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ABSTRACT
We describe a model-based clustering method for using multilocus genotype data to infer population

structure and assign individuals to populations. We assume a model in which there are K populations
(where K may be unknown), each of which is characterized by a set of allele frequencies at each locus.
Individuals in the sample are assigned (probabilistically) to populations, or jointly to two or more popula-
tions if their genotypes indicate that they are admixed. Our model does not assume a particular mutation
process, and it can be applied to most of the commonly used genetic markers, provided that they are not
closely linked. Applications of our method include demonstrating the presence of population structure,
assigning individuals to populations, studying hybrid zones, and identifying migrants and admixed individu-
als. We show that the method can produce highly accurate assignments using modest numbers of loci—e.g.,
seven microsatellite loci in an example using genotype data from an endangered bird species. The software
used for this article is available from http://www.stats.ox.ac.uk/zpritch/home.html.

IN applications of population genetics, it is often use- populations based on these subjective criteria represents
a natural assignment in genetic terms, and it would beful to classify individuals in a sample into popula-

tions. In one scenario, the investigator begins with a useful to be able to confirm that subjective classifications
are consistent with genetic information and hence ap-sample of individuals and wants to say something about

the properties of populations. For example, in studies propriate for studying the questions of interest. Further,
there are situations where one is interested in “cryptic”of human evolution, the population is often considered

to be the unit of interest, and a great deal of work has population structure—i.e., population structure that is
difficult to detect using visible characters, but may befocused on learning about the evolutionary relation-

ships of modern populations (e.g., Cavalli et al. 1994). significant in genetic terms. For example, when associa-
tion mapping is used to find disease genes, the presenceIn a second scenario, the investigator begins with a set

of predefined populations and wishes to classify individ- of undetected population structure can lead to spurious
associations and thus invalidate standard tests (Ewensuals of unknown origin. This type of problem arises

in many contexts (reviewed by Davies et al. 1999). A and Spielman 1995). The problem of cryptic population
structure also arises in the context of DNA fingerprint-standard approach involves sampling DNA from mem-

bers of a number of potential source populations and ing for forensics, where it is important to assess the
degree of population structure to estimate the probabil-using these samples to estimate allele frequencies in
ity of false matches (Balding and Nichols 1994, 1995;each population at a series of unlinked loci. Using the
Foreman et al. 1997; Roeder et al. 1998).estimated allele frequencies, it is then possible to com-

Pritchard and Rosenberg (1999) considered howpute the likelihood that a given genotype originated in
genetic information might be used to detect the pres-each population. Individuals of unknown origin can be
ence of cryptic population structure in the associationassigned to populations according to these likelihoods
mapping context. More generally, one would like to bePaetkau et al. 1995; Rannala and Mountain 1997).
able to identify the actual subpopulations and assignIn both situations described above, a crucial first step
individuals (probabilistically) to these populations. Inis to define a set of populations. The definition of popu-
this article we use a Bayesian clustering approach tolations is typically subjective, based, for example, on
tackle this problem. We assume a model in which therelinguistic, cultural, or physical characters, as well as the
are K populations (where K may be unknown), each ofgeographic location of sampled individuals. This subjec-
which is characterized by a set of allele frequencies attive approach is usually a sensible way of incorporating
each locus. Our method attempts to assign individualsdiverse types of information. However, it may be difficult
to populations on the basis of their genotypes, whileto know whether a given assignment of individuals to
simultaneously estimating population allele frequen-
cies. The method can be applied to various types of
markers [e.g., microsatellites, restriction fragment
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loci are unlinked and at linkage equilibrium with one observations from each cluster are random draws
from some parametric model. Inference for the pa-another within populations. It also assumes Hardy-Wein-

berg equilibrium within populations. (We discuss these rameters corresponding to each cluster is then done
jointly with inference for the cluster membership ofassumptions further in background on clustering

methods and the discussion.) each individual, using standard statistical methods
(for example, maximum-likelihood or BayesianOur approach is reminiscent of that taken by Smouse

et al. (1990), who used the EM algorithm to learn about methods).
the contribution of different breeding populations to a

Distance-based methods are usually easy to apply andsample of salmon collected in the open ocean. It is also
are often visually appealing. In the genetics literature, itclosely related to the methods of Foreman et al. (1997)
has been common to adapt distance-based phylogeneticand Roeder et al. (1998), who were concerned with
algorithms, such as neighbor-joining, to clusteringestimating the degree of cryptic population structure
multilocus genotype data (e.g., Bowcock et al. 1994).to assess the probability of obtaining a false match at
However, these methods suffer from many disadvan-DNA fingerprint loci. Consequently they focused on
tages: the clusters identified may be heavily dependentestimating the amount of genetic differentiation among
on both the distance measure and graphical representa-the unobserved populations. In contrast, our primary
tion chosen; it is difficult to assess how confident weinterest lies in the assignment of individuals to popula-
should be that the clusters obtained in this way aretions. Our approach also differs in that it allows for the
meaningful; and it is difficult to incorporate additionalpresence of admixed individuals in the sample, whose
information such as the geographic sampling locationsgenetic makeup is drawn from more than one of the K
of individuals. Distance-based methods are thus morepopulations.
suited to exploratory data analysis than to fine statisticalIn the next section we provide a brief description
inference, and we have chosen to take a model-basedof clustering methods in general and describe some
approach here.advantages of the model-based approach we take. The

The first challenge when applying model-based meth-details of the models and algorithms used are given in
ods is to specify a suitable model for observations frommodels and methods. We illustrate our method with
each cluster. To make our discussion more concrete weseveral examples in applications to data: both on
introduce very briefly some of our model and notationsimulated data and on sets of genotype data from an
here; a fuller treatment is given later. Assume that eachendangered bird species and from humans. incorpo-
cluster (population) is modeled by a characteristic setrating population information describes how our
of allele frequencies. Let X denote the genotypes of themethod can be extended to incorporate geographic
sampled individuals, Z denote the (unknown) popula-information into the inference process. This may be
tions of origin of the individuals, and P denote theuseful for testing whether particular individuals are mi-
(unknown) allele frequencies in all populations. (Notegrants or to assist in classifying individuals of unknown
that X, Z, and P actually represent multidimensionalorigin (as in Rannala and Mountain 1997, for exam-
vectors.) Our main modeling assumptions are Hardy-ple). Background on the computational methods used
Weinberg equilibrium within populations and completein this article is provided in the appendix.
linkage equilibrium between loci within populations.
Under these assumptions each allele at each locus in
each genotype is an independent draw from the appro-BACKGROUND ON CLUSTERING METHODS
priate frequency distribution, and this completely speci-

Consider a situation where we have genetic data from
fies the probability distribution Pr(X|Z, P) (given later

a sample of individuals, each of whom is assumed to
in Equation 2). Loosely speaking, the idea here is that

have originated from a single unknown population (no
the model accounts for the presence of Hardy-Weinberg

admixture). Suppose we wish to cluster together individ-
or linkage disequilibrium by introducing populationuals who are genetically similar, identify distinct clusters,
structure and attempts to find population groupingsand perhaps see how these clusters relate to geographi-
that (as far as possible) are not in disequilibrium. Whilecal or phenotypic data on the individuals. There are
inference may depend heavily on these modeling as-broadly two types of clustering methods we might use:
sumptions, we feel that it is easier to assess the validity
of explicit modeling assumptions than to compare the1. Distance-based methods. These proceed by calculating
relative merits of more abstract quantities such as dis-a pairwise distance matrix, whose entries give the
tance measures and graphical representations. In situa-distance (suitably defined) between every pair of in-
tions where these assumptions are deemed unreason-dividuals. This matrix may then be represented using
able then alternative models should be built.some convenient graphical representation (such as a

Having specified our model, we must decide how totree or a multidimensional scaling plot) and clusters
perform inference for the quantities of interest (Z andmay be identified by eye.

2. Model-based methods. These proceed by assuming that P). Here, we have chosen to adopt a Bayesian approach,
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by specifying models (priors) Pr(Z) and Pr(P), for both Assume that before observing the genotypes we have
Z and P. The Bayesian approach provides a coherent no information about the population of origin of each
framework for incorporating the inherent uncertainty individual and that the probability that individual i origi-
of parameter estimates into the inference procedure nated in population k is the same for all k,
and for evaluating the strength of evidence for the in-

Pr(z(i) 5 k) 5 1/K , (3)ferred clustering. It also eases the incorporation of vari-
ous sorts of prior information that may be available, independently for all individuals. (In cases where some
such as information about the geographic sampling lo- populations may be more heavily represented in the
cation of individuals. sample than others, this assumption is inappropriate; it

Having observed the genotypes, X, our knowledge would be straightforward to extend our model to deal
about Z and P is then given by the posterior distribution with such situations.)

We follow the suggestion of Balding and NicholsPr(Z, P|X) ~ Pr(Z)Pr(P)Pr(X|Z, P). (1)
(1995) (see also Foreman et al. 1997 and Rannala

While it is not usually possible to compute this distribu- and Mountain 1997) in using the Dirichlet distri-
tion exactly, it is possible to obtain an approximate bution to model the allele frequencies at each locus
sample (Z(1), P(1)), (Z(2), P(2)), . . . ,(Z(M), P(M)) from Pr(Z, within each population. The Dirichlet distribution
P|X) using Markov chain Monte Carlo (MCMC) meth- D(l1, l2, . . . , lJ) is a distribution on allele frequencies
ods described below (see Gilks et al. 1996b, for more p 5 (p1, p2, . . . , pJ) with the property that these frequen-
general background). Inference for Z and P may then cies sum to 1. We use this distribution to specify the
be based on summary statistics obtained from this sam- probability of a particular set of allele frequencies pkl·ple (see Inference for Z, P, and Q below). A brief introduc- for population k at locus l,
tion to MCMC methods and Gibbs sampling may be
found in the appendix. pkl· z D(l1, l2, . . . , lJl), (4)

independently for each k,l. The expected frequency of
MODELS AND METHODS allele j is proportional to lj, and the variance of this

frequency decreases as the sum of the lj increases. WeWe now provide a more detailed description of our
take l1 5 l2 5 · · · 5 lJl 5 1.0, which gives a uniformmodeling assumptions and the algorithms used to per-
distribution on the allele frequencies; alternatives areform inference, beginning with the simpler case where
discussed in the discussion.each individual is assumed to have originated in a single

MCMC algorithm (without admixture): Equations 2,population (no admixture).
3, and 4 define the quantities Pr(X|Z, P), Pr(Z), andThe model without admixture: Suppose we genotype
Pr(P), respectively. By setting u 5 (u1, u2) 5 (Z, P) andN diploid individuals at L loci. In the case without admix-
letting p(Z, P) 5 Pr(Z, P|X) we can use the approachture, each individual is assumed to originate in one of
outlined in Algorithm A1 to construct a Markov chainK populations, each with its own characteristic set of
with stationary distribution Pr(Z, P|X) as follows:allele frequencies. Let the vector X denote the observed

Algorithm 1: Starting with initial values Z(0) for Z (bygenotypes, Z the (unknown) populations of origin of
drawing Z(0) at random using (3) for example), iterate thethe individuals, and P the (unknown) allele frequencies
following steps for m 5 1, 2, . . . .in the populations. These vectors consist of the follow-

ing elements,
Step 1. Sample P(m) from Pr(P|X, Z(m21)).

(x(i,1)
l , x(i,2)

l ) 5 genotype of the ith individual at the l th locus, Step 2. Sample Z(m) from Pr(Z|X, P(m)).
where i 5 1, 2, . . . , N and l 5 1, 2, . . . , L;

z(i) 5 population from which individual i originated; Informally, step 1 corresponds to estimating the allele
pklj 5 frequency of allele j at locus l in population k, frequencies for each population assuming that the pop-where k 5 1, 2, . . . , K and j 5 1, 2, . . . , Jl, ulation of origin of each individual is known; step 2

where Jl is the number of distinct alleles observed at corresponds to estimating the population of origin of
locus l, and these alleles are labeled 1, 2, . . . , Jl. each individual, assuming that the population allele fre-

Given the population of origin of each individual, quencies are known. For sufficiently large m and c, (Z(m),
the genotypes are assumed to be generated by drawing P(m)), (Z(m1c), P(m1c)), (Z(m12c), P(m12c)), . . . will be approxi-
alleles independently from the appropriate population mately independent random samples from Pr(Z, P|X).
frequency distributions, The distributions required to perform each step are

given in the appendix.Pr(x(i,a)
l 5 j |Z, P) 5 pz(i)lj (2)

The model with admixture: We now expand our
model to allow for admixed individuals by introducingindependently for each x(i,a)

l . (Note that pz(i)lj is the fre-
a vector Q to denote the admixture proportions for eachquency of allele j at locus l in the population of origin

of individual i.) individual. The elements of Q are
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q(i)
k 5 proportion of individual i’s genome that tion of origin of each allele copy in each individual is

known; step 2 corresponds to estimating the populationoriginated from population k.
of origin of each allele copy, assuming that the popula-

It is also necessary to modify the vector Z to replace the tion allele frequencies and the admixture proportions
assumption that each individual i originated in some are known. As before, for sufficiently large m and c,
unknown population z(i) with the assumption that each (Z(m), P(m), Q(m)), (Z(m1c), P(m1c), Q(m1c)), (Z(m12c), P(m12c),
observed allele copy x(i,a)

l originated in some unknown Q(m12c)), . . . will be approximately independent random
population z(i,a)

l : samples from Pr(Z, P, Q|X). The distributions required
to perform each step are given in the appendix.z(i,a)

l 5 population of origin of allele copy x(i,a)
l .

Inference: Inference for Z, P, and Q: We now discuss how
We use the term “allele copy” to refer to an allele carried the MCMC output can be used to perform inference on
at a particular locus by a particular individual. Z, P, and Q. For simplicity, we focus our attention on Q ;

Our primary interest now lies in estimating Q. We inference for Z or P is similar.
proceed in a manner similar to the case without admix- Having obtained a sample Q(1), . . . , Q(M) (using suitably
ture, beginning by specifying a probability model for large burn-in m and thinning interval c) from the poste-
(X, Z, P, Q). Analogues of (2) and (3) are rior distribution of Q 5 (q1, . . . , qN) given X using

the MCMC method, it is desirable to summarize thePr(x(i,a)
l 5 j|Z, P, Q) 5 pz (i,a)

l lj (5)
information contained, perhaps by a point estimate of

and Q. A seemingly obvious estimate is the posterior mean

Pr(z(i,a)
l 5 k|P, Q) 5 q(i)

k , (6)
E(qi|X) ≈ 1

M o
M

m51

q(m)
i . (8)

with (4) being used to model P as before. To complete
our model we need to specify a distribution for Q, which

However, the symmetry of our model implies that thein general will depend on the type and amount of admix-
posterior mean of qi is (1/K,1/K, . . . , 1/K) for all i,ture we expect to see. Here we model the admixture
whatever the value of X. For example, suppose that thereproportions q(i) 5 (q(i)

1 , . . . , q(i)
K ) of individual i using

are just two populations and 10 individuals and that thethe Dirichlet distribution
genotypes of these individuals contain strong informa-
tion that the first 5 are in one population and the secondq(i) z D(a, a, . . . , a) (7)
5 are in the other population. Then either

independently for each individual. For large values of
a (@1), this models each individual as having allele q1 . . . q5 ≈ (1, 0) and q6 . . . q10 ≈ (0, 1) (9)
copies originating from all K populations in equal pro-

orportions. For very small values of a (!1), it models each
individual as originating mostly from a single popu- q1 . . . q5 ≈ (0, 1) and q6 . . . q10 ≈ (1, 0), (10)
lation, with each population being equally likely. As

with these two “symmetric modes” being equally likely,a → 0 this model becomes the same as our model
leading to the expectation of any given qi being (0.5,without admixture (although the implementation of the
0.5). This is essentially a problem of nonidentifiabilityMCMC algorithm is somewhat different). We allow a
caused by the symmetry of the model [see Stephensto range from 0.0 to 10.0 and attempt to learn about a
(2000b) for more discussion].from the data (specifically we put a uniform prior on

In general, if there are K populations then there willa P [0, 10] and use a Metropolis-Hastings update step
be K ! sets of symmetric modes. Typically, MCMCto integrate out our uncertainty in a). This model may
schemes find it rather difficult to move between suchbe considered suitable for situations where little is
modes, and the algorithms we describe will usually ex-known about admixture; alternatives are discussed in
plore only one of the symmetric modes, even when runthe discussion.
for a very large number of iterations. Fortunately thisMCMC algorithm (with admixture): The following
does not bother us greatly, since from the point ofalgorithm may be used to sample from Pr(Z, P, Q|X).
view of clustering all the symmetric modes are the sameAlgorithm 2: Starting with initial values Z(0) for Z (by

drawing Z(0) at random using (3) for example), iterate the [compare the clusterings corresponding to (9) and
following steps for m 5 1, 2, . . . . (10)]. If our sampler explores only one symmetric mode

then the sample means (8) will be very poor estimates
Step 1. Sample P(m), Q(m) from Pr(P, Q|X, Z(m21)).

of the posterior means for the qi, but will be much better
Step 2. Sample Z(m) from Pr(Z|X, P(m), Q(m)).

estimates of the modes of the qi, which in this case turn
Step 3. Update a using a Metropolis-Hastings step.

out to be a much better summary of the information
in the data. Ironically then, the poor mixing of theInformally, step 1 corresponds to estimating the allele
MCMC sampler between the symmetric modes givesfrequencies for each population and the admixture pro-

portions of each individual, assuming that the popula- the asymptotically useless estimator (8) some practical
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value. Where the MCMC sampler succeeds in moving Simulated data: To test the performance of the clus-
tering method in cases where the “answers” are known,between symmetric modes, or where it is desired to

combine results from samples obtained using different we simulated data from three population models, using
standard coalescent techniques (Hudson 1990). We as-starting points (which may involve combining results

corresponding to different modes), more sophisticated sumed that sampled individuals were genotyped at a
series of unlinked microsatellite loci. Data were simu-methods [such as those described by Stephens

(2000b)] may be required. lated under the following models.
Inference for the number of populations: The problem of

Model 1: A single random-mating population of con-
inferring the number of clusters, K, present in a data

stant size.
set is notoriously difficult. In the Bayesian paradigm the

Model 2: Two random-mating populations of constant
way to proceed is theoretically straightforward: place a

effective population size 2N. These were assumed to
prior distribution on K and base inference for K on the

have split from a single ancestral population, also of
posterior distribution

size 2N at a time N generations in the past, with no
subsequent migration.Pr(K|X) ~ Pr(X|K)Pr(K). (11)

Model 3: Admixture of populations. Two discrete popu-
However, this posterior distribution can be peculiarly lations of equal size, related as in model 2, were fused
dependent on the modeling assumptions made, even to produce a single random-mating population. Sam-
where the posterior distributions of other quantities (Q, ples were collected after two generations of random
Z, and P, say) are relatively robust to these assumptions. mating in the merged population. Thus, individuals
Moreover, there are typically severe computational chal- have i grandparents from population 1, and 4 2 i
lenges in estimating Pr(X|K). We therefore describe an grandparents from population 2 with probability
alternative approach, which is motivated by approximat- (4

i )/16, where i P {0, 4}. All loci were simulated inde-
ing (11) in an ad hoc and computationally convenient pendently.
way.

We present results from analyzing data sets simulatedArguments given in the appendix (Inference on K, the
under each model. Data set 1 was simulated undernumber of populations) suggest estimating Pr(X|K) using
model 1, with 5 microsatellite loci. Data sets 2A and 2B

Pr(X|K) ≈ exp(2m̂/2 2 ŝ2/8), (12) were simulated under model 2, with 5 and 15 microsatel-
lite loci, respectively. Data set 3 was simulated underwhere
model 3, with 60 loci (preliminary analyses with fewer
loci showed this to be a much harder problem thanm̂ 5

1
M o

M

m51

22 log Pr(X|Z(m), P(m), Q(m)) (13)
models 1 and 2). Microsatellite mutation was modeled
by a simple stepwise mutation process, with the mutationand
parameter 4Nm set at 16.0 per locus (i.e., the expected
variance in repeat scores within populations was 8.0).ŝ2 5

1
M o

M

m51

(22 log Pr(X|Z(m), P(m), Q(m)) 2 m̂)2.
We did not make use of the assumed mutation model
in analyzing the simulated data.(14)

Our analysis consists of two phases. First, we consider
We use (12) to estimate Pr(X|K) for each K and substi- the issue of model choice—i.e., how many populations
tute these estimates into (11) to approximate the poste- are most appropriate for interpreting the data. Then,
rior distribution Pr(K|X). we examine the clustering of individuals for the inferred

In fact, the assumptions underlying (12) are dubious number of populations.
at best, and we do not claim (or believe) that our proce- Choice of K for simulated data: For each model, we
dure provides a quantitatively accurate estimate of the ran a series of independent runs of the Gibbs sampler
posterior distribution of K. We see it merely as an ad for each value of K (the number of populations) be-
hoc guide to which models are most consistent with the tween 1 and 5. The results presented are based on runs
data, with the main justification being that it seems of 106 iterations or more, following a burn-in period of
to give sensible answers in practice (see next section for at least 30,000 iterations. To choose the length of the
examples). Notwithstanding this, for convenience we burn-in period, we printed out log(Pr(X|P(m), Q(m))), and
continue to refer to “estimating” Pr(K|X) and Pr(X|K). several other summary statistics during the course of a

series of trial runs, to estimate how long it took to reach
(approximate) stationarity. To check for possible prob-

APPLICATIONS TO DATA
lems with mixing, we compared the estimates of P(X|K)
and other summary statistics obtained over several inde-We now illustrate the performance of our method on

both simulated data and real data (from an endangered pendent runs of the Gibbs sampler, starting from differ-
ent initial points. In general, substantial differences be-bird species and from humans). The analyses make use

of the methods described in The model with admixture. tween runs can indicate that either the runs should
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TABLE 1

Estimated posterior probabilities of K, for simulated
data sets 1, 2A, 2B, and 3 (denoted X1, X2A, X2B,

and X3, respectively)

K log P(K|X1) P(K|X2A) P(K|X2B) P(K|X3)

1 z1.0 z0.0 z0.0 z0.0
2 z0.0 0.21 0.999 z1.0
3 z0.0 0.58 0.0009 z0.0
4 z0.0 0.21 z0.0 z0.0
5 z0.0 z0.0 z0.0 z0.0

The numbers should be regarded as a rough guide to which
models are consistent with the data, rather than accurate esti-
mates of posterior probabilities.

Figure 1.—Summary of the clustering results for simulated
data sets 2A and 2B, respectively. For each individual, webe longer to obtain more accurate estimates or that
computed the mean value of q(i)

1 (the proportion of ancestry
independent runs are getting stuck in different modes in population 1), over a single run of the Gibbs sampler. The
in the parameter space. (Here, we consider the K ! dashed line is a histogram of mean values of q(i)

1 for individuals
from population 0; the solid line is for individuals from popula-modes that arise from the nonidentifiability of the K
tion 1.populations to be equivalent, since they arise from per-

muting the K population labels.)
We found that in most cases we obtained consistent

and Q estimating the number of grandparents fromestimates of P(X|K) across independent runs. However,
each of the two original populations, for each individual.when analyzing data set 2A with K 5 3, the Gibbs sampler
Intuitively it seems that another plausible clusteringfound two different modes. This data set actually con-
would be with K 5 5, individuals being assigned totains two populations, and when K is set to 3, one of
clusters according to how many grandparents they havethe populations expands to fill two of the three clusters.
from each population. In biological terms, the solutionIt is somewhat arbitrary which of the two populations
with K 5 2 is more natural and is indeed the inferredexpands to fill the extra cluster: this leads to two modes
value of K for this data set using our ad hoc guide [theof slightly different heights. The Gibbs sampler did not
estimated value of Pr(X|K) was higher for K 5 5 thanmanage to move between the two modes in any of our
for K 5 3, 4, or 6, but much lower than for K 5 2].runs.
However, this raises an important point: the inferredIn Table 1 we report estimates of the posterior proba-
value of K may not always have a clear biological inter-bilities of values of K, assuming a uniform prior on K
pretation (an issue that we return to in the discussion).between 1 and 5, obtained as described in Inference for

Clustering of simulated data: Having considered thethe number of populations. We repeat the warning given
problem of estimating the number of populations, wethere that these numbers should be regarded as rough
now examine the performance of the clustering algo-guides to which models are consistent with the data,
rithm in assigning particular individuals to the appro-rather than accurate estimates of the posterior probabil-
priate populations. In the case where the populationsities. In the case where we found two modes (data set
are discrete, the clustering performs very well (Figure2A, K 5 3), we present results based on the mode that
1), even with just 5 loci (data set 2A), and essentiallygave the higher estimate of Pr(X|K).
perfectly with 15 loci (data set 2B).With all four simulated data sets we were able to

The case with admixture (Figure 2) appears to becorrectly infer whether or not there was population
more difficult, even using many more loci. However,structure (K 5 1 for data set 1 and K . 1 otherwise).
the clustering algorithm did manage to identify theIn the case of data set 2A, which consisted of just 5
population structure appropriately and estimated theloci, there is not a clear estimate of K, as the posterior
ancestry of individuals with reasonable accuracy. Partprobability is consistent with both the correct value, K 5
of the reason that this problem is difficult is that it is2, and also with K 5 3 or 4. However, when the number
hard to estimate the original allele frequencies (beforeof loci was increased to 15 (data set 2B), virtually all of
admixture) when almost all the individuals (7/8) arethe posterior probability was on the correct number of
admixed. A more fundamental problem is that it is diffi-populations, K 5 2.
cult to get accurate estimates of q(i) for particular individ-Data set 3 was simulated under a more complicated
uals because (as can be seen from the y-axis of Figuremodel, where most individuals have mixed ancestry. In
2) for any given individual, the variance of how manythis case, the population was formed by admixture of

two populations, so the “true” clustering is with K 5 2, of its alleles are actually derived from each population
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Figure 2.—Summary of the clustering results for simulated
data set 3. Each point plots the estimated value of q(i)

1 (the
proportion of ancestry in population 1) for a particular indi-
vidual against the fraction of their alleles that were actually
derived from population 1 (across the 60 loci genotyped).
The five clusters (from left to right) are for individuals with
0, 1, . . . , 4 grandparents in population 1, respectively.

can be substantial (for intermediate q). This property
means that even if the allele frequencies were known,
it would still be necessary to use a considerable number

Figure 3.—Neighbor-joining tree of individuals in the T.
of loci to get accurate estimates of q for admixed individ- helleri data set. Each tip represents a single individual. C, M,
uals. N, and Y indicate the populations of origin (Chawia, Mbololo,

Ngangao, and Yale, respectively). Using the labels, it is possibleData from the Taita thrush: We now present results
to group the Chawia and Mbololo individuals into (somewhat)from applying our method to genotype data from an
distinct clusters, as marked. However, it would not be possibleendangered bird species, the Taita thrush, Turdus helleri.
to identify these clusters if the population labels were not

Individuals were sampled at four locations in southeast available. Individuals who appear to be misclassified are
Kenya [Chawia (17 individuals), Ngangao (54), Mbololo marked *. One of these individuals [marked (*)] was also

identified by our own algorithm as a possible migrant. The(80), and Yale (4)]. Each individual was genotyped at
tree was constructed using the program Neighbor included inseven microsatellite loci (Galbusera et al. 2000).
Phylip (Felsenstein 1993). The pairwise distance matrix wasThis data set is a useful test for our clustering method,
computed as follows (Mountain and Cavalli-Sforza 1997).

because the geographic samples are likely to represent For each pair of individuals, we added 1/L for each locus at
distinct populations. These locations represent frag- which they had no alleles in common, 1/2L for each locus at

which they had one allele in common (e.g., AA:AB or AB:AC),ments of indigenous cloud forest, separated from each
and 0 for each locus at which they had two alleles in commonother by human settlements and cultivated areas. Yale,
(e.g., AA:AA or AB:AB), where L is the number of loci com-which is a very small fragment, is quite close to Ngangao.
pared.

Extensive data on ringed and radio-tagged birds over a
3-year period indicate low migration rates (Galbusera
et al. 2000).

As discussed in background on clustering meth-
TABLE 2ods, it is currently common to use distance-based clus-

tering methods to visualize genotype data of this kind. Summary statistics of variation within and between
To permit a comparison between that type of approach geographic groups
and our own method, we begin by showing a neighbor-

Chawia Mbololo Ngangao Yalejoining tree of the bird data (Figure 3). Inspection of
the tree reveals that the Chawia and Mbololo individuals Chawia 5.1
represent (somewhat) distinct clusters. Several individu- Mbololo 7.1 5.6
als (marked by asterisks) appear to be classified with Ngangao 3.1 1.6 5.5
other groups. The four Yale individuals appear to fall Yale 1.9 2.3 0.1 6.0
within the Ngangao group [a view that is supported by

Diagonal, variance in repeat scores within groups; below
summary statistics of divergence showing the Yale and diagonal, square of mean difference in repeat scores between
Ngangao to be very closely related (Table 2)]. populations [(dm)2; Goldstein and Pollock 1997, Equation

C3)].The tree illustrates several shortcomings of distance-
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based clustering methods. First, it would not be possible we obtained these results. Our clustering algorithm
seems to have performed very well, with just a few indi-(in this case) to identify the appropriate clusters if the

labels were missing. Second, since the tree does not use viduals (labeled 1–4) falling somewhat outside the obvi-
ous clusters. All of the points in the extreme cornersa formal probability model, it is difficult to ask statistical

questions about features of the tree, for example: Are (some of which may be difficult to resolve on the pic-
ture) are correctly assigned. The four Yale individualsthe individuals marked with asterisks actually migrants,

or are they simply misclassified by chance? Is there evi- were assigned to the Ngangao cluster, consistent with
the neighbor-joining tree and the (dm)2 distances. Wedence of population structure within the Ngangao group

(which appears from the tree to be quite diverse)? return to this data set in incorporating population
information to consider the question of whether theWe now apply our clustering method to these data.

Choice of K, for Taita thrush data: To choose an individuals that seem not to cluster tightly with others
sampled from the same location are the product ofappropriate value of K for modeling the data, we ran a

series of independent runs of the Gibbs sampler at a migration.
Application to human data: The next data set, takenrange of values of K. After running numerous medium-

length runs to investigate the behavior of the Gibbs from Jorde et al. (1995), includes data from 30 biallelic
restriction site polymorphisms, genotyped in 72 Africanssampler (using the diagnostics described in Choice of K

for simulated data), we again chose to use a burn-in period (Sotho, Tsonga, Nguni, Biaka and Mbuti Pygmies, and
San) and 90 Europeans (British and French).of 30,000 iterations and to collect data for 106 iterations.

We ran three to five independent simulations of this Application of our MCMC scheme with K 5 2 indi-
cates the presence of two very distinct clusters, corre-length for each K between 1 and 5 and found that the

independent runs produced highly consistent results. sponding to the Africans and Europeans in the sample
(Figure 5). The model with K 5 2 has vastly higherAt K 5 5, a run of 106 steps takes z70 min on our

desktop machine. posterior probability than the model with K 5 1.
Additional runs of the MCMC scheme with the mod-Using the approach described in Inference for the num-

ber of populations, we estimated Pr(X|K) for K 5 1, els K 5 3, 4, and 5 suggest that those models may be
somewhat better than K 5 2. This may reflect the pres-2, . . . , 5 and corresponding values of Pr(K|X) for a

uniform prior on K 5 1, 2, . . . , 5. (In fact, this data ence of population structure within the continental
groupings, although in this case the additional popula-set contains a lot of information about K, so that infer-

ence is relatively robust to choice of prior on K, and tions do not form discrete clusters and so are difficult
to interpret.other priors, such as taking Pr(K) proportional to Pois-

son(1) for K . 0, would give virtually indistinguishable Again it is interesting to contrast our clustering results
with the neighbor-joining tree of these data (Figure 6).results.) From the estimates of Pr(K|X), shown in the

last column of Table 3, it is clear that the models with While our method finds it quite easy to separate the
two continental groups into the correct clusters, it wouldK 5 1 or 2 are completely insufficient to model the data

and that the model with K 5 3 is substantially better not be possible to use the neighbor-joining tree to detect
distinct clusters if the labels were not present. The datathan models with larger K. Given these results, we now

focus our subsequent analysis on the model with three set of Jorde also contains a set of individuals of Asian
origin (which are more closely related to Europeanspopulations.

Clustering results for Taita thrush data: Figure 4 than are Africans). Neither the neighbor-joining
method nor our method differentiates between the Eu-shows a plot of the clustering results for the individuals

in the sample, assuming that there are three populations ropeans and Asians with great accuracy using this data
set.(as inferred above). We did not use (and indeed, did

not know) the sampling locations of individuals when

INCORPORATING POPULATION INFORMATION
TABLE 3 The results presented so far have focused on testing

Inferring the value of K, the number of populations, how well our method works. We now turn our attention
for the T. helleri data to some further applications of this method.

Our clustering results (Figure 4) confirm that the
K log P(X|K) P(K|X) three main geographic groupings in the thrush data

set (Chawia, Mbololo, and Ngangao) represent three1 23144 z0
genetically distinct populations. The geographic labels2 22769 z0

3 22678 0.993 correspond very closely to the genetic clustering in all
4 22683 0.007 but a handful of cases (1–4 in Figure 4). Individual 2
5 22688 0.00005 is also identified as a possible outlier on the neighbor-

joining tree (Figure 3). Given this, it is natural to askThe values in the last column assume a uniform prior for
K (K P {1, . . . , 5}). whether these apparent outliers are immigrants (or de-
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Figure 4.—Summary of the clustering results
for the T. helleri data assuming three populations.
Each point shows the mean estimated ancestry for
an individual in the sample. For a given individual,
the values of the three coefficients in the ancestry
vector q(i) are given by the distances to each of
the three sides of the equilateral triangle. After
the clustering was performed, the points were la-
beled according to sampling location. Numbers
1–4 are individuals who appear to be possible
outliers (see text). For clarity, the four Yale indi-
viduals (who fall into the Ngangao cluster) are
not plotted. We were not told the sampling loca-
tions of individuals until after we obtained these
results.

scendants of recent immigrants) from other popula- whose genetic makeup suggests they were misclassified.
Thus, while we speak of “immigrants” and “immigranttions. For example, given the genetic data, how probable

is it that individual 1 is actually an immigrant from ancestry,” in some contexts these terms may relate to
something other than changes in physical location.Chawia?

To answer this sort of question, we need to extend Provided that geographic labels usually correspond
to population membership, using the geographic infor-our algorithm to incorporate the geographic labels. By

doing this, we break the symmetry of the labels, and we
can ask specifically whether a particular individual is a
migrant from Chawia (say). In essence our approach
(described more formally in the next section) is to as-
sume that each individual originated, with high proba-
bility, in the geographical region in which it was sam-
pled, but to allow some small probability that it is an
immigrant (or has immigrant ancestry). Note that this
model is also suitable for situations in which individuals
are classified according to some characteristic other
than sampling location (physical appearance, for exam-
ple). “Immigrants” in this situation would be individuals

Figure 5.—Summary of the clustering results for the data
set of Africans and Europeans taken from Jorde et al. (1995).
For each individual, we computed the mean value of q(i)

1 (the
Figure 6.—Neighbor-joining tree of individuals in the dataproportion of ancestry in population 1), over a single run of

the Gibbs sampler. The dashed line is a histogram of mean set of Jorde et al. (1995). Each tip represents a single individ-
ual. A and E indicate that individuals were African or Euro-values of q(i)

1 for individuals of European origin; the solid line
is for individuals of African origin. pean, respectively. The tree was constructed as in Figure 3.
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mation will clearly improve our accuracy at assigning 2t n

(K 2 1)RG
T50 2T

, (17)individuals to clusters; it will also improve our estimates
of P, thus also giving us greater precision in assignment

where t P {0, . . . , G }. As before, q(i)
l $ 0 for l Pof individuals who do not have geographic information.

{1, . . . , K }, and Rq(i)
l 5 1.However, in practice we suggest that before making use

Again, we can sample from Pr(Q|X) using Algorithmof such information, users of our method should first
2. In this case, however, since there are a small numbercluster the data without using the geographic labels, to
of possible values of q(i), we update q(i) by sampling di-check that the genetically defined clusters do in fact
rectly from the posterior probability of q(i)|X,P, ratheragree with geographic labels. We return to this issue in
than conditional on Z.the discussion.

Note that in this framework, it is easy to include indi-Rannala and Mountain (1997) also considered the
viduals for whom there is no geographic informationproblem of detecting immigrants and individuals with
by using the same prior and update steps as beforerecent immigrant ancestors, taking a somewhat similar
(Equations 7 and A10).approach to that used here. However, rather than con-

Testing for migrants in the Taita thrush data: To applysidering all individuals simultaneously, as we do here,
our method, we must first specify a value for n. In thisthey test each individual in the sample, one at a time,
case, based on mark-release-recapture data from theseas a possible immigrant, assuming that all the other
populations (Galbusera et al. 2000), migration seemsindividuals are not immigrants. This approach will have
relatively rare, and so n is likely to be small. We per-reduced power to detect immigrants if the sample con-
formed analyses for n 5 0.05 and n 5 0.1; a summarytains several immigrants from one population to an-
of the results is shown in Table 4. Individuals 2 and 3other. In contrast, our approach can cope well with this
have moderate posterior probabilities of having migrantkind of situation.
ancestry, but these probabilities are perhaps smallerModel with prior population information: To incor-
than might be expected from examining Figure 4. Thisporate geographic information, we use the following
is due to a combination of the low prior probability formodel. Our primary goal is to identify individuals who
migration (from the mark-release-recapture data) and,are immigrants, or who have recent immigrant ancestry,
perhaps more importantly, the fact that there is a limitedin the last G generations, say, where G 5 0 is the present
amount of information in seven loci, so that the uncer-generation. [In practice there will only be substantial
tainty associated with the position of the points markedpower to detect immigration for small G; cf. Rannala
1, 2, 3, and 4 in Figure 4 may be quite large. A moreand Mountain (1997).]
definite conclusion could be obtained by typing moreFirst, we code each of the geographic locations by a
loci.(unique) integer between 1 and K, where K would usu-

It is interesting to note that our conclusions hereally be set equal to the number of locations. Using this
differ from those obtained on this data set using thecoding, let g(i) represent the geographic sampling loca-
package IMMANC (Rannala and Mountain 1997).tion of individual i. Now, let n be the probability that
IMMANC indicates that three individuals (1, 2, and 3an individual is an immigrant to population g(i) or has an
here) show significant evidence of immigrant ancestryimmigrant ancestor in the last G generations. Otherwise,
at the 0.01 significance level (Galbusera et al. 2000).with probability 1 2 n, the individual is considered to
However, IMMANC does not make a multiple compari-be purely from population g(i). While in principle one
sons correction; such a correction would bring thosecould place a prior on n and learn about it from the
results into line with ours.data as part of the MCMC scheme, in our current imple-

We anticipate that our method might also be appliedmentation the user must specify a fixed value for n; we
in situations where there is little data to help make angive some guidelines in the next section.
informed choice of n. In such situations we suggestAssuming that migration is rare, we can use the ap-
analyzing the data using several different values of n, toproximation that each individual has at most one immi-
see whether the conclusions are robust to choice of n.grant ancestor in the last G generations (where G is
The range of sensible values for n will depend on thesuitably small). Then, assuming a constant migration
context, but typically we suggest values in the rangerate, the probability of an immigrant ancestor in genera-
0.001–0.1 might be appropriate. Sensitivity to choice oftion t (0 # t # G) is proportional to 2t, where t 5 0
n indicates that the amount of information in the dataindicates that the individual migrated in the present
is insufficient to draw strong conclusions.generation. Thus, we set the prior on q(i) to be

q(i)
g(i) 5 1, q(i)

k 5 0 (k ? g(i)) (15)
DISCUSSION

with probability 1 2 n and
We have described a method for using multilocus

q(i)
g(i) 5 1 2 22t, q (i)

j 5 22t, q (i)
k 5 0 (k ? g(i), j) (16)

genotype data to learn about population structure and
assign individuals (probabilistically) to populations.for each j ? g(i) with probability
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TABLE 4

Testing whether particular individuals are immigrants or have recent immigrant ancestors

Geographic Possible No immigrant Immigrant Immigrant
Individual origin source n ancestry Immigrant parent grandparent

1 Ngangao Chawia 0.05 0.869 0.008 0.052 0.063
0.10 0.739 0.019 0.106 0.123

2 Ngangao Mbololo 0.05 0.673 0.029 0.126 0.168
0.10 0.472 0.046 0.203 0.273

3 Mbololo Ngangao 0.05 0.649 0.002 0.179 0.165
0.10 0.464 0.003 0.271 0.253

4 Mbololo Chawia 0.05 0.891 0.000 0.007 0.082
0.10 0.791 0.000 0.014 0.157

The individuals are labeled as shown in Figure 4. “No immigrant ancestry” gives the probability that the
ancestry of each individual is exclusively in the geographic origin population; the following columns show the
probabilities that each individual has the given amount of ancestry in the possible source population. The
rows do not add to 1 because there are small probabilities associated with individuals having ancestry in the
third population.

Our method also provides a novel approach to testing preclassified individuals are used to estimate allele fre-
quencies (cf. Smouse et al. 1990).for the presence of population structure (K . 1).

Our examples demonstrate that the method can accu- Another type of application where the geographic
information might be of value is in evolutionary studiesrately cluster individuals into their appropriate popula-

tions, even using only a modest number of loci. In prac- of population relationships. Such analyses frequently
make use of summary statistics based on populationtice, the accuracy of the assignments depends on a

number of factors, including the number of individuals allele frequencies [e.g., FST and (dm)2]. In situations
where the population allele frequencies might be af-(which affects the accuracy of the estimate for P), the

number of loci (which affects the accuracy of the esti- fected by recent immigration or where population classi-
fications are unclear, such summary statistics could bemate for Q), the amount of admixture, and the extent

of allele-frequency differences among populations. calculated directly from the population allele frequen-
cies P estimated by the Gibbs sampler.We anticipate that our method will be useful for iden-

tifying populations and assigning individuals in situa- There are several ways in which the basic model that
we have described here might be modified to producetions where there is little information about population

structure. It should also be useful in problems where better performance in particular cases. For example, in
models and methods and applications to data wecryptic population structure is a concern, as a way of

identifying subpopulations. Even in situations where assumed relatively noninformative priors for q. How-
ever, in some situations, there might be quite a bit ofthere is nongenetic information that can be used to

define populations, it may be useful to use the approach information about likely values of q, and the estimation
procedure could be improved by using that informa-developed here to ensure that populations defined on

an extrinsic basis reflect the underlying genetic struc- tion. For example, in estimating admixture proportions
for African Americans, it would be possible to improveture.

As described in incorporating population infor- the estimation procedure by making use of existing in-
formation about the extent of European admixturemation we have also developed a framework that makes

it possible to combine genetic information with prior (e.g., Parra et al. 1998).
A second way in which the basic model can be modi-information about the geographic sampling location of

individuals. Besides being used to detect migrants, this fied involves changing the way in which the allele fre-
quencies P are estimated. Throughout this article, wecould also be used in situations where there is strong

prior population information for some individuals, but have assumed that the allele frequencies in different
populations are uncorrelated with one another. This isnot for others. For example, in hybrid zones it may be

possible to identify some individuals who do not have a convenient approximation for populations that are
not extremely closely related and, as we have seen, canmixed ancestry and then to estimate q for the rest (M.

Beaumont, D. Gotelli, E. M. Barett, A. C. Kitch- produce accurate clustering. However, loosely speaking,
the model of uncorrelated allele frequencies says thatener, M. J. Daniels, J. K. Pritchard and M. W. Bru-

ford, unpublished results). The advantage of using a we do not normally expect to see populations with very
similar allele frequencies. This property has the resultclustering approach in such cases is that it makes the

method more robust to the presence of misclassified that the clustering algorithm may tend to merge subpop-
ulations that share similar frequencies. An alternative,individuals and should be more accurate than if only
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which we have implemented in our software package, enough to make the population act as a single unstruc-
tured population.is to permit allele frequencies to be correlated across

In summary, we find that the method described herepopulations (appendix, Model with correlated allele frequen-
can produce highly accurate clustering and sensiblecies). In a series of additional simulations, we have found
choices of K, both for simulated data and for real datathat this allows us to perform accurate assignments of
from humans and from the Taita thrush. In the latterindividuals in very closely related populations, though
example, we find it particularly encouraging that usingpossibly at the cost of making us likely to overestimate K.
a relatively small number of loci (seven) we can detectOur basic model might also be modified to allow for
a very strong signal of population structure and assignlinkage among marker loci. Normally, we would not
individuals appropriately.expect to see linkage disequilibrium within subpopula-

The algorithms described in this article have beentions, except between markers that are extremely close
implemented in a computer software package structure,together. This means that in situations where there is
which is available at http://www.stats.ox.ac.uk/zpritch/little admixture, our assumption of independence
home.html.among loci will be quite accurate. However, we might

expect to see strong correlations among linked loci We thank Peter Galbusera and Lynn Jorde for allowing us to use
their data, Augie Kong for a helpful discussion, Daniel Falush forwhen there is recent admixture. This occurs because
suggesting comparison with neighbor-joining trees, Steve Brooks andan individual who is admixed will inherit large chromo-
Trevor Sweeting for helpful discussions on inferring K, and Eric An-somal segments from one population or another. Thus,
derson for his extensive comments on an earlier version of the manu-

when the map order of marker loci is known, it should script. This work was supported by National Institutes of Health grant
be possible to improve the accuracy of the estimation for GM19634 and by a Hitchings-Elion fellowship from Burroughs-Well-

come Fund to J.K.P., by a grant from the University of Oxford andsuch individuals by modeling the inheritance of these
a Wellcome Trust Fellowship (057416) to M.S., and by grants GR/segments.
M14197 and 43/MMI09788, from the Engineering and Physical Sci-In this article we have devoted considerable attention
ences Research Council and Biotechnology and Biological Sciences

to the problem of inferring K. This is an important Research Council, respectively, to P.D. The work was initiated while
practical problem from the standpoint of model choice. the authors were resident at the Isaac Newton Institute for Mathemati-

cal Sciences, Cambridge, UK.We need to have some way of deciding which clustering
model is most appropriate for interpreting the data.
However, we stress that care should be taken in the
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ing heterogeneity in forensic databases using hierarchical Bayes results obtained for the different runs indicate that m
models. Biometrika 85: 269–287. and c are too small. It is then necessary either to increaseSmouse, P. E., R. S. Waples and J. A. Tworek, 1990 A genetic

m and c or (if this makes the method computationallymixture analysis for use with incomplete source population-data.
Can. J. Fish. Aquat. Sci. 47: 620–634. infeasible) to construct a Markov chain with better mix-

Spiegelhalter, D. J., N. G. Best and B. P. Carlin, 1999 Bayesian
ing properties. In the examples presented in this articledeviance, the effective number of parameters, and the compari-

son of arbitrarily complex models. Available from http:// we have chosen c 5 1.
www.mrc-bsu.cam.ac.uk/publications/preslid.shtml. Gibbs sampling is a method of constructing a Markov

Stephens, M., 2000a Bayesian analysis of mixtures with an unknown
chain with stationary distribution p(u), which hasnumber of components—an alternative to reversible jump meth-

ods. Ann. Stat. (in press). proved particularly useful for clustering problems. Sup-
Stephens, M., 2000b Dealing with label-switching in mixture mod- pose that u may be partitioned into u 5 (u1, . . . , ur),

els. J. R. Stat. Soc. Ser. B (in press).
and that although it is not possible to simulate from

Communicating editor: M. K. Uyenoyama p(u) directly, it is possible to simulate a random value
of ui directly from the full conditional distribution
p(ui | u1, u2, . . . , ui21, ui 1 1, . . . , ur) for i 5 1, 2, . . . ,

APPENDIX r. Then the following algorithm may be used to simulate
a Markov chain with stationary distribution p(u):MCMC methods and Gibbs sampling:

Algorithm A1: Starting with initial values u(0) 5
MCMC methods are extremely useful for obtaining (u(0)

1 , . . . , u(0)
r ), iterate the following steps for m 5 1,

(approximate) samples from a probability distribution, 2, . . . .
p(u), say, which cannot be simulated from directly [in

Step 1. Sample u(m)
1 from p(u1|u(m21)

2 , u(m21)
3 , . . . , u(m21)

r ).our case u 5 (Z, P, Q) and p(u) 5 Pr(Z, P, Q|X)]. The
idea is to construct a Markov chain u(0), u(1), u(2), . . . with Step 2. Sample u(m)

2 from p(u2|u(m)
1 , u(m21)

3 , . . . , u(m21)
r ).
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Step r. Sample u(m)
r from p(ur|u(m)

1 ), u(m)
2 , . . . , u(m)

r21). then use this to estimate the posterior distribution of
K from (11). An alternative interpretation of this

It is easy to show that if u(m21) z p(u), then u(m) z
method is that model selection is based on penalizing

p(u), and so p(u) is the stationary distribution of this
the mean of the Bayesian deviance by a quarter of its

Markov chain.
variance (cf. Spiegelhalter et al. 1999, who suggested
investigating model fit using a different penalization of

Inference on K, the number of populations the mean of the Bayesian deviance).
We now provide further details regarding our ap-

proach to choosing K (see Inference for the number of
Details of the MCMC algorithmspopulations).

The simplest way of estimating Pr(X|K) is the so-called Algorithm A2: Step 1 may be performed by simulat-
harmonic mean estimator ing pkl· independently for each (k, l), from

pkl·|X, Z z D(l1 1 nkl1, . . . , lJl 1 nklJl ), (A6)1
Pr(X|K)

5 #Pr(Z, P, Q|X, K)
Pr(X|Z, P, Q,K)

dZdPdQ

where
≈ 1

M o
M

m51

1
Pr(X|Z(m), P(m), Q(m), K)

. (A1) nklj 5 #{(i,a) : x(i, a)
l 5 j and z(i) 5 k} (A7)

is the number of copies of allele j at locus l observedThis estimator is notoriously unstable, often having in-
in individuals assigned (by Z) to population k.finite variance, and is thus of little use in practice. One

Step 2 may be performed by simulating z(i), indepen-theoretically attractive alternative involves estimating
dently for each i, fromPr(P, Q|X) for some P, Q (Chib 1995; Raftery 1996).

However, our own implementation of versions of this
Pr(z(i) 5 k|X, P) 5

Pr(x(i)|P, z(i) 5 k)
RK

k951Pr(x(i)|P, z(i) 5 k9)
, (A8)approach has turned out to be computationally infeasi-

ble, due to the very high-dimensional parameter space
of our problem. While alternative approaches to esti- where Pr(x(i)|P, z(i) 5 k) 5 pL

l51 pklx(i,1)pklx(i,2).
mating Pr(X|K), such as variable-dimension MCMC Note that Equation A8 makes an implicit assumption
methods (Green 1995; Stephens 2000a) or importance that an equal fraction of the sample is drawn from each
sampling (DiCiccio et al. 1997), may lead to compu- population. Alternatively, it might be natural to intro-
tationally feasible algorithms, the high-dimensional pa- duce an additional parameter for the fraction of the
rameter space makes designing efficient versions of sample drawn from each population.
these schemes rather challenging. For this reason we Algorithm A3: Step 1 may be performed by updating
take a more ad hoc approach, which begins by consider- P and Q independently. Updating P is achieved as be-
ing the Bayesian deviance fore, using Equation A6 but where the definition (A7)

of nklj is modified in the obvious way toD(Z, P, Q) 5 22 log Pr(X|Z, P, Q). (A2)

nklj 5 #{(i, a) : x(i,a)
l 5 j and z(i,a)

l 5 k}. (A9)The conditional mean and variance of D given X are
easily estimated using Updating Q involves simulating from
E(D(Z, P, Q)|X) q(i)|X, Z z D(a 1 m(i)

1 , . . . , a 1 m(i)
K ), (A10)

≈ 1
M o

M

m51

22 log Pr(X|Z(m), P(m), Q(m)) 5 m̂, say, (A3) where m(i)
k is the number of allele copies in individual

i that originated (according to Z) in population k:
and

m(i)
k 5 #{(l, a) : z(i,a)

l 5 k}. (A11)
Var(D(Z, P, Q)|X)

Step 2 may be performed by simulating zl
(i,a), indepen-

dently for each i, a, l, from≈ 1
M o

M

m51

(22 log Pr(X|Z(m), P(m), Q(m)) 2 m̂)2 5 ŝ2, say.

(A4) Pr(z(i,a)
l 5 k|X, P) 5

q(i)
k Pr(x(i,a)

l |P, z(i,a)
l 5 k)

RK
k951q(i)

k9 Pr(x(i,a)
l |P, z(i,a)

l 5 k9)
,

If we make the (admittedly dubious) assumption that (A12)
the conditional distribution of D given X is normal, then

where Pr(x(i,a)
l |P, z(i,a)

l 5 k) 5 pklx(i,a)
l

.it follows from (A1) that
Step 3 may be performed by simulating a proposal

22 log(Pr(X|K)) ≈ m̂ 1 ŝ2/4. (A5)
a9, from a normal distribution with mean a, and some
variance s2

a. The proposal is automatically rejected if(Replacing the assumption of normality with the as-
sumption of being gamma-distributed may be more as- a9 # 0, and otherwise it is accepted with the appropriate

Metropolis-Hastings probability.ymptotically justifiable and gives similar results.) We



959Inferring Population Structure

Model with correlated allele frequencies locus l, and f (l) . 0 determines the strength of the
correlations across populations at locus l. When f (l) isFor very closely related populations it is natural to
large, the allele frequencies in all populations tend toassume that allele frequencies are correlated across pop-
be similar to the mean allele frequencies in the sample.ulations. For completeness, we describe a model that is
In our implementation of this model, we placed aimplemented in the program structure, allowing allele-
gamma prior on each f (l) and used a Metropolis-Hastingsfrequency correlations.
update step. The proposal f (l)9 was chosen from a normalRecall that we model allele frequencies by pkl· z D(l1,
with mean f (l) and some variance s2

f . It was automaticallyl2, . . . , lJl). For all the results presented in this article,
rejected if f (l)9 # 0.

we took l1 5 l2 5 · · · 5 lJl 5 1.0, which gives a uni-
There are several possible alternative models to con-

form distribution on allele frequencies, where Jl is the
sidering a factor f for each locus. One would be to

number of alleles at lows l. To model closely related
consider a factor for each population, and anotherpopulations, we consider an alternative model, where
would be to give each type of locus (e.g., SNPs and
dinucleotide and trinucleotide repeats) a shared valuepkl· z D( f (l )Jlm

(l)
1 , f (l )J lm

(l )
2 , . . . , f (l )Jlm

(l )
Jl ). (A13)

of f.
Here, m (l)

i is the mean sample frequency of allele i at


