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Abstract

Many aspects of the historical relationships between populations in a species are reflected in genetic data. Inferring these
relationships from genetic data, however, remains a challenging task. In this paper, we present a statistical model for
inferring the patterns of population splits and mixtures in multiple populations. In our model, the sampled populations in a
species are related to their common ancestor through a graph of ancestral populations. Using genome-wide allele
frequency data and a Gaussian approximation to genetic drift, we infer the structure of this graph. We applied this method
to a set of 55 human populations and a set of 82 dog breeds and wild canids. In both species, we show that a simple
bifurcating tree does not fully describe the data; in contrast, we infer many migration events. While some of the migration
events that we find have been detected previously, many have not. For example, in the human data, we infer that
Cambodians trace approximately 16% of their ancestry to a population ancestral to other extant East Asian populations. In
the dog data, we infer that both the boxer and basenji trace a considerable fraction of their ancestry (9% and 25%,
respectively) to wolves subsequent to domestication and that East Asian toy breeds (the Shih Tzu and the Pekingese) result
from admixture between modern toy breeds and ‘‘ancient’’ Asian breeds. Software implementing the model described here,
called TreeMix, is available at http://treemix.googlecode.com.
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Introduction

The extant populations in a species result from an often-

complex demographic history, involving population splits, gene

flow, and changes in population size. It has long been recognized

that genetic data can be used to learn about this history [1–3]. In

humans, early approaches to inferring history from genetics were

limited to using a relatively small number of blood group or other

protein polymorphisms [1,4–6]. These types of studies were then

superseded by analyses of DNA markers, which have progressed

from single marker studies [3] to studies involving hundreds of

thousands of markers [7]. It is now feasible to collect genome-wide

genetic data in any species; to a large extent it is no longer the data

collection, but rather the statistical models used for analysis, that

limit the historical insight possible.

There are many statistical approaches to demographic inference

from genetic data. One approach is to develop an explicit

population genetic model for the history of a set of populations,

framed in terms of the effective population sizes of the populations,

the times of population splits, the times of demographic events

(such as population bottlenecks), and other relevant parameters.

The values of these parameters can then be learned from the data

using a variety of techniques, often involving simulation [8–16].

These approaches have the advantage of allowing flexible

modeling of a wide variety of demographic scenarios, but the

disadvantage that they can only be applied to one or a few

populations at a time.

Another type of approach to learning about population history

uses methods that summarize the major components of genetic

variation in a sample by clustering or principal components

analysis [17–20]. Although these methods do not model history

explicitly, the inferred components can often be interpreted post hoc

as representing historical populations, and individuals or popula-

tions that are mixtures of different components as evidence of

admixture between these populations (e.g., [17,21–23]). However,

these methods are not directly informative about history; indeed,

the relationship between the major components of genetic

variation and true underlying demography is not always intuitive

[24–26].

A different class of approaches focuses on the relationships

between populations, by representing a set of populations as a

bifurcating tree [1,27–32]. In these models, the details of the

demographic histories of the population are absorbed into the

branch lengths of the tree [1,33]. This approach has the advantage

of being applicable to large numbers of populations; however, a

major caveat when modeling the history of populations as a tree is

that gene flow violates the assumptions of the model [2,34,35]. It is

often difficult to know, a priori, how well the history fits a simple

bifurcating tree. Explicit tests for the violation of a tree model have

been developed [35–40]. These tests have been used, most
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notably, to infer the existence of gene flow between modern and

archaic humans [39,41,42], as well as between diverged modern

human populations [37,43,44].

In this paper, we present a unified statistical framework for

building population trees and testing for the presence of gene flow

between diverged populations. In this framework, the relationship

between populations is represented as a graph, allowing us to

model both population splits and gene flow. Graph-based models

are of growing interest in phylogenetics [45,46], but have been

rarely used in population genetics (with some exceptions

[37,40,47]).

Results

The starting point for our model was first proposed by Cavalli-

Sforza and Edwards [1], and we draw additionally on related

models by Nicholson et al. [33] and Coop et al. [48]. Our goal is

to provide a statistical framework for inferring population

networks that is motivated by an explicit population genetic

model, but sufficiently abstract to be computationally feasible for

genome-wide data from many populations (say, 10–100). Our

primary aim is to represent the topology of relationships between

populations, rather than the precise times of demographic

events.

Our approach to this problem is to first build a maximum

likelihood tree of populations. We then identify populations that

are poor fits to the tree model, and model migration events

involving these populations. Below, we first describe this approach

in an idealized setting, and then describe the modifications

necessary for implementation in practice.

Model
In the most simple case, consider a single SNP, and let the allele

frequency of one of the alleles at this SNP in an ancestral

population be xA. (We use a lowercase x to denote that this is a

parameter rather than a random variable. We initially consider

distributions conditional on xA). Now consider a descendant

population B. We model XB, the allele frequency of the SNP in

population B, as:

XB~xAzeB ð1Þ

with

B*N(0,cBxA½1{xA�) ð2Þ

where cB is a factor that reflects the amount of genetic drift that

has occurred between the ancestral population and B. This

Gaussian model was first introduced by Cavalli-Sforza and

Edwards [1], and the motivation for this model is outlined in

Nicholson et al. [33], if the amount of genetic drift between the

two populations is small (at most on a timescale of the same order

as the effective population size), then the diffusion approximation

to a Wright-Fisher model of genetic drift leads to Equation 2 with

cB&
t

2Ne

, where t is the number of generations separating the two

populations, and Ne is the effective population size [33]. We do

not model the boundaries of the allele frequencies at zero and one,

nor do we consider new mutations. This means that this model will

be most accurate for alleles that were at intermediate frequency in

the ancestral population.

Now consider a descendant population of B; let us call this

population C, and the allele frequency in the population XC .

Using the same model:

XC~XBz C ð3Þ

~xAz Bz C ð4Þ

where

C*N(0,cCXB½1{XB�): ð5Þ

We can write down the expectation and variance of XC as:

E½XC �~E½xAz Bz C � ð6Þ

~xA ð7Þ

and:

Var(XC)~Var(xAz Bz C) ð8Þ

~Var( B)zVar( C)z2Cov( B, C): ð9Þ

We then assume that the amount of genetic drift between all the

populations is small. This implies that XB½1{XB� is well-

approximated by xA½1{xA� in Equation 5, and hence the amount

of genetic drift between A and B is approximately independent of

the amount of genetic drift between B and C [35]. With these

simplifications:

Var(XC)&Var( B)zVar( C) ð10Þ

&(cBzcC)xA½1{xA�: ð11Þ

Author Summary

With modern genotyping technology, it is now possible to
obtain large amounts of genetic data from many popu-
lations in a species. An important question that can be
addressed with these data is: what is the history of these
populations? There is a long history in population genetics
of inferring the relationships among populations as a
bifurcating tree, analogous to phylogenetic trees for
representing the evolution of species. However, it has
long been recognized that, since populations from the
same species exchange genes, simple bifurcating trees
may be an incorrect representation of population histories.
We have developed a method to address this issue, using a
model which allows for both population splits and gene
flow. In application to humans, we show that we are able
to identify a number of both previously known and
unknown episodes of gene flow in history, including gene
flow into Cambodia of a population only distantly related
to modern East Asia. In application to dogs, we show that
the boxer and basenji breeds have a considerable
component of ancestry from grey wolves subsequent to
domestication.

Inferring History from Genetics

PLOS Genetics | www.plosgenetics.org 2 November 2012 | Volume 8 | Issue 11 | e1002967



We thus have a model for XC , conditional on xA:

XC*N(xA,(cBzcC)xA½1{xA�): ð12Þ

Multiple populations. Now consider a set of four popula-

tions, all related to an ancestral population by a tree, as depicted in

Figure 1A. Let the allele frequencies in the four populations be

denoted X1, X2, X3, and X4, respectively, and the vector of all four

frequencies be ~XX . We want to write down a joint distribution for ~XX
given the tree. We start by writing down the covariance between

any two populations with respect to the ancestral allele frequency

(i.e. Cov(Xi,Xj)~E½(Xi{xA)

(Xj{xA)�). This is simply the variance of the common ancestor of

the two populations:

Cov(X1,X2)~c2xA½1{xA� ð13Þ

Cov(X3,X4)~c1xA½1{xA� ð14Þ

Cov(X1,X3)~0 ð15Þ

and so on (Figure 1B).

Let us use V to denote the variance-covariance matrix of allele

frequencies between populations implied by the tree. Now, if we

knew the value of xA, we could model ~XX as:

~XX*MVN(~xxA,V ) ð16Þ

where ~xxA~½xA,xA,xA,xA� and MVN denotes the multivariate

normal distribution. The covariance matrix V is distinct from the

sample covariance matrix; we return to this distinction later. This

multivariate normal model was proposed by [28]. Additionally, a

multivariate normal model was used by Coop et al. [48] and Weir

and Hill [49], although these authors did not explicitly model the

variance-covariance matrix in terms of a tree.

Modeling migration. To extend this framework to include

migration, we allow populations to have ancestry from multiple

parental populations [35,40]. The contribution of each parental

population is weighted; if we assume admixture occurs in a single

generation, these weights are related to the fraction of alleles in the

descendant population that originated in each parental popula-

tion. Consider population 3 in Figure 1C (recall that the allele

frequency in this population is X3). We have labeled the two

parental populations Y and Z; let the allele frequencies in these

populations be XY and XZ , respectively. We model X3 as:

X3~wXYz(1{w)(XZze3) ð17Þ

where 3*N(0,c3xA½1{xA�). Note that there is some question as

to how to weight 3, the genetic drift specific to population 3. In

reality, it comes from three sources: drift since Y but before the

population mixture, drift since Z but before the population

mixture, and drift since the mixture. These three components

should have weights w, 1{w, and 1, respectively. However, the

three components are not all separately identifiable. For ease of

computation, we estimate only a single drift parameter in this

situation, and weight it by 1{w (Text S1, Figure S1).

Additionally, there is a choice of whether the edge from Z or the

edge from Y should be considered the ‘‘migration’’ edge; these

two possibilities not identifiable in the model. In practice, we set

the edge with the largest weight as the non-migration edge, and

the other edge (or edges) as the ‘‘migration’’ edge(s).

With these simplifications, the variance of X3 can be written in

the mixture case as:

Var(X3)~Var(wXYz(1{w)(XZz 3)) ð18Þ

~w2Var(XY )z(1{w)2½Var(XZ)zVar( 3)�

z2w(1{w)Cov(XY ,XZ)
ð19Þ

We can now consider multiple populations related by a graph

instead of a tree (Figure 1C). The variance-covariance matrix V

can be filled in as before, but now including terms for migration

(Figure 1D). This model can be written in terms of a directed

acyclic graph (the lack of cycles follows from the fact that no

population can contribute genetic material to its own ancestor),

where the c parameters correspond to edge lengths (Text S1). For

subsets of up to four populations, this model is closely related to

the ‘‘f{ statistics’’ used as tests for treeness by Reich et al. [37]

(Text S1).

Normalization. As described above, V depends on the

ancestral allele frequency xA. This means that the true variance-

covariance matrix will differ by a scaling factor between SNPs with

different values of xA. In much work on this type of model,

investigators have normalized allele frequencies to account for this.

One potential normalization is the arcsine square-root transfor-

mation [1]. However, a drawback to this normalization is that it is

non-linear; the expected value of the allele frequency in the

descendant populations is no longer xA, but pushed towards the

boundaries, which could induce spurious correlations between the

most drifted populations [50]. Another plausible transformation

would be to scale all allele frequencies by m̂m(1{m̂m), where m̂m is the

mean allele frequency across populations [19,33]. Both of these

transformations increase the influence of polymorphisms that were

rare in the ancestral population. However, these are precisely the

loci where the approximation of our model to a true population

genetics model is most likely to break down. For these reasons, we

choose to work directly with untransformed allele frequencies.

Properties of the sample covariance. In practice, the

multivariate normal model in Equation 16 is impractical because

we do not know the ancestral values of allele frequencies, but

instead only the values in sampled descendant populations. This

means that V cannot be estimated directly from data. However,

consider instead the sample covariance matrix W, where

Wij~E½(Xi{m̂m)(Xj{m̂m)�, where m̂m~

Pm
i~1 Xi

m
, m is the number

of populations, and Xi and Xj are the sample allele frequencies in

populations i and j. W is closely related to V as follows:

Wij~E½(Xi{m̂m)(Xj{m̂m)� ð20Þ

~E½(Xi{xA{m̂mzxA)(Xj{xA{m̂mzxA)� ð21Þ

~E½(Xi{xA)(Xj{xA){(Xi{xA)(m̂m{xA)

{(Xj{xA)(m̂m{xA)z(m̂m{xA)
2�

ð22Þ

~Vij{
1

m

X

m

k~1

Vik{
1

m

X

m

k~1

Vjkz
1

m2

X

m

k~1

X

m

k’~1

Vkk’: ð23Þ

Inferring History from Genetics
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In the following section, we will describe how we perform

inference based on the sample covariance matrix W.

Estimation from finite samples and many SNPs. Now

assume that we have genotyped n SNPs in each of m populations.

Our goal is to use these data to estimate the population history

graph G: that is, G is a rooted, directed, acyclic graph with specified

branch lengths and mixture weights, as described above and in Text

S1. Let the sample allele frequency at SNP k in population i be X̂Xik.

We can estimate the sample covariance matrix ŴW:

ŴWij~

P

n

k~1

½(X̂X ik{m̂mk)(X̂X jk{m̂mk)�

n
ð24Þ

where m̂mk~
1

m

Xm

i~1
X̂Xik. The fact that in practice we have finite

samples from each population and a finite number of SNPs has

Figure 1. Simple examples. A. An example tree. B. The covariance matrix implied by the tree structure in A. Note that the covariance here is with
respect to the allele frequency at the root, and that each entry has been divided by xA½1{xA� to simplify the presentation. C. An example graph. The
migration edge is colored red. Parental populations for population 3 are labeled Y and Z; see the main text for details. D. The covariance matrix
implied by the graph in C; again, each entry has been divided by xA½1{xA�. The migration terms are in red, and the non-migration terms are in blue.
doi:10.1371/journal.pgen.1002967.g001

Inferring History from Genetics
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two effects on this matrix. First, sampling leads to a biased

estimation of the terms on the diagonal, since sampling can be

thought of as adding an amount of ‘‘drift’’ to each population (as

well as smaller effects on the off-diagonal terms; see Text S1 for

details). Additionally, it leads to some uncertainty in all terms. To

account for the biased diagonal terms, in practice we calculate a

corrected version of ŴW that removes this bias (Text S1). To

account for uncertainty in the values of this matrix, we use a

block resampling approach (see below). Finally, with multiple

SNPs, we are working with SNPs with many different values of

xA. In this case, the xA½1{xA� terms described above can be

thought of as xA½1{xA�; i.e., the mean across SNPs of

xA½1{xA�.
We now want to write down a likelihood for ŴW given G (which

in turn implies the expected sample covariance matrix W). One

possibility would be to use the Wishart distribution, since the

sample covariance matrix of multivariate normal random

variables has this form. However, computation of the Wishart

density involves computationally-intensive matrix inversion, so we

took an alternative approach. Consider the observed covariance

between populations i and j, ŴWij . If we had a large number of

independent genomic regions and estimated this quantity sepa-

rately in each independent region, the sampling distribution would

be approximately normal with mean ŴWij (by appeal to the central

limit theorem). We thus model ŴWij as:

ŴWij*N(ŴWij ,s
2
ij) ð25Þ

where sij is the standard error in the estimation of ŴWij . Because

the allele frequencies at nearby SNPs are correlated (i.e., there is

linkage disequilibrium), a naive estimate of sij that treated each

SNP as independent would be too small. We instead take a

resampling approach to estimate sij . We split the genome into p

blocks, such that there are K SNPs per block (with K chosen so

that the block sizes are larger than blocks of linkage disequilibrium)

[36]. (If K does not divide evenly into n, we discard the remaining

SNPs.) We then calculate ŴW separately in each block. Let ŴWijk be

the sample covariance between two populations i and j in block k.

Now,

ŴWij~

P

p

k~1

ŴWijk

p
ð26Þ

and

ŝsij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

p

k~1

(ŴWijk{ŴWij)
2

p(p{1)

v

u

u

u

t

: ð27Þ

If we take each pair of populations in turn, we can write down a

composite likelihood for ŴW:

L(ŴWDW)~ P

m

i~1
P

m

j~i
N(ŴWij DG,ŝs

2
ij) ð28Þ

where N(ŴWij DG,s
2
ij) is a Gaussian density with mean Wij

(computed from G by Equation 23) and variance s
2
ij evaluated

at ŴWij .

Measuring model fit. Finally, we wanted to define measures

for how well the model fits the data. First, we define the matrix of

residuals in this model, R. These quantities are useful for

visualization and fitting:

R~ŴW{W: ð29Þ

Positive residuals indicate pairs of populations where the model

underestimates the observed covariance, and thus populations

where the fit might be improved by adding additional edges.

Negative residuals indicate pairs of populations where the model

overestimates the observed covariance; these are a necessary

outcome of having positive residuals, but can also sometimes be

interpreted as populations that are forced too close together due to

unmodeled migration elsewhere in the graph. These residuals can

be used to define a measure of the fraction of the variance in ŴW

that is explained by W. Let us call this fraction f :

f~1{

P

m

i~1

P

m

j~iz1

(Rij{
�RR)2

P

m

i~1

P

m

j~iz1

(ŴWij{ŴW)2
ð30Þ

where R~

Pm
i~1

Pm
j~iz1 Rij

m(m{1)=2
and ŴW~

Pm
i~1

Pm
j~iz1 ŴWij

m(m{1)=2
. This

quantity approximates the fraction of the variance in relatedness

between populations that is accounted for by the model.

Implementation. We implemented an algorithm, called

TreeMix, that searches for the graph that maximizes the composite

likelihood in Equation 28. A search that enumerates all graphs is

infeasible unless m is very small, so to simplify the search we make

the assumption that the history of the sampled populations is

approximately tree-like. We thus start by searching for the

maximum likelihood tree, taking an algorithmic approach similar

to Felsenstein [30].

After building the tree, we fix the position of the root. (In the

tree model the position of the root is not identifiable, as the

evolution of allele frequencies along the tree is reversible under the

Gaussian model when drift is assumed to be small. In a graph

model, though the position of the root is partially identifiable, in all

applications we assume that the position of the root is fixed using

prior information about known outgroups). We then calculate the

residual covariance matrix, R, and add migration edges in a

directed matter. First, we find the M pairs of populations with the

maximum residuals. We then attempt adding a migration edge

between populations in the vicinity of each of the M population

pairs. For each attempted graph (or tree) topology, we optimize

the branch lengths and migration edge weights (Methods).

After finding the single migration edge that most increases the

likelihood, we attempt a series of local changes to the graph

structure (Methods). We then iterate over this procedure to add

additional migration edges. In principle, migration edges could be

added until they are no longer statistically significant (see the

following paragraph). In our experience, however, we prefer to

stop adding migration events well before this point so that the

resulting graph remains interpretable.

Significance testing. After building the maximum likelihood

graph, we would like to quantify our uncertainty in the resulting

graph structure. In particular, we would like to quantify our

confidence in individual migration events. However, because the

likelihood in Equation 28 is a composite likelihood, it cannot be

used directly for formal tests for significance. Instead, we take a

Inferring History from Genetics
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resampling approach to test the support for individual migration

edges.

Consider a given migration edge, with corresponding weight w.

We wish to calculate a p-value for this weight (under the null

hypothesis that w~0, and for a fixed graph structure). To do this,

we use the Wald statistic
ŵw

se(ŵw)
, where se(ŵw) is the standard error

in the estimate of the weight, which is distributed N(0,1) under the

null. To obtain the standard error, recall that we have split the

genome into p independent blocks. We use the jackknife estimates

of both ŵw and the standard error in ŵw (where we jackknife over

blocks). Let i index blocks, and w:i be the estimated weight

computed using all blocks except i. Then:

ŵw~

P

p

i~1

ŵw:i

p
ð31Þ

se(ŵw)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(
p{1

p
)
X

p

i~1

(ŵw:i{ŵw)2

v

u

u

t ð32Þ

This allows us to calculate a p-value for the migration edge. There

are a number of complications to the interpretation of this p-value.

First, there is the issue of multiple testing–there are at least 2m{2

edges in the graph (recall that m is the number of populations), and

thus around 4m2 possible migration events. More importantly, the

p-value is generated under a heavily parameterized model: we are

comparing a fixed graph structure with a migration event to that

same graph without the migration event. A ‘‘significant’’ p-value

simply indicates that the hypothesized migration event significantly

improves the fit to the data; this does not account for the possibility

of errors in the graph structure, or indicate that the particular

migration event tested is the correct one (rather than a migration

event between a different pair of populations). For this reason, we

treat the precise p-value generated by this procedure with caution,

and use additional, less-parameterized methods like three- and four-

population tests [37] to test the robustness of the inference.

Simulations
We tested the performance of the TreeMix method in

simulations. We generated coalescent simulations from several

histories; the basic structure was a set of 20 populations produced

by a serial bottleneck model like that used by DeGiorgio et al. [51]

to model human history (Figure 2A). The parameters of the

simulations were chosen to be reasonable for non-African human

populations; we used an effective population size of 10,000, and a

history where all 20 populations share a common ancestor 2000

generations in the past. Each individual simulation involved 400

regions of approximately 500 kb each, and thus recapitulated

many aspects of real data, including hundreds of thousands of loci

and the presence of linkage disequilibrium.

Tree simulations. First, we tested the performance of the

algorithm on truly tree-like data. We generated 100 independent

simulations of 20 chromosomes from each population using the

above demographic model without migration, and inferred

population trees. The inferred trees perfectly matched the

simulated model in all cases (Figure 2B, Figure S2), and the fitted

tree model accounted for an average of 99.8% of the variance in

ŴW. To test the effect of SNP ascertainment, we then inferred trees

using only SNPs that were polymorphic in one of the populations

(either population 1 or population 20); this ascertainment scheme

did not decrease accuracy of the inferred topology, though it did

alter the inferred branch lengths (Figure S3).

We used these simulations without migration to test the

calibration of our p-values for migration events. For each

simulation, after building the maximum likelihood tree, we

introduced a migration event between two random populations

and tested it for significance. As expected if the p-values are

properly calibrated, their distribution is approximately uniform

(Figure S4).

Finally, we performed tree simulations in a situation where fixed

differences and new mutations (rather than shared polymorphisms

inherited from a common ancestor) were common between the

populations; in this context the population genetic interpretation

of the model breaks down. We performed simulations where all

the true branch lengths were 50 times longer than in the original

model, corresponding to a history where the 20 populations share

a common ancestor approximately 100,000 generations in the

past. Again, we see no errors in the topology of the inferred trees

(Figures S5, S6). In this situation, the covariances between closely-

related populations tend to be slightly underestimated; in more

extreme situations this could lead to spurious inferences of

migration (Figures S5, S6). However, overall, these simulations

suggest that the model will still be useful even in situations where

the population genetic interpretation is not strictly correct.

Simulations with migration. We then introduced migration

events into our simulations. We generated simulations under the

same model described above; however, we now simulated an

admixture event approximately 100 generations before the present

where one population receives a fraction of its ancestry (either

10% or 30%) from one of the other populations. We tried ten

different pairwise combinations of populations, and generated 100

simulations for each pair. For each simulation, we ran TreeMix and

allowed it to infer a migration event. We then judged the error rate

of the algorithm as the fraction of times the inferred topology of

the graph was not exactly correct (this is a conservative estimate of

the error rate, in that inferred graph topologies that are very close

to the truth are counted as errors). In general, TreeMix was able to

correctly infer the graph structure in these simulations (Figure 2C).

However, accuracy dropped considerably when migration was

between closely related populations without outgroups present in

the data (these are populations 1 and 20 in the model; Figure 2C).

The major types of errors produced in the simulations were

incorrectly inferred directions of migration arrows and inference of

admixture in populations related to the truly admixed population

(Text S1, Figure S7).

We next asked whether the mixture ‘‘weights’’ inferred in the

model can be interpreted as admixture proportions. To do this, we

simulated admixture events of varying proportion between the first

and tenth population in the serial bottleneck model described

above, set the graph to the true topology, and estimated the

mixture weight. The weights are indeed correlated with the true

ancestry fraction, but underestimate relatively high admixture

proportions in these simulations (Figure 2D). The precise bias in

the estimation of this parameter will depend, in real data, on

largely unknowable parameters (Text S1).

Application to humans
To test the performance of the TreeMix model with real data,

we applied it to humans, whose genetic history has been studied

extensively [7,21,52,53]. We applied the model to a dataset

consisting of about 125,000 SNPs ascertained by low-coverage

genome sequencing in a single Yoruban individual and then

genotyped in 55 modern and archaic human populations [54].

In all that follows, we excluded the two Oceanian populations
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because they gave inconsistent results across datasets. We

believe this difficulty results from the fact that these populations

contain ancestry from multiple sources, making the graph

estimation somewhat unstable when they are included (Text S1,

Figure S12). We first built the tree of all 53 remaining

populations (Figure 3A). This tree largely recapitulates the

known relationships among population groups [7], and explains

98.8% of the variance in relatedness between populations

(though this is high, it is less than the 99.8% observed in the

simulations of a true tree model). We examined the residuals of

the model’s fit to identify aspects of ancestry not captured by the

tree (Figure 3B). A number of known admixed populations stand

out: in particular, these include the Mozabite and Middle

Eastern populations.

We then sequentially added migration events to the tree. In

Figure 4, we show the inferred graph with ten migration edges; p-

values for all reported migration edges are less than 1|10{30 (we

show the graph with the maximum likelihood over several

independent runs of TreeMix with random orders of input

populations). This graph model explains 99.8% of the variance

in relatedness between populations. As expected from examination

of Figure 3B, the migration events recapitulate many known

Figure 2. Performance on simulated data. A. The basic outline of the demographic model used. B. Trees inferred by TreeMix. We simulated 100
independent data sets, under the demographic model in A., and inferred the tree. All simulations gave the same topology; plotted are the mean
branch lengths. C. Performance in the presence of migration. We added migration events to the tree in A. and inferred the structure of the graph.
Each point represents the error rate over 100 independent simulations, defined as the fraction of simulations where the inferred graph topology does
not perfectly match the simulated topology. On the x-axis we show the populations involved in the simulated migration event; e.g., if the source
population is 1 and the destination population is 10, this is a migration event from population 1 to population 10, as labeled in A. D. Admixture
weight estimation. We simulated admixture events with different weights from population 1 to population 10, and inferred the weight. Each point is
the mean across 100 simulations, and the bar represents the range.
doi:10.1371/journal.pgen.1002967.g002
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events in human history. We infer that the Mozabite are the result

of admixture between an African and a Middle Eastern population

(with about 33% of their ancestry from Africa), and that Middle

Eastern populations also have African ancestry (Palestinians and

Bedouins: w~13% from Africa; Druze: w~6%). This is consistent

with previously reported admixture proportions from these

populations [43,55]. Additionally, we identify the known Europe-

an ancestry in the Maya (w~12%) [21], and infer that the Uyghur

and Hazara populations are the result of admixture between west

Eurasian and East Asian populations (w~46% and 47% from west

Eurasia, respectively) [20,21,56].

Several additional migration events in the human data have not

been previously examined in detail, but are consistent with

previous clustering analysis of these populations [7,20,21]. These

include migration from Africa to the Makrani and Brahui in

Central Asia (w~5%) and from a population related to East

Asians and Native Americans (which we interpret as likely

Siberian) to Russia (w~11%).

Two inferred edges were unexpected. First, perhaps the most

surprising inference is that Cambodians trace about 16% of their

ancestry to a population equally related to both Europeans and

other East Asians (while the remaining 84% of their ancestry is

related to other southeast Asians). This is partially consistent with

clustering analyses, which indicate shared ancestry between

Cambodians and central Asian populations [7]. To confirm that

the Cambodians are admixed, we turned to less parameterized

models. The predicted admixture event implies that allele

frequencies in Cambodia are more similar to those in African

populations than would be expected based on their East Asian

ancestry. To test this, we used three-population tests [37]. We

tested the trees [African, [Cambodian,Dai]] for evidence of

admixture in the Cambodians (Methods). When using any African

population, there is strong evidence of admixture (when using

Yoruba, Z~{7:0 [p~1|10{12]; when using Mandenka,

Z~{7:3 [p~1|10{12]; when using San, Z~{4:8

[p~8|10{7]). We conclude that the Cambodian population is

the result of an admixture event involving a southeast Asian

population related to the Dai and a Eurasian population only

distantly related to those present in these data.

Finally, we infer an admixture edge from the Middle East (a

population related to the Mozabite, a Berber population from

northern Africa) to southern European populations (w~22%).

This migration edge is the one edge that is not consistent across

independent runs of TreeMix on these data (Figure S8). In

particular, an alternative graph (albeit with lower likelihood)

places the Mozabite as an admixture between southern Europe

and Africa (rather than the Middle East and Africa), and does not

include an edge from the middle East to southern Europe. We thus

hesitate to interpret this result, except to note that the relationship

between northern African, the Middle East, and southern Europe

involves complex patterns of gene flow that merit further

investigation [43,57].

To test the robustness of our results to SNP ascertainment, we

additionally ran TreeMix on the same set of populations using a set

of SNPs ascertained in a single French individual. The inferred

graph was nearly identical (Figure S10). Additionally, as noted

above, different random input orders for the populations gave very

similar results (Figure S8). We conclude from this that the model is

able to consistently and accurately infer the major mixture events

in the history of a species. This approach is computationally

efficient: building the tree took around five minutes on a standard

desktop computer (with a processor speed of 3.1 GHz), and adding

ten migration events to the tree took about four and a half hours

(the major computational cost is in the iterative estimation of

migration weights).

Application to dogs
While human populations have been extensively studied, we

next applied the model to dogs, a species where considerably less is

known about population history. In particular, we applied the

model to a dataset consisting of about 60,000 SNPs genotyped in

82 dog breeds or wild canids [58]. As for humans, we first inferred

the maximum likelihood tree (Figure 5A). The differences in

history between dogs and humans are striking: there are long

terminal branches leading to each dog breed in the inferred tree

(Figure 5A, recall that the terminal branch lengths account for

sample size). This is consistent with the known strong bottlenecks

in the establishment of dog breeds [23]. However, examining the

residuals from the model revealed a number of populations that do

not fit a strict tree model (Figure 5B); indeed, the tree model

explained 94.7% of the variance in relatedness between breeds,

somewhat less than between human populations.

We sequentially added migration events to the tree in Figure 5A.

In Figure 6, we show the inferred graph with ten migration events,

which explains 96.8% of the variance in relatedness between

breeds (which suggests that additional events exist in the data). In

the following paragraphs, we describe some of these events.

We infer that the bull mastiff is the result of an admixture event

between bulldogs and mastiffs. This is a known event [59]; we

estimate the admixture proportions as 33% bulldog and 67%

mastiff. We further examined this event using four-population tests

for treeness. As expected given the known history, the tree

[[boxer,bulldog],[mastiff,bull mastiff]] fails the four-population

test (Z~3:5, p~0:002), while replacing the bull mastiff with other

related breeds that we do not predict to be involved in the

admixture event results in trees that pass this test. For example, the

tree [[boxer,bulldog],[mastiff,Boston terrier]] passes the four-

population test with Z~{0:3.
The most visually apparent residuals in Figure 5B are accounted

for in the graph by an admixture event from the grey wolf into the

basenji, an ancient African breed of dog (w~25%). Such a high

mixture fraction is consistent with previous clustering analyses of

these data [23,60]. We again sought to confirm this signal in a less-

parameterized model. We tested the four-population tree

[[wolf,ancient breed],[basenji, Afghan hound]] with various

‘‘ancient’’ dog breeds. We could not find a tree that passed the

four-population test (with Akita as the ancient breed, Z~11:7

,pv1|10{30; with Alaskan Malamute, Z~13:0,pv1|10{30),

confirming the presence of gene flow in these trees. Replacing the

basenji with the saluki in these analyses resulted in trees that pass

Figure 3. Inferred human tree. A. Maximum likelihood tree. Plotted is the maximum-likelihood tree. Populations are colored according to
geographic location (black: archaic humans, red: Africa, brown: Middle East, green: Europe, blue: Central Asia, purple: America, orange: East Asia). The
scale bar shows ten times the average standard error of the entries in the sample covariance matrix (ŴW). For analysis including Oceania, see Figures
S11 and S12. B. Residual fit. Plotted is the residual fit from the maximum likelihood tree in A. We divided the residual covariance between each pair of
populations i and j by the average standard error across all pairs. We then plot in each cell ½i,j� this scaled residual. Colors are described in the palette
on the right. Residuals above zero represent populations that are more closely related to each other in the data than in the best-fit tree, and thus are
candidates for admixture events.
doi:10.1371/journal.pgen.1002967.g003
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the four-population test (for example, the tree [[wolf, Akita],[Af-

ghan hound, saluki]] passes with Z~{0:03,p~0:51). Though we

cannot have complete confidence in the precise migration events,

these results are consistent with admixture between gray wolves

and the basenji.

Another breed that stands out in this analysis is the boxer (Note

that many of the SNPs used in this study were ascertained using a

boxer individual, so we may have increased power to identify

migration events involving this breed). We infer a significant

genetic contribution from wolves to the boxer (w~8%), and

migration between the boxer and the Chinese shar-pei, a distantly-

related ancient breed (w~8%). To further examine these events,

we again turned to four-population tests. To evaluate the wolf

mixture, we tested the tree [[wolf, ancient breed],[boxer,

bulldog]]. We did not find a tree that passed the four-population

test (with Akita as the ancient breed, Z~3:1,p~0:001; with

Afghan Hound, Z~3:4,p~0:0003). Replacing the Boxer with the

Mastiff in these analyses led to trees that passed the four-

population test (for example, with Akita as the ancient breed,

Z~0:3,p~0:38). To evaluate the gene flow from the Boxer to the

Figure 4. Inferred human tree with mixture events. Plotted is the structure of the graph inferred by TreeMix for human populations, allowing
ten migration events. Migration arrows are colored according to their weight. Horizontal branch lengths are proportional to the amount of genetic
drift that has occurred on the branch. The scale bar shows ten times the average standard error of the entries in the sample covariance matrix (ŴW).
The residual fit from this graph is shown in Figure S9. Admixture from Neandertals to non-African populations is only apparent when considering
subsets of the data (see Discussion and Figure S15).
doi:10.1371/journal.pgen.1002967.g004
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Figure 5. Inferred dog tree. A. Maximum likelihood tree. Populations are colored according to breed type. Dark blue: wild canids, grey: ancient
breeds, brown: spitz breeds, black: toy dogs, red: spaniels, maroon: scent hounds, dark red: working dogs, light green: herding dogs, light blue:
mastiff-like dogs, purple: small terriers, orange: retrievers, dark green: sight hounds. The scale bar shows ten times the average standard error of the
entries in the sample covariance matrix (ŴW). B. Residual fit. Plotted is the residual fit from the maximum likelihood tree in A. We divided the residual
covariance between each pair of populations i and j by the average standard error across all pairs. We then plot in each cell ½i,j� this scaled residual.
Colors are described in the palette on the right.
doi:10.1371/journal.pgen.1002967.g005

Figure 6. Inferred dog graph. Plotted is the structure of the graph inferred by TreeMix for dog populations, allowing ten migration events.
Migration arrows are colored according to their weight. The scale bar shows ten times the average standard error of the entries in the sample
covariance matrix (ŴW). See the main text for discussion. The residual fit from this graph is presented in Figure S13.
doi:10.1371/journal.pgen.1002967.g006
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Chinese shar-pei, we tested the tree [[Chinese shar-pei, Akita],[-

boxer, bulldog]]; this tree fails the four-population test

(Z~3:0,p~0:001), while the tree [[Chow Chow, Akita],[box-

er,bulldog]] passes (Z~{0:48,p~0:3).
Previous analyses of these data have noted that the ‘‘toy breeds’’

of dog cluster together Vonholdt:2010uq. We find that the

Chinese toy breeds (the Pekingese and the Shi Tzu) result from

admixture between a population related to ancient East Asian dog

breeds and a modern population related to the Brussels griffon and

the pug (w~28% from the East Asian breeds). To confirm the

presence of gene flow, we tested four-population trees of the form

[[Asian toy breed, Akita/Chow Chow],[Pug,mastiff]]. These trees

fail, with varying levels of significance, ranging from [[Chow

Chow, Shi Tzu],[Pug, mastiff]] (Z~{2:7,p~0:003) to [[Akita,

Pekingese],[Pug, mastiff]] (Z~{4:7,p~1|10{6).

Finally, we noticed that two of the sighthounds (the Borzoi and

the Italian greyhound) do not cluster with the other sight hounds

in the tree, namely greyhound, whippet and Irish wolfhound

(Figure 5A); however, they do show evidence of having sighthound

admixture in the graph (Figure 6). These are the borzoi (which

appear to be admixed between an ancient or spitz-breed dog, with

47% ancestry from the sighthounds) and the Italian Greyhound

(which appears to be admixed with a toy breed, with 34% ancestry

from the sighthounds). This is consistent with the known

phenotypic characteristics of these dogs; the borzoi is considered

a saluki-like breed, and the Italian greyhound is phenotypically a

small version of a greyhound [59].

Overall, we conclude that there has been considerable gene flow

between dog breeds over the course of domestication; there are

many additional migration events that merit further examination

(Figure 6, Text S1).

Discussion

In this paper, we have developed a unified model for inferring

patterns of population splits and mixtures from genome-wide allele

frequency data. We have shown that this model is accurate in

simulations, largely recapitulates the known relationships between

well-studied human populations, and is able to identify new

relationships between populations in both humans and dogs.

The TreeMix model can be thought of as a complement to

methods for the identification of population structure [18–20].

These latter methods are powerful tools for clustering together

individuals into relatively homogenous populations (and to identify

individuals that are genetic outliers in their population) [18–20].

However, once population structure in a species has been

identified, these methods are not well-suited for describing how it

arose, and are only indirectly informative about the historical

relationships between different populations. The model developed

in this paper is designed to more directly address these historical

questions.

Modeling assumptions
There are a number of assumptions, both implicit and explicit,

in the interpretation of the TreeMix model. First, we have

motivated the model in terms of inferring the historical splits

and mixtures of populations. However, a given covariance

structure of allele frequencies between populations can be a

consequence of either a non-equilibrium demography (population

splits and mixtures) or an equilibrium demography (populations at

long-term stasis with a fixed migration structure) [2]. For the

species analyzed in this paper, population equilibrium over the

entire species range is not a tenable hypothesis; however, some

subsets of populations may be at equilibrium, and there may be

species where this alternative historical interpretation of the model

is plausible.

We have also modeled migration between populations as

occurring at single, instantaneous time points. This is, of course, a

dramatic simplification of the migration process. This model will

work best when gene flow between populations is restricted to a

relatively short time period. Situations of continuous migration

violate this assumption and lead to unclear results (Figure S14).

The relevance of this assumption will depend on the species and

the populations considered. In humans, the relevance of contin-

uous versus discrete mixture events is an open question–some

aspects of genetic variation appear compatible with continuous

migration [61], while other aspects do not [37]. Indeed, both sorts

of models are likely relevant at different time scales [62].

We also rely on the implicit assumption that the history of the

species being analyzed is largely tree-like. We have made this

assumption to simplify the search for the maximum likelihood

graph; additionally, we speculate that in graphs with complex

structure, there will be many graphs that lead to identical

covariance matrices, and thus several different histories will be

compatible with the data. That said, improvements to the search

algorithm could allow the assumption of approximate treeness to

be somewhat relaxed. Currently, if the number of admixed

populations is large relative to the number of unadmixed

populations, this assumption breaks down. For example, in the

human data, note that we see no evidence of the documented gene

flow from Neandertals to all non-African populations [39]

(Figure 3B). The reason for this is that the large number of

populations with admixture can be accommodated in the tree by

allowing the branch from Neandertals to Africans to be slightly

underestimated (additionally, by using SNPs ascertained in Africa,

we have selected against sites that are informative about

Neandertal ancestry). If only a single non-African population is

included in the analysis, the relationship between Neandertals and

the non-African population is clearer (Figure S15).

Conclusions
A number of extensions to the sort of model described here are

of potential interest. First, the historical relationships between

populations could be useful as null demographic models for the

detection of natural selection [48,63,64]. Second, in a given

individual, the best-fit graph relating the individual to other

populations may change along a chromosome; this sort of

information could be of use in local ancestry inference. Finally,

we have not used the information about demographic history

present in linkage disequilibrium; approaches that explicitly use

this information may provide additional power to detect migration

events and estimate their timing, at an additional computational

cost [20,53,65].

Methods

Graph estimation
As described in the Results, we developed an algorithm called

TreeMix that uses the composite likelihood in Equation 28 to

search for the maximum likelihood graph. Estimation involves two

major steps. First, for a given graph topology, we need to find the

maximum likelihood branch lengths and migration weights.

Second, we need to search the space of possible graphs. First

consider a given graph topology. We iterate between optimizing

the branch lengths and weights. If the edge weights are known, the

observed entries of the covariance matrix can be written down as

an overdetermined system of linear equations (as in Equations 13–

15). We solve this system by non-negative least squares [66].
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Though the least squares solution is the maximum composite

likelihood solution in the case where all entries of the covariance

matrix have equal variance, it is not strictly the maximum

likelihood solution in cases with unequal variances. The algorithm

could be extended to unequal variances using a weighted least

squares approach, but we have not implemented this. We then do

a golden section search for the optimal weight (between zero and

one) on each migration edge [67]. At each step in the golden

section search, we update the branch lengths. We optimize the

weight of each migration edge in turn, and iterate over migration

edges until convergence.

To search the space of possible graphs, we take a hill-climbing

approach. We start by finding a local optimum tree, taking an

algorithmic approach similar to Felsenstein [30]. We randomly

select three populations, optimize the branch lengths for all three

possible trees, and choose the best (in terms of the composite

likelihood) tree. Then, we add the remaining populations one by

one in a random order. To add a population, we try attaching it to

all branches of the current tree, optimizing the branch lengths for

each one as described above, and find the most likely spot. We

then perform a round of local rearrangements (i.e., nearest-

neighbor interchanges [50]) around each internal node, keeping

the resulting tree only if it increases the likelihood.

After adding all populations, we calculate the residual covari-

ance matrix, R. We then add migration edges in a directed matter.

First, we find the M pairs of populations with the maximum

residuals (these are the pairs of populations with the worst fit under

the model). In the results reported, M~4. We define a

‘‘neighborhood’’ around each population of a pair as the tips

within a distance of E edges of the focal population. In

applications above, we use E~3. This defines a set of pairs of

populations that either have a poor fit, or are located in the graph

near populations with a poor fit. We take each of these pairs in

turn. For each pair, we identify the set of nodes in the path from

each member of the pair to the root of the graph. This gives us two

sets of nodes. We take all pairwise combinations of nodes in each

set, and look at residuals between the populations that are the

descendants of each node. If all of the residuals are positive, we

add a migration edge between the two nodes and estimate its

maximum likelihood weight. We then keep only the single edge

that most increases the likelihood of the graph. After adding a

migration edge, we attempt nearest-neighbor interchanges at the

source and destination of the migration event, attempt changing

the source and destination of all migration events, and attempt

changing the direction of all migration arrows. Once we have

reached the local maximum by this method, we attempt nearest-

neighbor interchanges at all internal nodes. We iterate over this

procedure for a predetermined number of migration edges. We

then test the migration edges for significance as described.

The TreeMix source code is available at http://treemix.

googlecode.com.

Three- and four-population tests of treeness
We implemented three- and four-population tests as described

in Reich et al. [37]. For the relationship between the f{ statistics

and the covariance model underlying TreeMix, see the Text S1.

For the three-population test, we estimated f3 as in Reich et al.

[37], and tested whether is it less than zero. We report the Z-score

for this test. To obtain a standard error on the estimate of f3, we

used a block jackknife similar to Reich et al. [37]. However, Reich

et al. [37] split the genome into blocks based on distance (with

variable numbers of SNPs per block); we split the genome into

blocks of K SNPs (and thus the blocks will be of variable size).

For the four-population test for treeness, we calculate the f4
statistic as in Reich et al. [37], and test whether it is different than

zero. Again, we report a Z-score for this test. Standard errors for

the f4 statistic were obtained as for the f3 statistic.

Human data
The human data we used were downloaded from http://www.

cephb.fr/en/hgdp/ on August 16th, 2011 (the data set labeled

Harvard HGDP-CEPH genotypes). They consist of several panels

of SNPs ascertained from low-coverage genome sequencing of

single individual from different populations and then genotyped in

the Human Genome Diversity Panel [54]. Additionally, at each

site, a single sequencing read from the Denisova and Neandertal

genome sequencing projects was sampled and the allele reported.

These data have the property that they allow for complete control

of the ascertainment strategy, and allow us to test the robustness of

inference to different ascertainment schemes. For the main

analyses, we used the panel of autosomal SNPs ascertained in a

single Yoruban individual; there are 124,115 such sites. For some

analyses, we also used the panel of autosomal SNPs ascertained in

a single French individual; there are 111,970 such sites. For all

analyses with TreeMix, we used a window size ({K ) of 500; this

corresponds to a window size of approximately 10 Mb. For all

TreeMix analyses, we set the Neandertal and Denisova samples as

the outgroups.

Since we have only a single allele from the Neandertal and

Denisova populations, we cannot calculate heterozygosity in these

populations for unbiased estimation of the covariance matrix (see

Text S1). To account for this, we simply chose a relatively low

level of heterozygosity and assigned it to both populations. In the

Yoruba ascertained SNPs, we used a heterozygosity of 0.13, and

for the French ascertained SNPs, we used a heterozygosity of 0.2.

In practice, this only affected the lengths of the terminal branches

to Neandertal and Denisova; running TreeMix with a heterozy-

gosity of zero in both populations resulted in the same graph

topologies (not shown).

Dog data
Allele counts for the dog breeds and wild canids reported in

Boyko et al. Boyko:2010fk were downloaded from http://genome-

mirror.bscb.cornell.edu/ on July 30, 2011. These data consist of

counts of reference and alternate alleles at 61,468 sites in 85 dog

breeds and wild canids. We removed the Jackal and Scottish

Deerhound for having relatively high amounts of missing data,

and the village dogs because it is unclear if they represent a

coherent population. We also removed all SNPs on the X

chromosome. This left us with 60,615 SNPs in 82 populations. We

ran TreeMix with a window size ({K ) of 500. This corresponds to

a window size of approximately 20 Mb. For all TreeMix analyses,

we set the coyote as the outgroup.

The ascertainment scheme used for SNP discovery in dogs was

complicated [68]. The largest set of SNPs were ascertained by

virtue of being different between the boxer and poodle assemblies.

This should lead to an overestimation of the distance between the

boxer and the poodle in our analysis. Indeed, in Figure 5B, a

considerable negative residual between the boxer and poodle is

visible. Another set of SNPs were ascertained by being heterozy-

gous within a boxer individual, and a third set were ascertained by

comparison between a boxer and wild canids. These latter SNPs

should lead to an overestimation of the distance between the boxer

and the wolf in our analysis (as we see for the poodle); in fact, we

infer migration between the boxer and the wolf. This ascertain-

ment issue may have led us to underestimate the amount of gene

flow in the comparison.
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Simulations
All simulations were performed using ms [69]. The exact

commands used are listed in Text S1. When running TreeMix on

simulations without ascertainment, we used a window size of 5000

SNPs; for simulations with ascertainment we used windows of

1000 SNPs. Consensus trees were generated using SumTrees

v.3.1.0 [70].

Supporting Information

Figure S1 A graph with a mixture event. Capital letters

represent nodes, branch length parameters are in blue, and

weight parameters are in red.

(PDF)

Figure S2 Replicates of inferred trees from simulated data. We

generated tree-like data using the topology in Figure 2A in the

main text. In Figure 2B in the main text, we show the inferred tree

with mean branch lengths. In this figure, we show four

representative individual trees.

(PDF)

Figure S3 Inferred trees on ascertained data. We generated tree-

like data using the topology in Figure 2A in the main text. We then

used only the SNPs that were polymorphic in either population 1

(A.) or population 20 (B.) to infer the trees. The correct topology

was obtained in all 100 simulations; the branch lengths in each

figure are the mean across all simulations.

(PDF)

Figure S4 Histogram of p-values for migration in simulated

data. We generated 100 tree-like datasets using the topology in

Figure 2A in the main text. We then randomly chose two

populations (without replacement), added a migration edge

between the two populations, and tested for significance using

the procedure described in the main text. Plotted is the histogram

of p-values for the significance test. If the p-values are properly

calibrated, this distribution should be uniform (dotted line).

Though the distribution is not completely uniform, there is no

skew towards low p-values.

(PDF)

Figure S5 Consensus tree in simulations with long branches. We

generated 100 tree-like datasets using the topology in Figure 2A in

the main text, multiplying all branch lengths by 50. We then

inferred the maximum likelihood tree. A. Plotted are the mean

branch lengths from the simulations. All simulations resulted in the

same inferred topology. B. In each simulation, we scaled the

residuals by the average standard error, then averaged these scaled

residuals across simulations. Plotted are the mean scaled residuals

across the 100 simulations. The most extreme residuals are not

large (around 0.3 standard errors), but tend to be present between

closely related populations.

(PDF)

Figure S6 Example trees from simulations with long branches.

We generated 100 tree-like datasets using the topology in Figure 2A

in the main text, multiplying all branch lengths by 50. We then

inferred the maximum likelihood tree. In Figure S5, we show the

average inferred tree. Here, we show two representative trees (A.

and C. and the residuals corresponding to each tree (B. and D.).

(PDF)

Figure S7 Representative errors in simulations. We examined

the simulations in which TreeMix did not reach the correct answer.

A. The correct topology for the simulations presented in the other

panels. B. A representative example of an incorrect topology

inferred from the simulations of a migration event with weight

10% from population 1 to population 5 (this topology accounted

for all observed errors). C. A representative example of an

incorrect topology inferred from the simulations of a migration

event with weight 30% from population 1 to population 5 (this

topology accounted for 95% of all errors).

(PDF)

Figure S8 Replicate graphs inferred in the human data. These

graphs were generated in an identical manner as Figure 4 in the

main text, but using different random input orders for populations

during tree-building. All random input orders gave very similar

results.

(PDF)

Figure S9 Residual fit from graph of human data presented in

the main text. Plotted are the residuals from the fit of the graph

presented in Figure 4 in the main text.

(PDF)

Figure S10 Graph inferred from SNPs ascertained in a single

French individual. The graph was generated in an identical

manner as Figure 4 in the main text, but using a panel of SNPs

ascertained in a single French, rather than a single Yoruban,

individual. The inferred graph is extremely similar to that in

Figure 4. The one major difference is that, in this graph, the

Mozabite appear as an admixture of a Sardinian population rather

than a Middle Eastern population; this configuration is seen in

some runs of TreeMix on the Yoruba-ascertained data (Figure

S8A).

(PDF)

Figure S11 Trees inferred using the human data including the

Oceanians. We show the maximum likelihood trees and residuals

for the human data including the Oceanian populations, plotted in

the same manner as in Figure 3 in the main text. Trees were

inferred using the panel of SNPs ascertained in a single Yoruban

individual (A. and C.) and the panel of SNPs ascertained in a

single French individual (B. and D.).

(PDF)

Figure S12 Graphs inferred using the human data including the

Oceanians. We show the maximum likelihood graphs for the human

data including the Oceanian populations, plotted in the same manner

as in Figure 4 in the main text. Six migration edges were inferred in

each graph. Graphs were inferred using the panel of SNPs ascertained

in a single Yoruban individual (A.) and the panel of SNPs ascertained

in a single French individual (B.). See Text S1 for discussion.

(PDF)

Figure S13 Residual fit from graph of dog data presented in the

main text. Plotted are the residuals from the fit of the graph

presented in Figure 6 in the main text.

(PDF)

Figure S14 TreeMix run on populations with continuous

migration. We simulated a set of populations on a lattice, where

each population has constant gene flow at a rate of 4Nm~0:1 with
neighboring populations. All populations split from an outgroup

16,400 generations in the past. The exact ms command is given in

Text S1. The configuration of the lattice is presented in A.

(population 1 is the outgroup). TreeMix inferred no consistent tree

structure. Three representative trees are presented in B.-D.

(PDF)

Figure S15 TreeMix run on human data using only a single non-

African population. We inferred the maximum likelihood tree (A.)

using only the African populations and one non-African
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population (French), using SNPs identified in a single Yoruban

individual. In examining the residuals (B.), a relationship between

the French and the Neandertal is clear. We then inferred three

migration events (C.), where we do see that the French contain

some Neandertal ancestry (w~1:2%). Residual fit for this graph is

shown in D.

(PDF)

Text S1 Supplementary Information.

(PDF)
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