strategy (a), the probability of a uniformly randomly generated paired-end read being in V is:

FIG. 2. (Left) A paired-end read

consisting of two short reads of

length L2 that are separated by a

gap. (Right) Three consecutive in-

tervals on an isoform.
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Pa¼
X
w2W

(
X

xj(w, x)2V

q(x))p(w)

¼
X

(w, x)2V

q(x)a=109

Similarly, we define the set of possible center positions of paired-end reads as C0. Let V0 �C0 ·O define

the set of paired end reads that have start positions in the first interval and end positions in the third interval.

Under strategy (b), the probability of a uniformly randomly generated paired-end read being in V0 is:

Pb¼
X

(w, x)2V 0

q(x)a=109

Because jfwj(w, x) 2 V 0gj ¼ jfwj(w, x) 2 Vgj for x 2 X, we have Pa¼Pb. The argument is also appli-

cable to case when strategy (c) is applied.

When strategy (a) is applied and the end position of the third interval is not the end position of the given

isoform, if the start position of a uniformly randomly generated paired-end read is i, 0� i<w1 in the first

interval, then the probability of the end position of this paired-end read being in the third interval is

pi¼P(X � u(i))�P(X � l(i))¼
Z u(i)

l(i)

h(x)dx

where l(i)¼w1� iþw2, u(i)¼w1� iþw2þw3. When the end position of the third interval is the end

position of the given isoform and strategy (a) is applied, we have

pi¼P(X � þ1)�P(X � l(i))¼
Z þ1

l(i)

h(x)dx �
Z u(i)

l(i)

h(x)dx

Because the start position of a paired-end read is uniformly randomly selected,

Pa¼ 10� 9a
X

0�i5w1

pi � 10� 9a
X

0�i5w1

Z u(i)

l(i)

h(x)dx¼P0

Because M paired-end reads are generated, the probability that none of the reads have start positions in the

first interval and end positions in the third interval is (1�Pa)M � (1�P0)M ¼PM, h, a(w1, w2, w3) � e�MP0 .

Similar arguments hold when strategies (b) and (c) are applied to generate the reads. &

2.4. Valid isoforms

For a gene with expressed segments S¼fs1, s2, . . . , sjSjg, an isoform f of this gene can be expressed as

a binary vector with length jSj. The ith element f[i] of f is 1 if and only if expressed segment si is

contained in f. Denote the set of all possible binary vectors with n elements as B(n). Similarly, a single-

end or paired-end short read that is mapped to a subset S0 	 S of expressed segments can be represented as

a binary vector r 2 B(jEj) such that r[i]¼ 1 if and only if si 2 E0. A subset E0 of expressed segments is

supported by single-end or paired-end reads if there is at least one single-end or paired-end read r such

that r[i]¼ 1, i 2 E0.
Although single-end reads, paired-end reads, and TSS-PAS information data do not provide exact

combinations of expressed segments of isoforms, they can be used to eliminate many isoforms from

consideration. Each of these types of data provides some information that can be used to define a condition

which will be satisfied by all isoforms inferred by our algorithm (to be described in the next subsection).

� Junction information. A junction (si,sj) is on an isoform f if f[i]¼ f[ j]¼ 1 and f[k]¼ 0,i< k< j. If si

and sj are adjacent, then junction (si,sj) is an adjacent junction. An isoform satisfies condition I if all

the non-adjacent junctions on this isoform are supported by single-end short reads. In practice, most

sufficiently expressed isoforms satisfy this condition. For example, when 40 millions single-end reads

with length 30bps are mapped, the probability of an isoform with expression level 6 RPKM satisfying

condition I is 99.3% and 92.8%, if this isoform contains 10 and 100 exons, respectively. See Theorem

2 below for the details.
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� Start-end segment pair information. For an isoform f, expressed segment si is the start expressed

segment of f if f [i]¼ 1 and f [j]¼ 0, 1� j< i. Expressed segment si is the end expressed segment of f if

f[i]¼ 1 and f[j]¼ 0,i< j� jSj. The TSS-PAS pair information describes the start and end expressed

segments of each isoform and will be referred to as the start-end segment pair data. An isoform

satisfies condition II if the start-end segment pair of this isoform appears in the given set of start-end

segment pairs. If the TSS-PAS pair information is missing, then any expressed segment can theo-

retically be the start or end expressed segment. However, in this case, many short (and thus unrealistic)

isoforms could be introduced, which will make isoform inference difficult. Therefore, when the TSS-

PAS pair information is missing, we allow an expressed segment si to be the start (or end) expressed

segment of any isoform if there is no expressed segment sj with j< i (or i< j) such that junction (sj,si)

(or (si,sj), respectively) is adjacent or supported by some read.
� Paired-end read data. A pair of expressed segments (si,sj),i< j on an isoform f is an informative pair if

f[i]¼ f[j]¼ 1 and PM,h,a(liþ L2� 1,gi,j,ljþ L2� 1)< 0.05, assuming that the span of a paired-end read

follows some probability distribution h(x), the expression level of this isoform is a RPKM and M

paired-end reads have been mapped. Here, L2 is the read length of a paired-end read,

gi, j¼
P

i5 k5 j lkf [k], and PM,h,a is defined in Theorem 1. According to the theorem, if (si,sj) is

informative, then the probability that there are no paired-end reads with start positions in segment si

and end positions in segment sj is less than 0.05. A triple of expressed segments (si,siþ 1,sj),iþ 1< j is

an informative triple if f[i]¼ f[iþ 1]¼ f[j]¼ 1 and PM,h,a(L2� 1,gi,j,ljþ L2� 1)< 0.05. Similarly,

(si,siþ 1,sj),j< i is an informative triple if PM,h,a(L2� 1,gj,iþ 1,ljþ L2� 1)< 0.05. An isoform satisfies

condition III if every informative pair or triple on this isoform is supported by paired-end reads. A

larger a makes this condition more stringent. Because in many cases, two isoforms can only be

distinguished by a pair or triple of segments, it is necessary to require that every informative pairs or

triple (instead of some of them) are supported by paired-end reads.

Note that while the junction information is always available given the single-end read data and exon-

intron boundary information, the start-end segment pair information and paired-end read data are not

necessarily always available. We define an isoform as valid if it satisfies conditions I, II, and/or III

whenever the corresponding types of data are provided. The following theorem gives a lower bound on the

probability that type I condition is satisfied by an isoform.

Theorem 2. Under the uniform sampling assumption, the probability that an isoform f consisting of t

exons with expression level x RPKM satisfies type I condition is at least (1� e� xL1M=109

)t� 1, where e is the

base of natural logarithm, M the number of single-end reads mapped, and L1 the length of single-end reads.

Proof. If expression level of y RPKM of the isoform f corresponds to one transcript of f, the total

number of the expressed transcripts of f is x/y. Based on the definition of RPKM, y¼ (106 � 103)/L0¼ 109/L

0, where L0 is the total length of all the expressed transcripts with duplications. For any junction, the

probability of a read falling into this junction is xL/yL0. So, the probability that none of the reads fall into

this junction is (1� xL=yL0)M � e� xLM=yL0 ¼ e� xLM=109

. In order for this isoform to be valid, each of the

t� 1 junctions contains at least one read. Therefore, the probability of this isoform being valid is

(1� e� xLM=109

)t� 1. Note that the sequencing noise does not decrease the above probability although it may

provide some spurious junction reads. &

2.5. Isoform inference algorithm

We now describe our algorithm, IsoInfer, for inferring isoforms. The algorithm uses the following types

of data: the reference genome, single-end short reads, exon-intron boundaries, TSS-PAS pairs, gene

boundary information from the reference genome annotation, and paired-end short reads. The first three

pieces of information (i.e., the reference genome, exon-intron boundaries, and single-end short reads) are

required in the algorithm. If TSS-PAS pairs are not provided, gene boundaries would be required. The flow

of data processing in IsoInfer is illustrated in Figure 3. The third step of the algorithm requires an external

tool, e.g., Bowtie (Langmead et al., 2009), to map the short reads to the reference genome and junction

sequences. In the fifth step, any two segments that are adjacent or supported by a junction read will be

clustered together. Note that, such a cluster may contain expressed segments from more than one gene or

contain only a subset of expressed segments from a single gene, but these cases do not happen very often.
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Furthermore, in each cluster, if there is a sequence of consecutive expressed segments such that every

internal segment has no non-adjacent junction with any other expressed segment other than its left or right

neighbor in the sequence, then we will combine the expressed segments into a single segment. This

compression will be important because it reduces the problem size drastically for some isoforms containing

a very large number of expressed segments. The details of the clustering and compression step are

straightforward and omitted.

In the following, we give more details of the last step in IsoInfer, i.e., inferring isoforms. Each cluster of

expressed segments defines an instance of the isoform inference problem. Denote such an instance as

I(S,R,T,d), where S¼fs1, s2, . . . , sjSjg is the set of expressed segments in the cluster, R the set of short

(single-end and paired-end) reads mapped to the segments in the cluster, T the set of start-end segment

pairs, and d a function such that d(i), si 2 S, denotes the number of single-end reads mapped to segment si

and d(i,j), 1� i< j� jSj, denotes the number of single-end reads mapped to junction (si,sj).

The inference procedure is summarized in Algorithm 1. It first enumerates all the valid isoforms in step 1.

However, for a cluster with a large number of expressed segments and isoforms, the number of valid

isoforms could be too large to be enumerated efficiently even though conditions I, II and/or III could be

used to filter out many invalid isoforms. Therefore, the algorithm enumerates valid isoforms with high

expression levels first, where the expression level of an isoform is defined by the least number of single-end

reads on any junction of the isoform. The enumeration terminates when a preset number (denoted as g) of

valid isoforms are enumerated. The parameter g is used to avoid the rare cases that the number of valid

isoforms is too large to be handled by subsequent steps of IsoInfer. We set g¼ 1000 by default based on our

empirical knowledge of the real data considered in Section 4. For example, over 97.5%, 98.5%, and 99%

cases, the number of valid isoforms is no more than 1000 in the tests on mouse brain, liver and muscle

tissues, respectively, when the exact boundary and TSS-PAS information is extracted from the UCSC

knownGene table. The impact of the omitted isoforms is minimized because highly expressed isoforms are

enumerated first.

Algorithm 1. IsoformInference. Given an instance I(S,R,T,d), the algorithm infers a set of isoforms to explain

the read data

1: Among all segment junctions of an isoform f, denote m(f) as the minimum number of single-end reads mapped to any

of these junctions. Enumerate all the valid isoforms f in the descending order of m(f) until a preset number (g) of valid

isoforms is obtained. Denote the set of all the enumerated valid isoforms as F.

2: Remove all the short reads and start-end segment pairs that are not validated by F.

3: for 5� u� b do

4: w(f)/ 0 for f 2 F.

5: for 0�m� jSj� u do

6: n/mþ u.

7: V (m,n)/BestCombination(I (m,n)).

8: For each v 2 V (m, n), define G(v)¼ff j f 2 F, f (m, n)¼ vg and for each f 2 G(v), let w(f)¼w(f)þ 1/jG(v)j.
9: end for

10: Sort F by w in increasing order.

11: for f 2 Fdo

12: if w(f)< 1 and F� {f} is a feasible solution of I then

13: F/F� {f}.

14: end if

15: end for

16: end for

17: w0(f)/ 1/w(f) for f 2 F.

18: Solve the weighted set cover instance (U, C, w0), where U¼R [ T , C¼fSf j f 2 Fg, and r 2 Sf if r is validated by f

for r 2 U for each f 2 F by the branch-and-bound method implemented in GNU package GLPK. Return the set of

the valid isoforms corresponding to the optimal solution of set cover.

FIG. 3. The flow of data proces-

sing in algorithm IsoInfer.
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Algorithm 2. BestCombination. Given an instance I(S,R,F,d), find a ‘‘best’’ subset of F such that the read data can be

explained by enumerating all possible subsets of F

1: for 1� i� jSj do

2: p/ 0 and F0/ ;.
3: for each F@�F where jF@j ¼ i and F@ is a feasible solution of I do

4: {z,x}/QPsolver(I(S,F@,d)).

5: if p< p-value(z) then

6: p/ p-value(z) and F0/F@.
7: end if

8: end for

9: if p� 0.05 then

10: Return F0.
11: end if

12: end for

A short read r is validated by a set of isoforms if the set contains an isoform f such that f[i]¼ 1 when

r[i]¼ 1. A start-end segment pair is validated by a set of isoforms if this pair is the start-end segment pair of

some f in the set. A set of isoforms is a feasible solution of I(S,R,T,d) if every read in R and start-end

segment pair in T are validated by the set. Due to possible noise in sequencing and the incompleteness of

the enumeration of valid isoforms in step 1, it may happen that some reads or start-end segment pairs are

not supported by the set of isoforms F enumerated in step 1. Step 2 of the algorithm removes such

invalidated reads and start-end segment pairs to make F feasible.

To find a subset of valid isoforms to explain the data, a simple idea is to try all possible combinations of

the valid isoforms in F and find a minimum combination that can explain all the short reads, as done in

procedure BestCombination (Algorithm 2). The procedure BestCombination gradually increases the

number of valid isoforms considered and enumerates all possible combinations of such a number of

isoforms until a preset condition is met.

However, it is often infeasible to enumerate all possible combinations of the valid isoforms of a given

size. When this happens, we decompose an the instance into some sub-instances. In each sub-instance, only

a subset of expressed segments are considered. More specifically, for an instance I(S,R,F,d), where F is the

set of valid isoforms enumerated, a sub-instance I(m,n)¼ I(S(m,n), R(m,n), d(m,n), F(m,n)), 0�m< n� jSj, is

defined concerning the subset S(m, n)¼fsmþ 1, . . . , sng of expressed segments of S. It is formally defined as

follows. For each f 2 B(jSj), define f (m, n) 2 B(n�m) and f(m,n)[i]¼ f[iþm], 1� i� n�m. In other words,

f(m,n) denotes the sub-vector of f spanning the interval [mþ 1,n]. Let F(m, n)¼ff (m, n)j f 2 Fg,
R(m, n)¼fr(m, n)jr 2 Rg d(m,n)(i)¼ d(iþm), 1� i� n�m, and d(m,n)(i,j)¼ d(iþm, jþm), 1� i< j� n�m.

Note that the start-end segment information is not needed in sub-instances.

The parameter b appearing in step 3 controls the maximum size of a sub-instance. Larger sub-instances

make the results of procedure BestCombination more reliable. However, the execution time of BestCom-

bination increases exponentially with the number of valid isoforms which grows with the size of the sub-

instance. Therefore, instead of a fixed size, a set of sub-instance sizes from the interval [5,b] are attempted.

For a fixed sub-instance size, BestCombination is executed on each sub-instance of the size in step 7.

According to the results of BestCombination, each valid isoform is assigned a weight in Step 8 which roughly

indicates the frequency that the isoform appears in the combinations found by BestCombination. A subset of

valid isoforms with weights less than 1 are removed in steps 11–15 without making F infeasible.

In steps 17 and 18 of the algorithm, a weighted set cover instance is constructed such that an optimal

solution implies a subset of valid isoforms with a minimum total weight such that all the short reads and

start-end segments can be explained. The set cover problem can be solved by using the branch-and-bound

method implemented in GNU package GLPK, since it involves only small instances.

3. SIMULATION TEST RESULTS

We test IsoInfer on mouse genes. The reference genomic sequence and known isoforms of all mouse

genes are downloaded from UCSC (mm9, NCBI Build 37) (Karolchik et al., 2008). All exon-intron
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boundaries of the known isoforms are extracted. This dataset contains 26,989 genes and 49,409 isoforms.

16,392 (60.7%) of the genes have only one isoform and 59 (0.2%) of the genes have more than 10 isoforms.

Of the genes, 5830 (21.6%) have only one exon and 384 (1.4%) have more than 40 exon-intron boundaries.

For the simulation study, only genes with at least two known isoforms are used, which result in 10,595

genes. We further extract all the start-end segments and randomly generate relative expression levels of

every isoform. Although it would be natural to assume that expression levels follow a uniform distribution,

it has been reported previously (Alter et al., 2008; Konishi, 2004; Wijaya et al., 2008) that the expression

levels of isoforms tend to obey a log-normal distribution. Therefore, we consider three types of distribu-

tions.

� Base10: For each isoform, a random number r following the standard normal distribution is generated

and then 10r is assigned as the relative expression level of this isoform.
� Base2: For each isoform, a random number r following the standard normal distribution is generated

and then 2r is assigned as the relative expression level of this isoform.
� Uniform: For each isoform, a random number r uniformly generated from [0,1] is assigned as the

relative expression level of this isoform.

Then 40M single-end and 10M paired-end short reads are randomly generated according to the relative

expression levels of the isoforms. In the simulation, we assume that the span of a paired-end read is a

random variable obeying the normal distribution N(m,s2) (Richter et al., 2008) so we could evaluate the

impact of the mean and deviation of the spans of paired-end reads on the performance of IsoInfer. Note that

IsoInfer does not depend on this assumption and works for paired-end reads drawn from any distribution.

Finally, IsoInfer is used to recover all the known isoforms using the start-end segments and single-end

and paired-end reads. In the simulation, the read lengths of single-end and paired-end reads are 25 and

20 bps, respectively. The parameter a is set to 1 RPKM, b¼ 7, and g¼ 1000. We consider three measures of

the performance: sensitivity, effective sensitivity, and precision. A known isoform is recovered if it is in the

output of IsoInfer. Sensitivity is defined as the number of recovered isoforms divided by the number of all

known isoforms. Precision is defined as the number of recovered isoforms divided by the number of

isoforms inferred. Since IsoInfer only intends to infer isoforms that are sufficiently expressed, it is useful to

consider how many sufficiently expressed isoforms are recovered by the algorithm. Since Theorem 2 shows

that an isoform with a sufficiently high expression level is likely to satisfy condition I (i.e., all its exon-

intron junctions are supported by the read data) with high probability, we define effective sensitivity as the

number of recovered isoforms divided by the number of known isoforms whose exon-intron junctions are

supported by the read data.

3.1. Calculation of expression levels

To estimate the effectiveness of our QP formulation, we randomly generate Base10 expression levels and

single-end short reads on the known mouse isoforms and check whether it can recover the correct ex-

pression levels of the known isoforms. For an isoform f with expression level xf and calculated expression

level x0f , the relative difference
jx0

f
� xf j
xf

is used to measure the accuracy of calculation. A simple and widely

used method of calculating expression levels of isoforms is based on counting reads mapped to its unique

exons and exon junctions (Wang et al., 2008a; Pan et al., 2008). Clearly, this simple strategy fails if the

isoform does not have any unique exons or exon junctions. We compare our method with the simple

method (termed Uniq in this article) and the method based on maximum likelihood estimation (MLE) and

importance sampling (IS) ( Jiang and Wong, 2009). The comparison is depicted in Figure 4.

The comparison shows that MLE followed by IS (MLEþ IS) is the most accurate and Uniq is the worst.

IsoInfer achieves a performance comparable to that of MLEþ IS. An advantage of MLEþ IS is that it also

provides a 95% confidence interval for each expression level estimation. On the other hand, IsoInfer

calculates the expression levels much faster than MLEþ IS does (3 minutes vs. 3 hours for all mouse genes

on a standard desktop PC). The efficiency of IsoInfer makes the search for novel isoforms possible.

3.2. The influence of the distribution of expression levels

In this section, we analyze the influence of the distribution of expression levels on the performance of

IsoInfer in inferring isoforms. The distribution of the span of paired-end reads are fixed as the normal
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distribution N(300, 302). The sensitivities and precisions grouped by number of known isoforms per gene

are depicted in Figure 5.

The overall sensitivities and precisions of IsoInfer on (Base10, Base2, Uniform) expression levels are

(39.7%, 75.0%, 72.5%) and (79.3%, 82.1%, 81.3%), respectively. The sensitivities for Base10 expression

levels are much lower than those for Base2 and Uniform expression levels, because a large faction of the

isoforms are not significant expressed. The effective sensitivity of three cases are 83.5%, 77.4%, and

77.4%, respectively. Figure 5 gives detailed sensitivity, effective sensitivity and precision of IsoInfer on

genes with a certain number of isoforms. The high effective sensitivity shown in the figure is also con-

firmed by the sensitivity results on different expression levels, also given in Figure 5 which shows that

isoforms with high expression levels are identified with high sensitivities. For example, for Base10 ex-

pression levels, isoforms with expression level above 3 (or 6) RPKM are identified with sensitivity above

56.0% (or 81.0%, respectively).

3.3. The importance of start-end expressed segment pairs

As mentioned before, single-end short reads are necessary for our algorithm but start-end segment pairs

and paired-end reads are optional. To estimate the importance of the last two pieces of information, we

compare the results when different types of data are available. Four combinations are possible—denoted as

I, Iþ II, Iþ III, and Iþ IIþ III—where I, II, and III correspond to single-end reads (which provide the

junction information), start-end segment pairs and paired-end data, respectively. The combination Iþ III

means that the single-end and paired-end read data are available but not the start-end segment pairs. In the

FIG. 4. Comparison of the accu-

racies of different methods in esti-

mating isoform expression levels.

The y-axis shows the percentage

of isoforms whose estimated/

calculated expression levels are

within a certain relative difference

range from the truth. 10 million

reads (left) and 80 million reads

(right) are sampled in each of the

figures.

FIG. 5. The sensitivity (top left),

effective sensitivity (top right) and

precision (bottom left) of IsoInfer

on genes with a certain number of

isoforms when different distribu-

tions of expression levels are gen-

erated. (Bottom right) Sensitivity

of IsoInfer on different expression

levels when different distributions

of expression level are applied. In

the graph, the expression levels are

log2 transformed. Expression level

x corresponds to 25 � 2x RPKM. The

vertical line corresponds to expres-

sion level 1/8¼ 3.125 RPKM.
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simulation, Base10 expression levels are generated and the span distribution of paired-end reads is fixed as

N(300, 302). Figure 6 shows that start-end segment pairs are much more important than paired-end reads for

our algorithm. For example, the sensitivities and precisions for combinations Iþ II and Iþ III are (38.9%,

78.5%) and (29.5%, 16.5%), respectively.

3.4. The influence of span distribution

The span of paired-end reads follows the normal distribution N(m,s2). We run IsoInfer on different

combinations of m and s. On each combination, 10 million pair-end reads are randomly generated. Since

start-end segment pairs are much more important than paired-end reads, as shown in the above subsection,

the span distribution should not have a significant influence on the inference results when start-end segment

pairs are available. This is confirmed by Tables 1 and 2. The precision and sensitivity of IsoInfer vary by at

most 1.5% when different span distributions are applied.

The above small effect of paired-end read data on the performance of IsoInfer is because the parameter a
is set to 1. When a large a is applied, IsoInfer trades sensitivity for precision. For example, when the span

distribution of paired-end read is fixed as N(300, 302), if a is set to 1, the sensitivity and precision on genes

with at least 8 isoforms are 40.2% and 74.0%, respectively. The two measures will change to 35.4% and

78.1%, respectively, when a is set to 20. The performance of IsoInfer when a is set to different values is

shown in Figure 7.

FIG. 6. The sensitivity (top left),

effective sensitivity (top right) and

precision (bottom left) of IsoInfer

on genes with a certain number of

isoforms when different combina-

tions of type I, II, and III data are

provided. (Bottom right) Sensitivity

of IsoInfer on different expression

levels when different combinations

of type I, II, and III data are used.

Again, the expression levels are log2

transformed. Expression level x

corresponds to 25 � 2x RPKM. The

vertical line corresponds to expres-

sion level 1/8¼ 3.125 RPKM.

Table 1. Sensitivities for Various Span Distributions Grouped by the Number of Isoforms per Gene

No. of isoforms per gene 2 3 4 5 6 7 �8

No PE reads 0.392 0.402 0.392 0.383 0.374 0.346 0.391

300, 10 0.393 0.406 0.402 0.391 0.385 0.357 0.402

300, 30 0.393 0.407 0.404 0.392 0.386 0.362 0.402

300, 50 0.393 0.407 0.402 0.393 0.385 0.366 0.402

300, 100 0.393 0.408 0.404 0.395 0.385 0.359 0.405

1100, 110 0.387 0.401 0.399 0.395 0.392 0.363 0.403

3000, 300 0.392 0.404 0.403 0.400 0.390 0.366 0.413

Here, ‘‘No PE reads’’ means that no paired-end reads are applied. The first column lists various combinations of the mean and

standard deviation in the span (normal) distributions considered. The corresponding effective sensitivities range from 63.4% to 97.4%.
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3.5. The influence of noise

To further evaluate the performance of IsoInfer in a real scenario, we introduce noise in the simulation

test. For simplicity, we will only consider noisy reads that are sampled from the reference genome directly

instead of expressed isoforms. Such a noise may generate sampled reads unproportional to the expression

levels of expressed isoforms. In the RNA-Seq experiments conducted by Mortazavi et al. (2008), about 7%

of the short reads are mapped to introns and intergenic regions, while introns and intergenic regions

comprise more than 98% of the entire mouse genome. By taking into account the fact that the size of the

mouse genome is about 2.5G, the noise level in the reads analyzed in Mortazavi et al. (2008) could be

estimated as less than 0.03 RPKM. Therefore, we will consider three different noise levels: 0.03, 0.05, and

0.1 RPKM. Again, the simulation generates 40M single-end reads of length 25 bps. Table 3 shows the

overall precision, sensitivity, and effective sensitivity of IsoInfer when different noise levels are adopted.

The results demonstrate that the noise only has a slight (no more than 2.5%) influence on the accuracy of

IsoInfer when noise levels are in the given range.

4. RECOVERY OF KNOWN ISOFORMS FROM REAL READS

The evaluation uses the following four data sets: (1) known mouse isoforms downloaded from UCSC

Karolchik et al. (2008), which contains 49,409 transcripts; (2) mouse mRNAs expressed in various tissues

downloaded from UCSC containing 228,779 mRNAs; (3) RNA-Seq data from brain, liver, and skeletal

muscle tissues of mouse (Mortazavi et al., 2008), which contains 47,781,892, 44,279,807, and 38,210,358

single-end reads for brain, liver, and muscle, respectively; and (4) 104,710 exon junctions that were

predicted by TopHat from the above RNA-Seq data for mouse brain tissue (Trapnell et al., 2009).

As in the simulation tests, on a specific tissue, one can only expect that isoforms with expression levels

above a certain threshold can be detected by RNA-Seq experiments, so as to be inferred by IsoInfer. Given

a set of mapped reads, an isoform is said to be theoretically expressed if each exon except for the first and

last one of this isoform has expression level at least 1 RPKM and every exon junction on this isoform is

supported by short reads. (Note that this does not really guarantee that the isoform is actually expressed.)

The expression levels of the first and last exons are ignored here because of the possible 30 and 50 sampling

biases in RNA-Seq (Wang et al., 2008b; Mortazavi et al., 2008). The theoretically expressed isoforms

Table 2. Specificities for Various Span Distributions Grouped by the Number of Isoforms per Gene

No. of isoforms per gene 2 3 4 5 6 7 �8

No PE reads 0.893 0.824 0.774 0.732 0.704 0.638 0.733

300, 10 0.897 0.830 0.784 0.738 0.717 0.648 0.740

300, 30 0.897 0.831 0.786 0.739 0.718 0.657 0.740

300, 50 0.897 0.830 0.784 0.740 0.714 0.663 0.737

300, 100 0.896 0.830 0.786 0.743 0.713 0.649 0.740

1100, 110 0.896 0.829 0.782 0.739 0.720 0.657 0.729

3000, 300 0.896 0.828 0.776 0.741 0.709 0.648 0.736

The first column lists various combinations of the mean and standard deviation in the span (normal) distributions considered.

FIG. 7. The sensitivity and

precision of IsoInfer when a is

set to different values.
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among known mouse isoforms and mRNAs are used as benchmarks. Note that the benchmarks change

when different tissues are considered, because the expression levels of isoforms change from tissue to

tissue.

We have done two groups of tests. The first one is to use the TSS-PAS pair and exon-intron boundary

information from the known mouse isoforms and/or mRNAs from UCSC and RNA-Seq short reads to infer

isoforms. The predicted isoforms are compared with the theoretically expressed isoforms in the corre-

sponding benchmark. An isoform is recovered by IsoInfer if one of isoforms inferred by IsoInfer matches

this isoform precisely (i.e., the two isoforms contain exactly the same set of exons with exactly the same

boundaries). The inference results are shown in Table 4. These results demonstrate that when accurate

exon-intron boundary and TSS-PAS pair information is provided, IsoInfer achieves a reasonably good

precision, and the precision increases as the size of the benchmark increases. When known mouse isoforms

are used, IsoInfer achieves decent effective sensitivities (i.e., 72.9% for brain, 82.2% for liver and 83.0%

for muscle). Because mRNAs were collected from different sources and tissues, a large fraction of them

may not really be expressed in a specific tissue. Therefore, effective sensitivity of IsoInfer drops when

mRNAs are used as the benchmark.

The second test measures the performance of IsoInfer when the exact exon-intron boundary information

is unavailable. The test uses exon-intron boundaries predicted by TopHat from the RNA-Seq read data on

the mouse brain tissue and the TSS-PAS pair information extracted from the known mouse isoforms and/or

mRNAs. The test results are shown in Table 5. Although it is reported in Trapnell et al. (2009) that over

80% of the exon junctions predicted by TopHat are also exon junctions in the UCSC known mouse

isoforms, the inference result on the known mouse isoforms is much worse than the result when exact exon-

intron boundary information is provided. On the other hand, when mRNA is used as the benchmark, the

exon-intron boundaries provided by TopHat lead IsoInfer to a more aggressive prediction (and thus

achieving a better effective sensitivity).

Although the test results in Tables 4 and 5 demonstrate the importance of having accurate exon-intron

boundary information, we should take these results with a grain of salt because we do not know what

isoforms are really expressed in each of the tissues. Hence, we think that the simulation results in Figures

4–6 and Table 3 might represent a better characterization of the true performance of IsoInfer under various

conditions. On the other hand, we do not know how well the simulated data capture real RNA-Seq data

from practice.

In each of the above tests, the last three steps of IsoInfer shown in Figure 3 took less than 80 minutes on

an Intel P8600 processor.

Table 3. Performance of IsoInfer on Simulated Reads When Different

Noise Levels Are Adopted

Noise level (RPKM) 0 0.03 0.05 0.1

Precision 0.794 0.786 0.782 0.769

Sensitivity 0.396 0.396 0.395 0.397

Effective sensitivity 0.811 0.810 0.808 0.802

Table 4. Performance of IsoInfer When Different Exon-Intron Boundary and TSS-PAS Pair

Information and Corresponding Benchmarks Are Used

Known isoforms mRNAs Union

Tissue Brain Liver Muscle Brain Liver Muscle Brain Liver Muscle

No. of theoretically

expressed

18521 12411 11723 87178 72594 69086 101392 82199 78298

Precision 0.493 0.592 0.627 0.572 0.670 0.712 0.591 0.697 0.737

Effective sensitivity 0.729 0.822 0.830 0.328 0.352 0.366 0.335 0.365 0.381

Here, ‘‘Union’’ means that the exon-intron boundary and TSS-PAS pair information is extracted from both known mouse isoforms

and mRNAs, and the benchmark is the union of the known mouse isoforms and mRNAs.
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5. CONCLUSION

We have proposed a novel method to infer isoforms from single-end and paired-end short RNA-Seq

reads and information concerning exon-intron boundaries and TSS-PAS pairs. While the single-end data is

necessary for our algorithm, the TSS-PAS pairs could greatly improve the performance. Our experimental

results on simulated and real read data demonstrate that our algorithm is possible to infer isoforms with

reasonably good accuracy and speed. The software is available publicly at http://www.cs.ucr.edu/

*jianxing/IsoInfer.html

IsoInfer is based on a critical assumption: the reads are uniformly sampled from all the transcripts.

However, because of sequencing biases and errors and the issue of multi-reads, this assumption may not

always hold. Therefore, it would be interesting to study more robust isoform inference methods that could

correct sequencing errors and biases and deal with multi-reads.
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