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ABSTRACT

Motivation: High-throughput data is providing a comprehensive

view of the molecular changes in cancer tissues. New technologies

allow for the simultaneous genome-wide assay of the state of

genome copy number variation, gene expression, DNA methylation

and epigenetics of tumor samples and cancer cell lines. Analyses of

current data sets find that genetic alterations between patients can

differ but often involve common pathways. It is therefore critical to

identify relevant pathways involved in cancer progression and detect

how they are altered in different patients.

Results: We present a novel method for inferring patient-specific

genetic activities incorporating curated pathway interactions among

genes. A gene is modeled by a factor graph as a set of interconnected

variables encoding the expression and known activity of a gene

and its products, allowing the incorporation of many types of omic

data as evidence. The method predicts the degree to which a

pathway’s activities (e.g. internal gene states, interactions or high-

level ‘outputs’) are altered in the patient using probabilistic inference.

Compared with a competing pathway activity inference approach

called SPIA, our method identifies altered activities in cancer-related

pathways with fewer false-positives in both a glioblastoma multiform

(GBM) and a breast cancer dataset. PARADIGM identified consistent

pathway-level activities for subsets of the GBM patients that are

overlooked when genes are considered in isolation. Further, grouping

GBM patients based on their significant pathway perturbations

divides them into clinically-relevant subgroups having significantly

different survival outcomes. These findings suggest that therapeutics

might be chosen that target genes at critical points in the commonly

perturbed pathway(s) of a group of patients.

Availability: Source code available at http://sbenz.github.com/Paradigm

Contact: jstuart@soe.ucsc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

A central premise in modern cancer treatment is that patient

diagnosis, prognosis, risk assessment and treatment response

prediction can be improved by stratification of cancers based on

genomic, transcriptional and epigenomic characteristics of the tumor

alongside relevant clinical information gathered at the time of

diagnosis (e.g. patient history, tumor histology and stage) as well

as subsequent clinical follow-up data (e.g. treatment regimens

∗To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors

should be regarded as joint First authors.

and disease recurrence events). While several high-throughput

technologies have been available for probing the molecular details

of cancer, only a handful of successes have been achieved based on

this paradigm. For example, 25% of breast cancer patients presenting

with a particular amplification or overexpression of the ERBB2

growth factor receptor tyrosine kinase can now be treated with

trastuzumab, a monoclonal antibody targeting the receptor (Vogel

et al., 2001). However, even this success story is clouded by the fact

that <50% of patients with ERBB2-positive breast cancers actually

achieve any therapeutic benefit from trastuzumab, emphasizing our

incomplete understanding of this well-studied oncogenic pathway

and the many therapeutic-resistant mechanisms intrinsic to ERBB2-

positive breast cancers (Park et al., 2008). This overall failure to

translate modern advances in basic cancer biology is in part due to

our inability to comprehensively organize and integrate all of the

omic features now technically acquirable on virtually any type of

cancer. Despite overwhelming evidence that histologically similar

cancers are in reality a composite of many molecular subtypes, each

with significantly different clinical behavior, this knowledge is rarely

applied in practice due to the lack of robust signatures that correlate

well with prognosis and treatment options.

Cancer is a disease of the genome that is associated with aberrant

alterations that lead to disregulation of the cellular system. What is

not clear is how genomic changes feed into genetic pathways that

underlie cancer phenotypes. High-throughput functional genomics

investigations have made tremendous progress in the past decade

(Alizadeh et al., 2000; Golub et al., 1999; van de Vijver et al.,

2002). However, the challenges of integrating multiple data sources

to identify reproducible and interpretable molecular signatures of

tumorigenesis and progression remain elusive. Recent pilot studies

by TCGA and others (Parsons et al., 2008; TCGA, 2008) make it

clear that a pathway-level understanding of genomic perturbations

is needed to understand the changes observed in cancer cells.

These findings demonstrate that even when patients harbor genomic

alterations or aberrant expression in different genes, these genes

often participate in a common pathway. In addition, and even

more striking, is that the alterations observed (e.g. deletions versus

amplifications) often alter the pathway output in the same direction,

either all increasing or all decreasing the pathway activation.

Approaches for interpreting genome-wide cancer data have

focused on identifying gene expression profiles that are highly

correlated with a particular phenotype or disease state, and have

led to promising results (Allison et al., 2006; Dudoit and Fridlyand,

2002; Tusher et al., 2001). Methods using analysis of variance

(Kerr et al., 2000), false-discovery (Storey and Tibshirani, 2003)

and non-parametric methods (Troyanskaya et al., 2002) have been

proposed.
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Several pathway-level approaches use statistical tests based on

overrepresentation of genesets to detect whether a pathway is

perturbed in a disease condition. In these approaches, genes are

ranked based on their degree of differential activity, for example, as

detected by either differential expression or copy number alteration.

A probability score is then assigned reflecting the degree to which a

pathway’s genes rank near the extreme ends of the sorted list, such

as is used in gene set enrichment analysis (GSEA) (Subramanian

et al., 2005). Other approaches include using a hypergeometric test-

based method to identify Gene Ontology (Ashburner et al., 2000)

or MIPS mammalian protein–protein interaction (Pagel et al., 2005)

categories enriched in differentially expressed genes (Tamayo et al.,

1999).

Overrepresentation analyses are limited in their efficacy because

they do not incorporate known interdependencies among genes in a

pathway that can increase the detection signal for pathway relevance.

In addition, they treat all gene alterations as equal, which is not

expected to be valid for many biological systems. Because of these

factors, overrepresentation analyses often miss functionally-relevant

pathways whose genes have borderline differential activity. They can

also produce many false positives when only a single gene is highly

altered in a small pathway.

Our collective knowledge about the detailed interactions between

genes and their phenotypic consequences is growing rapidly. While

the knowledge was traditionally scattered throughout the literature

and hard to access systematically, new efforts are cataloging pathway

knowledge into publicly available databases. Some of the databases

that include pathway topology are Reactome (Joshi-Tope et al.,

2005), KEGG (Ogata et al., 1999), and the National Cancer

Institute (NCI) Pathway Interaction Database(PID). Updates to these

databases are expected to improve our understanding of biological

systems by explicitly encoding how genes regulate and communicate

with one another. A key hypothesis is that the interaction topology

of these pathways can be exploited for the purpose of interpreting

high-throughput datasets.

Until recently, few computational approaches were available

for incorporating pathway knowledge to interpret high-throughput

datasets. However, several newer approaches (Efroni et al., 2007)

have been proposed that incorporate pathway topology. One

approach, called signaling pathway impact analysis (SPIA) (Tarca

et al., 2009), uses a method analogous to Google’s PageRank

to determine the influence of a gene in a pathway. In SPIA,

more influence is placed on genes that link out to many other

genes. SPIA was successfully applied to different cancer datasets

(lung adenocarcinoma and breast cancer) and shown to outperform

overrepresentation analysis and GSEA for identifying pathways

known to be involved in these cancers. While SPIA represents a

major step forward in interpreting cancer datasets using pathway

topology, it is limited to using only a single type of genome-wide

data. New computational approaches are needed to connect multiple

genomic alterations such as copy number, DNA methylation,

somatic mutations, mRNA expression and microRNA expression.

Integrated pathway analysis is expected to increase the precision

and sensitivity of causal interpretations for large sets of observations

since no single data source is likely to provide a complete picture

on its own.

In the past several years, approaches in probabilistic graphical

models (PGMs) have been developed for learning causal networks

compatible with multiple levels of observations. Efficient algorithms

are available to learn pathways automatically from data (Friedman

and Goldszmidt, 1997; Murphy et al., 1999) and are well adapted

to problems in genetic network inference (Friedman, 2004). As an

example, graphical models have been used to identify sets of genes

that form ‘modules’ in cancer biology (Segal et al., 2005). They

have also been applied to elucidate the relationship between tumor

genotype and expression phenotypes (Lee et al., 2006), and infer

protein signal networks (Sachs et al., 2005) and recombinatorial

gene regulatory code (Beer and Tavazoie, 2004). In particular, factor

graphs have been used to model expression data (Gat-Viks and

Shamir, 2007; Gat-Viks et al., 2005, 2006).

We describe a PGM framework based on factor graphs

(Kschischang et al., 2001) that can integrate any number of genomic

and functional genomic datasets to infer the molecular pathways

altered in a patient sample. We tested the model using copy number

variation and gene expression data for both a glioblastoma and

breast cancer dataset. The activities inferred using a structured

pathway model successfully stratify the glioblastoma patients into

clinically-relevant subtypes. The results suggest that the pathway-

informed inferences are more informative than using gene-level

data in isolation. In addition to providing better prognostics and

diagnostics, integrated pathway activations offer important clues

about potential therapeutics that could be used to abrogate disease

progression.

2 METHODS

2.1 Data sources

Breast cancer copy number data from Chin et al. (2007) was obtained from

NCBI Gene Expression Omnibus (GEO) under accessions GPL5737 with

associated array platform annotation from GSE8757. Probe annotations were

converted to BED15 format for display in the UCSC Cancer Genomics

Browser (Zhu et al., 2009) and subsequent analysis. Array data were mapped

to probe annotations via probe ID. Matched expression data from Naderi

et al. (2007) was obtained from MIAMIExpress at EBI using accession

number E-UCon-1. Platform annotation information for Human1A (V2)

was obtained from the Agilent website. Expression data was probe-level

median-normalized and mapped via probe ID to HUGO gene names. All data

were non-parametrically normalized using a ranking procedure including

all sample-probe values and each gene-sample pair was given a signed P-

value based on the rank. A maximal P-value of 0.05 was used to determine

gene-samples pairs that were significantly altered. The glioblastoma data

from TCGA (2008) was obtained from the TCGA data portal providing

gene expression for 230 patient samples and 10 adjacent normal tissues

on the Affymetrix U133A platform. The probes for the patient samples

were normalized to the normal tissue by subtracting the median normal

value of each probe. In addition, CBS segmented (Olshen et al., 2004)

copy number data for the same set of patients were obtained. Both datasets

were non-parametrically normalized using the same procedure as the breast

cancer data.

2.2 Pathway compendium

We collected the set of curated pathways available from the (NCI PID)

(Schaefer et al., 2009). Each pathway represents a set of interactions logically

grouped together around high-level biomolecular processes describing

intrinsic and extrinsic sub-cellular-, cellular-, tissue- or organism-level

events and phenotypes. BioPAX (BioPAX working group, 2004) level 2

formatted pathways were downloaded on September 15, 2009. All entities

and interactions were extracted with Simple Protocol and RDF Query

Language (SPARQL) queries using the Rasqal RDF engine.
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Fig. 1. NCI Pathway interactions in TCGA GBM data. For all (n = 462)

pairs where A was found to be an upstream activator of gene B in NCI-

Nature Pathway Database, the Pearson correlation (x-axis) computed from

the TCGA GBM data was calculated in two different ways. The histogram

plots the correlations between the A’s copy number and B’s expression (C2E,

solid red) and between A’s expression and B’s expression (E2E, blue). A

histogram of correlations between randomly paired genes is shown for C2E

(dashed red) and E2E (dashed blue). Arrows point to the enrichment of

positive correlations found for the C2E (red) and E2E (blue) correlation.

We extracted five different types of biological entities including three

physical entities (protein-coding genes, small molecules and complexes),

gene families and abstract processes. A gene family was created whenever

the cross-reference for a BioPAX protein listed proteins from distinct genes.

Gene families represent collections of genes in which any single gene

is sufficient to perform a specific function. For example, homologs with

redundant roles and genes found to functionally compensate for one another

are combined into families. The extraction produced a list of every entity and

interaction used in the pathway with annotations describing their different

types. We also extracted abstract processes, such as ‘apoptosis,’ that refer

to general processes that can be found in the NCI collection. For example,

pathways detailing the interactions involving the p53 tumor suppressor gene

include links into apoptosis and senescence that can be leveraged as features

for machine-learning classification.

One hypothesis of pathway-based approaches is that the genetic

interactions found in pathway databases carry information for interpreting

correlations between gene expression changes detected in cancer. For

example, if a cancer-related pathway includes a link from a transcriptional

activator A to a target gene T, we expect the expression of A to be positively

correlated with the expression of T (E2E correlation). Likewise, we also

expect a positive correlation between A’s copy number and T’s expression

(C2E correlation). Further, we expect C2E correlation to be weaker than

E2E correlation because amplification in A does not necessarily imply A is

expressed at higher levels, which in turn is necessary to upregulate B. In this

way, each link in a pathway provides an expectation about the data; pathways

with many consistent links may be relevant for further consideration. We

tested these assumptions and found that the NCI pathways contain many

interactions predictive of the recent TCGA GBM data (The TCGA research

network 2008) (Fig. 1). As expected, C2E correlations were moderate,

but had a striking enrichment for positive correlations among activating

interactions than expected by chance (Fig. 1). E2E correlations were even

stronger and similarly enriched. Thus, even in this example of a cancer

that has eluded characterization, a significant subset of pathway interactions
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Fig. 2. Overview of the PARADIGM method. PARADIGM uses a pathway

schematic with functional genomic data to infer genetic activities that can

be used for further downstream analysis.

connect genomic alterations to modulations in gene expression, supporting

the idea that a pathway-level approach is worth pursuing.

2.3 PARADIGM model

We developed an approach called PARADIGM (PAthway Recognition

Algorithm using Data Integration on Genomic Models) to infer the activities

of genetic pathways from integrated patient data. Figure 2 illustrates the

overview of the approach. Multiple genome-scale measurements on a single

patient sample are combined to infer the activities of genes, products and

abstract process inputs and outputs for a single NCI pathway. PARADIGM

produces a matrix of integrated pathway activities (IPAs) A where Aij

represents the inferred activity of entity i in patient sample j. The matrix

A can then be used in place of the original constituent datasets to identify

associations with clinical outcomes.

We first convert each NCI pathway into a distinct probabilistic model. A

toy example of a small fragment of the p53 apoptosis pathway is shown in

Figure 3. A pathway diagram from NCI was converted into a factor graph

that includes both hidden and observed states. The factor graph integrates

observations on gene- and biological process-related state information with

a structure describing known interactions among the entities.

To represent a biological pathway with a factor graph, we use variables

to describe the states of entities in a cell, such as a particular mRNA or

complex, and use factors to represent the interactions and information flow

between these entities. These variables represent the differential state of each

entity in comparison with a ‘control’ or normal level rather than the direct

concentrations of the molecular entities. This representation allows us to

model many high-throughput datasets, such as gene expression detected with

DNA microarrays, that often either directly measure the differential state of

a gene or convert direct measurements to measurements relative to matched

controls. It also allows for many types of regulatory relationships among

genes. For example, the interaction describing MDM2 mediating ubiquitin-

dependent degradation of p53 can be modeled as activated MDM2 inhibiting

p53’s protein level.

The factor graph encodes the state of a cell using a random variable

for each entity X ={x1,x2,...,xn} and a set of m non-negative functions, or

factors, that constrain the entities to take on biologically meaningful values as

functions of one another. The j-th factor φj defines a probability distribution

over a subset of entities Xj ⊂X . The entire graph of entities and factors

encodes the joint probability distribution over all of the entities as:

P(X)=
1

Z

m
∏

j=1

φj

(

Xj

)

, (1)

where Z =
∏

j

∑

S❁Xj
φj(S) is a normalization constant and S❁X denotes

that S is a ‘setting’ of the variables in X .
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Fig. 3. Conversion of a genetic pathway diagram into a PARADIGM model.

A. Data on a single patient is integrated for a single gene using a set of

four different biological entities for the gene describing the DNA copies,

mRNA and protein levels, and activity of the protein. B. PARADIGM

models various types of interactions across genes including transcription

factors to targets (upper-left), subunits aggregating in a complex (upper-

right), post-translational modification (lower-left) and sets of genes in a

family performing redundant functions (lower-right). C. Toy example of

a small sub-pathway involving P53, an inhibitor MDM2, and the high level

process, apoptosis as represented in the model.

Each entity can take on one of three states corresponding to activated,

nominal or deactivated relative to a control level (e.g. as measured in normal

tissue) and encoded as 1, 0 or −1 respectively. The states may be interpreted

differently depending on the type of entity (e.g. gene, protein, etc). For

example, an activated mRNA entity represents overexpression, while an

activated genomic copy entity represents more than two copies that are

present in the genome. Figure 3 shows the conceptual model of the factor

graph for a single protein-coding gene. For each protein-coding gene G in the

pathway, entities are introduced to represent the copy number of the genome

(GDNA), mRNA expression (GmRNA), protein level (Gprotein) and protein

activity (Gactive) (ovals labeled ‘DNA’, ‘mRNA’, ‘protein’ and ‘active’ in

Fig. 3). For every compound, protein complex, gene family and abstract

process in the pathway, we include a single variable with molecular type

‘active.’ While the example in Figure 3 shows only one process variable

(‘Apoptosis’), in reality pathways can have several, representing various

descriptions of cellular state ranging from inputs (e.g. ‘DNA damage’) to

outputs (e.g. ‘Apoptosis’ and ‘Senescence’) of gene activity.

In order to simplify the construction of factors, we first convert the

pathway into a directed graph, with each edge in the graph labeled with

either positive or negative influence. First, for every protein coding gene G,

we add edges with a label ‘positive’ from GDNA to GmRNA, from GmRNA

to Gprotein and from Gprotein to Gactive to reflect the expression of the gene

from its number of copies to the presence of an activated form of its protein

product. Every interaction in the pathway is converted to a single edge in

the directed graph.

Using this directed graph, we then construct a list of factors to specify

the factor graph. For every variable xi, we add a single factor φ(Xi), where

Xi ={xi}∪{Parents(xi)} and Parents(xi) refers to all the parents of xi in the

directed graph. The value of the factor for a setting of all values is dependent

on whether xi is in agreement with its expected value due to the settings of

Parents(xi). For this study, the expected value was set to the majority vote of

the parent variables. If a parent is connected by a positive edge it contributes

a vote of +1 times its own state to the value of the factor. Conversely, if the

parent is connected by a negative edge, then the variable votes −1 times its

own state. The variables connected to xi by an edge labeled ‘minimum’ get

a single vote, and that vote’s value is the minimum value of these variables,

creating an AND-like connection. Similarly the variables connected to xi by

an edge labeled ‘maximum’ get a single vote, and that vote’s value is the

maximum value of these variables, creating an OR-like connection. Votes

of zero are treated as abstained votes. If there are no votes the expected

state is zero. Otherwise, the majority vote is the expected state, and a tie

between 1 and −1 results in an expected state of −1 to give more importance

to repressors and deletions.

Given this definition of expected state, φi(xi,Parents(xi)) is specified as:

φi(xi,Parents(xi))=

{

1−ǫ xi is the expected state from Parents(xi)
ǫ
2

otherwise.

For the results shown here, ǫ was set to 0.001, but orders of magnitude

differences in the choice of epsilon did not significantly affect results.

Finally, we add observation variables and factors to the factor graph

to complete the integration of pathway and multi-dimensional functional

genomics data (Fig. 3). Each discretized functional genomics dataset is

associated with one of the molecular types of a protein-coding gene. Array

CGH/SNP estimates of copy number alteration are associated with the

‘genome’ type. Gene expression data is associated with the ‘mRNA’ type.

Though not presented in the results here, future expansion will include

DNA methylation data with the ‘mRNA’ type, and proteomics and gene-

resequencing data with the ‘protein’ and ‘active’ types. Each observation

variable is also ternary valued. The factors associated with each observed

type of data are shared across all entities and learned from the data, as

described next.

2.4 Inference and parameter estimation

Let the set of assignments D={x1 =s1,x2 =s2,...,xk =sk} represent a

complete set of data for a patient on the observed variables indexed 1

through k. Let {S❁D X} represent the set of all possible assignments to a

set of variables X that are consistent with the assignments in D; i.e. any

observed variable xi is fixed to its assignment in D while hidden variables

may vary.

Given patient data, we would like to estimate whether a particular hidden

entity xi is likely to be in state a. For example, how likely TP53’s protein

activity is −1 (inactivated) or ‘Apoptosis’ is +1 (activated). To do this, we

first compute the prior probability of the event prior to observing the patient’s

data. If Ai(a) represents the singleton assignment set {xi =a} and � is the

fully specified factor graph, this prior probability is:

P(xi =a|�)=
1

Z

m
∏

j=1

∑

S❁Ai (a) Xj

φj

(

S
)

, (2)
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where Z is the normalization constant introduced in Equation (1). Similarly,

the probability that xi is in state a along with all of the observations made

for the patient is:

P(xi =a,D|�)=
1

Z

m
∏

j=1

∑

S❁Ai (a)∪D Xj

φj

(

S
)

. (3)

For the majority of pathways, we use the junction tree inference algorithm

with HUGIN updates to infer the probabilities in equations. For pathways

that take longer than 3 s of inference per patient, we use Belief Propagation

with sequential updates, a convergence tolerance of 10−9, and a maximum of

10 000 iterations. All inference was performed in the real domain, as opposed

to the log domain, and was performed with libDAI (Mooij, 2009).

To learn the parameters of the observation factors we use the expectation-

maximization (EM) algorithm (Dempster et al., 1977). Briefly, EM learns

parameters in models with hidden variables by iterating between inferring

the probabilities of hidden variables and changing parameters to maximize

the likelihood given the probabilities of the hidden variables. To perform EM,

we extended the libDAI library; the contributed code is now available as part

of the open source distribution. For each pathway, we created a factor graph

for each patient, applied the patient’s data and ran EM until the likelihood

changed <0.1%. We averaged the parameters learned from each pathway,

and then used these parameters to calculate final posterior beliefs for each

variable.

After inference, we output an IPA for each variable that has an ‘active’

molecular type. We compute a log-likelihood ratio using the quantities from

equations 2 and 3 that reflects the degree to which a patient’s data increases

our belief that entity i’s activity is up or down:

L(i,a) = log
(

P(D,xi=a|�)
P(D,xi �=a|�)

)

−log
(

P(xi=a|�)
P(xi �=a|�)

)

= log
(

P(D|xi=a,�)
P(D|xi �=a,�)

)

.

(4)

We then compute a single IPA for gene i based on the log-likelihood

ratio as:

IPA(i)=

⎧

⎨

⎩

L(i,1) L(i,1)>L(i,-1) and L(i,1)>L(i,0)

−L(i,−1) L(i,-1)>L(i,1) and L(i,-1)>L(i,0)

0 otherwise.

(5)

Intuitively, the IPA score is a signed analog of the log-likelihood ratio, L.

If the gene is more likely to be activated, the IPA is set to L. Alternatively, if

the gene is more likely to be inactivated, the IPA is set to −L and 0 otherwise.

Because each pathway is analyzed independently of other pathways, a gene

can be associated with multiple inferences, one for each pathway in which it

appears. Differing inferences for the same gene can be viewed as alternative

interpretations of the data as a function of the gene’s pathway context.

2.5 Significance assessment

We assess the significance of IPA scores by two different permutations of

the data. For the ‘within’ permutation, a permuted data sample is created by

choosing a new tuple of data (i.e. matched gene expression and gene copy

number) first by choosing a random real sample, and then by choosing a

random gene from within the same pathway, until tuples have been chosen

for each gene in the pathway. For the ‘any’ permutation, the procedure is the

same, but the random gene selection step could choose a gene from anywhere

in the genome. For both permutation types, 1000 permuted samples are

created, and the perturbation scores for each permuted sample is calculated.

The distribution of perturbation scores from permuted samples is used as a

null distribution to estimate the significance of true samples.

2.6 SPIA

SPIA from Tarca et al. (2009) was implemented in C to reduce runtime

and to be compatible with our analysis environment. We also added the

ability to offer more verbose output so that we could directly compare SPIA

and PARADIGM outputs. Our version of SPIA can output the accumulated

perturbation and the perturbation factor for each entity in the pathway. This

code is available upon request.

2.7 Decoy pathways

A set of decoy pathways was created for each cancer dataset. Each NCI

pathway was used to create a decoy pathway which consisted of the same

structure but where every gene in the pathway was substituted for a random

gene in RefGene. All complexes and abstract processes were kept the same

and the significance analysis for both PARADIGM and SPIA was run on the

set of pathways containing both real and decoy pathways. The pathways were

ranked within each method and the fraction of real versus total pathways was

computed and visualized.

2.8 Clustering and Kaplan–Meier analysis

Uncentered correlation hierarchical clustering with centroid linkage was

performed on the glioblastoma data using the methods from Eisen et al.

(1998). Only IPAs with a signal of at least 0.25 across 75 patient samples were

used in the clustering. By visual inspection, four obvious clusters appeared

and were used in the Kaplan–Meier analysis. The Kaplan–Meier curves were

computed using R and P-values were obtained via the log-rank statistic.

3 RESULTS

To assess the quality of the EM training procedure, we compared

the convergence of EM using the actual patient data relative to a

null dataset in which tuples of gene expression and copy number

(E,C) were permuted across the genes and patients. As expected,

PARADIGM converged much more quickly on the true dataset

relative to the null. As an example, we plotted the IPAs for the

gene AKT1 as a function of the EM iteration (Fig. 4). One can see

that the activities quickly converge in the first couple of iterations.

EM quickly converged to an activated level when trained with the

actual patient data, whereas it converged to an unchanged activity

when given random data. The convergence suggests that the pathway

structures and inference are able to successfully identify patterns of

activity in the integrated patient data.

We next ran PARADIGM on both breast cancer and GBM cohorts.

We developed a statistical simulation procedure to determine which

IPAs are significantly different than what would be expected from

a negative distribution. We constructed the negative distribution by

permuting across all of the patients and across the genes in the

pathway. Empirically, we found that permuting only among genes
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Fig. 4. Learning parameters for AKT1. IPAs are shown at each iteration of

the EM algorithm until convergence. Dots show IPAs from permuted samples

and circles show IPAs from real samples. The red line denotes the mean IPA

in real samples and the green line denotes the mean IPA of null samples.
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Fig. 5. Distinguishing decoy from real pathways with PARADIGM and

SPIA. Decoy pathways were created by assigning a new gene name

to each gene in a pathway. PARADIGM and SPIA were then used to

compute the perturbation of every pathway. Each line shows the receiver-

operator characteristic for distinguishing real from decoy pathways using

the perturbation ranking. In breast cancer, the areas under the curve (AUCs)

are 0.669 and 0.602 for PARADIGM and SPIA, respectively. In GBM, the

AUCs are 0.642 and 0.604, respectively.

in the pathway was necessary to help correct for the fact that each

gene has a different topological context determined by the network.

In the breast cancer dataset, 56 172 IPAs (7% of the total) were

found to be significantly higher or lower than the matched negative

controls. On average, NCI pathways had 497 significant entities per

patient and 103 out of 127 pathways had at least one entity altered

in 20% or more of the patients. In the GBM dataset, 141 682 IPAs

(9% of the total) were found to be significantly higher or lower than

the matched negative controls. On average, NCI pathways had 616

significant entities per patient and 110 out of 127 pathways had at

least one entity altered in 20% or more of the patients.

As another control, we asked whether the integrated activities

could be obtained from arbitrary genes connected in the same way

as the genes in the NCI pathways. To do this, we estimated the

false discovery rate and compared it with SPIA (Tarca et al., 2009).

Because many genetic networks have been found to be implicated

in cancer, we chose to use simulated ‘decoy’ pathways as a set

of negative controls. For each NCI pathway, we constructed a

decoy pathway by connecting random genes in the genome together

using the same network structure as the NCI pathway. We then ran

PARADIGM and SPIA to derive IPAs for both the NCI and decoy

pathways. For PARADIGM, we ranked each pathway by the number

of IPAs found to be significant across the patients after normalizing

by the pathway size. For SPIA, pathways were ranked according to

their computed impact factor.

We found that PARADIGM excludes more decoy pathways from

the top-most activated pathways compared with SPIA (Fig. 5). For

example, in breast cancer, PARADIGM ranks 1 decoy in the top

10, 2 in the top 30 and 4 in the top 50. In comparison, SPIA ranks

3 decoys in the top 10, 12 in the top 30 and 22 in the top 50. The

overall distribution of ranks for NCI IPAs are higher in PARADIGM

than in SPIA, observed by plotting the cumulative distribution of the

ranks (P < 0.009, Kolmogorov–Smirnov test).

We sorted the NCI pathways according to their average number of

significant IPAs per entity detected by our permutation analysis and

tabulated the top 15 in breast cancer (Table 1) and GBM (Table 2).

Table 1. Top PARADIGM pathways in breast cancer

Rank Name Avg.a SPIA?b

1 Class I PI3K signaling events mediated by Akt 20.7 No

2 Nectin adhesion pathway 14.1 No

3 Insulin-mediated glucose transport 13.8 No

4 ErbB2/ErbB3 signaling events 12.1 Yes

5 p75(NTR)-mediated signaling 11.5 No

6 HIF-1-alpha transcription factor network 10.7 No

7 Signaling events mediated by PTP1B 10.7 No

8 Plasma membrane estrogen receptor signaling 10.6 Yes

9 TCR signaling in naive CD8+ T cells 10.6 No

10 Angiopoietin receptor Tie2-mediated signaling 10.1 No

11 Class IB PI3K non-lipid kinase events 10.0 No

13 Osteopontin-mediated events 9.9 Yes

12 IL4-mediated signaling events 9.8 No

14 Endothelins 9.8 No

15 Neurotrophic factor-mediated Trk signaling 9.7 No

aAverage number of samples in which significant activity was detected per entity.
bYes if the pathway was also ranked in SPIA’s top 15; No otherwise.

Table 2. Top PARADIGM pathways in GBM

Rank Name Avg.a SPIA?b

1 Signaling by Ret tyrosine kinase 46.0 No

2 Signaling events activated by Hepatocyte GFR 43.7 No

3 Endothelins 42.5 Yes

4 Arf6 downstream pathway 42.3 No

5 Signaling events mediated by HDAC Class III 36.3 No

6 FOXM1 transcription factor network 35.9 Yes

7 IL6-mediated signaling events 33.2 No

8 FoxO family signaling 31.3 No

9 LPA receptor mediated events 30.7 Yes

10 ErbB2/ErbB3 signaling events 30.1 No

11 Signaling mediated by p38-alpha and p38-beta 28.1 No

12 HIF-1-alpha transcription factor network 27.6 Yes

13 Non-genotropic Androgen signaling 27.3 No

14 p38 MAPK signaling pathway 27.2 No

15 IL2 signaling events mediated by PI3K 26.9 No

aAverage number of samples in which significant activity was detected per entity.
bYes if the pathway was also ranked in SPIA’s top 15; No otherwise.

Several pathways among the top 15 have been previously implicated

in their respective cancers. In breast cancer, both SPIA and

PARADIGM were able to detect the estrogen- and ErbB2-related

pathways. In a recent major meta-analysis study, authors from

Wirapati et al. (2008) found that estrogen receptor and ErbB2

status were two of only three key prognostic signatures in breast

cancer. PARADIGM was also able to identify an AKT1-related PI3K

signaling pathway as the top-most pathway with significant IPAs in

several samples (Fig. 6). The anti-apoptotic AKT1 serine–threonine

kinase is known to be involved in breast cancer and interacts with the

ERBB2 pathway (Ju et al., 2007). In GBM, both FOXM1 and HIF-

1-alpha transcription factor networks have been studied extensively

and shown to be overexpressed in high-grade glioblastomas versus

lower-grade gliomas (Liu et al., 2006; Semenza, 2000).
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Fig. 6. Patient sample IPAs compared with ‘within’ permutations for Class I

PI3K signaling events mediated by Akt in breast cancer. Biological entities

were sorted by mean IPA in the patient samples (red) and compared with the

mean IPA for the permuted samples. The colored areas around each mean

denote the of SD each set. IPA’s on the right include AKT1, CHUK and

MDM2.

ErbB2/ErbB3/
neuregulin 2

complex apoptosismTOR

AKT1

NRG2
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Fig. 7. CircleMap display of the ErbB2 pathway. For each node, ER status,

IPAs, expression data and copy-number data are displayed as concentric

circles, from innermost to outermost, respectively. The apoptosis node and

the ErbB2/ErbB3/neuregulin 2 complex node have circles only for ER status

and for IPAs, as there are no direct observations of these entities. Each

patient’s data is displayed along one angle from the circle center to edge.

To visualize the results of PARADIGM inference, we developed

a ‘CircleMap’ visualization to display multiple datasets centered

around each gene in a pathway (Fig. 7). In this display, each gene is

associated with all of its data across the cohort by plotting concentric

rings around the gene, where each ring corresponds to a single type

of measurement or computational inference. Each tick in the ring

corresponds to a single patient sample while the color corresponds

to activated (red), deactivated (blue) or unchanged (white) levels of

activity. We plotted CircleMaps for a subset of the ErbB2 pathway

and included ER status, IPAs, expression and copy number data from

the breast cancer cohort.

Gene expression data have been used successfully to define

molecular subtypes for various cancers. Cancer subtypes have been

found that correlate with different clinical outcomes such as drug

sensitivity and overall survival. We asked whether we could identify

Fig. 8. Clustering of IPAs for TCGA GBM. Each column corresponds to a

single sample, and each row to a biomolecular entity. Color bars beneath the

hierarchical clustering tree denote clusters used for Figure 9.

informative subtypes for GBM using PARADIGM IPAs rather than

the raw expression data. The advantage of using IPAs is that they

provide a summarization of copy number, expression and known

interactions among the genes and may therefore provide more

robust signatures for elucidating meaningful patient subgroups. We

first determined all IPAs that were at least moderately recurrently

activated across the GBM samples and found that 1755 entities had

IPAs of 0.25 in at least 75 of the 229 samples. We collected all

of the IPAs for these entities in an activity matrix. The samples

and entities were then clustered using hierarchical clustering with

uncentered Pearson correlation and centroid linkage (Fig. 8). Visual

inspection revealed four obvious subtypes based on the IPAs with

the fourth subtype clearly distinct from the first three.

The fourth cluster exhibits clear downregulation of HIF-1-alpha

transcription factor network as well as overexpression of the E2F

transcription factor network. HIF-1-alpha is a master transcription

factor involved in regulation of the response to hypoxic conditions.

In contrast, two of the first three clusters have elevated EGFR

signatures and an inactive MAP kinase cascade involving the

GATA interleukin transcriptional cascade. Interestingly, mutations

and amplifications in EGFR have been associated with high grade

gliomas as well as glioblastomas (Kuan et al., 2001). Amplifications

and certain mutations can create a constitutively active EGFR

either through self stimulation of the dimer or through ligand-

independent activation. The constitutive activation of EGFR may

promote oncogenesis and progression of solid tumors. Gefitinib, a

molecule known to target EGFR, is currently being investigated for

its efficacy in other EGFR-driven cancers. Thus, qualitatively, the

clusters appeared to be honing in on biologically meaningful themes

that can stratify patients.
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Fig. 9. Kaplan-Meier survival plots for the clusters from Figure 8.

To quantify these observations, we asked whether the different

GBM subtypes identified by PARADIGM coincided with different

survival profiles. We calculated Kaplan–Meier curves for each of the

four clusters by plotting the proportion of patients surviving versus

the number of months after initial diagnosis. We plotted Kaplan–

Meier survival curves for each of the four clusters to see if any cluster

associated with a distinct IPA signature was predictive of survival

outcome (Fig. 9). The fourth cluster is significantly different from

the other clusters (P < 2.11×10−5; Cox proportional hazards test).

Half of the patients in the first three clusters survive past 18 months;

the survival is significantly increased for cluster 4 patients where

half survive past 30 months. In addition, over the range of 20–40

months, patients in cluster 4 are twice as likely to survive as patients

in the other clusters.

The survival analysis revealed that the patients in cluster 4 have

a significantly better survival profile. Cluster 4 was found to have

an upregulation of E2F, which acts with the retinoblastoma tumor

suppressor. Upregulation of E2F is therefore consistent with an

active suppression of cell cycle progression in the tumor samples

from the patients in cluster 4. In addition, cluster 4 was associated

with an inactivity of the HIF-1-alpha transcription factor. The

inactivity in the fourth cluster may be a marker that the tumors

are more oxygenated, suggesting that they may be smaller or newer

tumors. Thus, PARADIGM IPAs provide a meaningful set of profiles

for delineating subtypes with markedly different survival outcomes.

For comparison, we also attempted to cluster the patients using

only expression data or CNA data to derive patient subtypes. No

obvious groups were found from clustering using either of these

data sources, consistent with the findings in the original TCGA

analysis of this dataset (TCGA, 2008), (Supplementary Fig. 1).

This suggests that the interactions among genes and resulting

combinatorial outputs of individual gene expression may provide

a better predictor of such a complex phenotype as patient outcome.

4 DISCUSSION

The PARADIGM method integrates diverse high-throughput

genomics information with known signaling pathways to provide

patient-specific genomic inferences on the state of gene activities,

complexes and cellular processes. The core of the method uses a

factor graph to leverage inference for combining the various data

sources. The use of such inferences in place of, or in conjunction

with, the original high-throughput datasets improves our ability

to classify samples into clinically relevant subtypes. Clustering

the GBM patients based on the PARADIGM-integrated activities

revealed patient subtypes correlated with different survival profiles.

In contrast, clustering the samples either using the expression data

or the copy-number data did not reveal any significant clusters in

the dataset.

PARADIGM produces pathway inferences of significantly altered

gene activities in tumor samples from both GBM and breast cancer.

Compared to a competing pathway activity inference approach

called SPIA, our method identifies altered activities in cancer-related

pathways with fewer false-positives.

For computational efficiency, PARADIGM currently uses the NCI

pathways as is. While it infers hidden quantities using EM, it makes

no attempt to infer new interactions not already present in an NCI

pathway. One can imagine expanding the approach to introduce new

interactions that increase the likelihood function. While this problem

is intractable in general, heuristics such as structural EM (Friedman

and Goldszmidt, 1997) can be used to identify interactions using

computational search strategies. Rather than searching for novel

connections de novo one could speed up the search significantly

by proposing interactions derived from protein–protein interaction

maps or gene pairs correlated in a significant number of expression

datasets.

The power of the pathway-based approach is that it may provide

clues about the possible mechanisms underlying the differences in

observed survival. Informative IPAs may be useful for suggesting

therapeutic targets or to select the most appropriate patients for

clinical trials. For example, the ErbB2 amplification is a well-

known marker of particular forms of breast cancer that are

treatable by the drug trastuzumab. However, some patients with the

ErbB2 amplification have tumors that are refractory to treatment.

Inspection of a CircleMap display could identify patients with

ErbB2 amplifications but have either inactive or unchanged IPAs as

inferred by PARADIGM. Patients harboring the ErbB2 amplification

but without predicted activity could be considered for alternative

treatment. As more multidimensional datasets become available

in the future, it will be interesting to test whether such pathway

inferences provide robust biomarkers that generalize across cohorts.
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