
Inference of Program Properties with Attribute

Grammars, Revisited

Met attributtengrammatica’s heen, met

programma-eigenschappen terug

(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector

magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen op maandag 9 januari 2012 des middags te 12.45 uur

door

Adriaan Middelkoop

geboren op 8 februari 1983 te Gorinchem

Promotor: Prof.dr. S. D. Swierstra

Co-promotor: Dr. A. Dijkstra

The work in this thesis has been carried out under the auspices of the research school IPA

(Institute for Programming research and Algorithmics) and was supported by Microsoft Re-

search through its European PhD Scholarship Programme.

Author: Adriaan Middelkoop, 2011

Printed by: Wöhrmann Print Service

Cover photo: Fushimi Inari by Stéfan Le Dû, 2008

Preface

With Attribute Grammars (AGs), Knuth [1968] presented a formalism that turned out to be

excellent for reasoning about computations that can be expressed as a traversal over a tree.

It is surprising how many programs can be conceptually described as an attribute grammar.

On the other hand, it may be difficult to precisely formulate a program as such. In particular,

several aspects of type inference algorithms are not straightforward to describe with an AG

because these aspects require fixpoint iteration combined with dynamic tree construction in

their implementation. In this thesis, we address this issue, and this thesis is thus a potpourri

of type systems and AGs, with the greater focus being on the latter.

Recent attribute grammar systems compute attributes in a demand-driven evaluation order

determined at runtime, which is relatively straightforward to implement when incorporating

or embedding AGs in some other programming language [Sloane et al., 2010]. We, on the

other hand, resurrect ordered attribute grammars, for which there exists a static order in which

the attributes can be computed [Kastens, 1980]. This concept played an important role in the

past to obtain efficient implementations when every byte of memory and every clock tick

mattered.

For us, however, another consequence of the existence of a static order is important. In a

recent paper, Kaminski and Van Wijk [2011] show the need to express in the AG description

a distinction between trees that have not been attributed yet and trees that have been. Owing

to the static order, we go a step further and distinguish and make assumptions about trees in

various stages of their attribution. We show that this provides a means to describe, control

and orchestrate chunks of attribute evaluation, which we exploit to fine-tune AG evaluation

to capture inference algorithms.

With this thesis, we hope to show the power of AGs to implementors of type inference

algorithms, and shed a new light on ordered AGs for implementors of AGs.

Acknowledgements. My promotor Doaitse Swierstra and copromotor Atze Dijkstra were

a crucial source of inspiration. Despite his busy life, Doaitse takes the time to spread his

brilliant ideas and interesting anecdotes. Doaitse is a great advocate of functional program-

ming. We had many interesting discussions, although these usually started with an account of

the low-level details of the tools that he fiddled with the day before. Or the latest functional

programming exams. Nevertheless, Doaitse sets a great example, and it was an honor to work

under his supervision.

Atze sets another example, especially when the exploration of a design space is concerned,

and the decomposition into orthogonal aspects. It is amazing how Atze approaches problems

with clear and concrete solutions, yet reasons at a high level of abstraction. Atze has a calm

appearance, yet I also experienced some of his adventurous and active traits. In particular, I

recall early-morning training runs during conferences, at times that others were deep asleep.

1

Preface

The reading committee deserves a compliment for bravely reading through my thesis, as

well as the anonymous reviewers before them that had to go through the papers from which

this thesis is composed.

The Software Technology group at Utrecht is a pleasant group to be part of, and I thank

all my colleagues and former colleagues for the enjoyable time. I especially recall the crazy

group effort for the ICFP contest in 2007.

I thank my former office mates Eelco Dolstra, José Pedro Magalhães, and Stefan Holder-

mans. I hope that Stefan does not tear his eyes out if he spots errors in the Dutch summary at

the back of this thesis. I also had pleasant discussions with my room mates Jeroen Bransen

and Alexander Elyasov. I hope that you will enjoy attribute grammars as much as I do.

Halfway in my thesis project, I worked for half a year in Brazil. I want to heartily thank

Lucı́lia Camarão de Figueiredo for her effort in making my stay in Brazil pleasant.

The last year, I worked together with Wishnu Prasetya and Jurriaan Hage to statically

instrument ActionScript bytecode. Jurriaan creates a warm atmosphere in the group, and is

always around for a conversation or two.

The Universität Freiburg, and the ProgLang group in particular, generously providing me

with a place to work each time I visited Freiburg. Herzlichen Dank! Also to Peter Thiemann

for some heavy sport training sessions after work.

Thanks to Andres Löh for taking the initiative, we have with several colleagues a weekly

distraction after work in the form of the Ars Magica games that we are still playing remotely.

It is surprising what hidden personalities colleagues expose when exploring a fantasy setting.

The rather secretive IRC channel #klaplopers, formed by former occupants of the ST-

Lab, provided welcoming distractions, both online and in real life. I want to thank Arthur

van Dam and others for several nice mountainbike trips, although I’m not insane enough

on a bike to be a real challenge. Together with Martin Bravenboer, we still have an Ironman

Triathlon to finish. Eelco Dolstra, a living index of Wikipedia [citation needed], Rob Vermaas,

Dick Eimers, my greetings to you. Last but not least, Armijn Hemel saved the IRC channel

countless of times from my incorrect spelling and grammar.

Words fail to describe the wonderful role that Annette Bieniusa plays in my life. I tried

once, but did not come close. Not even with 91 pages of emails. She may appear cute,

small and innocent, but in the meantime she stole my heart. She is my greatest source of

happiness and support. Although she cleverly managed to keep attribute grammars out of our

discussions, she bravely read through my thesis and gave me valuable comments.

Tot slot wil ik mijn ouders en zusjes bedanken. Ik heb jullie tijdens het schrijven van dit

werk niet veel aandacht kunnen geven, en ik hoop in de komende tijd daar wat verandering

in aan te brengen, ondanks dat ik nu wat verder weg woon.

Sponsors. I am grateful to Microsoft Research in Cambridge for granting me a Ph. D.

Scholarship, which made my employment at the Universiteit Utrecht possible. Also, the

European project LerNet and the Universidade Federal de Minas Gerais partially financed

me so that I could work for half a year in Brazil. Many ideas in this thesis arose during my

daily walks to and from the university in Belo Horizonte.

2

Contents

Preface 1

1 Introduction 7

1.1 Overview . 7

1.2 Background on Type Systems . 9

1.2.1 Specification of Programming Languages 10

1.2.2 The Lambda Calculus . 10

1.2.3 Type Rules . 11

1.2.4 Type Inference . 14

1.2.5 Parametric Polymorphism . 18

1.2.6 Damas-Hindley-Milner Inference 20

1.2.7 Polymorphic Lambda Calculus . 22

1.2.8 Discussion . 23

1.3 Background on Attribute Grammars . 24

1.3.1 Syntax of Context-Free Grammars and Attribute Grammars 24

1.3.2 Dependency Graphs . 30

1.3.3 Tree-Walking Automata . 34

1.3.4 Demand-driven Attribute Evaluation 37

1.3.5 Statically Ordered Attribute Evaluation 39

1.3.6 Incremental Descriptions . 40

1.3.7 Higher-Order Children and Attributes 42

1.3.8 Circular Reference Attributes . 43

1.3.9 Correspondences between AGs, HOAGs, Monads, and Arrows 44

1.3.10 Specification of Typing Relations 45

1.3.11 Damas-Hindley-Milner Inference 46

1.3.12 Copy Rules and Collection Attributes 48

1.3.13 Advantages and Disadvantages . 51

1.4 Background on Ruler . 51

1.4.1 Ruler Features . 52

1.4.2 Ruler Concepts . 52

1.4.3 Damas-Hindley-Milner Inference 56

1.4.4 Discussion . 56

1.5 Thesis Overview . 57

1.5.1 Inference Algorithms as an Attribute Grammar 58

1.5.2 Attribute Grammar Extensions . 58

1.5.3 Contextual Chapters . 60

3

Contents

1.6 The Context of this Thesis . 61

1.6.1 Challenges . 61

1.6.2 Additional Challenges . 62

1.6.3 Solutions . 63

1.7 Related Work . 64

1.7.1 Circular AGs and Exposure of Intermediate States 64

1.7.2 Inference Rules . 64

1.7.3 Proof Assistants . 64

1.7.4 Ott . 65

1.7.5 TinkerType . 66

1.7.6 Overview of Recent Attribute Grammar Systems 69

1.8 Conclusion . 69

2 Outline of the RulerCore Concepts 71

2.1 Attribute Grammars with Side Effects . 71

2.2 Attribute Grammars with Commuting Rules 81

2.3 AGs with Tree Construction . 87

2.4 Case Study with GADTs . 95

2.5 Attribute Grammars with Stepwise Evaluation 100

2.6 Attribute Grammars with Dependent Types 107

2.7 Attribute Grammars on DAGs . 110

2.8 Conclusion . 110

3 AGs with Side Effects 111

3.1 Introduction . 111

3.2 Example . 113

3.2.1 Visitor Design Pattern . 113

3.2.2 Attribute Grammars . 115

3.2.3 RulerCore . 120

3.2.4 Desugared RulerCore . 124

3.3 Static Semantics of RulerBack . 127

3.4 Translation of RulerBack to JavaScript . 131

3.5 Translation of RulerCore to RulerBack . 133

3.5.1 Implicit Invocations . 133

3.5.2 Rule Ordering . 135

3.6 Discussion . 141

3.7 Related Work . 141

3.8 Conclusion . 142

4 AGs with Commuting Rules 145

4.1 Introduction . 145

4.2 Example with Barriers . 147

4.3 Core Representation of AGs with Barriers 149

4.4 Static Dependency Graphs . 154

4

Contents

4.5 Visits Graphs . 156

4.6 Optimizations . 168

4.7 Execution Plans and Generated Code . 170

4.8 Generalization to Phases . 176

4.9 Commuting Rules . 182

4.10 Related Work . 186

4.11 Conclusion . 187

5 Derivation Tree Construction 189

5.1 Introduction . 189

5.2 Motivation . 190

5.2.1 Example: the Shadow-language . 191

5.2.2 Relation to Attribute Grammars . 192

5.2.3 Typing Expressions . 193

5.2.4 Unification . 199

5.2.5 Lookups in the Environment . 202

5.2.6 Translation to the Target Expression 206

5.2.7 Discussion . 207

5.3 Semantics . 208

5.3.1 Syntax . 208

5.3.2 Example . 209

5.3.3 Translation . 211

5.4 Related Work . 212

5.5 Conclusion . 214

6 AGs with Stepwise Evaluation 215

6.1 Introduction . 215

6.2 Example of a Stepwise AG for a Predicate Language 217

6.2.1 Syntax of the Predicate Language 218

6.2.2 Deterministic Operational Semantics 218

6.2.3 Declarative Operational Semantics 219

6.2.4 Stepwise Operational Semantics . 220

6.2.5 Hybrid On-demand and Stepwise Evaluation 223

6.3 SAG Translation . 223

6.4 Lazy Coroutines and the Stepwise Monad 225

6.5 Imperative Implementation . 227

6.6 Remarks . 228

6.6.1 Extensions . 228

6.6.2 Benchmarks . 228

6.7 Related Work . 229

6.8 Conclusion . 231

6.A Progress Reports and their Emission . 231

6.B Translation Scheme . 232

6.C Semantic Lookahead . 234

5

Contents

6.D Watchers . 235

7 AGs with Dependent Types 237

7.1 Introduction . 237

7.2 Preliminaries . 238

7.3 Dependently Typed Example . 241

7.3.1 Support Code Dealing With Environments 241

7.3.2 Grammar of the Source and Target Language 242

7.3.3 Dependent Attributes . 243

7.3.4 Semantics of Attributes . 244

7.4 AG Descriptions and their Core Representation 245

7.5 Translation to Agda . 247

7.6 Partially Defined Attributes . 251

7.7 Related Work . 252

7.8 Conclusion . 253

7.A Implementation of the Support Code . 254

7.A.1 Absurd Rules . 256

7.B Dependent Nonterminal Attribution . 258

7.C Ideas Transferrable to AG Systems for Haskell 261

8 Conclusion 263

8.1 Addressed Challenges . 263

8.2 Solutions . 264

8.3 Remarks . 265

8.4 Implementations . 265

8.5 Future Work . 266

Bibliography 267

Samenvatting 275

6

1 Introduction

This thesis investigates the application of attribute grammars to the description of inference

algorithms (as implemented in a compiler) that are specified by a collection of inference rules.

Such collections are a means to specify the semantics of programming languages. Since

there exists no universal inference algorithm for inference rules, it makes the description of

inference algorithms a nontrivial exercise. Our goal is to use attribute grammars to make it

easier to write such descriptions.

1.1 Overview

Language specifications. A formal programming language specification describes the

language’s notation and the notation’s meaning, and forms a set of requirements for tools that

process programs written in this language. A static semantics of a programming language is

often expressed as a relation between properties of programs written in this language, where

the relation is described by a set of inference rules. The structure of such a program is the

Abstract Syntax Tree (AST) obtained by parsing the source code of the program, and plays

usually an important role in the rules. For example, in case of code generation, a static

semantics expresses a relation between the AST and machine code, whereas in case of type

checking, the semantics typically relates the AST to a type for each program fragment and an

environment with a type for each identifier.

Implementations. A compiler analyzes a program and computes properties of that pro-

gram. This analysis is specified by a static semantics, which describes a relation between

programs and properties. For example, the specification of a compiler that translates source

code to machine code describes a relation between a program and machine instructions. The

properties computed by a compiler can be seen as the evidence that there exists a proof that

the properties are related to the program. Assuming that the relations are specified with infer-

ence rules, such a proof has the form of an attributed tree. Each node represents an application

of an inference rule of the semantics, and attributes describe how the rules are instantiated.

A semantics is syntax directed if the shapes of the proofs are isomorphic to the AST.

A semantics is algorithmic if additionally the constraints between attributes in the tree are

expressible as computable functions. As a compiler’s implementation is usually based on

traversals of the AST, an algorithmic semantics is a convenient specification of a compiler.

Since the implementation boils down to traversing the tree and applying the computable func-

tions as mentioned in the specification in the right order, there exists a clear correspondence

between the specification and the implementation. An example is a semantics for an assem-

bly language where the relation between the AST and machine code is actually a bijection.

7

1 Introduction

However, most language’s semantics are not entirely algorithmic. We come back to this point

further below.

Attribute Grammars (AGs) [Knuth, 1968] are an attractive domain specific programming

language for the implementation of an algorithmic semantics. Attributes represent inductive

properties of the AST. A context-free grammar describes when an AST is correctly structured

by relating productions to nodes in the AST. An AG describes when an AST is correctly deco-

rated with attributes by imposing constraints on the attributes per node of the AST, formalized

by rules per production. These rules are computable functions between attributes denoted in

some host language. AGs abstract from the traversal over the AST and from the order of

evaluation of the rules. Therefore, AGs are composable, which makes it possible to describe

the implementation of a large language as various separate aspects. Moreover, an AG is com-

pilable to an efficient algorithm that computes the attributes. Thus, an AG serves both as a

specification and an implementation of an algorithmic semantics.

Declarative specifications. As argued above, to implement a static semantics, it is prefer-

able that the semantics is algorithmic because of the close correspondence with an implemen-

tation. A declarative semantics is a semantics suitable for formal reasoning and documenta-

tion purposes, and is usually more abstract and concise than an algorithmic semantics.

For example, consider a static semantics that describes a relation between the AST and a

sequence of machine instructions. When the relation is not functional, there may be many

related sequences of machine instructions for a given AST. In particular, there may be a

difference between a shortest sequence of instructions, or a sequence of instructions with the

lowest expected execution time. The choice of which sequence is computed is left up to the

implementation or specified separately.

Moreover, declarative features of a programming language can usually be more concisely

described relationally instead of being based on a computable function. An example is oper-

ator overloading, where the choice of the implementation of an operator depends on the types

of the operands. Effectively, the compiler takes care of some of the work of the programmer,

and models the inference of the proof in some way.

From ASTs to proofs. A transformation from a non-algorithmic semantics to an algo-

rithmic semantics is non-trivial. An implementation using traversals of the AST is based on

an algorithmic semantics. Consequently, it is difficult to keep the implementation consistent

with the declarative language specification.

In this thesis, we approach the implementation of a static semantics from another direction.

We consider AGs based on the grammar that underlies the inference rules of the relation

instead of the language’s grammar. As a particular advantage, the AG is closely related to

the declarative specification. However, the AG specifies when an attributed proof is valid, but

does not specify how to obtain the proof. Since there exists no general procedure that maps

such an AG to an algorithm that infers the proof, we need to augment the AG with additional

information to obtain such an algorithm.

8

1.2 Background on Type Systems

Thesis. In this thesis, we focus on the description of type inference algorithms with at-

tribute grammars. Most type inference algorithms are a complex combination of a small set

of inference techniques, such as type variables and unification to calculate with values that

are not fully known yet, fixpoint iteration to approximate solutions, constraints to defer the

inference of a subtree, and search tree construction to encode alternative solutions. Such

techniques are based on gradually building a proof and exploring intermediate candidate so-

lutions.

In our approach, we conservatively extend AGs to support these techniques and balance

between assumptions about the evaluation algorithm, and the preservation of the declarative

nature of the description. The central concept that underlies our extensions are higher-order,

ordered attribute grammars. In such higher-order AGs, the domain of an attribute can be an

attributed tree, which allows us to dynamically grow the tree. The state of a tree is described

by a configuration, which specifies the decorations that have been computed. In an ordered

AG, the configurations are linearly ordered. A visit, a unit of evaluation for a node, transitions

the state of the node to a state described by the next configuration. This concept offers control

over the simultaneous evaluation of attributes and exploration of the tree.

Chapter organization. This chapter presents background information and a short out-

line. We assume that the reader has a strong background in the programming language

Haskell [O’Sullivan et al., 2008], is familiar with type systems [Pierce, 2002], and knows

the basics of attribute grammars [Knuth, 1968]. This chapter gives (rather) informal defini-

tions of relevant concepts and provides pointers to literature.

The actual contents of the thesis start with the next chapter, Chapter 2. Chapter 2 gives a

detailed summary of our extensions and shows how these fit together. Each following chapter

covers an extension in detail.

We address concepts of type systems and attribute grammars in combination with nota-

tion in Section 1.2 and Section 1.3. In particular, we recast the notion of ordered attribute

grammars. Section 1.4 addresses previous work, Section 1.5 gives an overview of each of the

extensions, and Section 1.6 sketches the overall goal. Finally, Section 1.7 addresses related

work.

1.2 Background on Type Systems

In later chapters, we use type systems based on variants of the lambda calculus as example. In

this section, we give a short summary on the lambda calculus, show the evaluation of lambda

terms, and give a type system. Furthermore, the discussion of variants of the lambda calculus

and their type systems serves as a vehicle to discuss design and implementation challenges of

type systems, which we use in the motivation of this thesis in Section 1.5. Another purpose

of this section is to introduce vocabulary and notation for subsequent chapters.

We assume that the reader is already familiar with the lambda calculus and type systems.

Introductory books on type systems [Pierce, 2002, Harper, 2010] provide a more extensive

and formal explanation.

9

1 Introduction

1.2.1 Specification of Programming Languages

Programming languages are described by a grammar since a grammar specifies the set of

programs that belong to the language. A semantics relates a program to some properties in a

given domain. When these properties represent the correctness of the program, or represent a

program in (another) programming language, we talk about a static or denotational semantics.

When the properties describe the runtime behavior of the program (typically in the form of

state transitions), we talk about a dynamic or operational semantics.

We assume that the specification of a programming language consists of a context-free

grammar (Section 1.3.1) and static semantics. The specified programming language is called

the object language, and a program an object term. In case of compilation and transformation,

the object language is often referred to as the source language and object terms as source

terms. The language that describes the specification and the language in which the compiler

is implemented are called meta languages. Finally, in case of a translation to a different

language, the language where we translate to is called the target language and the translated

program a target term.

1.2.2 The Lambda Calculus

The lambda calculus is a language that is often used in programming language research, and

in research on type systems in particular. Many concepts of programming languages have

their roots in variants of the lambda calculus, or have been well-studied in such a context.

We discuss the lambda calculus, because we use its concepts in object languages, source

languages and target languages in the following chapters.

Figure 1.1 shows the abstract syntax e of expressions in an explicitly-typed variant of the

simply-typed lambda calculus, which may contain types τ . In passing, we also give syntax

for environments and evaluation contexts. The structure of e is called the Abstract Syntax

Tree when represented as a tree (Section 1.3.1).

In the lambda calculus, a function may be passed as a value v in the form of a lambda

expression, and thus is first class. Such a function is anonymous, although the function

can be given an explicit name by binding the function to an identifier. For example, the

following expression denotes the application of a function that applies the identity function

that it receives as an argument to the value 3:

(λy : I→ I . y 3) (λx : I . x) -- evaluates to 3 of type I

To specify to what value an expression evaluates, we provide below an operational seman-

tics. In this semantics, the simultaneous substitution of all free x in e1 by e2 is denoted by

[x := e2] e1. The semantics1 consists of the reduction relation e1 e2, which is the smallest

relation that satisfies the following inference rules2 of Figure 1.2, which we explain below.

1 Such a semantics is called a small-step operational semantics because the inference rules describe a transformation

step from an intermediate term to another intermediate term, and the actual transformation is the exhaustive

application of these transformation steps.
2 In Section 1.2.3 we will actually consider a notation for inference rules and their interpretation.

10

1.2 Background on Type Systems

e ::= e1 e2 -- application, with expression e1 and e2

| x -- variables, e.g. x,y,z

| v -- values (head-normal form)

v ::= i -- integer constant, e.g. 3 and 42

| λx : τ.e -- abstraction, with param x of type τ and body e

τ ::= I -- integer type

| τ1→ τ2 -- function type

Γ ::= /0 -- empty environment

| Γ,x : τ -- environment Γ, with on top a mapping of x to type τ

x,y,z -- variables

f ,g,h,a,e -- expressions

Figure 1.1: Syntax of the explicitly-typed lambda calculus variant.

e1 e2

(λx : τ . e1) e2 [x := e2] e1 BETA

e1 e2

e1 e e2 e
LEFT

Figure 1.2: Operational semantics as a reduction relation on expressions e.

A beta-redex is an expression of the form (λx.e) a which can be reduced. The above rules

describe normal-order reduction. Through the rule LEFT the beta-redex in the head position

is identified. Indeed, if we consider the reduction of the above example, we end up first

substituting f with the identity function, such that we obtain (λx : I . x) 3, and then substitute

3 for x, such that we end up with the value 3. When no reductions are possible anymore, the

expression is in head normal form.

1.2.3 Type Rules

The purpose of a static semantics is to exclude programs that incorrectly use their data. A type

system classifies expressions as well-typed if it can associate a type with it. A type system is

sound if it has the subject reduction property, which means that after each reduction step, the

resulting term has the same type as the original expression. Type systems typically ensure

the absence of certain programming errors, such as passing an integer where a function is

expected.

As an example, we give a type system specification for the lambda calculus as defined

above in Figure 1.4 and explain it below. We allow liberal syntactic sugar in our specifica-

11

1 Introduction

r ::=∀x . d -- quantified rule over meta variables x

d ::= j1 ... jn ; j -- rule with premisses j, conclusion j, n> 0

j ::=Rn m -- judgment with |m|= n

Rn -- n-place relation R (n often omitted)

m -- argument (meta expression)

x,y -- meta variables for values in the object language

The notation j1 ... jn
j

(with optional rule label) is sugar for j1 ... jn ; j. The explicit equality

x1 ≈ x2 denotes a judgment Eq2
τ x1 x2, with relation Eqτ representing structural equality of

object terms of meta-type τ . The quantification of meta variables is usually left implicit.

Figure 1.3: Notation for inference rules.

Γ ⊢ e : τ

Γ ⊢ i : I CON

(x : τ) ∈ Γ

Γ ⊢ x : τ
VAR

Γ ⊢ f : τ1→ τ2

Γ ⊢ a : τ1

Γ ⊢ f a : τ2

APP
Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λ (x : τ1).e : τ1→ τ2

LAM

Figure 1.4: Type rules of the explicitly typed lambda calculus variant.

tions. Depending on the context, the notation x represents a sequence or set x1, ...,xn.

We define a typing relation Γ ⊢ e : τ , which is notation for a three-place relation over Γ, e,

and τ . A judgment of this relation states that in environment Γ, the expression e has type τ .

We typically describe such relations with inference rules (type rules). Figure 1.3 gives the

syntax of inference rules. A type rule r consists of zero or more premisses (judgements j)

above the line, and a conclusion j below the line. We come back to meta expressions m later,

but it contains at least the meta variables x.

Figure 1.4 shows the rules of the lambda calculus as introduced above. The rule CON

associates the type I to any integer constant. The VAR rule associates the type to the identifier

as it is bound to that identifier in the environment. The APP rule requires expression f to be a

function that takes an argument of the same type as its formal parameter. The type associated

with the application itself is the result type of the function. In LAM, the body of the lambda

may assume a type τ1 associated with identifier x in the environment.

The typing relation is the smallest relation that satisfies a set of rules r, which serve as

axioms of the relation. In a judgment, meta expressions m are arguments to some relation

R. The language of meta expressions is a formal language, which is usually left implicit, but

facilitates the construction of symbolic and concrete object terms.

A Relation R can be a built-in relation (an atomic relation) or relation described by infer-

ence rules. Instead of using expressions m to construct symbolic terms, atomic relations for

each production in the object language can equivalently be used to constrain symbolic object

12

1.2 Background on Type Systems

terms. For example, for the arrow-production in the syntax of types, we assume the existence

of an atomic relation C→ τ1 τ2 τ3 that expresses τ1 ≡ τ2→ τ3. Then, instead of a judgement

R (τ2→ τ3), we may write R τ1 with a fresh τ1 and C→ τ1 τ2 τ3.

The rules are in canonical form when the arguments of relations in the judgments consist

only of meta variables, with the single exception of the judgment denoted m ∗ x which

represents a reduction relation on object terms where m is a meta expression. Additionally,

each meta variable occurs at most once, not counting its occurrences in (additional) explicit

equalities. We assume in this thesis that meta expressions are written in Haskell. For reasons

of simplification we assume below that meta expressions in this chapter are written in the

above lambda calculus so that the definitions of m and e coincide. To rewrite rules into

canonical form we use the operational semantics of (meta) expressions. For example, we

replace a judgment R e to R x and introduce the additional premise that e ∗ x, where x is

fresh and ∗ is the exhaustive application of the reduction relation on (meta) expressions.

To deal with the occurrences of meta variables, we introduce additional explicit equali-

ties and quantified fresh variables. Rules in canonical form are more verbose, but easier to

formally reason with.

Given arguments a for the typing relation R described by inference rules, we can prove

that these are a member of the typing relation, denoted by R a or a ∈ R, by constructing a

derivation tree using the rules of the relation. A derivation tree is a proof for R a when there

is a rule of R with a conclusion that matches against R a (with substitution θ), and for each

premise of the rule (with θ applied), there is subtree that is a proof for that premise. Proofs

of atomic relations are leafs of a derivation. A derivation tree for the earlier example is:

LAM

VAR
(y : I→ I) ∈ Γ1

Γ1 ⊢ y : I→ I Γ1 ⊢ 3 : I CON

Γ1 ⊢ y 3 : I
APP

Γ0 ⊢ λy : I→ I . f 3 : (I→ I)→ I

(x : I) ∈ Γ2

Γ2 ⊢ x : I
VAR

Γ0 ⊢ λ (x : I).x : I→ I
LAM

Γ0 ⊢ (λy : I→ I . f 3) (λx : I .x) : I
APP

Γ0 = /0 -- initial environment

Γ1 = Γ0,y : I→ I -- extension of Γ0 in the application of LAM (left branch)

Γ2 = Γ0,x : I -- extension of Γ0 in the application of LAM (right branch)

Each node v in the derivation tree is associated with a judgment jv = Rv a, and the subtree

rooted by v is a proof that a ∈ Rv, where Rv is the associated relation. Furthermore, node v

is associated with some rule rv, which determines the structure of v. The node is furthermore

decorated with values for the meta variables that are bound by rv.

Type rules are syntax-directed when in derivation trees, for each node v, the associated

rule rv is uniquely determined by an argument a (which represent the expression for which

we try to construct the proof) of the associated judgment jv. Thus, for syntax directed rules,

the choice of what rule to apply in the construction of the proof is determined uniquely by

productions of the object language, and there is a one-to-one mapping between nodes in the

abstract syntax tree and nodes of the derivation tree. This is a desirable property because it

13

1 Introduction

means that the shape of the derivation tree depends only on the structure of the object term,

and is thus given at the start of the proof construction: we know what rules to apply where,

and are only left with the problem of how to make their instances match.

However, when the correspondence between rv and the a priori known arguments i⊆ a of

jv is not functional, we call the rules declarative3. Additionally, when rv also depends on the

inferred type τ , with τ ∈ a, the rules are declarative and also type directed.

A rule rv imposes two forms of constraints on node v in the derivation tree. Constraints

on the structure (as discussed above), and constraints on the values for the node’s meta vari-

ables that decorate v (as discussed below). When constructing a proof, we choose rules and

values that satisfy these constraints. We call the description of such choices aspects of the

rules. These aspects are declarative when the decisions are not functionally determined by

i. Declarative aspects complicate the construction of a proof, because there may be many

choices that seem suitable to complement a partial proof, but turn out later to be inappropri-

ate. In Section 1.2.4, we discuss strategies to resolve such declarative aspects.

We determine which meta variables are declaratively defined with a transformation of the

relations into functions: those meta variables that make the function non-deterministic are

declaratively defined. For that, each parameter of a relation must have a specification that

declares it (conditionally) as either an input or output. In a judgement j = R x of a rule in

canonical form, a meta variable x ∈ x is at an input position when j is a premise and x is

passed as output argument, or when j is a conclusion and x is passed as an input argument.

Otherwise, a meta variable is at an output position. In case of explicit equalities x1 ≈ x2, x1

and x2 are both at an input position. In case of the reduction relation m x, the occurrences

of meta variables of m are at an input position and x is at an output position.

In case of the construction/destruction relation CP related to the production P of the object

language, in the judgment CP x0 x1 ... xn, x1, ...,xn are at an input position if and only if x0 is

at an input position.

A variable is declarative if none of its occurrences are on an output position and the vari-

able does not occur in an explicit equality with a non-declarative variable.

As an example, we add a type rule for an implicitly typed lambda abstraction, and discuss

which meta variables are declarative. As preparation we show the canonical forms LAM-IMPL’

and APP’ in Figure 1.5. When we assume that types are an output of the relation, the meta

variable τ1 of LAM-IMPL is declarative. When we assume that types are an input of the rela-

tion, the meta variable τ1 of APP is declarative.

The above sketch of an analysis assumes that the atomic relations are computable func-

tions. We call type rules declarative if they exhibit declarative aspects, and algorithmic other-

wise. In the latter case, when the rules are described in Ruler (Section 1.4), a type inference

algorithm can be generated.

1.2.4 Type Inference

A type checking or type inferencing algorithm concerns itself with constructing derivation

trees when given the main judgment. In case of type checking the type is part of these a

3 Some authors call declarative rules nondeterministic because an inference algorithm may need to choose nonde-

terministically what rule to apply.

14

1.2 Background on Type Systems

Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1→ τ2

LAM-IMPL
Γ ⊢ f : τ1→ τ2 Γ ⊢ a : τ1

Γ ⊢ f a : τ2

APP

Γ,x : τ1 ⊢ e : τ2

C→ m2 τ1 τ2 CApp m1 x e

Γ ⊢ m1 : m2

LAM-IMPL’

Γ ⊢ f : m2 Γ ⊢ a : τ1

C→ m2 τ1 τ2 CApp m1 f a

Γ ⊢ m1 : τ2

APP’

Figure 1.5: Rules LAM-IMPL and APP, and their respective canonical form.

priori known arguments. In case of type inference the type is not, and actually inferred. This

distinction between type checking and type inference is rather vague, because a type system

may exhibit other declarative aspects than the definition of types, and thus implies some

form of inference. Moreover, for a compiler typically the inferred arguments matter but the

derivation tree is not of direct interest.

Inference as a forest of derivation trees. Some authors consider type inference as a

two-step process: a traversal of the AST to generate a set of constraints, and solving this set

of constraints. We shall, however, consider type inference as the incremental construction

of a forest of derivation trees, which has a closer connection to declarative specifications.

Its intermediate state is a forest of partial derivation trees. It starts with a singleton forest

containing an empty derivation tree with the main judgment as pending aspect. A derivation

tree in the forest has an associated status, which is that it is partial, complete, or unsatisfiable.

A reduction step in this forest consists of cloning an existing partial derivation and adding

the cloned derivation to the forest after resolving one pending aspect of the clone such that

the number of unique derivation trees in the forest increases.

An aspect is either a meta variable or a judgment. To resolve the former, the meta variable

is bound to a value in its domain. To resolve the latter, it depends on whether the relation

of the judgment is described by rules or an atomic relation. If the relation is described by

rules, either a rule can be applied which leads to a larger or a complete derivation tree, or the

derivation tree is unsatisfiable. If the relation is atomic, then the aspect is solved by running

an algorithm that is associated to the relation which either succeeds or fails.

The existence of a complete derivation means that the source program is type correct.

When all reductions have been applied exhaustively and there exists no complete derivation

the program is type incorrect. However, there may be infinitely many partial derivations.

Also, there may be infinitely many partial derivations of a certain height, for example, when

the domain of a meta variable is infinite. We come back to this issue later: in practice, an

inference algorithm uses a less general approach.

Naive algorithm. The algorithm in Figure 1.6 represents a typical Prolog-style strategy

for the construction of derivation trees. We explain some aspects of the example below.

15

1 Introduction

prove :: j→ Inf Tree -- Inf offers unification and backtracking

prove (x≈ y) = do -- case for explicit equality

unify x y -- equality mapped to unification

return (x∼ y) -- builds equality node

prove (R x) -- case for judgments

| atomic R = extern R x -- proven externally

| otherwise = do -- relation specified by rules

r ← rules R -- picks a rule (backtrack point)

(ps ; c)← instantiate r -- instantiate rule

zipWithM unify (args c) x -- bind args

ts← mapM prove ps -- recursion on premises

return (ts ⊲name r c) -- build derivation node

Figure 1.6: Sketch of a general inference algorithm.

In this example, we refer to an inference monad Inf which takes care of backtracking and

unification. Rules are tried in a predefined order. If a rule cannot be applied, backtracking

occurs to the next rule.

Meta variables are initially represented as symbolic values, and unified with other meta

variables or object terms during inference. Unification is derived from an equivalence rela-

tion, which can in turn be derived generically from algebraic data type declarations.

The operation rules introduces a backtrack-point. It tries the rules in a given order by

feeding the rules one by one to the continuation. A later unification may fail and cause a

backtracking to that point. The operation instantiate substitutes the quantified meta variables

with fresh meta variables. The instruction extern proves a judgment externally and returns

evidence for it if it succeeds. With combinators ⊲ (internal nodes) and ∼ (equality leafs) we

construct evidence in the form of a derivation tree.

Undesirable properties of the algorithm. The above algorithm is incomplete and does

not terminate for all but the simplest type systems. This is necessarily the case because there

exist type systems for which inference is undecidable. Via backtracking, only finite and

inductively defined object terms can be inferred, and unifications only produce compositions

of object terms. The algorithm is also inefficient. The order in which rules are tried may

cause poor performance or nontermination. Moreover, the order in which rules are tried is

not specified, which gives unpredictable results. Although the results are sound, these may

not be optimal.

In practice, typical algorithms refrain from backtracking or constructing many candidate

derivations, because the search space is too large when dealing with ASTs with thousands of

nodes. Therefore, actual inference algorithms resemble this overall approach, but select rules

and instantiations of meta variables in a more sophisticated way.

16

1.2 Background on Type Systems

Actual inference algorithms. Actual inference algorithms apply various strategies (de-

pending on the form of the declaratie aspect) to get around the above undesirable properties.

Unification can be used to deal with equivalence judgments in type rules. Alternatively, an

algorithm may collect several candidate constraints on a meta variable, then pick an object

term that is the least solution to all these constraints. When constraints are monotonic, a value

can gradually be approximated via fixpoint iteration with an initial bottom value. Type and

effect systems often require such algorithms.

When rule selection is declarative, we typically want the choice to be a function of the

syntax of the language (syntax directed rules) or other object terms (e.g. type directed rules).

Alternatively, some rules can be restricted to only be applied in a proof after other rules have

been applied so that the choices between the remaining rules becomes functional in the above

sense. This is not always possible: the applicability of a rule may depend on unresolved meta

variables and may require the rule selection to be deferred which is called residuation Hanus

[1994].

Challenge: orchestration of strategies. The orchestration of such strategies is a com-

plex undertaking. The order in which strategies are applied may influence the result, and it

may not always be clear when to start or stop applying strategies. These are all challenges an

implementation must deal with.

Challenge: annotations. The holy grail of type system research is to define expressive

type systems (for a class of programs) that have sound and complete (decidable) inference al-

gorithms. Given two type systems (that satisfy type-soundness with respect to the operational

semantics of the language), one type system is more expressive than another type system if

accepts a superset of the programs that the other accepts.

To bypass the strict undecidability boundaries, many languages allow programmers to as-

sist the inference progress by providing additional information (e.g. type annotations) in the

object program that translates to concrete bindings for otherwise declarative meta variables.

There are delicate balances between expressiveness of the type system, the amount of anno-

tation to be provided by the programmer, and the predictability of inference.

For example, the Damas-Hindley-Milner type system and accompanying inference algo-

rithm (Section 1.2.6) does not require any annotations to help the inference process, but dis-

allows functions with parameters of a polymorphic type. System F, the polymorphic lambda

calculus, in comparison allows funtions with a polymorphic type, but requires an abundance

of type annotations. As a middle way, HML [Leijen, 2009] expresses all of System F, but

requires only type annotations for polymorphic lambda parameters. FPH [Vytiniotis et al.,

2008] positions itself in between DHM and HML. It requires a type annotation when ap-

plying a function to an argument with a polymorhic type. Dijkstra and Swierstra [2006a]

proposed a global flow analysis that propagates type annotations to locations where (a part

of) the annotation is also applicable.

Challenge: type errors. As stated before, type inference concerns itself with the construc-

tion of derivation trees. If no such derivation exists, it is considered a type error. Type rules

17

1 Introduction

only specify under what condition a type is acceptable. Thus, an implementation may require

additional information to produce understandable error messages [Heeren et al., 2003a].

Challenge: multiple derivation trees. A partial order on types specifies when one type

is more general than another type. A type is principal when it is the most general type of an

expression. For reasons of predictability and modularity it is desirable that a principal type

exists for an expression and that an algorithm infers a derivation for this type. This notion of

principality can be extended to derivations [Jim, 1996].

For the above type rules, there are infinitely many derivation trees for (λx.x), but none of

the accompanying types (e.g. τ → τ for any type τ) are comparable, thus this expression has

no principal type (thus also not a principal derivation) for the given type system.

There are several remedies. The type system can be changed such that more type annota-

tions need to be given, or that choices can be deferred by encoding pending choices in the

type language as constraints. Polymorphism and qualified types are an example of the latter:

type schemes are introduced to represent a delayed choice of types, as we show in the next

section.

1.2.5 Parametric Polymorphism

For the identity-function λx.x, there are no constraints on the type of x. During inference, no

binding arises for the meta variable associated to x. We can thus bind a fresh type constant

α to the meta variable, which leads to the type α → α for λx.x. To specify that α can be

any type, we universally quantify over α , and obtain the type ∀α.α → α . This process is

called abstraction or generalization. A polymorphic type represents many types which can

be obtained by instantiating the quantified type constants (type variables). Moreover, we

obtain a proof for the instantiated type by instantiating the proof for the generalized type in

an analogous way.

Polymorphic types enable parametric polymorphism, which allows functions to be called

with parameters of different but acceptable types. Parametric polymorphism is important for

the use of Haskell’s many convenient higher-order functions, such as id, flip and $.

Quantified types. The Damas-Hindley-Milner (DHM) type system serves as the classical

example of a type system with polymorphic types. It forms the basis of the type systems

of ML and Haskell, and underlies the type systems of many other languages. DHM’s type

language is an extension to that of the simply typed language calculus. It additionally contains

type variables α and poly types (type schemes) σ :

τ ::=α -- type variable

| τ1→ τ2 -- function type

σ ::=∀α.σ -- poly type: may have a qualifier

| τ -- mono type: has no quantifiers

α,β -- type variables

18

1.2 Background on Type Systems

Γ ⊢ e : σ

(x : σ) ∈ Γ

Γ ⊢ x : σ
VAR

Γ ⊢ f : τ1→ τ2

Γ ⊢ a : τ1

Γ ⊢ f a : τ2

APP
Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1→ τ2

LAM

Γ ⊢ e : σ
Γ,x : σ ⊢ b : τ

Γ ⊢ let x = e in b : τ
LET

Γ ⊢ e : σ
α 6∈ ftv Γ

Γ ⊢ e :∀α.σ
GEN

Γ ⊢ e :∀α.σ

Γ ⊢ e : σ [α := τ]
INST

Figure 1.7: The DHM type system.

A mono type τ does not contain universal quantifiers. A poly type can be interpreted as the

infinite set of mono types, where each quantified type is substituted by some mono type. The

identity function λx.x has the type τ → τ for any type τ . It can thus be given the poly type

∀α.α → α . The type variable α in such a type is an object term that is not to be confused

with a meta variable.

The distinction between mono and poly types is important in the declarative type rules of

DHM. Lambda abstractions take mono types as parameter4, and have a mono type as result.

Polymorphic types are introduced in the environment by (non-recursive) let-expressions:

e ::= ...

| let x = e1 in e2 -- generalized type of e1 is visible as x in e2

Although a let-expression can be interpreted as (λx.e2) e1, the typing derivation may differ

depending on the presence and application of a generalization rule.

The DHM type system in Figure 1.7 consists of the following rules of which we mention

some details below. Via one or more applications of the INST rule, poly types may be instan-

tiated to mono types by replacing a bound type variable with a mono type. Conversely, via

rule GEN a poly type can be constructed using quantification over a type variable, provided

that the substitution does not capture the free type variables in the environment.

Qualified types. In general, meta variables may be constrained by judgments that by them-

selves are insufficient to bind a concrete type to a meta variable. As an example, the following

type rules encode overloading of the addition operator on both integers and floats.

Γ ⊢ + : I→ I→ I ADD.INT Γ ⊢ + : F→ F→ F ADD.FLOAT

4 It has been shown that the inference of a polymorphic type for a parameter of a recursive function is undecidable

in general [Wells, 1999]. Many type systems thus impose restrictions on the types of function parameters to

make inference feasible.

19

1 Introduction

In the expression λx.x+x, the type rules for addition constrain x to be a numeric type, but do

not dictate whether this type is an integer or a float. At other locations in the derivation tree

there may be constraints imposed on the type that make it clear which of the rules applies.

During type inference, the type may be insufficiently constrained to resolve the judgment.

A typical strategy is to defer the judgment until the end of the inference of the scope in

which the judgment arose, which is usually at generalization points. If the type is still not

constrained sufficiently, a strategy is to default to one of the applicable rules. Another strategy

is to encode the judgment as part of the type (if potentially satisfiable) and delay the judgment

to all locations where the generalized type is instantiated. Such an encoded judgment is called

a qualifier.

A qualified type of the expression λx.x+ x given the above rules is:

(λx.x+ x) ::∀α β .∃γ.(γ ⊢ + : α → α → β)⇒ α → β

With additional information this type can be refined. An equivalence between β and α is

deducable from the rules ADD.INT and ADD.FLOAT. Also, suppose that we know further that a

qualifier γ ⊢ + : α → α → α is simplifyable to a qualifier Num α , the type is refineable

to:

(λx.x+ x) ::∀a.Num a⇒ a→ a

Haskell’s overloading with type classes actually brings such reasoning under the control of

the programmer.

Such extensions to a type system do not come for free. When the code generation depends

on the proof of a deferred judgment, the generated code needs to be parametrized by infor-

mation that is derived from the deferred proof. Moreover, a function may be given a type

with qualifiers that can never be satisfied, which we may only find out when we try to use an

identifier with such a type. Some type systems define a coherence relation on qualifiers to

formalize the potential satisfaction of constraints.

1.2.6 Damas-Hindley-Milner Inference

In this section we consider type inference for the DHM type system. The naive backtracking

approach as presented earlier may easily lead to nontermination, because the INST and GEN

rule can be alternated as each others inverse indefinitely. However, the syntactical restrictions

on types permits a more appropriate inference strategy.

With some effort, we can deduce that generalization has only an effect for the toplevel

expression, or for the expression e in a let-expression. It is also sufficient to perform in-

stantiation only after taking the type of an identifier from the environment in the rule VAR.

According to the interpretation of poly types, a type quantified over a variable that does not

occur free in the type describes actually the same set of mono types as the type without the

quantification, thus we only need to consider types that occur free in the type as generalization

candidates. Moreover, the order of the type variables over which is quantified is irrelevant.

Inference algorithm W exploits these properties. It is a sound and complete implementation

of the rules, produces most general types, and needs to examine each node of the AST only

20

1.2 Background on Type Systems

In the description of algorithm W we assume monadic versions of the above functions to form

an inference monad Inf for the implementation of the DHM type system. Essentially, these

monadic functions are wrappers around the above functions:

type Inf = RWST Env Subst Errs -- reader, writer, and state monad

freshI :: Inf Ty -- returns a fresh type

unifyI :: Ty→ Ty→ Inf () -- unifies two types

genI :: Ty → Inf Scheme -- generalizes a type to a scheme

instI :: Scheme → Inf Ty -- instantiates a scheme to a type

The threading of the substitution and collection of error messages is hidden in the monad,

as well as the top-down distribution of the environment, so that we define algorithm W as a

functionW :: Expr→ Inf Ty:

W 〈x〉 = asks (lookup x)>>= instI

W 〈f a〉= do

r← freshI

t ←W f

s←W a

unifyI t〈s→ r〉
return r

W 〈λx.e〉= do

t ← freshI

r← local (insert x t) (W e)
return〈t→ r〉

W 〈let x = e in b〉= do

t ←W e>>=genI

local (insert x t) (W b)

The notation 〈e〉 represents the abstract syntax of an object term e. We use this notation to

conveniently pattern match and construct object terms in the host language. Note that 〈x〉 is

an AST of the type Expr and x is an AST of the type Identifier, but that 〈f a〉, f and a represent

ASTs of the type Expr.

Figure 1.8: Algorithm W.

once. Many actual inference algorithms are based on algorithm W. We describe algorithm W

as a monadic functionW :: Expr→ Inf Ty in Figure 1.8.

Unification plays an important role in algorithm W. In this thesis, we assume the following

functions have an efficient implementation [Dijkstra et al., 2008]:

fresh :: Subst→ (Ty,Subst) -- returns a fresh type var

unify :: Ty → Ty→ Subst→ (Errs,Subst) -- unify two types (improves subst)

generalize :: Env→ Ty→ Subst→ Scheme -- generalize a type in a certain env

instantiate :: Scheme → Subst→ (Ty,Subst) -- instantiate a scheme freshly

The type Subst represents a substitution and a fresh variable supply, which is a mapping from

meta variable to a concrete type. The types Ty and Scheme coincide with τ and σ respectively.

An environment of type Env contains bindings from identifiers to types, and Errs is the type

of a collection of error messages. Similarly, we assume that there is a type Expr and Identifier

that coincide with the nonterminals e and x respectively.

Figure 1.8 shows Algorithm W, which is a recursive traversal of the Expr AST. The combi-

21

1 Introduction

W 〈let x = e in b〉= do

t ← freshI -- start with fresh type for binding

local (insert x t) (W e>>=unifyI t) -- infer type and match against binding

s← genI t -- generalize over unbound variables

local (insert x s) (W b) -- infer with generalized scheme in env

Figure 1.9: Algorithm W with a recursive let-binding.

nator local applies changes to the environment that are only visible in the monadic computa-

tion it encapsulates. The function insert adds a binding into the environment, which possibly

shadows an already existing binding. The asks operator exposes the hidden environment, so

that we can use lookup to recover the type to which an identifier is bound.

The above code assumes a non-recursive let binding. Figure 1.9 shows the algorithm for a

recursive let binding. The unification at the end of inference for e binds t to its actual type.

All occurrences of x in its own right-hand side must agree with t. To prevent having to deal

with polymorphic recursion, x has a mono-type inside its own binding. The generalized type

is only available in the body of the let-expression.

The positioning of local and genI is tricky. Since generalization is performed with respect

to free type variables in the environment, the generalization needs to be positioned outside

the local environments of the e and b subexpressions, because the type to generalize occurs

in these environments.

The monadic formulation of algorithm W is concise because cumbersome flows of envi-

ronments and substitutions are encapsulated by the monad. However, the abstraction offered

by the monad is not always obvious when the object language is more complex. When the

object language has pattern-bindings, new bindings arise when visiting the pattern, which

means that behavior for the environment is more complex than simply top-down. If multi-

ple derivations are possible, then substitutions may need to be duplicated and merged. The

sequencing of operations on the encapsulated state is therefore important.

1.2.7 Polymorphic Lambda Calculus

When we eliminate the distinction between mono and poly types, and thus allow poly types

everywhere, we obtain an implicitly typed version of the System F type system. It allows

expressions such as λ f .g (f (λx.x)) (f 3), where a lambda parameter is applied to values of

different types, which is not expressible in the DHM type system. Unfortunately, inference

for this system is undecidable [Wells, 1999], and it does not have most general types.

For System F itself, type checking is decidable. However, the syntax is verbose, as type

abstraction and type instantiation are explicitly encoded, and types need to be given explicitly

for lambda parameters. Figure 1.10 shows the inference rules of System F, and we discuss

some aspects of the rules below.

A type application f σ requires f to have a universally quantified type, and provides the

22

1.2 Background on Type Systems

Γ ⊢ e : σ

(x : σ) ∈ Γ

Γ ⊢ x : σ
VAR

Γ ⊢ f : σ1→ σ2

Γ ⊢ a : σ1

Γ ⊢ f a : σ2

APP.E
Γ ⊢ f :∀α.σ2

Γ ⊢ f σ1 : σ2 [α :=σ1]
APP.TY

Γ,x : σ1 ⊢ e : σ2

Γ ⊢ λx.e : σ1→ σ2

ABS.E
Γ ⊢ e : σ α 6∈ ftv Γ

Γ ⊢ Λα.e :∀α.σ
ABS.TY

Figure 1.10: System F.

type σ to instantiate this type with. A type abstraction Λα.e quantifies the type of e over α .

The syntax of f thus dictates when to apply rule APP.TY and rule ABS.TY.

Variants of System F are typically used for typed backends of compilers, because of its

expressiveness. For example, evidence translation of Haskell type classes may need System

F types [Faxén, 2002]. As frontend, type systems are proposed that are more restrictive than

System F, but more liberal than the DHM type system. It is desirable that such systems

do not require type annotations for programs that are acceptable by DHM, and allow for a

predictable inference. An inference algorithm then infers a type for such programs, and maps

these to System F terms.

1.2.8 Discussion

The DHM inference algorithm in Section 1.2.6 shows that the mapping between a declarative

type system specification and its accompanying inference algorithm is not straightforward.

The gap between a complex type system and a sophisticated inference algorithm is even

larger. As mentioned above, one of reasons is that an inference algorithm requires informa-

tion that is not present in type rules. Also, type derivations are typically only treated as a

model. Inference algorithms compute types from abstract syntax trees, with the underlying

assumption that the combination of type and AST can be turned into a derivation tree.

Generalization and instantiation, for example, are often dealt with as part of the unification

algorithm in order to support on-demand impredicative instantiation, which is the instanti-

ation of a type variable with a poly type. In the type rules these are encoded as separate

expression rules.

A declarative specification is typically a minimalistic lambda calculus to explain particular

language features, whereas programming languages are much richer in syntax and language

features. Algebraic data types are typically not present in declarative specifications, and

neither are mutually recursive let bindings, because these are often regarded as syntactic

sugar. Actual programming languages, however, require the presence of such features.

We can improve the resemblance between the inference algorithm and declarative spec-

ification when the structure of the inference algorithm can be derived from the declarative

23

1 Introduction

specification. In this thesis, we propose the use of attribute grammars as the basis for such

algorithms. Section 1.3 gives a short introduction.

1.3 Background on Attribute Grammars

In Section 1.2, we followed the common practice of specifying the semantics of programming

languages via relations between properties, where the relations are defined by inference rules

and the properties include a source term. Attribute Grammars (AGs) [Knuth, 1968] are an al-

ternative approach. An AG specifies the semantics of a language as attributes on nonterminal

symbols in the grammar of the language.

An AG is a context-free grammar extended with attributes and rules. We give a definition

in Section 1.3.1, in which we describe that attributes are associated with nonterminals, and

rules with productions. Given a value for each attribute associated with the nonterminal

symbols of a production, the rules specify whether these values are correct. On the other

hand, the rules can also be used to compute such attributions for a given AST, which we

address in Section 1.3.4.

In the other subsections we describe common extensions, features and uses of attribute

grammars for the purpose of showing why AGs are an attractive language for describing the

implementation of compilers, but also to give some background information to which we

refer from later chapters of this thesis. A shallow scan through these subsections may be

beneficial to the understanding of the other chapters of this thesis.

Section 1.7.6 gives an overview of various systems that provide AGs in various flavors.

1.3.1 Syntax of Context-Free Grammars and Attribute Grammars

We introduce a notation for attribute grammars. In this section, we use the term host language

to refer to the language in which the algorithm or compiler is written which we generate from

the attribute grammar description. As we see later, functions of the host language may appear

in grammar descriptions.

We are slightly more formal in this section in comparison to the other sections because in

later chapters we introduce various notations for attribute grammars and extensions. Since

concepts such as nonterminals, productions, attributes and abstract syntax trees are common

to those notations, we introduce these here — although we actually expect that the reader is

already familiar with these definitions.

Context-free grammars. Formally, grammars specify languages, but we also use gram-

mars to describe the structure of tree-like data structures. Chomsky [1956] described several

classes of grammars with increasing expressiveness and implementation complexity. The

class of context-free grammars is particularly convenient for the description of the structure

of terms, but is usually not expressive enough to describe the desired correctness properties

of programs such as well-typedness. With attribute grammars, context-free grammars are

combined with a different formalism to permit the description of such properties.

24

1.3 Background on Attribute Grammars

Definition (Context-free grammar). A context-free grammar is a tuple (V,N,S,P) where V

is a set of terminal symbols (the alphabet), N is a set of nonterminal symbols, S is the start

symbol with S ∈ N, and P is a set of productions (defined below). The set V and N must be

disjoint.

Definition (Production). A (context-free) production p= n→m is a rewrite rule with nonter-

minal symbol n ∈ N, and a sequence of symbols m ∈ V ∪N. The sequence m may be empty.

The application of p to a sequence of symbols s ∈ V ∪N constitutes to the rewriting of one

occurrence of n in s to m. In production p, n forms the left-hand side of the production and m

the right-hand side.

To summarize, a grammar is a rewriting system where productions specify a rewrite step

from a sequence of symbols to sequence of symbols. In a context-free grammar, a produc-

tion specifies how to rewrite a single nonterminal symbol to a sequence of symbols. The

rewriting terminates when only terminal symbols are left: when successive applications of

productions to some singleton sequence n (with n ∈ N) results in a sequence of symbols, then

this sequence is derived from n.

Definition (Sentence). A string is a sequence of symbols. A sentential form is a string

derivable from the start symbol of the grammar. A sentence is a sentential form consisting

only of terminal symbols.

Definition (Derivation tree). A derivation tree is a tree t that represents how a sentence s is

derived from a symbol m, and is inductively defined as follows:

• A leaf t represents either the derivation of the empty string from a nonterminal symbol

n if there exists a production p = n→ ε , or the trivial derivation of the singleton string

s = v from a terminal symbol v. (Only) in the former case, we say that the leaf is

associated with the nonterminal n and the production p. In the latter case, the leaf is

only associated with the terminal v.

• If trees t1, ..., tk represent the respective derivations of sentences s1, ...,sk from symbols

m1, ...,mk then the tree t, formed by taking t1, ..., tk as the respective children of the root,

represents the derivation of the sentence s1 ... sk from symbol n if there exists a produc-

tion p = n→ m1 ...mk. We say that the root of t is associated with the nonterminal n

and the production p.

Definition (Syntax tree). A syntax tree (or parse tree) is a derivation tree that is associated

with the nonterminal n. This definition purposefully excludes singleton trees denoting a

terminal symbol.

Definition (Abstract syntax tree). An abstract syntax tree is the result of applying a projection

to some syntax tree. Usually, the resulting tree has less branches (e.g. due to omission of

layout) or branches replaced with a more general representation (e.g. desugared).

In this thesis, we do not concern ourselves with parsing, which is the process of construct-

ing a syntax tree that represents the derivation of a given sentence. Instead, we assume the

syntax tree as a given. In fact, we adopt the common convention to abstract over details in

the syntax tree (e.g. whitespace) and work with abstract syntax trees instead.

25

1 Introduction

g ::=grammar N p -- the grammar for nonterminal N

p ::=prod P s -- production P, with as RHS the sequence of symbols s

s ::= term x :: τ -- a terminal symbol with name x and type τ
| nonterm x : N -- a nonterminal symbol with name x and nonterminal N

N,P,x -- names of nonterminals, productions, and symbols

Figure 1.11: Language to describe context-free grammars.

Definition (Language). The language LG specified by a grammar G is the set of sentences

that can be derived from the start symbol of G.

If LG is a programming language, then the source code of a program written in LG is

a sentence in L. Moreover, if LG is a language of algebraic data types, then nonterminals

describe type constructors, terminals describe primitive types, and productions describe data

constructors. An AST represents a data structure, and the bit sequence in memory can be

regarded as the sentence.

Context-free grammar notation. In Figure 1.11 we introduce a language for the descrip-

tion of context-free grammars: i.e. terms in this language can be interpreted as a grammer

as defined above. We later extend the language to describe attribute grammars and some AG

extensions. Figure 1.12 shows an example. We explain some aspects of the notation below.

Definition (Meta grammar). When we talk about a grammar for a grammar, we call the

former a meta grammar.

In the notation, a grammar is the composition of grammars for individual nonterminals.

The set of terminals V and nonterminals N are left implicit, and productions P are grouped

per nonterminal. We reuse these letters for other purposes, such as N as an identifier for a

nonterminal, and P as an identifier for a production.

The grammar is abstract: instead of terminal symbols, only the type of a terminal symbol

is given. To stress the difference between terminals and nonterminals, we use a double colon

to specify the type of a terminal and a single colon to specify the name of a nonterminal.

Definition (Children). Each symbol in the right-hand side of a production has an explicit

name, which will be useful later. We call such named symbols the children of the production,

which stresses the correspondence to children in the AST of nodes to which the production

is associated.

In the notation, the nonterminal symbol of the left-hand side of a production is implicit,

since we only describe the right-hand sides of productions. We give the symbol on the left-

hand side of a production the fixed name lhs.

26

1.3 Background on Attribute Grammars

grammar String -- a cons-list of characters

prod Nil -- empty list

prod Cons term hd :: Char -- head of the list (hd is a terminal)

nonterm tl : String -- remainder (tl is a nonterminal)

Figure 1.12: Example of a context-free grammar.

Attribute grammars. We now extend the above formalism to denote context-free gram-

mars with notation for attributes and their associated functions.

Definition (Attribute grammar). An attribute grammar is a tuple (T,N,S,A, I,O,P,F), where

the set of terminals T , set of nonterminals N, and start symbol S are defined as for a context-

free grammar. The set A consists of attribute names. The map I associates a set of names In ⊆
A with each nonterminal n in N, which make up the inherited attributes of n. Similarly, the

map O associates a set On ⊆ A with each nonterminal n in N, which makes up the synthesized

attributes of n. For each n, the sets In and On must be disjoined. The productions p ∈ P

are redefined below. The set F consists of computable functions f which we call semantic

functions.

Definition (Production). An (attribute-grammar) production p = u→ w · r ·X consists of an

annotated nonterminal symbol u and annotated symbols w, rules r, and a set of symbol names

X.

Definition (Annotated symbol). An annotated symbol is either an annotated terminal or non-

terminal symbol. An annotated nonterminal symbol u = x : n.a is a combination of a distinct

symbol name x ∈ X, a nonterminal symbol n ∈ N, and a collection of attribute names a ∈ A

so that a is either in In or On. We say that n is associated to x. An annotated terminal symbol

x : v is a combination of a distinct symbol name x ∈ X and a symbol v ∈ V .

Definition (Attribute occurrence). A reference to an attribute x.a is a combination of a sym-

bol name x ∈ X (associated to some nonterminal n) with an attribute name a∈ A so that either

a ∈ In or a ∈ On. A reference to a terminal x is a symbol name x ∈ X which is associated to

some terminal v. An attribute occurrence o is either a reference to an attribute or a reference

to a terminal.

We call an occurrence x.a also an attribute a of x. Attribute occurrences can be found in

rules, which are defined below.

Definition (Rule). A rule o1 = f o2 of some production u→ w · r ·X consists of a semantic

function f ∈ F and attribute occurrences o1 and o2.

The occurrences o1 represent the attributes defined by the rule, which are synthesized at-

tributes of u or inherited attributes of the children w. The occurrences o2 represent the at-

tributes used by the rule, which are the inherited attributes of u or synthesized attributes of

the children w. In addition, occurrences in o2 may also refer to terminals.

27

1 Introduction

Due to the restrictions on occurrences it is always clear whether an occurrence references

an inherited or a synthesized attribute. In our notation for attribute grammars (further below)

we allow the same name to be used for an inherited and a synthesized attribute.

Decorated trees. To give a semantics to rules, we consider syntax trees annotated with

attributes, and define how attributes of the tree are related to attribute occurrences, which are

mentioned in the rules of productions.

Definition (Attributes of syntax trees). An annotated syntax tree or semantic tree is a syntax

tree T where in addition subtrees are associated with the smallest set Q defined as follows.

Let t be a subtree and n be the nonterminal that is associated to t. For each attribute a in

In∪On, let there be a distinct attribute symbol qt ∈ Q. The set Q represents the attributes of

T .

The symbols q can be seen as instances of the attributes, or as occurrences of the attributes

in the tree. This definition states that many trees may be associated with the same nonterminal

yet have different instances of the attributes. Moreover, if t is an annotated syntax tree, then

the attributes of each annotated direct subtree of t are a distinct subset of the attributes of t.

Definition (Attribute association). Given some annotated syntax tree t with associated pro-

duction p, an attribute association α is a mapping so that for each attribute occurrence o of

p, either α o = q for some q ∈Q when o is a reference to an attribute (either of t or of a direct

subtree of t), or α o = v when o is a reference to a terminal child v of t.

For each (node of an) annotated syntax tree, there exists such an attribute association. We

leave open how this straightforward connection between attribute occurrences and attributes

of the syntax tree is constructed.

Definition (Valuation). A valuation M is a mapping that associates with each q∈Q and each

v ∈ V a value in the host language, which is denoted as M q or M v. Furthermore, M v = J v K
for v ∈ V where J v K is some encoding of v as a value in the host language. These values are

called decorations.

Definition (Attributed syntax tree). An attributed (or decorated) syntax tree is an annotated

syntax tree combined with a valuation M.

A rule o1 = f o2 encodes the condition M (α o1) = f M (α o2) for each node the rule is

associated with. Alternatively, we may say that f functionally defines occurrences o1 in terms

of occurrences o2, and thus that inherited attributes of children are defined by the parent,

whereas synthesized attributes of the children are defined by the children and may be used by

the parent.

Definition (Correctly attributed syntax tree). A syntax tree is correctly attributed when the

conditions imposed by the rules are satisfied.

28

1.3 Background on Attribute Grammars

I ::=attr N i s -- attribute declaration for nonterminal N

i ::= inh y :: τ -- declares inherited attribute y of type τ
s ::= syn y :: τ -- declares synthesized attribute y of type τ

S ::= sem N c -- semantics definition for N

c ::=prod P r -- semantics in the form of rules for prod P

r ::=g [o1] = f [o2] -- a rule with pattern g and function f

o ::= t.x.y -- attribute occurrence of child x and attribute y, and kind t

t ::= inh | syn | loc -- explicit attribute kind (usually left implicit)

x,y -- names of symbols and attributes

f ,g -- expressions

Figure 1.13: Minimalistic language for AGs.

attr String -- declares atributes of String

inh down :: Char -- an inherited attribute down

syn sh :: String -- a synthesized attribute sh

sem String -- rules for each production

prod Nil lhs.sh = Nil -- rule 1: def. of syn attr of LHS

prod Cons tl.down = loc.hd -- rule 2: def. of inh tl with term hd

lhs.sh = Cons lhs.down tl.sh -- rule 3: of syn attr of LHS

Figure 1.14: Example of an AG that shifts a character in a string.

Notation for attribute grammars. The above definitions introduce concepts that underly

attribute grammar languages and implementations. Figure 1.13 gives a minimalistic language

for the description of AGs, which is an extension of the language for context-free grammars

in Figure 1.11. We explain some of its aspects below.

The notation5 in Figure 1.13 consists of a collection of nonterminal declarations g, attribute

declarations I, and semantics blocks S. Attributes are declared separately for each nontermi-

nal and have a type associated with them. The right-hand side of a rule is an expression f [o]
in some formal language H with embedded references to attributes at identifier positions of

H via attribute occurrences o. The left-hand side of a rule is also an expression, but limited

to patterns such as tuples. The use of expressions is slightly more flexible than just a function

symbol.

For attribute occurrences t.x.y, we take the following notational conventions. The attribute

kind t distinguishes inherited and synthesized attributes. This kind is always clear from the

5 Note that we reused some letters here which we used before in a different context as the map I and the start

symbols S.

29

1 Introduction

context thus we usually leave it unspecified in examples, unless we want to stress the differ-

ence. To refer to an inherited attribute y of a symbol named x, we use inh.x.y or simply x.y.

To refer to a synthesized attribute y of a symbol named x, we use syn.x.y or simply x.y. To

refer to a terminal named x we use the attribute occurrence loc.x.self or simply x.self (see

also Section 1.3.6).

Informally, an AG in this notation is well-formed when the description can be translated to

an AG, and that the types of various identifiers and expressions are correct.

Figure 1.14 shows an example where we define a transformation on strings where each

character is shifted one position to the right. We use an inherited attribute down to represent

the preceding character. Given a value ’d’ as initial down value, the result for "Ag" is "dA".

We show a more complex example in Section 1.3.11.

Local attributes. We also use the notation loc.loc.x to refer to a local attribute with the

name x, which is an attribute defined by a rule of a production and is only in scope of that

production. The name must be distinct from the name of a terminal symbol. Local attributes

are typically used to represent common subexpressions.

Syntactic sugar. A terminal v can be encoded as a fresh nonterminal (Section 1.3.7) with a

single synthesized attribute and a single ε-production that defines the attribute with the value

J v K. A local attribute can be encoded as a fresh nonterminal with a single inherited attribute

and single synthesized attribute and a single ε-production that contains a rule that copies the

value of the inherited attribute to the synthesized attribute. As convenient simplification, we

therefore assume in the remainder of this chapter that terminal-leafs and local attributes are

not present in AGs and ASTs, although we use terminals and local attributes in examples. In

later chapters we take local attributes and terminals into account explicitly.

Interfacing with the AG. The evaluation of a tree described by the AG (which we discuss

in Section 1.3.4) takes as input a record of values for the inherited attributes and results in a

record with values of synthesized attributes.

1.3.2 Dependency Graphs

To describe how the values of attributes are actually computed, we consider the data de-

pendencies induced by rules. The trees that we consider in this section are derivation trees

generated by some AG (T,N,S,A, I,O,P,F).

Graphs of a production. A rule o1 = f o2 represents a data dependency of occurrences o1

on occurrences o2, or equivalently, a flow of data from o2 via f into o1. These dependencies

form a graph.

Definition (Production dependency graph). A Production Dependency Graph (PDG) is a

directed graph (V,E) associated with some production p. There is a one-on-one mapping

between vertices d ∈ V (Figure 1.15), and the nonterminal children of p, the rules of p and

attribute occurrences in rules of p. The edges E consists of:

30

1.3 Background on Attribute Grammars

d ::=o -- attribute occurrence vertex

| rule x -- rule vertex with some distinct identifier x

| child x -- child vertex with x the name of the child

x -- identifiers

Figure 1.15: Syntax of vertices in a PDG.

loc.loc.hd rule r2

inh.lhs.down

inh.tl.down syn.tl.sh rule r3 syn.lhs.sh

child tl

Figure 1.16: Exemplary PDG of production Cons.

• For each vertex syn.x.y an edge to a vertex child x.

• For each rule [o1] = f [o2] (represented as vertex rule r) an edge from rule r to vertex

o for each o ∈ o2, and an edge from vertex o to rule r for each o ∈ o1.

Similarly, a production data-flow graph is a production dependency graph with the edges

reversed.

Figure 1.16 shows the PDG of the production Cons of Figure 1.14. For simplicity, we

modelled the terminal hd as a local attribute loc.loc.hd.

Graph of a tree. These graphs can be projected on each node of a tree and then combined

to form a dependency graph for a tree, or a data-flow graph for a tree. The general idea is

that we take the PDG of the root of the tree and then add the graph for each child of the root,

which describe the dependencies of synthesized attributes of the child on inherited attributes

of the child.

Definition (Tree dependency graph). For some annotated syntax tree t with associated pro-

duction p, attribute association α , and annotated subtrees t1, ..., tk with corresponding nonter-

minal children c1, ...,ck of p, the tree dependency graph is inductively defined as the union of

the PDGs of t1, ..., tk and the instantiation of the PDG of p by transforming (with preservation

of edges) rule and child vertices to fresh vertices and each occurrence vertex o to vertex α o.

Similarly, a tree data-flow graph is a tree dependency graph with the edges reversed.

Given a tree, evaluation algorithms of AGs (Section 1.3.4) are traversals over the tree

31

1 Introduction

dependency graph expressible as tree traversals6 over the tree that are described by a non-

deterministic tree-walking automaton (Section 1.3.3). Traditionally, such traversals may be

demand-driven (traversing the dependency graph based on which attributes are needed) or

may be described by a deterministic tree-walking automaton.

We come back to evaluation algorithms in Section 1.3.4. We first consider static approxi-

mations of the dependency graphs which can be used to prove that none of the attributes have

a cyclic definition, and are an essential ingredient for a description of the evaluation with a

deterministic tree-walking automaton.

Approximations. Below, we consider abstract interpretations of AGs that construct depen-

dency graphs that are a static approximation of the tree dependency graphs of collections of

trees in certain contexts:

Definition (Context). A context is a symbol C of some fixed set of symbols Ω given per

application and grammar. A context represents an additional set of invariants imposed on a

tree.

Concretely, the invariants represented by a context may include that:

• The tree is associated with a certain nonterminal or production;

• The tree occurs as a subtree at certain position of a parent;

• The tree has attributes that are used according to some protocol [Farrow, 1984].

A collection of trees in a context share a common structure. By distinguishing contexts,

we may consider projections of the tree dependency graphs of a collection of trees on the

common attributes (of the root) that each tree in the collection has, so that the edges are

superset of the projected edges of each individual tree. The projection-operation distributes

over graph union, which ensures that we can work with approximations of projections of

graphs of subtrees.

Definition (I/O graph). An I/O graph of some nonterminal n ∈ N is directed graph where the

vertices consist of the attributes a ∈ In ∪On and the edges represent either (indirect) depen-

dencies or data flow between attributes of some trees that have n as root. An I/O dependency

graph is an I/O graph where the edges represent data dependencies, and in an I/O flow graph

the edges represent data flow.

Note that the above definition does not specify which edges are included in an I/O graph,

but only specifies what the edges represent. We later give a consistency condition that speci-

fies which edges must minimally be present.

Definition (Nonterminal dependency graph). The Nonterminal Dependency Graph (NDG) of

nonterminal n is the I/O dependency graph of n that approximates the dependencies between

attributes of any tree associated with n.

6 The shape of a tree dependency graph ensures that a description with a tree traversal is possible. The dependencies

are properly nested: on a path from a synthesized attribute of a child to some (indirect) dependency, an inherited

attribute of the child occurs before any attribute of a sibling or parent.

32

1.3 Background on Attribute Grammars

inh.down syn.sh

Figure 1.17: An I/O graph of nonterminal String.

An I/O graph of some nonterminal n serves as an approximation of the dependencies be-

tween attributes of some trees (context dependent) that are associated with n. In contrast, an

NDG is a single, context-independent approximation of dependencies between attributes of

some nonterminal.

Definition (Augmented PDG). The augmented PDG of a PDG G of some production p and

I/O graphs of the nonterminal children of the production, is G with edges added between

attributes of children so that if there exists an edge between attributes of the given I/O graph

of some child, then this edge also exists between the attributes of the child in the augmented

PDG, and vice versa7.

An augmented PDG of some production p serves as an approximation of the dependences

between attributes of some trees that are associated with p. It is a PDG parameterized with

the dependencies induced by the subtrees.

Collections of graphs. To specify which edges are part of the I/O graphs and augmented

PDGs we consider some properties of collections of these graphs.

Definition (Consistent approximations). A collection of I/O graphs and augmented PDGs is

consistent when each I/O graph of some nonterminal n in some context C is a projection of

the union of the augmented PDGs in context C of the productions associated with n.

Definition (Complete approximations). A collection of I/O graphs and augmented PDGs is

complete when for each production p the collection includes an augmented PDG and corre-

sponding I/O graphs for each combination of contexts that the children of p can occur in.

Definition (Smaller approximations). Graph A is smaller than graph B if A∗ is a subgraph of

B∗, where A∗ and B∗ are the respective transitively closed graphs of A and B.

Figure 1.17 gives an example of an I/O graph that is part of some collection that satisfies

the above properties based on the AG in Figure 1.14. It is an I/O graph of the nonterminal

String in the context of being the child tl of production Cons. The dependency from syn.sh

on inh.down is induced by the production Cons. If Figure 1.16 would include an edge from

syn.tl.sh to inh.tl.down, it would be an augmented PDG parameterized with the I/O graph.

7We specify here that the dependencies between attributes of a child in an augmented PDG match exactly to the

dependencies between the attributes of the corresponding I/O graph that the augmented PDG is parameterized

with, thus that edges of the PDG may impose constraints on the I/O graphs of the children.

33

1 Introduction

Cycle analysis. Cycle analysis of AGs is an abstract interpretation [Nielson et al., 1999]

that approximates the tree dependency graph of any tree by constructing a complete and

consistent collection of I/O graphs and augmented PDGs. The consistency and completeness

requirements lead to a set of mutually recursive equations for which we want to compute a

least solution. Such a solution is obtained with fixpoint iteration. In Chapter 4 we consider a

concrete cycle analysis; here we look only at the general structure of such analyses.

Various approaches distinguish different contexts which influence the accuracy and com-

plexity of the approximations:

Uniform AG. Knuth [1968] distinguishes as contexts the nonterminals to which trees are

associated, and the different positions in the right-hand sides of productions where

nonterminals can occur in. This approach8 leads to one I/O graph per nonterminal and

one augmented PDG per production. The AG is uniform or absolutely non-circular if

the augmented PDGs in this flavor are acyclic.

Well-defined AG. Knuth [1971] additionally distinguishes the production to which the tree

is associated. This approach leads to one I/O graph per nonterminal and production,

and an exponential number of augmented PDG, one for each combination of children

with productions. An AG is well-defined if for any tree the tree dependency graph is

cycle-free, which is the case when the augmented PDGs in this flavor are acyclic.

Ordered AG. Kastens [1980] distinguishes as contexts only the nonterminals to which trees

are associated, but does not differentiate the occurrences of nonterminals in the right-

hand sides of productions.

In our experience with UUAG and in agreement with observations by Räihä and Saarinen

[1982], an AG is in practice also ordered when it is well-defined.

1.3.3 Tree-Walking Automata

Tree-walking automata arose from tree language theory and were introduced by Aho and

Ullman [1969]. A tree-walking automaton (TWA) is device that walks over a tree in a con-

tiguous manner and is accompanied by a state machine that describes how the nodes of the

tree change their state upon each visit and whether the device goes up to the parent or goes

down to one of the children as the next step. Section 1.3.4 uses TWAs to describe evaluation

algorithms of AGs. We keep here a simplistic presentation; there exist many extensions that

increase the expressiveness of these automata, such as pebbles [Engelfriet and Hoogeboom,

1999].

Definition (Tree-walking automaton). A TWA for some AST is a tuple (V,Q, I,F,δ), with

an alphabet V of node labels, a finite set of states Q, an initial state I ∈ Q, a set of final states

F, and a transition relation δ ⊆ (V×Q×Q×C×Q), where C = {up,down0, ...,downk} is a

set of commands and k is the maximum branching factor of nodes in the AST. There exists a

8 The actual approach does not distinguish different positions but instead instantiates augmented PDGs with I/O

graphs (thus copies them).

34

1.3 Background on Attribute Grammars

p ::=plans P : N v -- execution plan for production P of nonterminal N

v ::=visit C i s b -- a visit in context C that may need i and can produce s

b ::= r -- evaluation rule

| invoke x C i s -- a down x in context C, which can provide i to x and expects s

x -- child name

C -- context identifier

i,s,r -- as defined in Figure 1.13

Figure 1.18: The execution plan language.

one-to-one relation between productions and symbols in V so that each node is labelled with

a v ∈ V depending on the production associated with the node.

A tuple (v,q,q0,c,q
′) ∈ δ represents a transition from a node labelled v in state q to a state

q′, and moving to the node according to c. The automaton keeps track of a bit of history: q0

is the state of the node that caused the transition to the current node.

Definition (Deterministic tree-walking automaton). A deterministic TWA is a TWA where

the transition relation is a function δ :: V → Q→ Q→ (C,Q). Otherwise the TWA is nonde-

terministic.

Acceptance. Initially each node in the AST is associated with the initial state I. The

automaton starts at the root of the tree and stops if no step can be taken anymore. The tree is

accepted if the automaton ends with the root having an associated state in F. With each step,

the automaton visits a node. If the automaton is at a node with label v and associated state q,

and previously visited a node in state q0, then the automaton chooses a step c and new state

q′ so that (v,q,q0,c,q
′) ∈ δ , or the automaton stops if no such step exists. In the former case,

the automaton updates the state of the node to q′ and visits the parent if c = up or visits child

i if c = downi.

Evaluation of rules. An actual AG evaluation algorithm does not only traverse the tree

but also needs to apply rules to compute attributes. Thus, in an actual implementation, the

automaton also applies a subset γ (v,q) of the production’s rules upon making a transition to

state q at a node with label v.

Definition. Visit The TWA visits a node n if it arrives at n and executes γ (v,q) where v is

the label of n and q is the state of n.

Implementation with the Zipper. Various forms of deterministic TWAs can be imple-

mented in a purely functional programming language using the zippers [Huet, 1997]. Such

an approach models the imperative updates of the automaton to the state.

35

1 Introduction

plans Nil : String

visit AnyCtx inh down :: Char syn sh :: String

lhs.sh = Nil

plans Cons : String

visit AnyCtx inh down :: Char syn sh :: String

tl.down = loc.hd

invoke tl AnyCtx inh down :: Char syn sh :: String

lhs.sh = Cons lhs.down tl.sh

Figure 1.19: Exemplary execution plans of nonterminal String.

Execution plans. Figure 1.18 introduces a language of execution plans p for the descrip-

tion of the transition relation of TWAs, of which we explain some aspects below. Figure 1.19

shows an example. The language is not expressive enough to describe all transition relations,

but it suffices for a description of an AGs evaluation.

A collection of plans-blocks represents the transition relation δ . Since a context is an

agreement between parent and child, a context models the q0 parameter of δ . A plans-block

is associated to a unique production P and consists of a number of visit-blocks. A visit-block

v describes visits to the node in context C, and thus represents a subset δ v
PC

of δPC
. Let r

be the rules that can be evaluated as a consequence of the tree walk taking transitions from

δ v
P. Then the inherited attributes i of the current node may be needed in the evaluation of r

and the synthesized attributes s can be computed by r. An invoke-rule represents possible

transitions to some child x of P in some context C so that values of inherited attributes i of

x can be provided, and values of synthesized attributes s of x may be needed by the current

node.

Given an acyclic PDG of P, the relation δP and the accompanying subset of γ can be

generated. This procedure is left as an exercise to the reader; we note that the number of

states is possibly exponential in the size of the productions and their children, and the order

of appearance of rules is irrelevant for the translation.

A collection of plain-blocks may represent also a transition function δ . In this case, each

visit-block v represents a distinct δ v
PC
⊆ δPC

with precisely 1+n elements (of which element

i + 1 can be thought of as the continuation after visiting child number i), where n is the

number of invoke-rules in a visit-block. The rules must occur in define-before-use order. The

example in Figure 1.19 satisfies these constraints.

Implementations of execution plans. In comparison to the Zipper, there are less ‘imper-

ative’ and more efficient encodings of TWAs in functional languages. If we consider TWAs

with transition relations that do not make use of the q0 parameter, and thus do not distinguish

contexts, Swierstra and Alcocer [1998] presented an approach by exploiting lazyness (for

nondeterministic TWAs) which we sketch in Section 1.3.4, and Saraiva and Swierstra [1999]

presented visit functions, which are coroutines encoded as continuations (for deterministic

36

1.3 Background on Attribute Grammars

TWAs with a total order imposed on visits which we sketch in Section 1.3.5).

Implementations described in this thesis. In Chapter 3 we build upon visit functions.

In Chapter 4 we show that we can represent transition relations that use contexts. In later

chapters we look at extensions to AGs that have accompanying evaluation algorithms that

cannot be described with a deterministic TWA. For example, in Chapter 5 we allow tree

walks directed by values of attributes, and in Chapter 6 we allow tree walks to jump back and

forth saved positions.

1.3.4 Demand-driven Attribute Evaluation

We can express demand-driven attribute evaluation by mapping an AG onto an execution plan

that describes a nondeterministic TWA (Section 1.3.3). This translation is straightforward:

• From each production an execution plan is derived with a single visit that lists all

attributes of the productions left-hand side.

• The visit-block contains the rules of the production, and an invoke-rule per child which

lists all the attributes of the child.

The attributes are then computed by running the described TWA.

An execution plan in the above form has a straightforward translation to algebras Haskell.

We sketch this translation. It is optional background material, but is not required for the

understanding of later chapters.

Catamorphisms. Let F be an endofunctor so that data constructors describing the AST A

form the initial F-algebra. The execution plans can be mapped straightforwardly to an F-

algebra φ so that cata φ A is a function g (which we call the semantic result or semantic tree)

that takes an argument for each inherited attribute of the root of A, and provides a result for

each synthesized attribute of the root. Function g encodes the tree dependency graph of ast

(Section 1.3.2), and lazy evaluation acts as nondeterministic TWA, with the additional feature

that each rule in the execution plan is at most executed once. Effectively, the functional

program is a term-graph representation of the dependency graph, and evaluation, rewriting

this term-graph [van Eekelen et al., 1996], results in the values of synthesized attributes.

Haskell translation. Swierstra and Alcocer [1998] showed how to express the algebra in

Haskell as a function (called a semantic function9). We demonstrate this approach based on

the example in Figure 1.14.

Figure 1.20 gives a sketch of the translation to Haskell code. We explain some aspects of

this example below.

For each nonterminal N a type T 〈N〉 for the semantic result of a tree associated with N is

generated, which is T String in the example. Nonterminal String has an inherited attribute of

9 Depending on the context, a semantic function may be the function in a productions rule or a function corre-

sponding to some data structure in an algebra.

37

1 Introduction

type T String = Char→ String -- type of the node’s semantics

cata String :: String→ T String -- maps AST to semantic AST

cata String Nil = sem Nil

cata String (Cons hd tl) = sem Cons hd (cata String tl)

sem Nil :: T String -- production without children

sem Nil lhs down = (lhs sh) where ... -- note that the T-type is a function

sem Cons :: Char→ T String→ T String -- production with two children

sem Cons loc hd loc tl lhs down = (lhs sh) where ...

Figure 1.20: Sketch of the algebra.

sem Cons loc hd loc tl = λ lhs down→
let tl down = loc hd -- transcription of the first rule

(tl sh) = loc tl tl down -- recursive call to child tl

lhs sh = Cons lhs down tl sh -- transcription of the second rule

in (lhs sh)

Figure 1.21: The body of sem Cons.

type Char and a synthesized attribute of type String, hence the type of T String is Char→
String.

The cata-function associates a semantics with each constructor of the AST. It replaces a

constructor P with its semantic variant sem 〈P〉.

Semantic functions. Figure 1.21 sketches the generated semantic function sem Cons.

The body of a semantic function encodes the productions rules and the invoke-rules as given

in the execution plan. The encoding of the rules is straightforward. An invoke-rule with some

child tl is translated to a recursive call to the parameter that represents the semantic tree of

tl. The call is parameterized with values of the inherited attributes of tl, and a pattern match

against the results extracts the values of the synthesized attribute of tl.

Remarks. Demand-driven evaluation of AGs is popular in current AG systems. An ad-

vantage of on-demand evaluation is that it does not require an abstract interpretation as part

of its implementation, and works in combination with extensions such as remote reference

attributes [Magnusson and Hedin, 2007].

Another advantage is that attributes are not computed when their values are not needed at

runtime. Demand-driven evaluation may produce values of attributes even in the presence of

cyclic attribute dependencies.

38

1.3 Background on Attribute Grammars

A disadvantage of demand-driven evaluation is the potential high space requirements also

known as space leaks.

The approach based on lazy evaluation goes further than demand-driven attribute evalu-

ation because the set of required attributes depends on how the values of attributes are in-

spected. In fact, using lazy lists it is possible to associate countable infinite attributes with a

nonterminal.

1.3.5 Statically Ordered Attribute Evaluation

We can express a statically ordered evaluation of AGs by mapping the AG onto a determin-

istic TWA (Section 1.3.3). Depending on what contexts are distinguished and the strictness

properties of the rules, there may be values computed for attributes that are not needed for

the result, or which are only needed later. Therefore, we will call this also eager, greedy or

strict evaluation of AGs.

Definition (Multi-visit AG). A multi-visit AG is an AG for which a statically ordered evalu-

ation strategy is possible.

Multi-visit AGs play an important role in this thesis because they make the notion of phas-

ing explicit, which is useful for reasoning about what parts of the tree have been investigated

and constructed so far.

Attribute scheduling. To map an AG to an execution plan of a deterministic TWA, we

need to determine for each production P how trees are visited that are associated to P. For

each visit, we need to determine which rules to apply and how the children of P are visited.

This process requires acyclic augmented PDGs.

Scheduling algorithms. Kastens [1980] presented an approach that attempts to derive a

smallest single sequence DeltaN of visits per nonterminal N so that the attributes of a child

with some nonterminal N can be computed by visiting the child according to some prefix of

DeltaN . Effectively, this approach does not distinguish any contexts. The approach entails

adding edges to the I/O graphs of N so they are equal and form a total order on the attributes,

which is possible for most AGs in practice, but the approach of Kastens sometimes needs

help in the form of additional attribute dependencies to accomplish this.

Kennedy and Warren [1976] presented an approach that works for any absolutely non-

circular AG. Their approach distinguishes protocols as contexts, which are the possible or-

ders in which the parent provides inherited attributes and demands synthesized attributes. In

Chapter 4 we investigate this approach in-depth and present a translation to Haskell.

Coroutines. A deterministic TWA can be implemented with coroutines [Warren, 1976].

Definition (Coroutine). A coroutine [Marlin, 1980] is a function that can pause during its

execution and return results to the caller. It may be parameterized with additional arguments

when resumed by the caller. A generator is a coroutine that does not take additional argu-

ments.

39

1 Introduction

When no contexts are distinguished, such coroutines can be encoded in a purely functional

language as visit functions [Saraiva and Swierstra, 1999]. The body of such a function builds

a continuation that is used for a subsequent call and returns it as part of the result. From the

caller’s perspective:

...

f visit1 = s f -- assuming s f is the coroutine of a child f

(f syn1, f syn2, f visit2) = f visit1 f inh1 f inh2

(f syn3, f syn4, f visit3) = f visit2 f inh2 f inh2

...

The callee has the following structure where the dots represent the usual encoding of the rules

that are scheduled to a particular visit:

sem 〈P〉 1 s child1 s child2 = lhs visit1 where

lhs visit1 inh1 ... inh2 = (syn1, ...,syn2, lhs visit2) where

...

lhs visit2 inh3 ... inh4 = (syn3, ...,syn4, lhs visit3) where

...

We explain this encoding in great detail throughout this thesis. Many chapters of this thesis

present variants of this encoding.

Remarks. Historically, statically ordered attribute evaluation results in faster code and less

memory usage. Also, recent developments on multi-core computing may give renewed inter-

est in visit sequences with respect to parallel evaluation [Wang and Ye, 1991].

1.3.6 Incremental Descriptions

Our formalism allows us to write various declarations that together form an AG in any order.

This is a consequence of the purely functional relation between attributes. It is an important

property of AGs, because it allows us to incrementally and separately describe AGs. In this

thesis, we make repeatedly use of this feature to eliminate common patterns from examples.

The separate descriptions are simply be merged by string concatenation.

Incremental notation. An AG description is incremental: nonterminals, productions,

children, attributes and rules may be declared separately. At the same time, we may de-

clare productions and attributes for multiple nonterminals, and children and rules for multiple

productions.

Figure 1.22 gives a number of examples. A declaration of a nonterminal and production

may appear multiple times and provide additional declarations. Nonterminal Expr has only

one production App but its contents are determined by several declarations.

The type self is special and represents the type of the actual nonterminal of the description

the self appears in. The function mkApp must thus be an overloaded function that works both

on Exprs and on Types.

40

1.3 Background on Attribute Grammars

grammar Expr -- productions for Expr

prod App term impred :: Bool -- with terminal for App

prod Var term nm :: Name -- with terminal for App

prod App Var term uid :: Int -- extra terminal for App and Var

grammar Expr Type -- productions for multiple nonterminals

prod App nonterm f ,a : self -- multiple nonterminals of the same type

attr Expr inh x,y :: Int -- multiple attributes of the same type

attr Expr Type syn output :: self -- attributes for multiple nonterminals

sem Expr Type -- rules for multiple nonterminals

prod App lhs.output = f .output ‘mkApp‘ a.output

sem Expr

prod App Var lhs.x = 1 -- rule for multiple productions

Figure 1.22: Examples of incremental notation.

The merging process is straightforward10. A duplicate declaration of an attribute of the

same nonterminal is not allowed and considered a static error. Similarly, after merging, at-

tributes may not be defined by more than one rule, and each child of a production must be

defined once.

Nonterminal sets. To aid the definition of attributes on many nonterminals, we may use

nonterminal sets. We use nonterminal sets often in actual code but only sporadically in this

thesis.

Definition (Nonterminal set). A nonterminal set is a nonterminal name that represents one

or more other nonterminals or sets.

For example, we define a nonterminal name AllExpr, which actually stands for Expr and

Decl. When we declare attributes on AllExpr, these are actually declared for Expr and Decl:

set AllExpr : Expr Decl -- AllExpr includes Expr∪Decl.

Nonterminal sets are extensible: a set declaration of some set N may appear multiple times

in an AG description. Additionally, notation for set union and set difference may be used to

define sets. Determining sets is a straightforward fixpoint computation.

Nonterminal inheritance. A nonterminal may masquerade as a set. If due to a set declara-

tion, such a set includes other sets and nonterminals, the nonterminal inherits their attributes,

productions, and rules.

10 The interested reader may take a look at Transform.ag in the uuagc project for a merge algorithm. This

algorithm also allows some declarations to overwrite previous declarations.

41

1 Introduction

1.3.7 Higher-Order Children and Attributes

Definition (Semantics of a child). The semantics of a child with a nonterminal N is a seman-

tic tree associated to nonterminal N. The decorations still have to be given.

Definition (Higher-order child). A higher-order child is a child with a semantics determined

by the value of an attribute.

A conventional child is determined by syntax, whereas a higher-order child is determined

by an attribute. Higher-order children are also known as higher-order attributes or nontermi-

nal attributes. The notion ‘higher order’ originates from being able to pass the semantics of

children around as first class values.

Higher-Order AGs (HOAGs) [Vogt et al., 1989] support higher-order children. As part of

this thesis, we implemented this feature in UUAG [Löh et al., 1998]11. Higher-order children

play an essential role in this thesis: with such children we can dynamically grow the tree (e.g.

a proof tree) instead of being limited to a fixed tree (e.g. the parse tree).

Children defined by rules. In a conventional AG, the semantics of a child of a production

is determined prior to attribute evaluation. In a Higher-Order AG (HOAG), additional higher-

order children may be declared for a production. Their semantics is the value of an attribute,

or alternatively, the outcome of evaluating a rule:

child x : N = f [a] -- rule that introduces a child x

The expression f [a] evaluates to the semantics for x as the following example demonstrates:

child x : String = sem Nil -- declares a child x that is defined by sem Nil

x.down = ’z’ -- inherited attr of x

Implementation. We see in later chapters how child-rules can be implemented. In the

translation to Haskell as sketched in Section 1.3.4, the semantics of a child is a function from

inherited to synthesized attributes, and each child is translated to a function call. A child-rule

in this section is a conventional evaluation rule that defines some local attribute, where the

local attribute is used as the function to call:

loc x = sem Nil -- local attr determines the semantics of x

x down = ’z’ -- defines inherited attr of x

x sh = loc x x down -- call to child x

11 The syntax that we use here deviates slightly from the actual syntax of higher-order children in UUAG. A type

signature inst.x : N declares a child x, and a conventional rule must define the attribute inst.x with the semantics

for x. In addition, when x already exists, its definition is a function that transforms the original semantics of x.

42

1.3 Background on Attribute Grammars

Desugaring. HOAGs can be used to desugar an AST. As example of an HOAG, suppose

that String has a special production Single for single-character strings. Instead of defining the

semantics directly for Single, we add a child repl that represents the string in terms of Cons

and Nil:

grammar String prod Single term x :: Char -- the Single production

sem String prod Single -- and its semantics

child repl : String = sem Cons loc.x sem Nil -- higher-order child

repl.down = lhs.down -- inh attr of child repl

lhs.sh = repl.sh -- syn attr of child repl

Multi-visit AGs as HOAGs. In a multi-visit AG, a child may be visited multiple times

to compute some of the attributes. Such an AG can be encoded as a HOAG, which we show

below. As we see in later chapters, we worked on a core language that can represent such

AGs, and the question arose whether to use HOAGs as a target language. We did not do this

because of other requirements, but we present the translation anyway since it may give some

insight in how we organized the visit functions earlier.

We may encode multiple visits to some child c as a single visit to child c that only requires

the inherited attributes of the first visit and only provides the synthesized attributes of the first

visit. Additionally, it produces an attribute c.cont that represents the semantics of c after the

visit. For the second visit, we use a higher-order child c2 with c.cont as semantics. We then

visit c2 to provide/obtain the attributes of the second visit. For the next visit we use c2.cont,

etc. This approach requires the introduction of a potential large number of new nonterminals.

For a nonterminal N with m visits, we introduce the nonterminals N1, ...,Nm, such that

each nonterminal Ni has the inherited and synthesized attributes as associated to visit i of

nonterminal N. In addition, Ni (for i<m), has an extra synthesized continuation attribute

cont that contains the semantics of Ni+1.

For a production P we introduce the productions P1, ...,Pm. The terminals of production

Pi represent the decorations as available prior to visit i. Thus, P1 consists of the original

terminals and nonterminals of P, and Pi (for i > 1) consists of the terminals of Pi−1 and

additionally has terminals which encode the attributes computed in visit i. As optimization

the terminals that are not needed in later visits can be omitted from Pi.

The semantics for Pi consists of the rules in P’s plan for visit i (modulo renaming of

attribute references). Additionally, a rule is added which computes the semantics of Pi+1 and

stores it in attribute lhs.cont.

In this translation, a visit to a child (for i> 1) is thus represented as a higher-order child

that is instantiated by the continuation attribute produced by the previous visit.

1.3.8 Circular Reference Attributes

Reference Attributed AGs (RAGs) are an extension of attribute grammars with (remote) ref-

erence attributes [Magnusson and Hedin, 2007]. This is a common extension of AGs that

utilize a demand-driven evaluation algorithm. The extension allows subtrees to be passed

43

1 Introduction

around in attributes. Normally, the attributes of such a subtree T can be used and defined

only by the direct parent of T . However, with the extension, the attributes of T may be used

and defined by any rule holding a reference to T . Such an attribute is said to be accessed

remotely.

Graph structure. With this extension, the nodes are organized in a graph structure instead

of a tree. Calculations over graphs often require some form of repetition, which can be

encoded with cyclic attributes. Values of cyclic attributes can be computed if the demand-

driven evaluation is extended with fixpoint iteration, and the attributes are given an initial

value. The computation terminates if the rules are monotonic and each ascending chain of

attribute values stabilizes.

Advantages and disadvantages. Reference attributes provide a convenient way of trans-

porting information from one location in a tree to another location. Also, the extension al-

lows more analyses to be modelled with AGs, such as abstract interpretations, which are

typically fixpoint iterations over graphs. This expressive power comes with a price: the well-

definedness of an AG cannot be statically verified in general (Section 1.3.2). Moreover, if

values of inherited attributes can be defined remotely, well-formedness of the AG cannot

be checked statically, which has as consequence that a straightforward mapping (such as in

Section 1.3.4) to a purely functional language is not possible12.

1.3.9 Correspondences between AGs, HOAGs, Monads, and Arrows

In later chapters, we translate AGs to a monadic target language [Meijer and Jeuring, 1995]

and also consider AGs translated to Arrows [Hughes, 2004]. Being able to structure a com-

putation as a monad or arrow allows reflection on the structure of the computation. We use

such introspection in Chapter 6 to implement a step-wise evaluation strategy.

For example, consider the code of production Cons of the example in Section 1.3.1. In its

present formulation, it can be evaluated in a strict fashion:

sem Cons loc hd loc tl lhs down = (lhs sh) where

tl down = loc hd

(tl sh) = loc tl tl down

lhs sh = Cons lhs down tl sh

We rewrite this code using arrow notation [Paterson, 2001] and call the result an execution

plan:

sem Cons field hd loc tl = proc lhs down→ do

tl down← fcopy ≺ field hd -- transcription of the first rule

tl sh ← loc tl≺ tl down -- invoke arrow of child tl

lhs sh ← fcons ≺ (lhs down, tl sh) -- transcription of the second rule

returnA≺ lhs sh -- output

12 We implemented synthesized reference attributes in UUAG for lazily evaluated grammars.

44

1.3 Background on Attribute Grammars

where fcopy = id

fcons = uncurry Cons

The translation into arrow notation essentially desugars the above code into point-free style,

thus in a linear composition of the rule functions that is interspersed with combinators to

rearrange the intermediate attribute values.

Can we represent any AG in this way? When we limit the expressiveness of the language

of the rules to tree constructions only, conventional AGs can express primitive recursive func-

tions whereas HOAGs can express all computable functions. This difference can be observed

when translating to arrows. In this setting, the semantics of a tree is an arrow that takes a

tuple of inherited attributes as input and produces a tuple of synthesized attributes as output.

A conventional AG is expressible as a plain arrow, but a HOAG requires the generalization

to a monad, and AGs that are not statically ordered may require a feedback-loop.

Introspection of the arrow is possible using defunctionalization [Reynolds, 1998]. Such an

arrow actually encodes the tree dependency graph (Section 1.3.2), thus introspection on this

structure allows a runtime optimization (e.g. elimination of identity functions) of this graph

which may be useful when traversing parts of the graph several times (Chapter 5).

1.3.10 Specification of Typing Relations

In the preceding sections, we discussed several AG features. We will now make the con-

nection with type systems. A reason why attribute grammars are a convenient formalism to

describe type systems is that we can see a specification with type rules as an attribute grammar

where the typing relations are attributed nonterminals, the type rules form the productions,

and the judgments form the symbols with equations between the attributes. The AG thus

describes the structure of derivation trees.

To map an AG to type rules, we need to translate nonterminals, productions and rules. A

nonterminal N with inherited attributes IN and synthesized attributes On translates to a typing

relation of the form IN ⊢N On. Note that the distinction between inherited and synthesized

gets lost in the translation, although we use the notational convention that supposed inputs

are to the left of the turn style and supposed outputs are to the right. Without going in details,

a production p = u→ w · r ·X translates to a type rule with a judgments for each symbol in

w, equality judgments for each rule in r, and a conclusion for u. The actual translation is

quite similar to the translation to a lazy functional program, which we already showed in

Section 1.3.4.

If we take the inverse of the above translation, we arrive at a translation from type rules

to AGs. This process, however, is non-trivial, which is not surprising because there exists

no general inference algorithm. Thus, to do so, we need to identify which attributes are

inherited and which are synthesized, and with what computable function to represent equality

judgments. However, as we come back to in Section 1.6, we can use such an improper AG as

a starting point for an inference algorithm, and add information to make it a proper AG. Such

an AG then has the desirable property that its basis directly corresponds to the specification.

In the next sections, we give an AG implementation of a DHM type inferencer, and show

some attribute grammar features that are useful when using AGs to describe derivation trees.

45

1 Introduction

grammar Expr -- abstract grammar for expressions

prod Var term x :: Name -- the identifier x

prod App nonterm f : Expr -- left-hand side of application

nonterm a : Expr -- right-hand side of application

prod Lam term x :: Name -- the identifier x bound by the lambda

nonterm b : Expr -- the body of the lambda

prod Let term x : Expr -- the name of the binding

nonterm e,b : Expr -- the binding and body

attr Expr inh env :: Env -- inherited environment

chn subst :: Subst -- chained attr: both inh and syn

syn ty :: Ty -- synthesized type

syn errs :: Errs -- collection of type errors

Figure 1.23: DHM grammar and attributes.

1.3.11 Damas-Hindley-Milner Inference

As an example of a type inference algorithm written with attribute grammars, we give an

AG implementation of the DHM algorithm (Section 1.2.6) by using the same approach as

presented by Dijkstra and Swierstra [2004].

Definition (Chained attribute). A threaded attribute or chained attribute stands for both an

inherited and a synthesized attribute with the same name.

The environment is modeled as an inherited attribute, errors as a synthesized attribute, and

the substitution as a chained attribute.

For the type we have two options. Either the parent passes an expected type to the child

that is further constrained by the child, or the child passes up an inferred type that is further

constrained by the parent. When type annotations are part of the language, the former ap-

proach detects type errors faster. The information from these type annotations can then be

given to a child, instead of verifying the resulting type after the fact. However, for this exam-

ple it does not matter, thus we take the latter approach, which we also used for the monadic

implementation of DHM in Section 1.2.6.

Figure 1.23 shows the grammar and attributes of the example. The chained attribute subst

is shorthand for an inherited and synthesized with both subst as name. To make it clear which

of the two attributes we intend, we explicitly prepend syn and inh to the name in the rules.

The rules in Figure 1.24 describe how the environment is passed top-down through the

tree, how the substitution is threaded in-order through the tree, and how errors are collected

bottom-up. Since functions such as instantiate and unify produce an updated substitution, it is

the threading of the substitution that determines in what order the effects of these operations

are visible in the substitution. The substitution needs to be threaded carefully in order not to

loose any constraints on type variables.

46

1.3 Background on Attribute Grammars

sem Expr

prod Var loc.scheme = lookup loc.x lhs.env

(lhs.ty,syn.lhs.subst) = instantiate loc.scheme inh.lhs.subst

lhs.errs = /0

prod App a.env = lhs.env

f .env = lhs.env

(loc.res, inh.a.subst) = fresh inh.lhs.subst

inh.f .subst = syn.a.subst

(loc.errs,syn.lhs.subst) = unify f .ty (a.ty→ loc.res) syn.f .subst

lhs.errs = f .errs++a.errs++ loc.errs

prod Lam b.env = insert loc.x loc.argty lhs.env

(loc.argty, inh.b.subst) = fresh inh.lhs.subst

lhs.ty = loc.argty→ b.ty

syn.lhs.subst = syn.b.subst

lhs.errs = b.errs

prod Let e.env = lhs.env

b.env = insert loc.x loc.scheme lhs.env

loc.scheme = generalize lhs.env e.ty syn.e.subst

inh.e.subst = inh.lhs.subst

inh.b.subst = syn.e.subst

syn.lhs.subst = syn.b.subst

lhs.errs = e.errs++b.errs

Figure 1.24: DHM with AG rules.

47

1 Introduction

In contrast to the monadic approach in Section 1.2.6, the rules are compositional. The

distribution of the environment, the threading of the substitution, and the collection of error

messages can be described separately and relatively independently. On the other hand, the

rules are also more verbose because the environment, substitution and error messages are not

hidden. Furthermore, rules that employ generalize are crosscutting as they deal with types,

substitutions and environments. This has a negative effect on the degree of separation in the

descriptions of these individual attributes. We address both issues in Section 1.3.12.

1.3.12 Copy Rules and Collection Attributes

We often pass values in standard top-down, bottom-up, and in-order patterns between at-

tributes of the tree. The rules that encode these patterns are trivial: essentially identity-

functions between attributes. For example, to pass an environment topdown to the children

of an application we use the following rules:

sem Expr prod App

inh.left.env = id inh.lhs.env -- copy down left

inh.right.env = id inh.lhs.env -- copy down right

To thread13 a counter uid (unique identifier) through the tree, we use the following rules:

sem Expr prod App

inh.left.uid = id inh.lhs.uid -- copy down to left

inh.right.uid = id syn.left.uid -- from left to right

syn.lhs.uid = id syn.right.uid -- copy up from right

Similarly, if a production has one child, we may pass the value of an attribute of that child

bottom-up as value for the same attribute of the parent:

sem Expr prod Lam syn.lhs.errs = syn.b.errs -- copy error messages up

Such copy rules [Magnusson et al., 2007] are so common14 that we allow these rules to be

omitted.

To make such an AG well-formed, the following algorithm augments an AG with copy

rules. If a rule is missing for an inherited attribute a of a child c, we insert a rule that takes

an attribute with the same name a from the local attributes, or synthesized attributes of the

children to the left c, or the inherited attributes of the parent. The last attribute occurrence

is taken in the ordering: inh from parent, syn of children, local attributes, inherited attrs of

parent. In a similar way, we treat omitted copy rules for synthesized attributes. These copy

rules can be considered to provide generic behavior for AGs that is not unlike the abstraction

offered by reader and state monads.

13 When we write that we thread an attribute x through the tree, then we actually mean that we thread a value through

the tree via a sequence of attributes that are all named x, and that are chained together by (mostly) copy rules. In

a similar way, we talk about passing attributes topdown and bottom up.
14 The AGs of UHC have more than twice as many copy rules than explicitly written rules. Thus the inference of

copy rules saves a lot of manual labor.

48

1.3 Background on Attribute Grammars

Furthermore, we often collect attribute values in a bottom-up fashion:

sem Expr prod App syn.lhs.errs = syn.left.errs++ syn.right.errs

sem Expr prod Const syn.lhs.errs = []

Such collection rules [Magnusson et al., 2007] can also be inferred automatically when we

specify a combination operator and an initial value:

attr Expr syn errs use (++) []

This approach captures the abstraction provided by writer monads.

Intermediate nodes and copy rules. It is often convenient to have to have intermedi-

ate nodes in the AST structure. An important benefit of copy rules is that it allows us to

transparently add intermediate nodes to the AST.

As an example, consider function application in the lambda calculus. It is usually ex-

pressed as a binary expression in the abstract syntax:

grammar Expr prod App nonterm f ,a : Expr

A function call with multiple arguments (e.g. f a1 a2) is thus encoded as a sequence of

applications ((f a1) a2) using App. Suppose that we want to add an inherited attribute that

describes at which argument position an expression occurs:

attr Expr inh index :: Int

sem Expr prod App inh.f .index = inh.lhs.index

inh.a.index = 1+ inh.lhs.index

This definition is incorrect for nested function calls (eg. f a1 (g a2)), because the first ar-

gument a2 of the nested call receives 2 as value for its index attribute. We get the expected

behavior by distinguishing whether an expression occurs to the left or right of an applica-

tion with an inherited attribute. This, however, requires us to specify this attribute for each

occurrence of an expression nonterminal.

We obtain a more concise solution if we assume there is always a special top node above a

sequence of applications:

grammar Expr prod AppTop nonterm e : Expr

sem Expr prod AppTop inh.e.index = 0

The copy rules transparently connect the remaining attributes of e with attributes of lhs. For

these attributes, the existence of the intermediate node is not visible. A typical place to add

these intermediate nodes is in the parser or with a tree transformation.

If we furthermore ensure that a special root node occurs above expression trees, then we

also easily define an initial value for the index attribute:

grammar ExprTop prod Top nonterm e : Expr

sem ExprTop prod Top inh.e.index = 0

With nonterminal sets (Section 1.3.6) we can define attributes that are common to Expr and

ExprTop without code duplication.

49

1 Introduction

grammar Unify prod Unify -- nonterminal that represents unification

attr Unify inh ty1, ty2 :: Ty -- the two input types

inh env :: Env -- the input environment

chn subst :: Subst -- the input/output substitution

syn errs :: Errs -- the output error messages

sem Unify prod Unify -- essentially a wrapper around unify

(lhs.errs,syn.lhs.subst) = unify lhs.env lhs.ty1 lhs.ty2 inh.lhs.subst

Figure 1.25: Encoding of unify as a higher-order child.

sem Expr prod App

child u : Unify = sem Unify -- higher-order child

u.ty1 = f .ty -- input type

u.ty2 = (a.ty→ loc.res) -- input type

inh.u.subst = syn.a.subst -- copy rule

syn.lhs.subst = syn.u.subst -- copy rule

u.env = lhs.env -- copy rule

lhs.errs = f .errs++a.errs++u.errs -- copy rule

Figure 1.26: The DHM rules for App with copy rules.

Higher-order children and copy rules. To improve the effectiveness of copy rules fur-

ther, and in general to improve the separation of concerns, we can encode crosscutting rules

as higher-order children (Section 1.3.7). By encoding a rule r as a child, we abstract r from

how it is combined with other rules.

This idea is the spirit of this thesis. A higher-order child can be used to declaratively spec-

ify tasks (for instance, to ensure that two terms are equal), and the underlying implementation

(the unification function) reflects the effects of performing the task in terms of attribute val-

ues. The orchestration of these tasks is determined by how the rules weave the attributes

together.

In general, we can represent any function as a higher-order child. In Figure 1.25 we intro-

duce a nonterminal for unification that has inherited attributes for each input of unification

and synthesized attributes for each output of unification. The nonterminal has only one pro-

duction, which contains only one rule, which is the rule we abstract over.

In a similar way we can encode the fresh and instantiate functions as higher-order children

(Section 5.2.3). In Figure 1.26 we show how this is done for production App, where we

added the unify-nonterminal as higher-order child u to the production, and added rules for

the attributes of u. The latter rules are all implied by the copy rule mechanism and can be

50

1.4 Background on Ruler

omitted.

Remarks. The automatic completion of an AG with copy rules is a double-edged sword.

The mechanism saves a lot of boilerplate code, but the automatic behavior may not always be

intended. If we accidentally forget to define an attribute explicitly, and that attribute can be

given a default definition via a copy rule, then we are not warned that a rule is omitted. We

provide a way to specify copy rules per production in Chapter 5, which gives more control

over where and what copy rules are applied.

The copy rule mechanism uses the order of appearance of children for threading and

bottom-up collections. This is sometimes not the appropriate order for a given application.

For example, higher-order children follow conventional children in the order of appearance,

thus are always at the end of copy rule chains. In such situations we can override the copy

rule behavior by giving explicit rules for attributes. However, this reduces the convenience of

copy rules, and the underlying idea that we rather specify patterns than individual rules.

As a solution, in Chapter 3 we allow the visit order to children to be explicitly specified

for eagerly evaluated AGs, and can then use copy rules that use the visit-order instead of the

order of appearance. Moreover, in Chapter 4 we define commutable (copy) rules, which are

rules that can be ordered independently of their value dependencies.

1.3.13 Advantages and Disadvantages

The greatest advantage offered by AGs is that specifications are composable. Productions,

attributes and rules can all be specified separately and automatically combined into a mono-

lithic specification (Section 1.3.6). This easily allows new attributes and behavior to be added

and shared with already existing rules. In particular, extra attributes can be used to specify

additional administration for type inference strategies, and for the specification of what a

compiler does with the inferred types.

In general, AGs offer modularity [Farrow et al., 1992] and extensibility [Viera et al., 2009],

which can be realized via generic programming and meta programming approaches. In this

thesis, we make use of such facilities, although these facilities themselves are not the focus

of this thesis. Instead, we focus on combining AGs with algorithms that implement the

functionality specified by declarative aspects of type rules.

1.4 Background on Ruler

This thesis complements previous work by Dijkstra and Swierstra [2006b] on the Ruler lan-

guage and tool suite. Ruler gives a semantics to type rule descriptions in the form of an

implementation with conventional attribute grammars and Haskell. Consequently, Ruler in

its current state provides only an implementation for syntax-directed type rules.

The purpose of this thesis is to provide a core language RulerCore for Ruler which allows

more complex inference strategies to be described. RulerCore extends on attribute grammars

in various ways. Therefore, we focus more on attribute grammars than on type rule descrip-

tions, although type systems play a prominent role in our work. The work on Ruler provides

51

1 Introduction

a notation for type rules and show how this notation translates to attribute grammars. From

this work a notation that maps to RulerCore can be designed, hence we describe Ruler in this

section.

1.4.1 Ruler Features

Ruler aims to generate both a type system specification and a type inference implementation

from a single description of the type system with type rules. The generated specification

consists of type rules formatted to LATEX figures, and can be used as documentation and for

formal reasoning. The generated implementation consists of attribute grammars that can be

included verbatim in the source code of a compiler. This approach guarantees consistency

between the specification and the implementation.

Ruler provides notation for the incremental description of type rules. It features the addi-

tion of parameters to judgements, type rules to relations, and judgements to type rules in a

similar way as we can add attributes, productions, and rules to an AG description.

When type rules are declarative, only well-formedness checks and generation of the spec-

ification is possible. However, Ruler provides also notation to describe algorithmic rules.

Using the facilities for incremental descriptions, a direction can be given to the parameters

of typing relations, and type rules can be associated with productions of an accompanying

attribute grammar, which turns the typing relation in a deterministic function for which AG

code can be generated.

1.4.2 Ruler Concepts

We take the explicitly typed lambda calculus as described in Section 1.2.3 as basis to show

the main concepts and syntax15 of Ruler. In Ruler, a type system description is a composition

of views on relations and their rules.

Definition (View). In Ruler, a view is a named subset of the declared relations, holes, judg-

ments, rules, etc. Each view describes a type system.

We start with a declarative view, which we give the name D. Later, we provide also an

algorithmic view with the name A.

Definition (Hole). In Ruler, the parameters of a relation are called holes. The parameters are

explicitly named and are explicitly typed.

Figure 1.27 shows how to declare a 3-place relation expr. The line with judgespec spec-

ifies a custom notation (meta-grammar) for the expr relation in terms of a meta grammar

production. Each hole must be uniquely present as meta nonterminal in this meta production.

Definition (Ruleset). A ruleset is a group of rules in combination with a collection of meta-

information, such as a name for the group.

15 We took the freedom to deviate slightly from Ruler’s actual syntax in order to have closer correspondence with

the notation that we use in this thesis.

52

1.4 Background on Ruler

relation expr view D -- declares the typing relation expr for D

holes g :: Gam e :: Expr t :: Ty -- specifies parameters of expr

judgespec g ⊢ e : t -- notation for judgments of expr

relation member view D -- declares the relation member

holes g :: Gam x :: String t :: Ty -- specifies parameters of member

judgespec (x, t) ∈ g -- notation for judgments of member

Figure 1.27: Examples of declaring relations in Ruler.

ruleset theRules relation expr -- a set of rules for expr

rule e.var view D -- rule for the var-case

judge L : member (x, t) ∈ g -- premise with the name L

judge R : expr g ⊢ x : t -- conclusion with the name R

rule e.app view D -- rule for the app-case

judge F : expr g ⊢ f : t1→ t2 -- premise with the name F

judge A : expr g ⊢ a : t1 -- premise with the name A

judge R : expr -- alternative syntax for judgment

| g = g -- binds expression g to hole g

| e = f a -- binds f a to hole e

| t = t2 -- binds t2 to hole t

Figure 1.28: Example of Ruler rules.

A relation is either a foreign relation, or it is specified by the rules of some ruleset. Fig-

ure 1.28 shows the ruleset theRules. A rule is given an explicit name, and zero or more

judgments as premises above the line, and one premise under the line. A judgment has an

explicit name and corresponds to a relation. The arguments are either bound to the corre-

sponding holes via the custom syntax in a nameless way, or via a generic syntax where each

binding is explicitly given.

The language of Ruler expressions consists of meta variables (such as f and a), and ex-

ternal constants and operators (such as the function arrow). The interpretation of such terms

depends on the target language. Denotations can be given for individual symbols and con-

stants, as well as for (saturated) applications:

rewrite ag ((t1 :: Ty)→ (t2 :: Ty)) = (TyArr t1 t2) :: Ty -- denotation of application

external TyArr -- identity denotation

rewrite tex ((t1 :: Ty)→ (t2 :: Ty)) = (t1→ t2) :: Ty -- fully saturated appl only

53

1 Introduction

format tex → = "\rightarrow" -- denotation of a symbol

Rewrite rules are applied in a bottom-up fashion. The LHS of a rewrite rule specifies a typed

pattern to match against a Ruler expression. The RHS must again be a Ruler expression,

which then is assumed to have the given explicit type. These types allow the notation to be

overloaded. A rewrite rule applies if both the syntax and the types of the LHS matches the

actual Ruler expression.

An explicit denotation must be given for foreign relations. The distinction between con-

ventional relations and foreign relations is that the latter is not defined by rules. An explicit

denotation to the host language needs to be given for a foreign relation:

relation member view D -- member is not specified by rules

judgeuse tex (x, t) ∈ g -- denotation for LATEX

judgeuse ag (Just t) = lookup x g -- denotation for AGs with Haskell

format tex ∈ = "\in" -- denotation of a symbol

external Just lookup -- identity denotation

The above declarative specification can be typeset to LATEX. To describe an algorithmic

version, additional information needs to be added to the relations and rules. We can describe

these additions separately by defining a view A that extends from D:

viewhierarchy D<A -- partial order on views

In particular, we need to define how the relations are mapped onto nonterminals of an AG,

and turn the relations into deterministic functions such that the parameters can be mapped to

attributes.

Ruler code does not stand on its own. The generated code for type inferencing is supposed

to be used in conjunction with other AG code. An association is specified between relations

(schemes) in Ruler and nonterminals in the AG. For example, the relation expr is associated

with the nonterminal Expr. Its type rules are associated with productions of Expr. This

correspondence is made explicit by annotating the nonterminal declaration with the name of

the relation, and the productions with the name of the corresponding rule16:

grammar Expr [expr] view A -- relation expr mapped to nonterminal Expr

prod Var [e.var] -- rule e.var mapped to production Var

term nm :: String

prod App [e.app] -- rule e.app mapped to production App

nonterm f : Expr

nonterm a : Expr

Moreover, the holes are mapped attributes. Judgments represent the semantics of a pro-

duction. Judgments of a foreign relation are translated to AG rules. The other judgements

16 Ruler allows productions to be defined by combining rules. Within the square brackets may not only be a name

of a rule, but also an expression that denotes a composition of rules. An example is the left-biased union of two

rules.

54

1.4 Background on Ruler

ruleset theRules relation expr -- extensions to rules for expr

rule e.var view A -- rule for the var-case

judge R : expr g ⊢ (node nm = x) : t -- association between term nm and x

rule e.app view A -- rule for the app-case

judge R : expr -- convenient for extensions

| e = (node f = f) (node a = a) -- assoc child f to f and child a to a

Figure 1.29: Rules demonstrating node-holes.

correspond to children of the production and are mapped to rules that define the inherited

attributes of the children, or pattern match against the synthesized attributes.

In view A, we refine the declaration of expr to include additional information. In this ex-

ample, we only provide additional information about the attributes. In general also additional

attributes and syntax can be added. We map the holes of the expr relation to inherited or syn-

thesized attributes. The hole that corresponds to the AST gets the special node designation:

relation expr view A -- algorithmic view on expr

holes node e :: Expr -- AST node

inh g :: Gam -- input param is inherited attribute

syn t :: Ty -- output param is synthesized attribute

A Ruler expression is at a defining position if it is bound to an inherited hole of a premise,

or bound to a synthesized hole of a conclusion judgment. Otherwise, it is at a using position.

The generated algorithm constructs a value at defining positions, and matches against values

at usage positions.

A node-hole takes the AST as value. In judgments of rules, node holes are treated differ-

ently with respect to normal holes in order to define the correspondence between judgments

of the type rule and children of the production. The node hole of a premise judgment may

only be an identifier and corresponds uniquely to child of the associated production. In the

expression bound to the node hole of the conclusion, these identifiers must occur and we

annotate them with the name of the child of the production. Figure 1.29 shows an example.

The syntax for explicitly named bindings of holes is convenient for extensions, as only the

bindings that are redefined need to be mentioned.

When a Ruler description is well-formed, an AG can be generated from the above descrip-

tion. This AG contains attributes and semantics for type inference, and can be combined with

other attributes and Haskell infrastructure into a compiler.

55

1 Introduction

viewhierarchy D<A<H -- DHM view H

relation expr view H -- DHM view on expr

holes chn s :: Subst -- substitution as threaded attribute

relation tyFresh view H -- wrapper for fresh

holes chn s :: Subst -- threaded subst

syn t :: Ty -- fresh type

judgespec t ‘fresh‘ -- syntax for the judgement

judgeuse ag (t,syn.s) = fresh inh.s -- denotation for AGs with Haskell

relation tyUnify view H -- wrapper for unify

holes chn s :: Subst -- threaded subst

inh t1 :: Ty1 -- left type

inh t2 :: Ty2 -- right type

judgespec t1 ≡ t2 -- syntax for the judgment

judgeuse ag (retain errs,syn.s) = unify g t1 t2 inh.s

Figure 1.30: DHM relations in Ruler.

1.4.3 Damas-Hindley-Milner Inference

Similar to Section 1.2.6 and Section 1.3.11 we show in this section a DHM inference al-

gorithm in Ruler. In the DHM view, we add lambda abstractions without an explicit type

annotation and a let expression. However, we only show the code for the app-rule, since we

already explained Ruler’s concepts in the previous section.

In Figure 1.30 we add a DHM view on top of the algorithmic view, and define external

relations to obtain fresh types and to unify two types. The retain-keyword declares that the

left component of the output tuple of unify is mapped to a local AG attribute loc.errs, which

can then be collected by conventional AG rules. This mechanism allows values to be exposed

as attributes to the encapsulating AG.

Figure 1.31 shows the rules for e.app in view H. The hole-bindings for judgments essen-

tially specify the threading of the substitution. The notation for hole-binding can be used to

supply bindings for holes that are not present in the judgement’s special syntax. To connect

two nodes, we introduce an intermediate meta variables s1, s2, etc. This threading has to be

done manually as Ruler does not have a concept of copy rules.

1.4.4 Discussion

Ruler provides notation and composition mechanisms for the description of type rules. Rules

may inherit from other rules, and rules inherited from the same rule from preceding views.

These mechanisms enhance modularity and reuse. Effectively, a ruler fragment is a partial

specification. The meaning of a ruler specification is only defined for a complete composition

in combination with the associated attribute grammar. It would aid formal reasoning if a

56

1.5 Thesis Overview

ruleset theRules relation expr

rule e.app view H

judge T : tyFresh r ‘fresh‘

| inh.s = s1 | syn.s = s2

judge F : expr

| t = t1 | inh.s = s2 | syn.s = s3

judge A : expr

| t = t2 | inh.s = s3 | syn.s = s4

judge U : tyUnify t1 (t2→ r)
| inh.s = s4 | syn.s = s5

judge R : expr | inh.s = s1 | syn.s = s5

Figure 1.31: Ruler rules for e.app

meaning can be attached to individual fragments.

The Ruler compiler generates only an inference algorithm for algorithmic specifications.

As a consequence, the code generation is limited to syntax-directed type rules. Syntax-

directedness does not hold for many declarative type systems that have relations with over-

lapping rules, or rules that dispatch on more than one argument of the conclusion judgment.

Also, the premisses must be functional. The transformation of a relation to a function by

itself is non-trivial, and common techniques such as fixpoint iteration or search strategies are

not directly supported by Ruler. We address these complications in this thesis (Section 1.5).

Moreover, Ruler’s features are actually not specific to the domain of type systems. Ruler

provides a rudimentary composition mechanism, syntactic sugar, and type setting support

for a formalism that is not unlike AGs. These features would equally well benefit AGs in

general17.

1.5 Thesis Overview

Our ultimate goal is to semi-automatically generate a type inference algorithm from a declar-

ative type system specification. In particular, we focus on type systems described as a collec-

tion of type rules, and an implementation based on attribute grammars.

In this thesis, we present RulerCore, a language that extends attribute grammars. It facili-

tates the composable description of inference algorithms that are typically used to implement

declarative aspects of type rules. RulerCore can thus be used to give an executable semantics

to a set of type rules.

17 An example of a feature that benefits AGs is Ruler’s automatic unique numbering mechanism. We generalized

and implemented a similar mechanism for AGs.

57

1 Introduction

In this section, we give an overview of RulerCore’s extensions on attribute grammars. In

Section 1.6 we position this thesis with respect to the larger goal.

1.5.1 Inference Algorithms as an Attribute Grammar

We give an abstract description of how we structure inference algorithms as an AG. Chapter 5

shows a concrete example.

We give AGs over typing derivations, instead of AGs over the abstract syntax of a language.

In the following chapters of this thesis, we refer with abstract syntax tree either to typing

derivations or to the result of parsing18. Nonterminals thus correspond loosely to typing

relations, and productions to type rules (Section 1.3.10). The grammar for typing derivations

may have more structure than is present in the type rules. For example, we may add nodes

that each represents a choice between alternatives, so that we effectively describe a forest of

typing derivations.

We map each declarative aspect of a type rule to a higher-order child (Section 1.3.7) as

shown by Section 1.3.12. Extra attributes, such as a substitution, provide contextual informa-

tion for these children. For example, an equality premise between two types in the type rules

corresponds to a unification-child in the AG. The structure of the unification child servers as

proof that the two types can be made equal, and the resulting substitution attribute reflects

the effect of unifying the two types. We treat meta variables in type rules as conventional

attribute values (Section 1.3.11).

Type inference amounts to determining the structure of these children. To choose a par-

ticular tree for a child may require an exploration of candidate trees. Instead of constructing

a single derivation tree, we actually construct and choose from a forest of derivation trees.

Through value dependencies between attributes, we effectively define in which order the

structure of these children is determined, and in which order the effects of determining this

structure is visible in the substitution attribute.

This approach allows us to encode Algorithm W (Section 1.2.6). For more complex infer-

ence algorithms, such as constrained-based algorithms and algorithms that require fixpoint

iteration, the shape of the derivation tree and the values of attributes are mutually dependent.

Inference algorithms therefore analyze, explore, and extend (intermediate) partial derivation

trees. This process does not have a straightforward mapping to an AG, since an AG specifies

when the resulting derivation tree is correct, but not how the intermediate trees are obtained.

We introduce extensions to AGs to make such intermediate trees visible in the AG descrip-

tion.

1.5.2 Attribute Grammar Extensions

Chapter 2 gives a detailed outline of each extension. The following chapters work out each

extension individually.

18 The typing derivation is typically an extension of the AST, thus the difference is usually irrelevant and can be

determined from the context. Similarly, we refer to AST and the AST decorated with attributes interchangeably.

58

1.5 Thesis Overview

Visits. RulerCore is a language for the description of higher-order, ordered attribute gram-

mars. We extend this basis with explicit specifications of visits. In comparison, visits are

implicit in ordered attribute grammars. Chapter 3 introduces the language and the notation.

For ordered attribute grammars, there exists an evaluation algorithm that starts with an

initially undecorated tree and ends in a correctly decorated tree. The state of a tree is the

collection of decorations present in the tree. During the evaluation, the state of the tree thus

changes. A configuration is a set of attribute names. A configuration describes the state of a

tree when the set of decorations of the root contain exactly the attributes as mentioned in the

configuration. In an ordered attribute grammar a linear order exists between configurations.

A visit, a unit of evaluation for a node, transitions the state of a tree to a state described

by the next configuration. We treat a node with a state described by a certain configuration

as a first class value, which we can store in attributes, obtain from attributes, inspect, and

programmatically apply state transitions on. This approach offers us sufficient control over

the AG evaluation to combine AGs with monadic operations, such as the unification monad

as shown in this chapter.

We provide notation to declare a totally ordered sequence of visits per nonterminal. Each

attribute declaration must be associated with one visit declaration, which has consequences

for the scheduling of rules. During attribute evaluation, attributes that are associated with

an earlier visits are defined before attributes of a later visit are computed/defined. In this

context defined means that a reference to the attribute value is available. Similarly, rules

of productions of a nonterminal may be associated with a visit of that nonterminal, which

restricts the scheduling of such rules to either that visit or to a later visit. Furthermore, we

may restrict a rule to a particular visit, which ensures that the rule is scheduled before any

rules of subsequent visits.

With this approach, rules may make assumptions about the configuration of tree tree prior

to the rule’s evaluation. Moreover, the notation allows us to define customizations of evalua-

tion strategies for rules of a particular visit or for visits to particular subtrees.

A disadvantage of our approach with respect to attribute grammars is that we need to spec-

ify a visit for each attribute. This requires additional effort and makes attribute declarations

less composable. We typically declare an attribute for a set of nonterminals instead of a single

nonterminal. In our approach, this is only possible if all the nonterminals in the set have a

common visit to which the attribute can be scheduled. We show in Chapter 4 how to solve

this issue.

Fixpoint iteration, clauses and constraints. In Chapter 5 we exploit the notion of

visits. We show how we to conditionally repeat the evaluation of a visit to a child, which

allows the encoding of fixpoint iteration. Using visit-local attributes, a state can be kept

between iterations. Moreover, we allow one or more clauses to be defined for a visit. Each

clause provides an alternative set of rules for the visit. With special match-rules we specify

constraints on clauses. With clauses in combination with higher-order children we can define

the structure of the derivation tree in terms of attributes, and thus deal with type-directed

inference algorithms.

We treat intermediate derivation trees as first class values. With the specification of visits,

we can reason about the configuration a tree is in. A tree that is in a certain configuration

59

1 Introduction

can be detached, transfered via attributes to another location, and attached there. With this

mechanism we can represent constraints or deferred judgments as trees with access to their

context via attributes.

Exploration of alternatives. The above extensions describe algorithms that conserva-

tively approximate the derivation tree. For some type systems it is necessary to explore a

forest of candidate derivation trees. Such a forest can be represented with a decision tree,

which contains choice nodes that branch to various alternatives.

In Chapter 6 we show how to describe explorations of such alternatives with AGs. We

present a technique that allows a spectrum of depth-first and breadth-first search strategies

to be described. In a statically scheduled AG, we can evaluate the AG in a step-by-step

fashion. By intertwining the evaluation of alternatives, we obtain a breadth-first search. After

each step, some intermediate values may be available, which can be used to direct the search

process.

Phases and Commuting Rules. In Chapter 4 we generalize visits to phases. A phase

may consist of one or more implicitly defined visits, which are determined by the static

scheduling of the AG. As a consequence, an attribute does not need to be explicitly assigned

to a visit, and its scheduling may optionally be constrained by a phase. Using this approach,

our extensions extend AGs conservatively.

For some chained attributes, the order induced by value dependencies of their rules may be

too strict when these rules encode commuting operations. We present commuting rules, which

are rules that are connected via a chained attribute, but which do not depend on previous rules

in the chain, Such rules thus give us more freedom in the scheduling of these rules. Typical

examples are the threading of a unique number supply, and the threading of substitutions. To

preserve referential transparency, the commuting rules must satisfy a liberal commutativity

law. With such rules we can functionally encode the behavior of a rule with side effect that is

scheduled to different implicit visits.

Dependent AGs. In Chapter 7 we apply dependent types to AGs. In a dependently typed

AG, the type of an attribute may refer to values of attributes. The type of an attribute is an

invariant, the value of an attribute a proof for that invariant. Thus, with dependent AGs we

can proof properties of our compiler. Additionally, this chapter serves as a showcase for visits

and clauses.

1.5.3 Contextual Chapters

In the extended edition of this thesis19, we place the above extensions in a wider context.

19 Extended edition: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

thesis-extended.pdf

60

https://svn.science.uu.nl/repos/project.ruler.papers/archive/thesis-extended.pdf
https://svn.science.uu.nl/repos/project.ruler.papers/archive/thesis-extended.pdf

1.6 The Context of this Thesis

Graph Traversals. Many computations in a compiler take control-flow or data-flow graphs

into account. We show that the mechanism to attach and detach children can be used to

interface AGs with graph traversals [Middelkoop, 2011b].

GADTs. In the extended edition [Middelkoop, 2011a], we show an example of a type

system for Generalized Algebraic Data Types (GADTs). An inference algorithm for this

system requires an exploration of alternatives (Chapter 6). We formulate our specification so

that it is orthogonal to specifications of ADTs:

• We present our specification as System F augmented with first-class equality proofs.

• We exploit the Church encoding of data types to describe GADT matches in terms of

conventional lambda abstractions.

Such orthogonal designs are important in order to compose type systems, and ultimately thus

also to compose type inference algorithms.

1.6 The Context of this Thesis

Types play an increasingly more important role in the design of programming languages.

Type systems specify a relation between programs and types, which facilitates (formal) rea-

soning with typed programs. Moreover, type systems form a partial specification for type

checking and type inference algorithms. As we discussed in Section 1.1, our ultimate goal

is to semi-automatically derive type inference algorithms from declarative type system spec-

ifications. We mentioned in Section 1.2 that a set of type rules alone is not a complete

description, hence we develop Ruler (Section 1.4), which is a domain-specific programming

language in which we write an inference algorithm as an extension of the declarative type

rules.

1.6.1 Challenges

There are several challenges that need to be overcome to reach this goal. We identify two

main challenges. This thesis is situated in the second challenge.

The first challenge is related to type system compositions. Language features and their

declarative type systems are typically defined as extensions of a bare lambda calculus. Some

language features are mutually conflicting (e.g. invalidate type soundness). However, many

language features compose in standard ways. For example, features described for a lambda

calculus that support fix-expressions can be translated to a description for a language with

recursive let bindings.

To meet this challenge, we wish to describe language features in isolation, and describe

a composition of these features for the actual source language. As illustration, the type rule

formalism lacks the expressiveness that higher-order functions offer to functional programs,

such as the ability to abstract over common patterns, and to instantiate these abstractions

with minimal syntax. For small type system descriptions that appear in type system theory,

61

1 Introduction

such expressiveness is not needed. However, type system descriptions of actual languages

are large and hard to maintain.

The second challenge is related to declarative type rules. Declarative type rules abstract

from evaluation strategies. However, a general inference algorithm does not exist, and a naive

algorithm such as mentioned in Section 1.2.4 is either incomplete or inefficient.

Ultimately, inference boils down to resolving declarative aspects: to determine the struc-

ture of the derivation tree, and computing with values that may not be fully determined yet.

In practice, inference algorithms are intricate compositions of common algorithms that treat

such declarative aspects in a predictable and deterministic way. These algorithms are hard

to combine. If one declarative aspect requires a constraint-based algorithm for its resolution,

and another requires some form of search, then the order in which the aspects are resolved

is likely to be relevant. Also, it is hard to describe the flow of information between different

solving techniques. To allow these techniques to mutually cooperate, we need a language for

the description of a composition of such techniques. Hence, this thesis.

1.6.2 Additional Challenges

Aside from the general motivation of our research, another source of motivation is that we

intend the results of our research to benefit the implementation of our Haskell compiler

UHC [Dijkstra et al., 2009]. Therefore, we impose additional demands on solutions to the

above challenges.

Firstly, since UHC’s implementation is based on Haskell itself, we require that solutions

integrate seamlessly with Haskell. This restriction effectively rules out the direct use of (func-

tional) logic languages, due to differences in the evaluation model and the representation of

data structures20. In addition, we desire that our research can also be exploited in compiler

suites that are implemented with languages without lazy evaluation or strict typing disci-

plines.

Secondly, along similar lines, we refrain from the use of dependently-typed languages,

since an extraction to Haskell is a one-way process that also affects data-type representations.

Our goal is to be able to generate an implementation. Advances in dependently-typed lan-

guages seem promising, but a formally certified implementation of a compiler such as UHC

is currently infeasible.

Finally, the resulting implementation should be reasonably efficient in order to process

ASTs of large programs. In our experiences with UHC, we noticed that memory usage is

an issue when using demand-driven evaluation of AGs. We experimentally verified that the

time spend on traversing abstract syntax trees in UHC is negligible in comparison to the

computations that are performed on each node of the AST. Thus, while traversal overhead is

rarely a problem, memory usage is an item of concern, which we address by using statically

ordered evaluation of AGs.

20 Braßel et al. [2010] show that an embedding of functional logic programs is possible in Haskell, but affects all

data representations and forces all computations to monadic style. However, we use techniques techniques and

ideas from logic programming that integrate seamlessly, such as backtracking in a monad [Hinze, 2000, Kiselyov

et al., 2005].

62

1.6 The Context of this Thesis

1.6.3 Solutions

A partial solution to the first challenge is given by Dijkstra [2005], as demonstrated by the

UHC project, and the initial development of Ruler (Section 1.4) in particular.

Ruler’s composition mechanisms and syntax extensions that are provided by Ruler would

be beneficial to AGs. For example, many dense translation schemes in this thesis are manually

derived from actual AG descriptions. These AG descriptions focus on attributes in isolation

and are easier to understand, but too verbose for inclusion in this thesis. Solutions for AGs

would also work for type rule descriptions, and vice versa. Indeed, composition facilities for

AGs receive ongoing attention [Viera et al., 2009, Saraiva, 2002].

There is still a long way to go with respect to the first challenge. Since declarative rules

abstract from an evaluation algorithm, the data structures and administration that are involved

in the algorithm are chosen for convenience and notational conciseness. In an actual imple-

mentation, we may be able to represent certain administration in a more efficient way using

specialized data structures. However, we do not address these issues in this thesis, and only

mention some in passing in Middelkoop [2011a]. We assume that the declarative rules are

specially crafted to make them more suitable for an actual implementation.

There is thus some open work for the first challenge. However we focus on the second

challenge. This challenge is more pressing, because we need basic building blocks before we

can compose them in clever ways.

We propose to tackle the second challenge with attribute grammars. Inference algorithms

that are specified by declarative type rules are sensitive to context—non-inductive properties

of the AST—and attribute grammars excel in providing such contextual information with

attributes, as is proven by UHC’s implementation. Also, from a practical perspective, since

UHC’s implementation is based on AGs, an inference algorithm based on AGs interfaces

conveniently with attributes of other components in the compiler, as shown by previous work

on Ruler.

However, attribute grammars in current form at not well suited for the description for

inference algorithms of complex type systems. Inference algorithms therefore make explicit

assumptions about the intermediate states of the derivation trees during its construction. In a

conventional AG, we cannot do so, because AG descriptions are defined in terms of the final

state of the derivation tree. In order to make assumptions about the intermediate state, we

extend AG evaluation and hence arrive at Section 1.5.

Our approach applies to the description of algorithms that are recursive functions over

tree-like data structures. In particular, our approach applies to catamorphisms, which is not

surprising because attribute grammars can be considered a domain specific language for the

description of catamorphisms. On the other hand, for example, algorithms based on graph

rewriting are not straightforwardly expressed in our approach. An inherent difference is that

we traverse a structure whereas rewrite rules as used by graph rewriting access the structure

in irregular ways. Also, algorithms that involve matrix operations to efficiently solve linear

constraints cannot be described straightforwardly. However, Middelkoop [2011b] shows how

to mix attribute evaluation with external solvers.

63

1 Introduction

1.7 Related Work

Each chapter has its own related work section. In this section we consider work that is related

to the thesis as a whole.

1.7.1 Circular AGs and Exposure of Intermediate States

Evaluation algorithms for circular AGs [Jones, 1990, Magnusson and Hedin, 2007] provide

an alternative way to extend the AG evaluation algorithm. For circular AGs, the algorithm

is parametrized with an initial value for cyclic attributes, which are called gate attributes by

Walz [1989]. The algorithm describes a repeated attribute evaluation to compute a fixpoint

for the cyclic attributes. When used in the context of this thesis, such attributes thus expose

intermediate states of the derivation tree during evaluation.

Fixpoint iteration is one of many evaluation strategies (Section 1.2.4). For example, several

type systems use an algorithm that describes the exploration of multiple candidate derivation

trees (Chapter 6). Moreover, to expose the intermediate states of the derivation tree as an

attribute, attributes at various locations of the tree have to be explicitly stored into and ob-

tained from this attribute21, which is cumbersome and destroys modularity. Our extensions

generalize over fixpoint iteration and many other common techniques employed by inference

algorithms.

1.7.2 Inference Rules

Glesner and Zimmermann [1998] shows a mapping from syntax directed inference rules to

AGs. Similar to Ruler, relations defined by syntax directed rules are mapped to nonterminals,

syntax directed rules to productions, and judgments of such relations to children of a produc-

tion. Judgments of rules that are not syntax directed are mapped to an AG rule that employs

a hull algorithm to construct a derivation tree. Only one of the rules may be applicable at a

given time, and the domain of the parameters of the relation must be finite. While suitable

for type checking, this approach does not suffice for type inference, as multiple rules may be

applicable, and it may be necessary to postpone solving the judgment when insufficient type

information is available.

Typol [Despeyroux, 1988] is another language for the specification of inference rules with

a mapping to Prolog. Attali and Parigot [1994] show how to identify a subclass of Typol

that can be mapped to an efficient AG implementation. Since this class consists effectively of

syntax directed rules, this approach is too restrictive for the implementation of type inference.

1.7.3 Proof Assistants

Proof assistants such as Isabelle/HOL [Wenzel et al., 2008], Twelf [Schürmann, 2009], and

Sparkle [Mol et al., 2002] and Coq [Bertot, 2006] can be used to formalize a type system

and inference algorithm, and prove various consistency properties between specification and

implementation. Typically, the formalized inference algorithm can be extracted to code in

21Such an attribute models a heap in a similar way as a substitution models memory.

64

1.7 Related Work

some target language. Such an approach is possible for small type systems as encountered in

theory, but does not scale up when dealing with practical, full-blown type systems of large

languages22.

In Coq, but also in other dependently typed languages such as Agda [Norell, 2009], Epi-

gram [McBride, 2004], and IDRIS [Brady, 2011], properties of type system can be expressed

as types of the inference algorithm. To do so, the inference algorithm needs to be imple-

mented, and structured so that it can be complemented with proofs of properties, such as type

soundness. In this thesis, we consider type systems for which the first task is already difficult,

and the second task infeasible in practice. Thus, such approaches are out of the scope of this

thesis. However, we consider dependently typed languages in Chapter 7.

Closer to the goals expressed in this thesis are the languages Ott (Section 1.7.4) and Tin-

kerType (Section 1.7.5).

1.7.4 Ott

Ott [Sewell et al., 2007] and SASyLF [Aldrich et al., 2008] are meta languages in which

formal semantics such as type systems can be formalized. Similar to Ruler [Dijkstra and

Swierstra, 2006b], these languages provide special syntax for inference rules, and require the

rules to be well-formed. In contrast to Ruler, the purpose of these languages is to aid the

construction of proofs. From an Ott-description, boilerplate code for several proof assistants

(e.g., Coq) can be generated. This boilerplate code consists of parsers for concrete syntax,

abstract syntax, and substitution lemmas.

Concrete and Abstract Syntax. The following is specification of a grammar for a variant

of the lambda calculus with tuples in Ott23. Such a grammar consists of three types of sym-

bols: meta variables, nonterminals and terminals. Meta variables are nonterminals that can be

substituted and alpha-renamed. Nonterminals are introduced by the grammar. The remaining

symbols that occur in the grammar are considered terminals. Occurrences of a nonterminal

may take a subscript to distinguish multiple occurrences of the same nonterminal from each

other.

metavar x

grammar e ::= :: Expr

| x :: Var

| \ p . e :: Lam :: bind b(p) in e

| e1 e2 :: App

| (e) :: _

p ::= :: Pat

| x :: Var :: b = {x}

| (p1, ..., p.n) :: Tup :: b = b(p1) ... b(p.n)

22 As demonstrated by Faxén [2002], a type system for Haskell’98 is already large and complex.
23 For presentation purposes, the examples use a slightly different notation than provided by Ott.

65

1 Introduction

The grammar specifies a concrete syntax to the left of the double colon, and the constructor

for the abstract syntax to the right. The production for parentheses is considered a meta-

production and is not reflected in the abstract syntax.

An important concept of Ott is binding. After the second double colon, binders for meta

variables can be specified, as well as their scope. The expression b(p) represents the set

of meta variables defined by the synthesized attribute b of p. Zero or more synthesized

attributes may be specified for a nonterminal. The binder bind b(p) in e for the lambda

production denotes that the meta variables b(p) are bound at this lambda, and are in scope

of e. Lemmas for substitution and alpha equivalence, as well as a definition of free variables

are derived from the binder annotations. The underlying mechanism ensures through alpha

renaming that meta variables are not accidentally captured by substitutions.

Ott has a notion of list forms, which is convenient syntax to represent the common over-

bar notation that is used grammars and type rules. Triple dots can be used to construct list

patterns, list expressions, and lists of judgments. For example b(p1) ... b(p.n) is a list

expression, where n is an index variable. Also, list comprehensions and projections of list

items can be used.

Inference Rules. Judgements can refer to relations defined in Ott via type rules, or to

externally defined functions and relations in the target language. For example, to model a

call-by-value operational semantics, the following code fragment represents beta reduction.

defn e1 --> e2 :: reduce

isValue e2

-- :: call-by-value beta

(\x.e1) e2 --> {e2/x} e1

The defn line specifies the syntax of the reduce judgments, and is followed by the inference

rules for that relation. The premise judgments occur above the horizontal line and conclusion

judgments below. The infrastructure for the substitution e2/x is derived from the binder

specification of e1. The inference rules are translated to axioms in the target language for the

reduction relation.

Discussion. Approaches such as Ott aid formal reasoning about type systems, and thus

pursuit a different goal than the derivation of type-inference implementations from specifica-

tions. On the other hand, Ott and Ruler share the common goal of formalizing type systems

and specifying properties. Certain concepts are also beneficial to AGs. Binding and scoping

is very common, so the concept of binding may be very useful for AGs as an abstraction

for name analysis. Similarly, list forms would benefit AGs when using higher-order children

(Section 1.3.7).

1.7.5 TinkerType

TinkerType [Levin and Pierce, 2003] is a language for the modular description of whole

families of formal systems, with a focus on type systems and operational semantics. A type

66

1.7 Related Work

system is described in two ways. A system is described intensionally as a set of features.

These features are names for abstract properties of a type system. A system is described

intentionally as a set of clauses. In TinkerType, a clause is a denotation of a type rule in the

form of LATEX text or ML code.

Overview. A TinkerType description consists of a number of elements: features, depen-

dencies between features, clauses, a clause refinement relation, and feature constraint formu-

las. With the latter two elements, clause refinement and feature constraints, a partial consis-

tency between type systems can be expressed.

Distinct type systems have different clauses. However, type systems with similar features

tend to have similar clauses. The relation between clauses is exploited by TinkerType. A

TinkerType description therefore contains a whole repository of named clauses that are tagged

with a number of feature names. Clauses with different feature sets can have the same name.

Given a number of features, a type system is then assembled by the TinkerType Assembler

by selecting the clauses that support these features best, which are the clauses where the

provided feature set is a subset of the requested feature set. Duplicately tagged clauses are

filtered out. The clause with the largest feature set is retained.

A dependency relation must be specified between features. A type system is fully defined

by the transitive closure of the dependency relation on the set of features of the type system.

Some combinations of features give an unsound type system, or the inference algorithm is

incomplete. Certain combinations of features can be declared as deficient using feature con-

straint formulas. These are propositional formulas over features that must be satisfied with

the features mapped to truth-values based on their presence in the type system. The depen-

dency relation between features is one form of such a feature constraint formula, in the form

of an implication.

Code Assembly. The code repository consists of components, which represents several

clauses and support code. For example, the following fragment [Levin and Pierce, 2003]

contains ML code that deals with the type checking of conditional and boolean expressions.

component bool, typing {

parsing { ... }

ast { ... }

core {

typeof {

header {# let rec typeof gam t = match t with #}

separator {#| #}

T-If

{#TmIf(e1,e2,e3) ->

if equiv gam (typeof gam e1} TyBool

then let res = typeof gam e2 in

if equiv res (typeof gam e3)

then res

67

1 Introduction

else error "branches differ in type"

else error "guard is not a boolean"#}

} } }

The level of granularity of features is actually per component instead of per clause. A com-

ponent consists of several sections related to parsing, abstract syntax tree representation, and

the actual typing relations with their clauses.

The assembling process is essentially based on concatenating and substituting strings. The

components that match the requested features are merged, and the produced code consists of

the header followed by the clauses in verbatim, which are separated by the separator.

Consider a component with subtyping sub as additional feature:

component bool, typing, sub {

core {

typeof {

T-If

{#TmIf(e1,e2,e3) ->

if [[subtype]] gam (typeof gam e1} TyBool

then [[join (typeof gam e2) (typeof gam e3)]]

else error "guard is not a boolean"#}

} } }

In another component with feature sub, the functions subtype and join are defined, which

can thus be used in the above component.

The refinement relation between clauses is expressed by means of double bracket annota-

tions in the source code. The fragments inside the double brackets are considered new, the

fragments outside the double brackets must occur verbatim in the refined clause.

Discussion. TinkerType is modular in the sense that all clauses can be written separately,

and the system enforces that clauses are designed with reuse of concepts in mind. A clause

can only be reused verbatim. In practice, additional material needs to be added to a clause, for

example, due to extra judgments or due to extra parameters to the judgments when support-

ing extra features. This leads to code duplication in the clauses with the usual engineering

problems as a consequence. The static checks on clause refinement, however, are likely to

catch errors resulting from incomplete code modifications, and encourage writing clauses as

increments of each other.

As discussed above, some forms of consistency are expressed between clauses of different

type systems, which is enforced by means of consistency checks that point to errors in the

code. To make these checks effective, there must be a lot of overlap between clauses, and

thus an extensive set of features with a fine granularity. Consistency is not expressed between

clauses of the same type system. There is no guarantee that the collection of clauses results

in compilable ML code or LATEX text, nor that the ML code is in any way related to the LATEX

text.

68

1.8 Conclusion

1.7.6 Overview of Recent Attribute Grammar Systems

An in-depth exploration of AG systems is out of the scope of this thesis. We give some

of the distinguishing features of current AG systems. Most current AG systems support a

wide range of features including higher-order attributes [Vogt et al., 1989] and collection

attributes [Magnusson et al., 2007].

The Lrc [Kuiper and Saraiva, 1998] is one of the few current AG systems that is based on

ordered attribute evaluation. Its distinguishing feature is incremental evaluation. It has been

used as vehicle for research in parallel evaluation and the generation of interactive program-

ming environments. Lrc generates Haskell and C code, although it is not actively maintained

anymore.

UUAG [Löh et al., 1998] can be regarded as a simplified reimplementation of Lrc, start-

ing originally by piggybacking heavily Haskells lazy evaluation. Currently, UUAG supports

ordered and demand-driven evaluation. Features such as incremental and parallel evaluation

are being investigated, as well as first-class attribute grammars [Viera et al., 2009].

The AG systems that we consider below are based on demand-driven attribute evaluation.

These systems support reference attributes [Magnusson and Hedin, 2007] which allow at-

tributes to be defined and accessed from non-local nodes. Data-flow analyses with circular

attributes are an application of reference attributes [Farrow, 1986].

Silver [Van Wyk et al., 2008] supports forwarding [Van Wyk et al., 2002] as distinguishing

feature. Forwarding is a convenient notation for desugaring with higher-order children (Sec-

tion 1.3.7) in combination with specialized copy rules (Section 1.3.12). With first-class AGs,

Viera et al. [2009] implement a more advanced form of forwarding.

Silver also supports the specification of a (control-flow) graph structure on top of the

AST [Van Wyk and Krishnan, 2007]. A production may specify CTL formula which are

checked against the graph structure. This way, control-flow analyses can be implemented

conveniently in attribute grammars (see also Middelkoop [2011b]).

JastAdd [Ekman and Hedin, 2007] has rewrite rules as distinguishing feature. Rewrite

rules are applied to a tree upon the first access through demand-driven evaluation and can

conditionally depend on attribute values.

1.8 Conclusion

In the following chapters, we present several extensions to attribute grammars that facilitate

the description of complex type inference algorithms. The central concept in these chapters is

that we exploit the explicit notion of visits to control and manipulate chunks of AG evaluation.

It allows us to transform the tree during attribute evaluation—precisely what we need to

express type inference algorithms. Many classic AG approaches use a notion of visits in

their intermediate languages (Section 1.3.4). In this thesis, we instead propose to use visits

as programming model. With this programming model, we express resolution strategies for

declarative aspects of type rules.

Our extensions offer flexible ways to tune conventional attribute grammar evaluation, and

are conservative extensions of (ordered) attribute grammars. We offer a delicate balance

69

1 Introduction

between on the one hand the implicit evaluation strategy of attribute grammars, and on the

other hand the need to make this explicit for more complex evaluation strategies.

Underlying our extensions are well-defined concepts from higher-order AGs (first-class

children), and ordered AGs (visits). Underlying these concepts are well-defined concepts

from functional programming languages (first-class functions, coroutines, and referential

transparency). These concepts form a solid theoretical basis to build upon.

The extensions that we present are not limited to type inference. In fact, type inference

is a use case that sets challenges whose solutions improve the abstraction facilities that are

available to structure compilers.

Thesis organization. Chapter 2 gives a detailed summary of the thesis. Subsequent chap-

ters focus on individual extensions, and reintroduce relevant terminology. For background

information related to type systems and attribute grammars, Section 1.2 and Section 1.3 can

be used as reference.

Publications. The chapters of thesis are based on the following publications:

• We presented an earlier version of Chapter 3 at the Workshop on Generative Technolo-

gies (WGT ’10) at ETAPS in 2010 [Middelkoop et al., 2010d]. An extended version

appeared in the journal of Higher-Order Symbolic Computation [Middelkoop et al.,

2011a].

• Some of the work of Chapter 4 is to appear on PADL’12.

• Chapter 5 is an extended version of the paper that we presented at the conference on

Generative Programming and Component Engineering (GPCE ’10) in 2010 [Middel-

koop et al., 2010a].

• An earlier version of the chapter about GADTs (in the extended edition of this the-

sis) appeared in the post proceedings of Trends in Functional Programming (TFP

’08) [Middelkoop et al., 2008], and a later version appeared in the journal of Higher-

Order Symbolic Computation [Middelkoop et al., 2011b].

• Chapter 7 is to appear in the post proceedings of the symposium on Implementation

and Application of Functional Languages.

• We presented Chapter 6 at the workshop on Language Descriptions Tools and Appli-

cations (LDTA ’11) in 2011.

As a formal detail, the Association for Computing Machinery (ACM) has copyright on the

paper version of Chapter 5 and Chapter 6. Elsevier has copyright on the paper version of

Chapter 3.

70

2 Outline of the RulerCore Concepts

Section 1.5 argued the necessity of extensions to attribute grammars. In the following chap-

ters of this thesis we describe individual extensions to attribute grammars. In this chapter, we

present the language RulerCore and give a detailed summary of the extensions. Each section

summarizes a chapter in this thesis.

This chapter can be read before or after the other chapters. It shows how the individ-

ual chapters are connected together. This chapter uses a uniform notation, whereas in the

individual chapters, we use minor differences in notation when that is more suited for that

chapter. Consult the actual chapters for a more extensive explanation and technical material.

Outline. Chapter 3 and Chapter 5 give a detailed description of RulerCore’s syntax. In this

chapter, we use the syntax as described in Section 1.3.1. Prerequisite to this chapter are or-

dered attribute grammars (Section 1.3.4) and higher-order attribute grammars (Section 1.3.7).

The following dependency graph shows the dependencies between sections of this chapter

(and the corresponding chapters). The solid arrows represent dependencies implied by the

contents of the chapter, and the dashed arrows represent additional dependencies due to the

presentation in this chapter. The dotted arrows represent a very weak dependency and lighter

nodes are only present in the extended edition of this thesis:

2.1: effects

2.2: phases

2.3: iter

2.4: GADTs
2.5: stepwise

2.6: dependent types

Middelkoop [2011b]: graphs
req-chapt

adviced

req-outline

2.1 Attribute Grammars with Side Effects

Ordered attribute grammars [Kastens, 1980] underly the extensions that we introduce in this

chapter, and work out in the subsequent chapters of this thesis. In an OAG, attributes are

evaluated in a fixed number of visits per node of the AST. Visits are a concept that play

their role only in the evaluation algorithm of OAGs. In RulerCore, however, visits are a

programming model: RulerCore has notation to specify visits so that the visits can be used to

specify evaluation strategies.

71

2 Outline of the RulerCore Concepts

In Chapter 3 we introduce the concept of a visit and their notation. This concept plays a

central role, because it provides a model of the evaluation of ordered attribute grammars. We

show that this model is powerful enough to get the effect of a visitor-pattern based traversals

as known from the OO-world in terms of an attribute grammar based description, and we

show how to deal with monadic or side-effectful operations. In this section we explain what

a visit is, and introduce the notation for specifying these visits.

Visits and configurations. We first explain what a visit is. For that, we consider the

evaluation of attribute grammars. An attribute grammar describes correctly decorated trees,

but not how such a decoration is to be constructed. For OAGs, there exists an evaluation

algorithm that starts with an initially undecorated tree and finishes with a correctly decorated

tree. In this process, we pass though a sequence of intermediate states, with each intermediate

state corresponding to a partially decorated tree.

Definition (State). The state (or decorations) of a (partially) decorated tree consists of the

local state of the root node of the tree and the states of its children. A local state of a node is

a partial map from the attributes of the node to their values1.

Definition (Defined attributes). An attribute is defined when it is mentioned in the partial

map.

Note that defined in this definition means that the attribute is part of the computed decora-

tions of the tree. This definition is unrelated to rules defining attributes.

Definition (Configuration). A configuration is a set of inherited and synthesized attributes

of the root of a (partially) decorated tree, and describes which attributes of the root have

associated values in the (intermediate) state of the tree. There exists some total order ≺
among configurations (we come back to this later). The total order ≺ must be stronger than

the subset relation among configurations.

Thus, a configuration is an abstract description of an intermediate state.

Definition (Minimally defined state). Given (static) dependencies between attributes, a tree is

in a minimally defined state for a given configuration when precisely the attributes mentioned

in the configuration have a value in the local state of the root and their (indirectly) dependent

attributes have an associated value in the state of the tree.

Definition (Visit). A visit is a state and configuration transition, which takes a tree2 in a state

as described by a configuration A to a tree in a state as described by a different configuration

B with A≺ B.

1 How the value of an attribute is represented depends on the implementation or the host language. Such a value

can be an element in the domain of the attribute, but may also be a thunk. We usually assume that the values of

attributes are at least in weak-head normal form (Section 1.2.2).
2 A tree does not have to be the full tree, but may also be a subtree. The definition is not limited to the full tree.

Indeed, a visit may require visits to subtrees: we usually describe visits per node of the tree, and specify what

visits are performed to children of the node.

72

2.1 Attribute Grammars with Side Effects

Thus, during a visit, computations are performed which determine the values of attributes.

Usually, B contains at least one synthesized attribute that is not yet present in A, since that is

a motivation to perform a visit3. Values for the inherited attributes in the set difference B−A

are provided by the parent4 prior to the visit. The notation that we present below facilitates

a statically finite and explicit description of state and configuration transitions induced by

visits.

If we take a partial order among configurations instead of a total order, the order represents

a Direct Acyclic Graph (DAG) where the vertices of the graph represent configurations and

the edges represent visits. The evaluation of attributes for a tree associated to this DAG

entails walking a path in the DAG where the parent chooses which visits to invoke on the

tree. However, since we base our work on OAGs, we impose a total order that corresponds

to a DAG with only a single path, which simplifies the implementation and the notation. In

Section 2.6 we generalize our work so that the DAG is actually a tree.

Rationale. In this thesis, we distinguish two important notions of evaluation: a visit and

a step. Visits (this section) provide a static model of evaluation, whereas steps (Section 2.5)

provide a runtime model of evaluation. We argued in Section 1.5 that we wish to describe

evaluation strategies, thus we do so in terms of the models as mentioned above. In this

Section, we focus on the static model.

Every node in the tree is related to a production, and each production has an associated col-

lection of rules. Attributes are computed by evaluating rules (Section 1.3.4). OAG evaluation

is compositional in that it separates the evaluation of collections of rules of the parent from

the evaluation of the children. In the case of evaluation of the parent, we make internal visits

explicit, which statically describes the evaluation of a collections of rules of a node in the

tree. In the case of the evaluation of children, we note that a visit to a child is the statically

smallest unit of evaluation for a child that can be specified as part of the evaluation of the

parent, and thus provides a model with a fine granularity.

Description of visits. RulerCore provides notation to describe visits. In a conventional

AG, we declare attributes per nonterminal, and specify rules per production. In RulerCore, we

additionally declare a linearly ordered sequence of visits and specify which attribute belongs

to which visit. Also, we specify for each rule in which visit it is evaluated. Below, we describe

the notation that forms an essential prerequisites for the remaining sections of this chapter.

Chapter 3 provides extensive examples and technical background.

Definition (Interface declaration). An interface declaration of a nonterminal specifies a linear

sequence of visits to the nodes with which the nonterminal is associated.

Definition (Visit declaration). Each visit declaration specifies which attributes must be de-

fined prior to that visit, and which synthesized attributes become defined as a result of the

3 In a conventional OAG, the only motivation for performing a visit is to get synthesized attributes computed, and

this motivation is formalized as dependencies between attributes. Below, we show other motivations (e.g. to

perform side effects) and show how these are formalized.
4 We assume that each node has a parent. In case of the root node, the parent is represented by the interface with

the host language (Section 1.3.1).

73

2 Outline of the RulerCore Concepts

visit.

Configurations are not explicitly declared. The configuration of a node before a given visit

is the union of the attributes declared for preceding visits, starting with the empty set. Visit

declarations thus form a partitioning of the attributes of a nonterminal.

In the following example, for some Expr nonterminal, we declare a linear sequence of

visits analyze and compile. We specify that in the first visit analyze a synthesized attribute

errors is defined given the inherited attribute env. In the second visit compile, the synthesized

attribute output gets defined, given the inherited attribute optimize, and the attributes defined

earlier:

itf Expr visit analyze inh env :: Env

syn errors :: Errs

visit compile inh optimize :: Bool

syn code :: Code

The order of appearance of visits matters, whereas the order of appearance of attribute decla-

rations in a visit-block does not.

As we have seen, configurations are an abstract representation of the state of a node. A

configuration records which attributes have been evaluated. Configurations are not explicitly

named in the interface declaration. Instead, we associate with a visit the configuration that

corresponds to the state at the beginning of the visit. So, during evaluation, the decoration of

an Expr node is initially in the analyze state, then in the compile state, and finally in some

final state.

The above example declares two visits for nodes associated with the Expr nonterminal.

During evaluation, these visits correspond to a state transition. Such a state transition is

described by a collection of rules which are specified per production using a semantics-block

in conventional AG notation (Section 1.3.1):

sem Expr prod Var -- rules for production Var

loc.defined = loc.x ‘member‘ lhs.env -- tests whether ident loc.x is in the env

lhs.code = Code Var loc.x -- some translation to a target language

lhs.errors = if loc.defined then [] else [Undefined loc.x]

The above semantics-block introduces three rules for the production Var. Each rule is implic-

itly associated with a visit to Expr. Later we introduce notation to declare such a correspon-

dence explicitly.

Default-notation. Before we continue with explicit notation for visits, we take a slight

detour to introduce some notational conveniences. When programming with AGs, we often

use copy rules (Section 1.3.12). Note that RulerCore is a core language, thus we prioritize

implementation convenience over concise syntax. Copy rules are a typical front-end concept.

However, copy rules may interact with RulerCore’s evaluation algorithm, hence we model

them explicitly.

RulerCore provides default-notation to improve on copy rules. For example, we can define

the rules of production App with default-rules:

74

2.1 Attribute Grammars with Side Effects

sem Expr prod App -- rules of production App

default env optimize -- declares copy rules

default errors = concat -- declares collection rule for errors

In the example, the default-rules introduce generic rules for he inherited attributes env and

optimize, and a collection rule for the synthesized attribute errors.

A default-rule specifies that the value of an attribute can be inferred from equally named

attributes of the production. We provide several flavors of default rules for different generic

situations, which each differ in how attributes are combined. The above rules are syntactic

sugar5 for rules of the following form:

r ::= ... -- conventional rules (Section 1.3.1)

| m o x h -- default rules for the attrs with name x

m ::=default0 -- applies even if no attrs matched

| default1 -- at least one attr must match (default)

o ::= lexical -- uses the lexical order of children (default)

| lexicalrev -- uses the lexical order in reverse

| scheduled -- determines order after scheduling

h ::= ε -- threaded behavior

| = e -- use expr e to combine a list of values of matching attrs

| use e1 e2 -- applies the list algebra (e1,e2)
x -- attribute name

The order annotation o determines the order in which children are considered in the resolu-

tion process. In case of the scheduled-order annotation, the actual definition is determined

after scheduling. As a notational convenience, a default-rule may be specified as part of the

interface of a nonterminal, which then applies to all semantics-blocks of that nonterminal.

Explicit association to visits. In RulerCore, rules are associated with a visit. The asso-

ciation is by default implicit, but notation is available to specify the association explicitly by

organizing the rules inside a visit-block:

sem Expr prod Var -- semantics-block for production Var

... -- rules without an explicit association

visit analyze -- note the indentation (important in a later section)

... -- rules associated with analyze (or later)

visit compile -- note the indentation (important in a later section)

... -- rules associated with compile (or later)

With this notation, we specify constraints on the scheduling of rules, in addition to the con-

ventional constraints imposed by value dependencies between attributes and rules. Via a

cycle analysis, the constraints can be verified to be satisfiable using standard algorithms (Sec-

tion 1.3.4). We come back to the rationale for the additional constraints later.

5 We give the abstract syntax of the desugared rules, but use the sugared version in the code figures.

75

2 Outline of the RulerCore Concepts

sem Expr prod Var -- rules of production Var

visit analyze -- rules of the analyze visit or later

loc.defined = loc.x ‘member‘ lhs.env

lhs.errors = if loc.defined then [] else [Err Undefined loc.x]
visit generate -- rules of the generate visit

lhs.code = Code Var loc.x -- actually independent of any visit

sem Expr prod App -- rules of production App

default env optimize -- declares copy rules

f .env = lhs.env -- explicitly written rule

visit generate -- rules of the generate visit

a.optimize = lhs.optimize -- explicitly written rule

lhs.errors = concat [f .errors,a.errors] -- explicitly written rule

Figure 2.1: Examples of organizing rules in a visit-block.

Definition (Visit semantics). A visit-block t is explicitly associated to some visit x and may

contain rules and a nested visit-block. The rules may be evaluated during visit x or a later

visit.

The following is the grammar of a semantics and visit-block:

s ::= sem N prod P r t -- common rules r and visit blocks t

t ::=visit x r t -- common rules r and subsequent visit t

| ε -- terminator of sequence of visit blocks (implicit)

A visit-block is associated with a similarly named visit declared on the interface of the nonter-

minal. However, not every visit is necessarily associated with a visit-block. The same name

may not occur twice, and the total order must be preserved: If x is the name of a visit-block

and x′ the name of a nested visit-block then x≺ x′.
Figure 2.1 gives an alternative way to organize the rules of the earlier example. The rules

inside a visit-block may appear in any order without affecting the semantics of the grammar.

A visit-block introduces a scope for local attributes such as loc.defined. When defined in

a visit, such an attribute is only visible inside the visit-block it is defined in, and its enclosed

visit-block. The scoping plays a role in Chapter 5 where rules may additionally be organized

in clauses. The inherited and synthesized attributes of the children and lhs are globally scoped

per production.

Exploiting visits: invoke rules. The additional refinements on the scheduling of rules

can be used to allow side-effects in our specification (motivated later). For this purpose, we

introduce two additional forms of rules.

Definition (Invoke rule). An invoke rule specifies properties of a visit to a child. These

properties usually specify some evaluation strategy.

76

2.1 Attribute Grammars with Side Effects

The following is the grammar of invoke-rules of which we explain some properties below:

r ::= ...

| invoke x of c z -- specifies visit x of children c with strategy z

z ::= implicit -- determined only by attribute dependencies

| explicit -- invoke-rule restricted to the visit it appears in

| parent -- invoke-rule restricted to visit with the same name

The strategies are explained later. Invoke-rules are optional. When a visit x to a child c is not

explicitly specified, it is implicitly specified as the rule:

invoke x of c implicit

The invoke-rule is annotated with a strategy, which provide a means to specify properties

of the evaluation of a child. The above strategies constrain when visits to children can be

performed. We will later see more strategies.

The implicit-strategy (above) specifies no additional constraints. The explicit-strategy

(above) requires the invoke-rule to be nested in a visit-block, and constrains the visit to the

child to the evaluation of that visit-block. The parent-strategy requires that the parent has an

equally named visit and constrains the visit to the child to that visit of the parent. An empty

list of children in the invoke-rule applies the strategy to all children which have a visit defined

with the same name.

Exploiting visits: rules with side effects. We allow rules with side effects, but restrict

these to the introduction of children only.

Definition (Side-effectful child-rule). A side-effectful child-rule is a child defined by some

impure expression.

A child-rule must appear in a visit-block, and its application is restricted to that visit. The

syntax of child-rules is (similar to Section 1.3.7):

r ::= ...

| child c : N← f [a] -- definition of child with side effects

The scheduling guarantee is that the impure expression f is applied before the end of the visit.

The relative order of the side effects within a visit is however not specified6. This coarse-

grained way of specifying the evaluation order allows us to safely integrate side-effectful

operations in the attribute grammar, while not having to micro-manage the order of the side

effects.

In case of Haskell as target language, f is a monadic expression that yields the structure

of child c given values of attributes a. For example, along the lines of Section 1.3.12, we

can define such children to encode operations that provide fresh type variables and perform

unification. Instead of threading a substitution, we pass these children an inherited IORef to

6 We actually provide a notion of internal visits to specify the relative order of side effect within a visit.

77

2 Outline of the RulerCore Concepts

sem App s f s a = lhs analyze where -- body of the function

lhs analyze lhs env = do -- body of the first visit

f analyze← return s f -- monadic child rule

a analyze← return s a -- monadic child rule

let f env = lhs env

a env = lhs env

(f errs, f compile) ← f analyze f env -- invoke rule

(a errs,a compile)← a analyze a env -- invoke rule

let lhs errs = concat [f errs,a errs]
lhs compile lhs optimize = do ... -- body of the second visit

return (lhs errs, lhs compile) -- results of first visit

Figure 2.2: A sketch of the coroutine lhs analyze.

a substitution. This allows us to schedule the effects of unification in a less strict way than

the explicit threading of substitutions would entail7.

Scheduling and coroutines. In the context of this chapter, we shall refer to augmented

production dependency graphs as PDGs. Section 1.3.2 explains how dependency graphs are

obtained from AG descriptions. In this section, I/O graphs are Nonterminal Dependency

Graphs (NDGs) because of the explicitly declared single visit sequence per nonterminal.

From the PDGs, an execution plan with an as-late-as-possible scheduling of the rules can

be obtained if the PDGs are cycle-free. Since we introduced new rules, the question arises

how these rules affect the evaluation of the grammar. Also, RulerCore’s NDGs leave less

freedom for scheduling the rules in the PDGs, since we need to adhere to the explicitly defined

interfaces.

We introduce the language RulerBack as a desugared variant of RulerCore which repre-

sents execution plans8. In comparison to RulerCore, in a RulerBack all implicit syntax is

made explicit and rules in a RulerBack description are totally ordered. In this thesis, we

define mappings of RulerBack to algorithms in various host languages.

Section 1.3.5 shows that ordered AGs can be implemented with coroutines. The example

below serves as a sketch of a mapping from RulerBack to monadic coroutines. For each pro-

duction P, we introduce a semantic function sem P, which takes the coroutines s f and s a

as parameter that serve as children f and a and produces a coroutine lhs analyze for the first

visit analyze. The coroutine for some visit x is a function lhs x that takes the values of the

inherited attributes of visit x, and produces a monadic tuple with values of the synthesized

attributes of visit x and a coroutine for the successor of x. The coroutine lhs optimize (Fig-

7 In Chapter 5 we show how to treat nodes as first class value, and show in Middelkoop [2011b] some complex

traversal patterns that do not follow the tree structure. In such situations, we need more flexibility in the schedul-

ing of side-effectful operations.
8 RulerCore can be considered a programming language for execution plans of AGs.

78

2.1 Attribute Grammars with Side Effects

ure 2.2) is thus constructed as part of the body of lhs analyze. An attribute k.x is transcoded

as the Haskell identifier k x. The monad serves as an abstraction for evaluation algorithms.

We exploit the monadic structure in later chapters.

Foundation. The fragment of RulerCore that we introduced so far does not add to the

expressive power of attribute grammars: it can be expressed as a conventional attribute gram-

mar, which we do so below to be more precise about the semantics of the notation. We assume

that the RulerCore description is desugared to RulerBack, which we mentioned earlier. Be-

low, we describe how to map the RulerBack description to a conventional attribute grammar.

In general, interface declarations are be mapped to attribute declarations by erasing visits.

Semantics-blocks in RulerCore are translated to semantics-blocks by erasing visit-blocks and

invoke-rules.

To represent the erased information in a conventional attribute grammar, we thread an

additional attribute through the tree for each visit. These attributes serve as synchronization

points for the beginning and end of the visit. Per visit v of a nonterminal N, we introduce two

additional attributes beginv and endv:

attr N inh beginv :: S T

syn beginv :: S T

The attributes model the side effects by encapsulating a state as some type S T , which we

come back to later.

Also, we thread these attributes through the rules to enforce their evaluation order. Per

production, we associate a unique consecutive number (starting from 0) with each rule in a

production. This is possible because there exists a total order among the rules. For each rule,

we introduce a local attributes loc.begini and loc.endi where i is the number associated with

the rule. The purpose of the attributes is to mark respectively the beginning and end of the

evaluation of the rule. We show later how to make a rule dependent on its begin attribute

(in addition to its normal dependencies), and how to make the end attribute dependent on the

evaluation of the rule.

For a visit v and production P of nonterminal N there exists a collection R of rules that are

associated with v after scheduling. If this collection is not empty, let k be the lowest number

associated with the rules, and l the highest number. We then connect the begin and end of the

visit with the beginning and end of the rules associated with the visit:

sem N prod P

lhs.beginv = lhs.endj -- if R is empty

loc.begink = lhs.beginv -- otherwise R not empty

lhs.endv = loc.endl -- otherwise R not empty

When a rule with associated number i and a rule with number i+1 are in R, then we add also:

sem N prod P

loc.begini+1 = loc.endi

79

2 Outline of the RulerCore Concepts

class ThrEff t where

type M t ::∗→ ∗ -- type of a monadic computation

type S t ::∗ -- type of the state

impure :: M t α → S t→ (S t,α)

pure :: α → S t→ (S t,α)
pure (x,s) = s ‘seq‘ x ‘seq‘ (s,x)

Figure 2.3: API of threaded effects.

data IsPure -- do not thread a state

instance ThrEff IsPure where

type M IsPure t = t

type S IsPure = ()
impure = pure

data IsIO -- thread state of the world

instance ThrEff IsIO where

type M IsIO = IO

type S IsIO = State# RealWorld

impure (IO m) w = case m w of (# w′,a #)→ a ‘seq‘ (w′,a)

Figure 2.4: Example instances for threaded effects.

At this point, we chained the attributes together, except that still attributes loc.begini needs to

be connected to loc.endi, and the begin and end of visits to the children need to be incorpo-

rated.

To thread the attribute through a rule, we introduce in Figure 2.3 the functions pure and

impure which depend on the type T . The function impure takes an effectful computation

M t α and an initial state S t, then produces an updated state paired with the result of the com-

putation. The function pure passes the state on unchanged. Figure 2.4 gives some exemplary

instances. An instance of ThrEff can be given for any monad that threads a state.

To complete the chain, we show the mapping of rules of RulerCore. The above functions

are used in the translation of a rule r with associated number i to J r Ki:

J invoke v of c Ki c.beginv = loc.begini

loc.endi = loc.endv

J child c : N← f [a] Ki (loc.endi, loc.c) = impure (f [a]) loc.begini

child c : N = loc.c

J p [a2] = f [a1] Ki (loc.endi,p [a2]) = pure (f [a1]) loc.begini

The concept of visits thus provides a means to reason about attribute grammars with side-

80

2.2 Attribute Grammars with Commuting Rules

effectful computations in their rules. Note that although the AG description may be thought

of as having side effects, the underlying model is still purely functional.

Remarks. We purposefully allow side effects only in the creation of children. Conventional

rules must be purely functional. This ensures that the attributes have a referentially transpar-

ent definition, even though the tree structure itself not9. Chapter 6 shows how to implement

search algorithms, and introduces syntax to define children without inherited attributes. For

advanced search algorithms, which make use of sharing and memoization, limited use of side

effects plays an important role.

More generally, by making visits explicit, we can integrate our approach with compilers

that are built on top of monads, and to use tree traversals in impure environments. Also, we

can use the side effects to efficiently access results from nodes visited earlier in a traversal.

This can be used to implement memoization strategies.

The visitor pattern [Gamma et al., 1993] is often employed to implement recursive traver-

sals over tree structures in imperative languages. Concretely, Chapter 3 presents how our

approach generalizes over the visitor design pattern. For this purpose, we use JavaScript as

a host language, which in passing shows that our extensions are applicable to domains other

than the implementation of type inference algorithms or functional programming languages.

In this context, a visitor is an object that contains an algorithm that describes which children

to visit, and what changes to apply to the state of the node, or the visitor itself. Attributes

provide a convenient way to access the state of nodes through attributes, and with our ap-

proach the changes to the state of the visitor can be encoded with side effects. With respect

to these attributes, our approach offers the benefits of AGs, including the static enforcement

that attributes are defined before they are used.

2.2 Attribute Grammars with Commuting Rules

In Chapter 4, we generalize visits to a phases. A visit is a technical more internal concept

which precisely controls the evaluation of the grammar. A phase is a more abstract concept

which the programmer can use to specify properties of the evaluation of the grammar. To

reason with side effects in this setting, we present commuting rules, which are rules with

relaxed dependencies.

Phases. We start with the notion of a phase:

Definition (Phase). A phase represents a sequence of state transitions, controlled and observ-

able by the parent, which take the node’s state to a state described by its next configuration.

Such a state transition consists of a sequence of smaller state transitions, which correspond

to the visits as described in Chapter 3. A nonterminal may be associated with a set of pos-

sible visit sequences for its phases, and a production specifies for each of its children which

sequence to take.

9 We can encode any rule as an attribute-defined child (Section 1.3.7), thus the restriction does not limit expres-

siveness. The purpose of the restriction is to ensure that side effects are sufficiently contained.

81

2 Outline of the RulerCore Concepts

itf Block -- phase interface (visit-interfaces are not given anymore)

phase analyze -- analyze phase

inh pred :: Lab -- label to be used as predecessor from the predecessor

inh succ :: Lab -- label to be used as successor from the successor

syn pred :: Lab -- label to be used as predecessor for the successor

syn succ :: Lab -- label to be used as successor for the predecessor

phase transform -- transformation phase

inh debug :: Bool

syn trans :: SELF -- self attribute (Section 1.3.6)

default debug -- default rule on interface for inh attr

Figure 2.5: Phase interface of a Block.

We illustrate the above with an example. Suppose that we describe an analysis and trans-

formation of a tree of labeled instruction blocks. The abstract syntax of blocks is described

by the following grammar:

grammar Block prod Seq nonterm l,r : Block

prod Leaf term lab :: Lab

term instr :: Instr

The actual transformation of the instructions is out of the scope of this example. Let transform

be a function that requires the label of the predecessor and sucessor to transform the instruc-

tions in the leafs.

To apply the transform function, we associate the label of a preceding and succeeding

block with each instruction. The chained attribute pred represents the label of the left-nearest

instruction, and attribute succ the label of the right-nearest instruction. Effectively, we pass

pred from left to right, and succ from right to left. The phase interface for a nonterminal de-

clares these attributes is given in Figure 2.5. Attributes may be declared outside phases. The

ordering of phases is deduced from semantics blocks, thus not from the order of appearance

in the phase-interface specification: phases represent non-overlapping units of evaluation.

As part of the semantics for productions of Block, we describe the flow of the pred and

succ attributes in Figure 2.6. Seq-productions act as crossbar switches, and Leaf-productions

inject their labels in the attribute flows. Since we have inherited and synthesized attributes

with the same name, we use the prefixes inh and syn to explicitly distinguish these attributes.

Assume that Block is also the root symbol, for which we at the root provide initial values for

the inherited attributes, and request values for all synthesized attributes.

Implementation of phases. Since a phase effectively represents a unit of evaluation, we

can choose an algorithm for the evaluation of a phase. We assume here that we choose a

statically ordered evaluation algorithm, which reduces the choice to either a Kastens style or

a Kennedy-Warren style algorithm (Section 1.3.5).

82

2.2 Attribute Grammars with Commuting Rules

sem Block prod Seq -- rules related to pred and succ

inh.l.pred = inh.lhs.pred -- left to right

inh.r.pred = syn.l.pred

syn.lhs.pred = syn.r.pred

inh.r.succ = inh.lhs.succ -- right to left

inh.l.succ = syn.r.succ

syn.lhs.succ = syn.l.succ

sem Block prod Leaf

syn.lhs.pred = loc.lab -- is predecessor of next

syn.lhs.succ = loc.lab -- is successor of prev

loc.newInstr = transform loc.instr inh.lhs.pred inh.lhs.succ lhs.debug

syn.lhs.trans = Leaf loc.lab loc.newInstr

Figure 2.6: The semantics of productions of Block.

A Kastens-style algorithm does not suite the example. In the example, the rules for pred

and succ are independent. However, the attributes of the analyze-phase need to be computed

in at least two visits. The rules for production Seq require either succ or pred to be computed

first. This is a typical example where a Kastens-style scheduling [Kastens, 1980] fails to find

an ordering, because that scheduling induces extra edges in the PDG, which for this example

causes a cycle.

Kennedy and Warren [1976] describe an algoritm that does not induce extra edges in the

PDG. A set of visit sequences is determined for each nonterminal, such that there is one visit

sequence per context of an occurrence of the nonterminal symbol. We present a variation

on this algorithm that schedules rules as late as possible, and only those that needed in a

given context. Moreover, we show how to represent such visit sequences in a strongly-typed

functional language.

Visits-DAG. We associate a graph structure with each nonterminal which represents the

visits of that nonterminal:

Definition (Visits-DAG). A visit-interface DAG describes the set of visit interfaces that are

associated with a nonterminal. The graph has exactly one source vertex, and at least one

sink vertex. Each vertex represents a configuration, each arrow a visit, and each path from

the source to some vertex a visit-interface. To disambiguate, we may call a vertex in the

visits-DAG a visits-vertex.

For the above example, Figure 2.7 shows the visits-DAG. There are at least three paths in

the visits-DAG. The middle path represents the root where all inherited attributes are avail-

able, and two other paths represent the respective first knowledge of one of the inherited

attributes.

83

2 Outline of the RulerCore Concepts

itf Block

visit v1

inh pred,succ :: Lab

inh debug :: Bool

syn pred,succ :: Lab

syn trans :: Block

phase analyze

prod Leaf /0

prod Seq child l v2 v4

child r v3 v5

visit v2

inh pred :: Lab

syn pred :: Lab

prod Leaf /0

prod Seq child l v2

child r v2

visit v3

inh succ :: Lab

syn succ :: Lab

prod Leaf /0

prod Seq child l v3

child r v3

visit v4

inh succ :: Lab

syn succ :: Lab

phase analyze

prod Leaf /0

prod Seq child l v4

child r v4

visit v5

inh pred :: Lab

syn pred :: Lab

phase analyze

prod Leaf /0

prod Seq child l v5

child r v5

visit v6

inh debug :: Bool

syn trans :: Block

phase transform

prod Leaf /0

prod Seq child l v5

child r v5

Figure 2.7: Visits-DAG of the example.

Each edge has at least one output, which is either a synthesized attribute or phase ending.

Along each path, the number of attributes increases. Each edge corresponds with a visit; we

gave each a unique label vi. Also, we associated with each edge some meta-data regarding

productions: the visits performed on the children of the productions during the execution of

visit that is associated with the edge.

Paths may be of different length, and end in different configurations. In the above example,

all paths end in the same configuration because in each context all attributes are eventually

needed.

Section 4.5 describes the visits graph and its properties in more detail and shows how to

incrementally compute it. Given this graph, for each edge and each production, a collection

of RulerBack rules can be determined. The branching-factor of each node determines code

duplication. In practice, this code duplication is not a reason for concern. The visits graph

of the largest AG of UHC has about 10,000 edges and already leads to a tractable imple-

mentation. With some optimizations (Section 4.6), we reduced this number to about 3,000

edges.

Commuting rules. Section 2.1 shows a translation of visits to conventional attribute gram-

mars using a functional encoding of the state. The translation involved adding an additional

chained attribute (the state attribute) per visit which represents the state and a transformation

of the rules to thread the attribute through the rules scheduled for the visit. A property of this

approach is that the side effects that arise from visit a child of a parent can only be observed

84

2.2 Attribute Grammars with Commuting Rules

by the parent or its other children by inspecting the state attribute of the child after the visit.

A similar translation is possible for phases. Analogously, a parent only observes the side

effects arising from a child after completing the phase. However, during the evaluation of

a phase of a child of a parent, side-effectful rules of the parent or the other children of the

parent may be evaluated, since a phase consists possibly of multiple visits to a child. In this

situation, with a single chained attribute per phase, side effects arising from a child may not

be timely observed in the parent or in siblings, and such a translation does not fully capture

the semantics of side-effectful rules.

A possible approach is to translate the phases to an explicit visit sequence, and then use

the translation of Section 2.1. However, visits are implicit in the phases model and addition-

ally there may be a visit sequence per context. Instead, we take the opportunity to present

commuting rules.

Definition (Commutative compositions and commutable rules). Given an explicit ordering

of rules, the composition of two rules is commutative when the two rules are commutable,

which means that the rules may be swapped in the composition without affecting the intended

result.

Rule composition is a conditionally commutative operator. Commutable rules can be con-

sidered as commutable operations. The swapping of rules models side effects, and commu-

tativity permits reasoning about the safe use of side effects.

A semantic tree is a composition of the rules of the tree (Section 1.3 and Section 1.3.4).

Section 1.3.9 shows that a composition of rules can be expressed with arrow notation, which

is a convenient notation to define when two rules are commutable. Further, we wish to refer

describe a composition of rules (e.g. the composition of rules of a node) in a larger context

(e.g. the composition of rules in a tree). We define a rule context h as a composition of rules

with a hole in it so that h c represents the composition of rules with c the composition of rules

at the location of the hole.

Definition (Commuting rule). A commuting rule is a rule of the form (x′,y′) = f x y, x ⋄ x′

where the letters x, y, etc. are (sets of) attribute occurrences and f is a semantic function.

A commuting rule thus only differs in the notation x ⋄ x′, which denotes that the rule may

be swapped with rules that define x or use x′ (with renaming of the attribute occurrences).

Such a rule is said to commute over x and x′.
Consider a rule r1 of the form (x1,y1) = f (x0,y0), x0⋄x1 and a rule r2 of the form (x2,y2) =

g (x1,y1), x1 ⋄ x2. In a composition of rules containing r1 and r2, the additional notation

specifies that r1 may appear ordered before r2 and vice versa. Without the additional notation

the rule r1 must appear before r2 because r2 refers to an attribute defined by r1.

With commuting rules as AG feature, side effects can be encoded as a single chained

attribute per nonterminal threaded through each rule and having each rule commute over this

attribute. Such a translation is more straightforward than the translation in Section 2.1 and

also works for phases.

Referential transparency. At the level of specification, the use of commutable rules may

break referential transparency and thus complicate equality reasoning. A question that arises

85

2 Outline of the RulerCore Concepts

is how to reason with a safe use of commutable rules. We define below a law for this purpose.

Suppose that r1 6≺ r2 denotes that r1 is independent of r2 with respect to the dependencies

between attributes and rules except for the dependencies between attributes where the rules

commute over. There are two compositions in arrow notation (c1 and c2) to consider:

c1 = proc (x0,y0,z0)→ do -- composition of r1 and r2

(x1,y1)← f ≺ (x0,y0) -- rule r1 in arrow notation

(x2,z1)← g≺ (x1,z0) -- rule r2 in arrow notation

returnA (x2,y1,z1)

c2 = proc (x0,y0,z0)→ do -- composition of r2 and r1

(x1,z1)← g≺ (x0,z0) -- rule r2 in arrow notation

(x2,y1)← f ≺ (x1,y0) -- rule r1 in arrow notation

returnA (x2,y1,z1)

The identifiers y0 and z0 represent the independent input attributes of respectively r1 and r2,

and identifiers y1 and z1 their respective independent output attributes. Identifiers x0, x1 and

x2 represent the attributes over which the rules may commute.

Definition. Rule context A rule context h is a function that serves as an abstraction of a rule

composition with a hole. It takes as parameter the composition to fill to hole with.

Definition (Commutable over attributes). We now say that r1 and r2 are commutable over

attributes of x0,x1 and x1,x2 if r1 6≺ r2 if their compositions c1 and c2 give an equivalent

results h c1 = h c2 in some given rule context h.

When the rules are commutable, the outcome of swapping the rules in rule context h is

equivalent, thus the slide of the grammar that contains the rules r1, r2 and those in h is

referentially transparent. Rule context h should be chosen in such a way that it expresses how

the context of the rules interprets the attributes computed by the rules.

We finish this discussion of commutable rules below with an exemplary definition of h

which states that for an attribute that provides fresh numbers only uniqueness is relevant.

For some exemplary grammar of expressions, the following two rules thread a counter k,

and extract two unique numbers in loc.u1 and loc.u2:

sem Expr prod Var

(loc.k, loc.u1) = f (inh.lhs.k, inh.lhs.k), inh.lhs.k ⋄ loc.k -- rule one

(syn.lhs.k, loc.u2) = g (loc.k+1, loc.k), loc.k ⋄ syn.lhs.k -- rule two

With the following definitions for f and g:

f (a,) = (a+1,a)
g (b,) = (b+1,b)

For the following definition of h, the above two rules are commutable. In both compositions

of the rules, the two resulting numbers are different from each other:

h r n = a 6≡ b where -- abstraction: the unique numbers should be distinct

(,a,b) = r (n,(),()) -- for any number n that represents the inh.lhs.g

86

2.3 AGs with Tree Construction

We may choose functions h that state stronger invariants and take more context into account.

For example, when we consider the collection of a list of error messages, we may take the

slice of the rules that depend on the error messages, and require that the lists are equal when

ordered according to the source location of each message.

Commutable rules can be applied when expressing collection attributes as a chained at-

tribute. A collection attribute is a synthesized attribute with a commutative monoid or trace

monoid as value. Often, such attributes can be encoded more efficiently as a chained attribute.

However, threading a chained attribute through some children may induce tighter dependen-

cies than combining synthesized attributes of these children, and thus reduces freedom in

attribute scheduling and may even lead to cycles. With commutable rules a chained attribute

can be used without the tighter dependencies.

Remarks. In Chapter 4 we work out phases in more detail. In this chapter, we describe

how to compute the dependency graphs and how to perform scheduling of phases. This work

shows how to generalize visits to phases, and allows us to describe the extensions that we

present in the next sections (and their corresponding chapters) using visits, so that we factor

out the dependency graphs and scheduling in the next sections and chapters.

2.3 AGs with Tree Construction

In Chapter 5, we show several AG extensions based on the model of explicit visits that al-

low us to conditionally and iteratively define attributes and children. Additionally, we use

annotations on visits and invocations of visits to fine-tune evaluation strategies.

In this section, we give an overview of the extensions. In a conventional attribute grammar

the rules to evaluate for a node are the rules associated to the production that is associated to

that node. As extension, we wish to have more fine-grained control over which sequence of

rules is evaluated. Therefore, we split up visit-blocks in a sequence of clause blocks. Each

clause-block may contain rules, and per visit some strategy choses which clause-block to

use to compute the attributes. In this section, we take a fixed strategy based on the order

of appearance of clause-blocks and backtracking. We show that with this approach we can

implement a dispatch of rules based on values of inherited attributes. In Section 2.5 we

present a mechanism based on a stepwise evaluation to actually define custom strategies.

Further, we show how to express iteration by annotating invoke-rules with a strategy that

repeats the evaluation of the visit until a condition is met. Moreover, first-class children

are an extension that allow children to be detached as value, or attached from a value. The

techniques combined provide a powerful mechanism to encode fixpoint computations.

In the remainder of this section, we explain these extensions one-by-one. In Chapter 5 we

show how these extensions are implemented.

Clauses. Instead of associating a collection of rules per production, we organize the rules

in a different way. We associate a DAG with a production. Each vertex is associated with a

configuration and each edge is associated with a visit and with a collection of rules. There

may be multiple vertices associated to the same configuration, although there may only be

87

2 Outline of the RulerCore Concepts

itf Expr visit check inh env :: Env -- environment containing declared types

inh tp :: Ty -- expected type of the expr

syn errors :: Errs -- result of type checking

sem Expr prod Var visit check -- cases for the check-visit of the var-prod

clause defIdent -- case for when the variable is in the env

match (Just loc.declTp) = lookup loc.nm lhs.env

internal matchTp -- internal case distinction

clause typeOk -- case for when the type matches

lhs.errors = []
match True = lhs.tp ‘isInstance‘ loc.declTp

clause typeFail -- case in case of a type mismatch

lhs.errors = [Mismatch lhs.tp loc.declTp]
clause undefIdent -- case for when the variable is undefined

lhs.errors = [UndefVar loc.nm] -- assumes a match of defIdent failed

Figure 2.8: Example of clauses.

one source vertex, wich must be associated with the empty configuration. During evaluation,

a path is traversed through the DAG: one edge per visit and a strategy associated with vertices

dictate which edge to traverse.

Definition (Clause). A clause is an edge in the DAG as specified above.

As notational simplification, we impose the restriction that the DAG10 must be a tree, and

present notation below on how to describe this tree. Essentially, the rules are organized in

clause-blocks per visit-block.

We start with an example in Figure 2.8 before explaining the notation. The example con-

sists of a type checker for some var-production of a lambda calculus. In the example, we use

clauses to encode case distinction. We distinguish a clause defIdent for when the identifier

is in the environment, and a clause undefIdent when this is not the case. Moreover, we split

the defIdent clause in two more clauses depending on whether the expected type matches the

declared type using an internal visit.

The nesting of clauses forms a decision tree. A path in this tree is the sequence of clauses

that are selected to compute the outputs of the visit. For now, we assume that clauses are

selected with a fixed strategy based on the order of appearance (to which we come back

later). Internal visits can be considered as ε-edges in the DAG as mentioned above.

The following changes to notation allow visits to consist of a non-empty ordered sequence

of clauses:

10 We thus identify two important DAGs: a DAG per nonterminal which describes visits and attributes, and a DAG

per production which describes different sets of rules for visits to compute the attributes. The restrictions that we

impose on the DAGs simplify the implementation or the notation.

88

2.3 AGs with Tree Construction

t ::=visit x r k -- conventional visit block, common rules r, and alternatives k

| internal x r k -- internal visit block, common rules r, and alternatives k

| ε -- terminator of visit/clause branch (optional)

k ::= clause x r t -- clause-block with rules r and visit t

x -- identifier of a visit or clause

Each clause contains a set of rules. This set of rules defines the synthesized attributes of the

visit, and potentially subsequent visits. Thus, each clause provides a number of alternative

definitions of the synthesized attributes of a visit.

We distinguish conventional visits and internal visits. A conventional visit is invoked by

the parent and declared as part of the interface of the nonterminal. Internal visits and clauses

are evaluated as part of the evaluation of their encapsulating visit or clause.

To describe the clause selection strategy, we distinguish three types of outcome for rules,

visits, and clauses. Evaluation either succeeds with resulting attribute bindings, terminates

exceptionally, or fails with a recoverable failure:

• Clauses are evaluated in the order of their appearance. The first clause that succeeds

or terminates is chosen as the clause that provides the outcome of the visit. If a clause

fails, the next clause is evaluated.

• During the evaluation of a clause, the rules are evaluated in a scheduled order. When

a rule succeeds, the next rule is evaluated. If all rules succeed, the clause succeeds.

However, a clause fails if the evaluation of a rule terminates exceptionally or fails.

• A visit terminates if any of its evaluated clauses terminate, and otherwise succeeds if a

clause succeeds. If all of its clause fail then the visit terminates exceptionally or fails

recoverable. The respective difference is made by whether the visit is annotated as total

or annotated with a partial strategy. Visits are declared as total by default.

There are two types of rules that may fail:

• An invoke-rule may be annotated with a partial strategy. If it is, the invoke-rule fails

if the visit to the child fails. Otherwise the invoke-rule either succeeds or terminates

exceptionally.

• We present match-rules to specify conditions. A rule match p = e requires that the

value of e satisfies the pattern p, otherwise evaluation for the match-rule fails.

In the rule ordering, match-rules must be evaluated as part of the clause in which it is declared.

Moreover, match-rules take priority in the rule scheduling. If two match rules are independent

of each other, then the order of appearance determines which rule is scheduled first. As

notational convention, we usually write match-rules up front in code examples.

Chapter 3 describes the evaluation of clauses as a generalization of productions. Chapter 5

describes an implementation in Haskell. Also, Chapter 6 shows how to evaluate clauses

simultaneously.

In comparison to Conditional Attribute Grammars [Boyland, 1996] or conditionally de-

fined rules in general, clauses allow us to define a condition for multiple attributes and also

children.

89

2 Outline of the RulerCore Concepts

grammar Eq prod Check -- multiple clauses below

itf Eq visit check -- checks type equality

inh tp1 :: Type

inh tp2 :: Type

syn errs :: Errs -- outcome of check

sem Eq prod Check visit check -- semantics of Check prod

default errs = concat -- collect type errors

clause twoInts -- when tp1 and tp2 are Ints

match Ty Int = lhs.tp1

match Ty Int = lhs.tp2

clause twoArrs -- tp1 and tp2 both arrow-types

match (Ty Arr loc.a loc.b) = lhs.tp1 -- tests if lhs.tp1 is an arr

match (Ty Arr loc.c loc.d) = lhs.tp2 -- tests if lhs.tp2 is an arr

child u1 : Eq = sem Check -- recursion on both arg-types

child u2 : Eq = sem Check -- recursion on both res-types

u1.tp1 = loc.a; u1.tp2 = loc.c -- definitions of inh attrs of u1

u2.tp1 = loc.b; u2.tp2 = loc.d -- definitions of inh attrs of u2

clause mismatch -- catch-all clause

lhs.errs = [Err Mismatch lhs.tp1 lhs.tp2] -- error for each mismatch

Figure 2.9: Matching example.

Multi-attribute dispatch. Clauses provide a convenient way to describe the structure of a

derivation tree when the structure of the tree depends on the values of attributes. For example,

to prove type equality, the structure of the derivation tree is a determined by two attributes

that represent the types in question.

The example in Figure 2.9 shows a first-order matching algorithm for the construction of

a derivation tree for an equality judgment. Given two attributes tp1 and tp2 which values

represent types (in some object language), we match pointwise against the structure of these

types. The value of such an attribute is either the integer type constructor or a function type

constructor. During evaluation, the derivation tree is constructed up to the points that the

types match. The result of evaluation is an attribute errs that contains an error message for

each type mismatch. The production Check does not declare any terminal nor nonterminal

symbols. The example relies on higher-order children and clauses instead.

Iteration. A judgment R p can be seen as a constraint R between parameters p where R is

a relation. Fixpoint iteration is often employed to gradually construct a solution to a set of

such constraints.

In Figure 2.10 we show how to encode fixpoint iteration in AGs by iterating visits. We use

some extensions of previous sections and Section 1.3.12 to keep the description concise. We

90

2.3 AGs with Tree Construction

grammar Top prod Top nonterm root : Constrs -- root symbol

grammar Constrs = [Constr] -- short hand for cons-list

grammar Constr prod Subset term a,b :: Ident -- subset constraint

itf Constrs Constr -- shorthand notation

visit solve fixed -- a fixed visit (explained below)

chn env :: Map Ident IntSet -- chained attribute

syn changed :: Bool -- True if env changed

default env = head -- default rule for env

default changed = or -- default rule for changed

sem Constr prod Subset -- approximation of loc.newVal

loc.bVal = lookupWithDefault /0 loc.b lhs.env

loc.aVal = lookupWithDefault /0 loc.a lhs.env

loc.newVal = loc.aVal∪ loc.bVal

lhs.env = insert loc.b loc.bVal lhs.env

lhs.changed = loc.newVal 6≡ loc.bVal

Figure 2.10: AG for solving subset constraints.

explain some aspects of the example below.

We first give a grammar for a constraint language: a sentence in this language is a list of

subset constraints (a⊆ b) on some symbols (a, b) that represent integer sets. Given the list of

constraints and an initial mapping env from symbol to integer set, we describe an algorithm

that refines the mapping until all constraints are satisfied. The nonterminal Constr represents

a subset constraint and the nonterminal Constrs a list of such constraints.

Secondly, we show how to refine the mapping for a single constraint, then show further

below how to iterate over such a list of constraints. The rules in Figure 2.10 describe how the

new env is computed from the initial env in a single iteration. The attribute changed is True

if and only if the mapping was changed. The semantics for Constrs is fully determined by

default rules.

Finally, we work below towards a specification of iteration for a list of constraints. The

semantics of nonterminal Constrs is fully determined by the default rules: we thus specify

iteration as part of the semantics of the Top-production, for which we introduce some addi-

tional annotation.

An invoke-rule may be annotated with strategies z as we saw earlier. We introduce two

new strategies: oneshot and iterate. By default an invoke-ruke is (implicitly) annotated as

oneshot, which means that the visit is at most invoked once. However, when the annotation

is iterate, then the visit may be repeated multiple times:

r ::= invoke x of c z -- annotated invoke-rule

z ::=oneshot -- by default (implicit)

| iterate e -- repetitive invocation

91

2 Outline of the RulerCore Concepts

again = Just :: Inp N x→Maybe (Inp N x) -- API function

stop = Nothing :: Maybe (Inp N x) -- API function

The expression e is a function that takes two parameters. The first parameter is the set of

values for inherited attributes of the last iteration, and the second parameter the set of values

for the synthesized attributes that resulting from that last iteration. The result of the function

describes if the visit is repeated. If the result is produced using the constant stop, then the

visit is not repeated. If, however, the result is produced using the function again, which takes

as parameter the set of inherited attribute values that are used for the next iteration, then the

visit is repeated with those values.

We apply this strategy to repeat the solve-visit on lists of constraints until a fixpoint is

reached for the environment, which is the case when the attribute changed is False at the end

of an iteration:

sem Top prod Top -- semantics of the root

inh.root.env = lhs.initialEnv -- env for the first iteration

invoke solve of root iterate λ inp outp→ -- iterative invoke strategy

if changed outp -- query attribute changed

then again (inp {env = env outp}) -- repeat with updated env

else stop -- stop iterations

lhs.result = syn.root.env -- takes result of last iteration

The values of the attributes are stored in a record for the inherited and synthesized attributes

of a visit11. The labels are an encoding of the name of the attribute.

As a constraint solving strategy we may be interested in results of previous iterations. To

keep a local state per node we introduce visit-local chained attributes, so that the notation for

visit-declarations becomes:

t ::=visit x chn y :: ty r t -- the type ty is optional

Note that the name of a visit may not clash with the name of a child, and y must be unique

with respect to all visit-local attributes of a production.

The name y in the attribute declaration denotes four attributes that are local to the produc-

tion:

attribute meaning scheduling notation

inh.x.y initial value of inh.vis.y outside visit x inh is a keyword

syn.x.y last value of syn.vis.y outside visit x syn is a keyword

inh.vis.y input to visit inside visit x inh and vis are keywords

syn.vis.y result of visit inside visit x syn and vis are keywords

11 In case of the generalization to phases of the previous section, an association of attributes to phases may be

determined automatically when such an association is not manually given. However, when this happens, it is

unclear which attributes are present in the record. Therefore, to be able to iterate a phase, we require the phase

declaration to be annotated with the annotation fixed which disallows the automatic scheduling of attributes to

the phase.

92

2.3 AGs with Tree Construction

itf Constr -- more visits

visit initial inh topVal :: IntSet -- value of top element

visit solve fixed chn ... -- as defined above

visit generate syn outcome :: (IntSet, IntSet) -- outcome of solving

sem Constr prod Subset

lhs.output = (loc.aVal, loc.newVal) -- the computation for the result

inh.solve.reps = 0 -- initial val of vis chained attr

syn.vis.last = inh.vis.last+1 -- increment

...

loc.newVal = loc.aVal∪ loc.bVal∪ loc.cVal

loc.cVal = if inh.vis.last > 5 then lhs.topVal else /0

visit solve chn reps :: Int -- visit local chained attribute

Figure 2.11: Example of weakening.

In Figure 2.11, we express that if the number of iterations exceeds a threshold of 5, then the

result is weakened by enlarging it to the top-value in our set-lattice. This approach enforces

convergence. The top-value is provided as attribute lhs.topVal. Note that we specified the

rules outside the solve visit-block. The rule scheduling moves these rules to the appropriate

block.

In contrast to conventional fixpoint evaluators for AGs, we precisely specify the iteration

points, may perform fixpoint iteration over multiple attributes, and keep (purely functional)

state between iterations. We may even construct children as part of a fixed visit, although to

prevent constructing children over-and-over again, we may need to store the state of a child

as part of the iteration state. We can accomplish this by detaching and attaching children.

First-class children. Constraints are used in inference algorithms to delegate a proof obli-

gation to a different location in the tree. Constraints are typically used to delay a proof until

all constraints in a given scope are collected.

In an AG, proof obligations can be encoded as a visit on a child that still needs to be

invoked. Invoking the visit corresponds to constructing the proof. In the model as presented

so far, we statically know the configuration of a child’s state at each point during evaluation

of the node. We present rules to detach and attach children that are in a given configuration,

which permit us to treat children as first class values, and thus as constraints:

p = detach x of c -- detaches c in the state that visit x is pending

attach x of c = e -- attaches e as c in the state that visit x is pending

The attach-rule is a generalization of the child-rule that specifies that visit x and later are

accessible on child c. The detach-rule specifies that visit x and later are not accessible on

child c and provides a value that represents the child prior to the invocation of x. These two

93

2 Outline of the RulerCore Concepts

itf Expr -- some example

visit gather

syn gathCnstrs :: IntMap Sem Cnstrs solve -- use to gather of children

visit distribute

inh distCnstrs :: IntMap Sem Cnstrs generate -- used to distribute children

syn transformed :: Expr

sem Expr prod Var

child c : Constr = sem Subset loc.nm lhs.parentNm

c.topVal = lhs.topVal -- for first visit to c

lhs.gathCnstrs = singleton loc.nodeId (detach solve of c)
attach generate of c = lookup loc.nodeId lhs.distCnstrs

lhs.transformed = Expr Const $ fst $ c.output -- based on the last visit of c

Figure 2.12: Example of child detachment.

rules may be used in conjunction, however, to prevent conflicts only one attach or detach rule

is allowed per child and visit combination. A detached child may be attached at a different

location in the tree and visited as part of the evaluation for that location, or be visited through

a wrapper function in the host language as part of an external solving algorithm.

Figure 2.12 shows an example of how a child can be detached. We collect the detached

children in an attribute gathCnstrs as constraints. These constraints are solved elsewhere by

invoking the solve visit on them, then transferred back as attribute distCnstrs and attached

again. The type Sem Cnstrs solve is the type of a detached child prior to the invocation of

solve. At another location in the tree, we may attach the constraints in the list and apply the

iteration technique of above to solve the constraints.

This approach has the advantage that we can easily transport context information from the

node that defines the constraint to the location where we solve the constraint, and vice versa.

Middelkoop [2011b] gives additional examples of this technique. Moreover, the dependency

analysis provides define-before-use guarantees. Chapter 7 describes how dependent types

can be used to prove that a detached subtree is attached at precisely one other location in the

tree.

Remarks. By making visits explicit we gained the ability to describe evaluation strategies

by annotating the callee (visit declarations) or the caller (invoke-rules). Clauses offer a means

to specify alternatives. Children in a given state are first class and can be passed around to

describe complex traversals. The extensions preserve the attractive properties of AGs, such

as automatic rule scheduling and purely functional descriptions. Also, the implementation in

the host language is purely functional.

In Chapter 5 we present a large example, and give a translation of the notation to Haskell

code. We show in Middelkoop [2011b] that we can also describe complex traversals over

trees and even graph structures.

94

2.4 Case Study with GADTs

data Index a where -- data type written using GADT notation

TInt :: Index Int -- parameterless constructor with a≡ Int

TBool :: Index Bool -- parameterless constructor with a≡ Bool

append :: Index a→ a→ a→ a

append TInt = (+) -- coercion of Int to a

append TBool = (∧) -- coercion of Bool to a

ex1 = (append TInt 1 2,append TBool True False) -- OK: (3, False)

ex2 = append TInt 1 2+append TBool True False -- type error (Int ! =Bool)

ex3 = append TBool 1 2 -- type error (Int ! =Bool)

Figure 2.13: Example of a GADT as type index.

2.4 Case Study with GADTs

Constructors of an algebraic data type specify how a value of the data type is structured. A

data type may be parameterized. Generalized Algebraic Data Types (GADTs) [Cheney and

Hinze, 2003] associate per data constructor a set of type equivalences between the parameters

of the data type. When building a value using a GADT constructor, and thus specifying how

the parameters are instantiated, the type equivalences must be satisfied. In the scope of a

successful pattern match against a GADT data constructor, the type equivalences may be

assumed to hold and can be used to refine or safely coerce types.

In the extended edition of this thesis, we present a type system for GADTs as a case study

for several reasons [Middelkoop, 2011a]. Firstly, a type system for GADTs poses additional

challenges to a description of a type inference algorithm compared to a conventional DHM-

style inference algorithm (Section 1.2.6, Section 1.3.11) which give insight in what features

our meta language for type system needs to support. Secondly, we investigate the description

of GADTs as a minimalistic type system extension. Moreover, we make extensive use of

GADTs in this thesis, thus this chapter can then also be used as an explanation of GADTs.

In this section, we take a simplified subset of the actual type system: equality proofs. We

first give a specification, then look at properties of an inference algorithm, and consider a

description of the algorithm with attribute grammars.

Specification. GADTs are typically used as type index. In the example of Figure 2.13, the

type Index a is a first-class description of the type a. By pattern matching on the description

we reconstruct what the concrete type was to which a was instantiated. The expression TBool

must be of type Index Bool, thus the a of append TBool must be Bool. Consequently, ex2 and

ex3 are ill-typed.

In the above example, there exists a type equality assumption a ∼ Int in the context of

having matched against the TInt constructor. The assumption is used to prove that Int→ Int

can be coerced into a→ a. The actual facilities that we need to reason with GADTs is the

introduction of type equality assumptions in a scope, and equality reasoning on types. These

95

2 Outline of the RulerCore Concepts

Γ ⊢ τ ≡ ρ

Γ ⊢ τ ≡ τ REFL

Γ ⊢ τ ≡ ρ

Γ ⊢ ρ ≡ τ
SYM

Γ ⊢ τ ≡ ρ
Γ ⊢ ρ ≡ σ

Γ ⊢ τ ≡ σ
TRANS

(τ ∼ ρ) ∈ Γ

Γ ⊢ τ ≡ ρ
ASSUM

Γ ⊢ τ ≡ ρ Γ ⊢ σ ≡ ω

Γ ⊢ τ → ρ ≡ σ → ω
CONGR

τ → ρ ≡ σ → ω

Γ ⊢ τ ≡ σ
SUB.L

τ → ρ ≡ σ → ω

Γ ⊢ ρ ≡ ω
SUB.R

Figure 2.14:

facilities are orthogonal to the actual treatment of algebraic data types. To be able to describe

GADTs as a separate aspect of a type system, it is thus desirable to separate these facilities.

In the above example, we used simple types constructed by type arrows and type constants.

In the specification we use the following grammar for types and environments containing

equality assumptions:

τ ::=a | Int | Bool | τ1→ τ2 -- types, also: ρ , ω , and σ
Γ ::= /0 | Γ,(τ1 ∼ τ2) -- environment containing type equality assumptions

The type equality relation is used to reason with the equality between types.

Given an environment Γ that consists of the type equality assumptions, the inference rules

in Figure 2.14 describe the type equality relation. The first three rules are properties that any

equality relation is supposed to exhibit. In addition, the rule ASSUM expresses a proof by

assumption, and the remaining three are related to congruence and subsumption properties

derived from the structure of types. See Middelkoop [2011a] for some exemplary proofs for

judgments of this relation.

Forward and backward chaining. The above rules are not straightforwardly mapped to

an inference algorithm. The rule SYM can always be applied, thus some condition is needed

to determine when not to apply this rule. In Section 1.2.6 we describes properties of the

type rules of the DHM type system that permit an attractive implementation in the form of

algorithm W. Similarly, we apply apply domain knowledge here to impose conditions on

above rules so that problematic derivation trees are avoided or do not have to be considered

by the algorithm. For example, we require that a derivation tree for judgment a≡ b may not

contain (indirectly) a child for the same judgment, as the proof would then be circular. This

constraint ensures that the number of applications of the sym-rule is bounded.

To explain why the other rules are not straightforwardly mapped to an inference algorithm,

we mention first that there are two ways of reasoning with inference rules [Russell et al.,

1996]. With forward chaining inference starts with assumptions and derives conclusions.

With backward chaining inference starts at conclusions and tries to prove premisses until

96

2.4 Case Study with GADTs

they can be discharged by assumptions. Inference algorithms as discussed so far use a limited

form of backward chaining.

Backward chaining is suitable when a conclusion can be decomposed into smaller pre-

misses, which is indeed the case for rules REFL, ASSUM and CONGR, and also for rule SYM

with the aforementioned restriction. This is not the case for the rules TRANS, SUB.L, and

SUB.R. These contain one or more meta variables in their premises that are not fixed by their

conclusion judgments. As a consequence, arbitrary (infinite) branches can be introduced in

the derivation tree by applying these rules.

Forward chaining is suitable when premisses can be decomposed into smaller conclusions.

This is the case for all rules except REFL and CONGR. To deal with all rules, we use a combina-

tion of backward and forward chaining by distinguishing proof obligations and proven facts.

Rule CONGR may only be applied on a proof obligation whereas Rules SUB.L and SUB.R may

only be applied on proven facts. The TRANS may only be applied if one of the premisses is a

proven fact. As part of the case study in Middelkoop [2011a], we implemented a solver for

equality constraints in UHC using an implementation of constraint handling rules [Frühwirth,

1998] that provides forward chaining and can emulate backward chaining [Dijkstra et al.,

2007].

Lookahead. Forward chaining can be implemented with backward chaining by defining

a reduction relation on environments which keep track of derived facts. We thus concern

ourselves in the remainder of this section with the implementation of backward chaining

using attribute grammars.

To implement backward chaining, we use clauses to represent the various alternatives.

However, the rule TRANS poses an additional challenge: a choice made for the left premise

has consequences for the right premise. To express that a clause may only be selected if the

remaining evaluation in a given context (the remainder-context) does not fail, we introduce

two more strategy annotations: the lookahead-strategy and the onlylocal-strategy which serve

as annotations for visit-blocks and invoke-rules:

t ::=visit x z k -- visit-block as presented before

r ::= invoke x of c z -- invoke-rule as presented before

z ::=onlylocal -- does not take the remainder-context into account

| lookahead -- takes the remainder-context into account

The onlylocal-strategy is the default.

The remainder-context is a runtime property that can be influenced by invoke-rules. When

an invoke rule is evaluated and it is annotated with the lookahead-annotation, the remaining

evaluation in the parent’s remainder context contributes to the remainder-context of the child.

Otherwise, the invoke-rule behaves as a cut-operator which fixes the choices of clauses made

by the child. The partial-strategy and total-strategy as mentioned before are orthogonal to the

onlylocal-strategy and lookahead-strategy.

The example in Figure 2.15 serves as illustration and we explain it below. For brevity,

we left out details of the description that are related to the prevention of infinite derivations,

the administration of substitutions, and the reuse of prior derivation trees. Moreover, we

97

2 Outline of the RulerCore Concepts

grammar Eq prod Check

itf Eq visit check partial

inh env :: Set (Ty,Ty)
inh tp1, tp2 :: Ty

sem Eq prod Check visit check

lookahead -- visit annotation

default env -- rule in scope visit

invoke check lookahead parent

clause refl

child u : Unify = sem Unif

u.tp1 = lhs.tp1

u.tp2 = lhs.tp2

clause sym

child flipped : Eq = sem Check

flipped.tp1 = lhs.tp2

flipped.tp2 = lhs.tp1

clause trans

child fr : Fresh = sem Fresh

child left : Eq = sem Check

child right : Eq = sem Check

left.tp1 = lhs.tp1

left.tp2 = fr.tp

right.tp1 = fr.tp

right.tp2 = lhs.tp2

clause assum

match (u1.tp2,u2.tp2)← do

ahead $ λk→ some $

map k $ elems lhs.env

child u1,u2 : Unify = sem Unif

u1.tp1 = lhs.tp1

u2.tp1 = lhs.tp2

Figure 2.15: Example of an AG that represents an equality solver.

omitted attributes and rules to construct coercion terms from such a derivation tree. Such

topics are discussed in Section 2.3. Only one production is declared for the Eq-nonterminal.

The clauses in combination with higher-order children determine the structure of the equality

proof.

The example features a monadic match rule. The right-hand side of this rule is a monadic

expression that determines the value to match against. In clause assum, we take a type equal-

ity assumption from the environment. There may be multiple of such assumptions in the

environment. We derive from these assumptions a monadic expression that explores the pos-

sibilities one after the other and selects the first one that succeeds. Via ahead (explained

below), we get a continuation k that expects a value for the pair and performs the remaining

computations for the current context. The function some is defined below. It selects the first

computation that succeeds.

We saw above how to express backward chaining with clauses in combination with looka-

head. In Section 2.1 we mentioned that the AG can be expressed as a monad. First we show

an implementation of lookahead by using a backtracking monad, then show how clauses can

be mapped to this monad.

Backtracking monad. We wrap the actual underlying monad m into a monad transformer

BackT that consists of a composition of the continuation transformer on top of the error

transformer. The continuation monad transformer provides a continuation, and via the error

monad transformer a failing computation can be observed [Jones, 1995]. The result type of

the continuation is the parameter r:

98

2.4 Case Study with GADTs

data Back = Back -- backtrack message

type BackT r m a = ContT r (ErrorT Back m) a -- transformer

Backtrack points are specified using the operator (�) which represents local choice. It selects

its right argument if and only if the evaluation of the left argument fails. Alternatively, the

operator � represents a global choice, which takes the continuation of the parent of the choice

into account:

(�) :: Monad m⇒ BackT a m a→ BackT a m a→ BackT r m a

p�q = ContT (λc→ catchError (cut p) (const (cut q))>>= c)

(�) :: Monad m⇒ BackT r m a→ BackT r m a→ BackT r m a

p�q = ConT (λc→ catchError (runContT p c) (const (runContT q c)))

cut p = runConT p return

msum = foldr (�) (fail "backtrack")
resolve p = ContT (λc→ cut p>>= c)

The function resolve limits the continuation. The function ahead exposes the continuation to

the higher-order function f :

ahead :: Monad m⇒ ((a→ ContT r m r)→ ContT r m r)→ ContT r m a

ahead f = ContT (λc→ runContT (f (λa→ ContT (λk→ c a>>= k))) return)

p�q = ahead (λk→ p>>= k �q>>= k) -- alternative implementation

The function ahead provides the ability to explore different values for the continuation, and

make choices based on the outcome of the continuation. We show in Chapter 6 how to

extend this mechanism to make choices based on intermediate results that are computed in

the continuation.

In a continuation monad, a computation BackT r m a represents a computation for a value

of type r with a pending computation that takes a to r. The function f in ahead takes the

pending computation as parameter, and replaces the computation for r with a computation that

immediately goes to r. Ahead f can thus be understood as replacing the pending computation

with (the computation produced by) f .

Mapping of clauses to monads. The evaluation algorithm for a clause is a monadic

expression that computes values for the synthesized attributes of the visit. We thus define the

body of a visit function as a sequence of these monadic expressions that are either combined

with the global choice operator when the visit is annotated with the lookahead-annotation,

or with the local choice operator when the visit has the default onlylocal-annotation. If an

invoke-rule is not annotated with a lookahead-annotation, it applies resolve to the monadic

expression of the child after applying the values for the inherited attributes.

Remarks. As mentioned in the previous section, clauses represent a search tree, which

encodes alternative ways to compute the decorations of the tree. The exploration of these

alternatives using the BackT monad is depth-first. Chapter 6 describes how to explore clauses

in a breadth-first way, which may give a more balanced exploration.

99

2 Outline of the RulerCore Concepts

Overhead is the work that is performed for the exploration of an alternative that is not

selected. In practice, we preferably solve problems using a single pass traversal, or a fixpoint

iteration. A search for a solution, however, cannot always be avoided, as is demonstrated by

the GADT use-case. Moreover, the naive exploration of alternatives may be convenient for

prototyping purposes.

2.5 Attribute Grammars with Stepwise Evaluation

Some type inference algorithms require an exploration of a forest of potential derivation trees.

We can encode such a forest as a search tree that contains additional nodes which represent

choices between derivations. In Chapter 6 we present a library to describe such explorations

of the search tree.

Stepwise evaluation. In the evaluation algorithms of Chapter 5, clauses are explored one

after the other. This approach corresponds to a depth-first exploration of alternatives. In

Chapter 6 we show how to evaluate clauses simultaneously, which corresponds to a breadth-

first exploration of alternatives. A breadth-first exploration provides a balanced exploration

for alternatives, which may be more efficient.

With statically ordered AG evaluation (Section 1.3.4), the evaluation of an AG is a se-

quence of rule evaluations. In this section, we group a number of these rule evaluations

together and call that a step. We represent the evaluation of a tree as a computation which can

be asked to execute one step, and afterwards pauses and returns control back to the caller. To

decorate the tree, we provide a computation (the root-computation) at the root which takes

the computation of the tree and repeatedly asks it to perform a step until the decorations are

computed.

Simultaneous exploration. To explore alternatives, we mentioned in the previous section

that we combine the computations of alternatives, for example using the �-operator. We now

consider different ways to combine the computations of alternatives. We provide a compu-

tation (the choice-computation) that asks the alternatives to perform steps in an interleaved

fashion. When an alternative succeeds, we replace the choice-computation with the alterna-

tive. When an alternative fails, we replace the choice-computation with the other alternative.

When each alternative performed one step, the choice-computation exposes one step to its

parent choice-computation or the root. With this approach we obtain a breadth-first traversal

of alternatives.

In this section, we first describe how to write such an algorithm as a monad that represents

a coroutine, and how to specify what constitutes to a step in this monad. Then, we show how

this monad is used in RulerCore descriptions, and show an implementation of the monad.

Coroutines. A coroutine is a function that during its execution performs zero or more

yield operations which denote re-entry points. A yield operation pauses the execution of the

function and returns control to the caller. The caller may resume the execution of the callee

from the point where it was paused. The callee may expose intermediate results to the caller

100

2.5 Attribute Grammars with Stepwise Evaluation

yield :: Stepwise m ()
step :: Monad m⇒ Stepwise m a→ m (Report m a)
lift :: Monad m⇒ m a→ Stepwise m a

ahead :: (∀r.(a→ Stepwise m r)→ Stepwise m r)→ Stepwise m a

data Report m a -- represents a progress report

= Done a -- finished and produced a value a

| Failed String -- failed with a given error message

| Paused (Stepwise m a) -- paused with the residual computation

Figure 2.16: API of the Stepwise monad.

and the caller may provide additional parameters when resuming the function. We assume

initially as simplification that no results are exchanged between caller and callee.

Visit functions are examples of coroutines (Section 1.3.5) that are invoked a statically fixed

number of times. The evaluation of a child pauses at the end of the visit, and proceeds with

the evaluation of the next visit when the parent invokes the subsequent invoke-rule. In this

section, however, we consider coroutines that in addition to the statically fixed yields between

visits, may yield a statically unbounded number of times during the execution of a visit. The

evaluation up-to the next yield is what we call a step.

We design a coroutine monad Stepwise, which represents a stepwise computation special-

ized for the exploration of alternatives. It supports a number of operations in addition to those

of the BackT monad. Figure 2.16 shows the API. The operation yield pauses the execution

and resumes the caller. The operation step runs the coroutine until the coroutine either fails

or succeeds, or reaches the next yield instruction. The outcome of the evaluation is presented

as a progress report in the encapsulated monad m. A yield-operation thus specifies what con-

stitutes as a single step. With lift, we wrap the effects of m into a stepwise computation so

that these effects can be merged with the effects embedded in other stepwise computations.

For example, we typically use lift to describe how the effects of a step-operation on a child

are merged with some parent computation.

With the choice combinators, we define a computation that represents a traversal over a

search tree. Each subtree encodes an alternative. With the above API, Figure 2.17 shows a

breadth-first version of the choice combinators. The traversal is breadth-first because when

act reports a step to the caller, each of the non-failed children performed one step. Iteration is

encoded by replacing the choice-computation with a computation that calls the choice func-

tion again. Thus, when we commit to a certain alternative, we replace the choice-computation

with the selected alternative, and thereby eliminate the choice.

Figure 2.18 A depth-first version of the choice combinators is obtained by applying the

function fullred to the left alternative. This function returns the computation with all steps

stripped, thus forcing it to evaluate fully. The control we have over stepwise computations

allows us to express a whole range of strategies, such as taking two steps left for each step

right.

101

2 Outline of the RulerCore Concepts

p�q = ahead (λk→ p>>= k �q>>= k)
p�q = do a← lift (step p) -- perform a step for p

b← lift (step q) -- perform a step for q

act a b -- inspects the outcomes

act :: Report m a→ Report m a→ Stepwise m a

act (Done a) = return a -- commit to finished p

act (Done a) = return a -- commit to finished q

act (Failed s) (Failed) = fail s -- both fail

act (Failed) (Paused r) = r -- p fails, commit to q

act (Paused r) (Failed) = r -- q fails, commit to p

act (Paused p′) (Paused q′) = yield>> (p′�q′) -- pause, later continue with choice

Figure 2.17: Breadth-first choice combinators.

fullred :: Stepwise m a→ m (Stepwise m a)
fullred p = do rep← step p -- perform a step

case rep of -- inspect report

Paused r→ fullred r -- repeat after yield

→ return $ comp rep -- either Failed or Done

comp :: Report m a→ Stepwise m a -- report to residual computation

comp (Paused m) = m

comp (Failed s) = fail s

comp (Done v) = return v

Figure 2.18: Depth-first choice combinators

The underlying monad m can be used to exchange information between the computation of

an alternative and the choice between alternatives. For example, when m is a writer monad,

an alternative can provide an estimate of the amount of work that has been performed. When

m supports IO, the system time can be used to balance the two computations. Stepwise

computations thus offer a means to describe powerful and complex exploration strategies.

Children as stepwise computations. The evaluation of an AG we represent as a monadic

computation, and thus fits the Stepwise-monad straightforwardly. In the remainder of this

section, we show how to specify yield operations and how to express alternatives.

We do not need to introduce additional syntax to express yield operations because monadic

child rules have monadic right-hand sides and can therefore be used to express the yield

operations. For example, we introduce a dummy nonterminal Yield in Figure 2.19 and use it

to specify a yield operation using a child rule in some exemplary production Var. A monadic

102

2.5 Attribute Grammars with Stepwise Evaluation

itf Yield -- interface without visits nor attributes

grammar Yield prod Yield -- single production

sem Yield prod Yield -- empty semantics

sem Expr prod Var visit check

child y : Yield← do -- monadic child rule

yield -- monadic operation

return sem Yield -- semantics of child (trivial)

Figure 2.19: Yielding of steps expressed as nonterminal.

sem Tree prod Alt -- semantics for a choice node

child left : Tree = ... -- define child left

child right : Tree = ... -- define child right

left.i1 = ... -- definition of some attributes

right.i1 = ...

loc.p = detach upon v of left -- evaluates left up to visit v

loc.q = detach upon v of right -- evaluates right up to visit v

attach upon v of res : N← do -- attaches as child res

loc.p� loc.q -- choice between children

lhs.s = res.s1 -- use results of the chosen child

Figure 2.20: A sketch of a parallel exploration.

child rule is guaranteed to be evaluated in the visit it is constrained to. Thus, the right-hand

side of the rule is evaluated during visit check.

Encoding of alternatives. To express alternatives we can explicitly encode a search tree

using higher-order children or by using clauses. We first consider the encoding of a search

tree. A node in a search tree may express a choice between its children. For this purpose we

refine the notation introduced in Section 2.3 to attach and detach children with an additional

keyword (explained below).

We detach alternatives and attach a computation that determines the chosen alternative.

The abstract example in Figure 2.20 provides a sketch. Recall that the semantics of a visit of a

child is a function that takes values for inherited attributes and returns a monadic computation

for the synthesized attributes of that visit. We are thus interested in the state of the children

after they received the values for the inherited attributes. We use the upon-keyword for this

purpose. The detach-rule thus provides the monadic computation for the specified visit of a

child, and the attach-rule runs the computation to obtain the synthesized values for that visit.

103

2 Outline of the RulerCore Concepts

data Stepwise m a where

Return :: a→ Stepwise m a

Bind :: Stepwise m a→ Parents m a b→ Stepwise m b

Fail :: String→ Stepwise m a

Yield :: Stepwise m ()
Lift :: m a→ Stepwise m a

Ahead :: (∀r.(a→ Stepwise m r)→ Stepwise m r)→ Stepwise m a

data Parents :: m a b where

Root :: Parents m a a

Pending :: (a→ Stepwise m b)→ Parents m b c→ Parents m a c

instance Monad (Stepwise m) where

return = Return

m>>= f = Bind m (Pending f Root)

Figure 2.21: The structure of Stepwise.

Strategy for clauses. Instead of explicitly encoding a search tree as above, we can also

use clauses. To specify a choice between clauses, we present additional notation. A visit-

block may be annotated with a select-strategy:

t ::=visit x z c -- existing syntax for visit-blocks

z ::=onlylocal -- combine clauses with the local choice operator

| lookahead -- combine clauses with the global choice operator

| select e -- custom, e is e.g. a function λc1 ... ck→ ...

The select-strategy specifies a function e that takes a computation for each clause of the visit-

block as parameter and provides a computation for the results of the visit. The computation

for the results of a visit is e c1 ... ck where c1, ...,ck are the computations corresponding to

each clause12.

Implementation. In the remainder of the section we describe how intermediate results

can be exposed to the selection function. However, we first show how the Stepwise-monad

is implemented. The algorithm13 that we show here is slightly simplified with respect to

Chapter 6 and its full understanding is not required for the remainder of this chapter.

We represent the Stepwise-monad in Figure 2.21 as a computation that can be inspected

(Section 1.3.9). The function step interprets the computation in order to evaluate it one step.

The right-hand side of a bind contains a stack Parents of all the continuations to the right of

a monadic expression. The expression (m>>= f)>>=g is represented as:

12 Several notational variants are possible. It may sometimes be more convenient to obtain the computations of the

clauses as a list or as a record with a field for each clause.
13 Complete Haskell module of the simplified implementation:

https://svn.science.uu.nl/repos/project.ruler.papers/archive/RefStepwise.hs

104

2.5 Attribute Grammars with Stepwise Evaluation

step :: Monad m⇒ Stepwise m a→ m (Report m a)
step m = reduce m Root

reduce :: Monad m⇒ Stepwise m a→ Parents m a b→ m (Report m b)
reduce Yield r = return $ Paused (r ‘apply‘ ())
reduce (Fail s) = return $ Failed s

reduce (Lift m) r = m>>= step.apply r

reduce (Ahead f) r = step $ f (apply r)
reduce (Return v) Root = return $ Done v

reduce (Return v) (Pending f r) = reduce (f v) r

reduce (Bind m r) r′ = reduce m (push r r′)

apply :: Parents m a b→ a→ Stepwise m b

apply r v = Bind (Return v) r

push :: Parents m a b→ Parents m b c→ Parents m a c

push r Root = r

push Root r = r

push (Pending f r′) r = Pending f (push r′ r)

Figure 2.22: The implementation of reduce.

Bind m (Pending f (Pending g Root))

Since monadic binds are right-associative, the stack only grows when an expression occurs

as left-and side of a monadic bind that expands to one or more binds. This is the case when

calling the visit function of a child, hence the stack contains the continuations of all parents

till the location where step is performed. The child that is undergoing evaluation is on top of

the stack.

The function reduce in Figure 2.22 takes a computation m and a pending stack p. It eval-

uates m one step. If m yields or fails it returns a progress report. Otherwise, it continues

evaluating m until it obtains a result that can be fed into the parents-stack. If the parents-stack

is empty, evaluation is finished. Otherwise, the parent-stack contains the continuation to pro-

ceed with. The function step delegates to reduce with an empty stack. The function apply

turns a pending parent into a monadic computation by passing it the result it was waiting for.

The function push concatenates two parent stacks.

Coordination. We presented above how to specify selection strategies. To encode power-

ful coordination strategies, we improve the above approach so that computations can yield

results and take arguments when resumed.

Definition (Tag). A tag of type Op i o specifies the interface between the callee (the compu-

tation) and the caller (execution of step), where i is a type index that fixes the data-type that

is used for tags (Op i o is a type family), and o is the type of the results exchanged between

105

2 Outline of the RulerCore Concepts

action :: Op i o→ Inp o→ Stepwise m (Out o)

data Report i m a -- refinement of the Report data type

| ∀o. Paused (Op i o) (Inp o)
((Stepwise m (Out o)→ Stepwise m a)→ Stepwise m a)

data family Op i ::∗→ ∗ -- a tag of an operation (of some set indexed by i)

type family Inp o ::∗ -- inputs to the operation Op i o

type family Out o ::∗ -- resulting outputs of operation Op i o

Figure 2.23:

callee and caller. The computation yields results of the type Inp o and takes arguments of

type Out o as parameter for the next visit.

We refine the operation yield so that it takes a tag of type Op i o and intermediate results

of type Inp o for the caller and provides arguments of type Out o as given by the caller when

the callee is resumed. Figure 2.23 shows the encoding in Haskell with type families.

For example, action can be used by a computation to report the number of open goals, and

receive a priority rating from the caller. In that case, we specify the following instances for

the above type families:

data Meta -- type index for the set of tags

data OInfo -- type index for a particular tag

data instance Op Meta o where -- declares the tags

OpInfo :: Op Meta OInfo -- one tag

type instance Inp OInfo = Int -- specification of inputs of operation o

type instance Out OInfo = Int -- specification of results of operation o

The report-handling code in selection strategies may match on Yield-reports to obtain the

Op i o and Inp o values, plus the continuation which may be used to resume the computation

when a computation is provided that produces the Out o values.

This approach is powerful: arbitrary traps to operations can be expressed this way. For

example, it is possible to create tags for that represent operations such as unification, gener-

ation of unique numbers, lookups in memo tables, and output to the console. The caller can

determine what semantics to give to these operations. The construction offers an inversion of

control: the callee declaratively specifies operations, and the caller determines the semantics.

Memoization. As mentioned in the GADT example, it may be desirable to cache results

of subtrees and reuse these results at other locations in the tree. However, if the continuation

(accessed using ahead) is used to distinguish the result of the computation, the results should

not be cached, unless the continuation is the same for each context the shared computation

appears in.

106

2.6 Attribute Grammars with Dependent Types

Moreover, in case of a stepwise computation, these results may not be available yet, and it

may be desirable to share computations instead. A computation can be shared by storing it in

an updatable state, and updating this state after each call to step. The computation may then

each time receive the result of an action from a different context. Also, each contexts may

only receive a partition of the actions yielded by the computation.

Remarks. Chapter 6 focusses on generators which are coroutines that only yield informa-

tion but do not take parameters. We show how to evaluate such coroutines strictly or lazily.

In the latter case, results can already be produced when it depends on a choice for which only

one alternative is left.

2.6 Attribute Grammars with Dependent Types

In Chapter 7 we investigate AGs where attributes may have a dependent type, which can be

used to state and prove properties of the AG. For this purpose, we describe an embedding of

AGs in Agda14 [Bove and Dybjer, 2009]. Dependent types provide a means to use types to

encode properties with the expressiveness of (higher-order) intuitionistic propositional logic,

and terms to encode proofs. In this setting, a parameterized type constructor specifies a

relation between its type parameters and data constructors form the inference rules of the

relation.

In a dependently typed AG, the type of an attribute may refer to values of attributes. The

type of an attribute is an invariant and the value of an attribute a proof for that invariant. More-

over, because of the Curry-Howard correspondence, dependently typed AGs are a domain-

specific language to write structurally inductive proofs in a composable, aspect-oriented fash-

ion; each attribute represents a separate aspect of the proof.

Some knowledge of dependent types and Agda is a prerequisite for this section. We first

give an example and some notation. We follow up with an extension that permits the visits of

a nonterminal to be organized as a tree instead of a totally ordered sequence.

Dependent attribute type. The following interface declaration for some nonterminal

Pat demonstrates attributes with a dependent type. The gathered environment syn.gathEnv is

a subset of the final environment inh.finEnv, which is expressed as the type syn.gathEnv ⊆
inh.finEnv. We assume the existence of a type constructor⊆ and several utility functions. The

attribute inh.gathInFin has the above type and therefore represents a proof of this property:

itf Pat

visit analyze syn gathEnv :: Env

visit translate inh finEnv :: Env

inh gathInFin :: syn.gathEnv⊆ inh.finEnv

grammar Pat prod Var term nm :: Ident

14 In this section, we deviate slightly from the actual syntax to have a closer correspondence with Haskell.

107

2 Outline of the RulerCore Concepts

The gathInFin attribute provides the guarantee that elements that are in syn.gathEnv are also

in inh.finEnv. Rules of productions of Pat may exploit this guarantee.

The lookup of an identifier in the final environment may return Left notIn where notIn is

a proof that the identifier is not in the environment, or Right v where v is the value of the

identifier in the environment.

In the following example, production Var, which has a terminal loc.nm, we define with a

proof15 loc.prv2 that the identifier is in the environment, and we use loc.prv2 to prove that the

lookup cannot return a Left-value:

sem Pat prod Var

loc.prv1 = here loc.nm syn.lhs.gathEnv -- proof of nm in gathEnv

loc.prv2 = inSubset lhs.gathInFin loc.prv1 -- proof of nm in finEnv

loc.val case loc.nm ‘lookup‘ lhs.finEnv of -- defined by case distinction

| Left notIn falsum notIn loc.prv2 -- impossible case

| Right v → v -- case that loc.nm is in finEnv

The case that the element is not in lhs.finEnv is in contradiction with loc.prv2. Their ap-

plication has an uninhabitable type, which we use in combination with the falsum-case to

terminate the branch without giving a definition.

This example shows three ways to define an attribute: with a plain RHS, with case distinc-

tion, and with falsum e where host-language expression e has an uninhabitable type:

r ::=p = e -- with plain RHS

| p m -- with complex RHS

m ::= falsum e -- unreachable case (e has an uninhabitable type)

| case e of b -- with case distinction, and cases b

b ::=ρ → e -- nested plain RHS in a case distinction

| ρ t -- nested complex RHS in a case distinction

ρ -- pattern in the host language (no attributes)

The additional syntax provides us with a means to give provable total definitions of attributes.

Cycle analysis and consistency. Functions are required to be total in dependently typed

programs for reasons of logical consistency and termination of type checking, which in case

of AGs correspond to total definitions of attributes and the requirement that dependencies

between attributes are acyclic.

Partitions. In Chapter 4, the ordering algorithm implicitly distinguishes different contexts

in which a nonterminal is used. However, to ensure that attribute definitions are total, it may

be convenient to make such contexts explicit.

In the following example, we specify code generation depending on the absence of errors.

We define two contexts for the generate visit. The context errorfree provides an attribute

15 The functions here and inSubset are conventional dependently typed functions that construct the appropriate

proofs. Their implementation are beyond the scope of this section.

108

2.6 Attribute Grammars with Dependent Types

sem Pat prod App

lhs.errors = f .errors++a.errors -- collect errors

context errorfree -- rules exclusive for errorfree

invoke generate of left context errorfree -- specifies context to invoke

invoke generate of right context errorfree -- specifies context to invoke

left.noErrors = leftNil left.errors right.errors lhs.noErrors

right.noErrors = rightNil left.errors right.errors lhs.noErrors

lhs.code = left.code ‘apply‘ right.code

context haserrors -- rules exclusive for haserrors

invoke generate of left context haserrors

invoke generate of right context haserrors

lhs.pretty = left.pretty� right.pretty -- collect pretty print

Figure 2.24: Example of rules specified for a specific context.

code, but it may only be invoked when errors are absent. The context haserrors alternatively

provides an attribute pretty, which contains an annotated pretty print of the program:

itf Pat

visit report syn errors :: Errs inh.finEnv

visit generate -- a visit may consist of one or more partitions

context errorfree -- a partition has a name

inh noErrors :: syn.errors≡ []
syn code :: Target inh.finEnv

context haserrors -- a partition may also contain subsequent visits

syn pretty :: Doc

The caller invokes a visit on the callee, and is responsible for selecting what context it wants

to use. The callee is required to produce results for that choice. The callee can encode

restrictions on the available choices for the parent as inherited attributes. The caller must

provide values for the inherited attributes of the partition it chooses.

We specify a context as annotation of the invoke-rule. Moreover, we may specify rules for

particular contexts as is demonstrated in Figure 2.24. A special falsum-rule may be used to

denote that a visit, clause or context is unreachable.

Remarks. Type attributes correspond to quantification. An inherited type attribute corre-

sponds to universal quantification, since the caller can choose its instantiation. A synthesized

type attribute corresponds to existential quantification. The callee can choose its type, but the

caller cannot make an assumption about it. This mechanism allows us to deal with polymor-

phism in interfaces.

Indeed, the above ideas allow quantification in an AG for Haskell to be expressed. In a

dependently typed AG, attributes can represent both values and types. In Haskell, there is a

109

2 Outline of the RulerCore Concepts

clear distinction between values and types. In an AG for Haskell, we can make an explicit

distinction between attributes that represent types (and specify a kind as type) and attributes

that represent values. The type of a type attribute may not refer to other attributes. The type

of a value attribute, however, may refer to a type attribute.

2.7 Attribute Grammars on DAGs

In the extended edition, we included a relatively short chapter [Middelkoop, 2011a] that pro-

vides examples of other ways to apply the techniques as presented. There are two common

data structures in compilers: trees and directed graphs. Ordered attribute grammars are suit-

able to define a semantics on trees but not suitable to define the semantics of graphs. The

reasons is that nodes in a graph may occur in different contexts at execution time, which

makes a static dependency analysis difficult. In that chapter, we also show how our approach

relates to (cyclic) reference attribute grammars.

2.8 Conclusion

We gave a detailed summary of the following chapters, and described how the chapters are

connected together. Also, this chapter showed the features of RulerCore in relation to con-

ventional attribute grammars.

A prototype implementation of RulerCore is available as the compiler ruler-core. Its

implementation is based on higher-order attribute grammars and Haskell, and can be obtained

from:

https://svn.science.uu.nl/repos/project.ruler.papers

/archive/ruler-core-1.0.tar.gz

The examples subdirectory contains some minimalistic examples. A large example based

on the HML type system [Leijen, 2009] can be obtained from:

https://svn.science.uu.nl/repos/project.UHC.pub

/branches/tnfchris-hml/

110

3 AGs with Side Effects

This chapter introduces the concept of visits, which play an important role in subsequent

chapters of this thesis. We present this concept by means of a correspondence with the visitor

design pattern.

The visitor design pattern is often applied to describe traversal algorithms over Abstract

Syntax Trees (ASTs) in imperative programming languages. It defines a visitor, an object

with a visit method that is executed for each node in the AST, and updates the state of the

visitor, and possibly the states of nodes as well. The order in which the visitor visits the nodes

is explicitly under control of the programmer, which is essential to deal with the side-effectful

computations that modify the state of the visitor. However, the exchange of results between

traversals is error-prone.

Attribute grammars with a statically ordered attribute evaluation (Section 1.3.5) are an al-

ternative way to describe multi-traversal algorithms. An Attribute Grammar (AG) defines

attributes of nodes in the AST as functions of other attributes, and an attribute evaluator dec-

orates the AST with the attributes in one or more traversals. The attributes form a convenient

mechanism to exchange results between traversals. A strong point of AGs is that the order of

evaluation is implicit. As a consequence, however, AGs discourage the use of side effects.

We present RulerCore, a language that combines attribute grammars with visitors. In

RulerCore, sufficient assumptions can be made about the evaluation order to facilitate side

effects. In Chapter 4 we show how to formally reason with such side effect.

A RulerCore grammar can be used in combination with several host languages. In the out-

line of this chapter (Section 2.1) we sketched RulerCore with the purely functional, statically

typed language Haskell as host language. In this chapter, we actually show RulerCore in

combination with the imperative and dynamically typed language JavaScript1. This chapter

thus introduces the concepts that underly the subsequent chapters without a dependency on

knowledge of Haskell. Also, it serves as a basis of how contents of the subsequent chapters

can be mapped to other languages than Haskell.

3.1 Introduction

Algorithms for traversing tree-shaped data structures appear in many applications, especially

in compilers. A lot of effort has been invested in developing proper abstractions for tree

traversals, for example in the form of a tree-walking automaton (Section 1.3.3), or in a more

abstract way with Attribute Grammars (AGs) [Knuth, 1968].

1 In the outline of this chapter, we limited side effects in RulerCore to rules that determine the shape of children.

Since we cannot enforce the absence of side effects in JavaScript expressions, we do not impose this restriction.

Instead we present a pin-rule, which can be restricted to a visit and allows for safe use of side effect.

111

3 AGs with Side Effects

AGs are an attractive language for the development of compilers. We applied AGs in

many small projects (to teach compiler construction [Utrecht, 2010], master projects, etc.),

and several large projects, including the Utrecht Haskell Compiler [Dijkstra et al., 2009], the

Helium [Heeren et al., 2003b] compiler, and the editor Proxima [Schrage and Jeuring, 2004].

AGs are an important asset in these projects. The example in Section 3.2 demonstrates some

of the reasons.

Tree traversals play a role in many other fields, including end-user applications. Web

applications, for example, traverse and compute properties of DOM trees. Unfortunately, the

abstractions that emerge from research in compiler construction are not used to write such

traversals. To use AGs, sufficient familiarity with the formalism is required, which may be an

obstacle for many programmers. Also, tool support is typically absent for the programming

language in question, and the AG formalism poses severe restrictions to be used effectively

in these areas, such as prohibition of side effect. In this chapter, we treat the latter two

challenges, which are of a technical nature.

Considering the first challenge, for imperative languages like JavaScript, a programmer

either writes recursive functions, or takes a more structured approach via the visitor design

pattern [Gamma et al., 1993, Palsberg and Jay, 1998, Oliveira et al., 2008]. Tool support for

the visitor design pattern is available for many languages. For example, the parser generator

SableCC [Gagnon and Hendren, 1998] generates visitor skeleton code for the ASTs that the

parser produces. With visitors, side effects are used to carry over results computed in one

visit to the next visit. In our experience, the scheduling of visits and their side effects is an

error-prone process, due to the absence of the define-before-use guarantee. We elaborate on

this in Section 3.2.1.

Attribute grammars offer a programming model where each node in the AST is associated

with named values that are called attributes. An AG description contains computations that

define attributes in terms of other attributes. If these definitions are noncircular, the descrip-

tion can be translated to a multi-visit traversal algorithm where each attribute is defined before

it is used. The scheduling of the computations in implicit, which saves a programmer from

writing the scheduling manually, and thus also cannot do it wrong. However, the implicit

scheduling comes with a severe restriction: side effects cannot be used reliably and should

not be used in attribute computations. In web applications, for example, we typically need

side effects to influence the contents of a webpage. We elaborate on this in Section 3.2.2.

The main contribution of this Chapter is an extension of attribute grammars that has an

explicit notion of visits, which offers a hybrid model between visitors and attribute gram-

mars, while maintaining the best of both worlds. In fact, besides being more expressive, our

extension make attribute grammars more intuitive to use.

We also address the second challenge, which is to make our approach available for many

host languages. We present RulerCore, a small but powerful language for tree traversals. We

managed to isolate the language-dependent part into a small subset called RulerBack, and

show the translation from RulerBack to JavaScript. In later chapters, we show a translation

to Haskell. With these two languages, we cover the implementation issues regarding the full

spectrum of mainstream general purpose programming languages available today.

Similar to other preprocessed languages, code fragments of the host language are embed-

ded in RulerCore to describe the computations for attributes. The embedding keeps general-

112

3.2 Example

purpose programming constructs out of RulerBack, and allows the programmer to express

computations without having to learn a special language. In particular, RulerBack is suitable

as a host language for attribute grammars.

In this chapter, we present the languages RulerCore and RulerBack. We do so by using an

example based on the alignment of HTML menus. This example requires a traversal of the

AST to determine the sizes of the HTML items, and another pass to compute the locations of

the items. Section 3.2 presents the example in each of the above languages.

This chapter focussed on RulerBack. We introduce RulerBack in Section 3.3 and show

a translation to JavaScript in In Section 3.4. In Section 3.5 we get back to RulerCore and

describe the translation to RulerBack.

3.2 Example

In this section, we motivate the claims of the introduction in more detail, and introduce the

background information relevant for the remainder of the chapter. We take as a use case the

alignment of an HTML menu in a web application using JavaScript, based on a multi-visit

tree traversal over an abstract description of the menu. We first show a solution using the

visitor-pattern, then a near-solution using attribute grammars, and finally two solutions using

RulerCore.

3.2.1 Visitor Design Pattern

In the visitor design pattern, each node of the Abstract Syntax Tree (AST) is modelled as

an object, which stores references to the subtrees, and has an accept method. The accept

method takes a visitor as parameter. A visitor is an object with a visit-method for each type

of node. The accept method of the AST node calls the appropriate visit-method on the visitor

and passes the node as an argument. This visit method consists of statements that manipulate

the state of the visitor and the AST node, and can visit a subtree by calling the accept method

on the root of a subtree, with the visitor-object as parameter.

Figure 3.1 shows an example of a visitor that lays out HTML items as a menu in a tree-

like fashion, as visualized in the upper-right corner of the figure. The menus are aligned

to the right, and submenus are slightly indented. Furthermore, we desire the items to have

a minimal size, but large enough to contain their contents. The variable root contains an

abstract description of the menu as a tree of Menu objects (the AST). Associated with each

Menu object is an HTML item with the same name. We interpret the menu structure to layout

the HTML items. In the first visit to the menu tree, we query the widths of the corresponding

HTML items. In the second visit, we adjust the positions and sizes of these items. Some

information (such as indentation based on the depth) is computed in the first visit, and also

needed in the second visit. This information is stored as additional fields in the menu objects.

The order in which the tree is visited is clearly defined by the explicit accept-calls in the

visit-methods. The order of the calls ensures that the sized of the HTML items are queried

before they are resized.

113

3 AGs with Side Effects

item a

very big item b

not so big c

tiny

function Menu (name,children) { -- constructor of a Menu AST node

this.name = name; -- the name of the element to align

this.children = children; -- an array of children menus

}
Menu.prototype.accept = function (visitor) {

visitor.visitMenu (this); } -- invokes the appropriate visit method

function Visitor () { -- constructor of a Visitor object

this.depth = 0; -- the depth so far in the menu tree

this.maximum = 0; -- the maximum width observed so far

this.count = 0; } -- the number of menus laid out so far

var root = -- the menu tree and corresponding html nodes

new Menu ("a", [-- <div id="a">item a</div>

new Menu ("b", [-- <div id="b">very big item b</div>

new Menu ("c", []) -- <div id="c">not so big c</div>

, new Menu ("d", []) -- <div id="d">tiny</div>

])
]); -- <div id="anchor" onLoad="align(root,this);"></div>

function align (root,anchor) { -- aligns the html nodes according to the menu tree

var v = new Visitor (); -- creates visitor with empty state

v.visitMenu = function (menu) { -- first visit method (gets menu node as param)

menu.elem = document.getElementById (menu.name);
menu.depth = this.depth; -- remember depth for the second visit

this.maximum = Math.max (this.maximum, this.depth∗20+menu.elem.clientWidth);

for (var i in menu.children) {
this.depth = menu.depth+1; -- reset this.depth to one deeper than current

menu.children [i].accept (this); -- invokes visitor on children

}}
root.accept (v); -- invokes the first visit (on the root)

v.visitMenu = function (menu) { -- second visit method (gets menu node as param)

var offset = menu.depth∗20;

menu.elem.style.left = (anchor.offsetLeft+offset)+"px";

menu.elem.style.top = (anchor.offsetTop+ this.count ∗30)+"px";

menu.elem.style.width = (this.maximum−offset)+"px";

menu.elem.style.height = 30+"px";

this.count++; -- inorder numbering of nodes

for (var i in menu.children) { -- invokes visitor on menus children

menu.children [i].accept (this); -- count should not be reset in this case

}}
root.accept (v); } -- invokes the second visit (on the root)

Figure 3.1: Pseudocode of dual-visit menu alignment.

114

3.2 Example

However, there are a number of issues with the above solution. In the second visit, we

require that a number of values are computed in the first visit. These values are stored in

the state of the AST nodes during the first visit. This approach has a number of problems.

It does not guarantee that the values that we store indeed those values that we need later.

Furthermore, we never remove any of these values from the state, and thus retain all memory

until the AST gets deallocated. This especially becomes a problem when using large ASTs

in which many results are stored.

Furthermore, the order of appearance of the statements is relevant. For example, the value

this.depth needs to be reset at the appropriate place, and requires that the assignment to

menu.depth is done before. Similarly, the increment to this.count needs to be positioned

carefully. These are actually separate aspects that we would like to implement in isolation.

However, separate pieces of code cannot easily be composed due to side effect.

Finally, we need to explicitly write visits to children using accept. Some tools generate

depth-first visitors, which alleviates the need to do so. However, such approaches come

with restrictions. The restriction that all statements must take place before the invocations to

children is an example. In Figure 3.1 we reset this.depth in between visits to children. To use

a depth-first visitor, we would have to move this statements, which may not be immediately

possible. Moreover, in the simple example that we showed, the two visits are invoked after

each other at the root. In practice, for example in type checking languages with principal

types, we actually invoke multiple visits on a subtree before moving on to the next subtree.

This rules out depth-first visitors, and is also error-prone to write manually.

The example in Figure 3.1 can be made more complicated by allowing menus to share

submenus. The menu structure then forms an acyclic directed graph instead of a tree. With

such a complication, the problems mentioned above become harder to deal with.

As a sidenote, in this chapter, we treat the AST as a fixed data structure. For example,

we do not consider adding menu entries on the fly. The ideas we propose can deal with the

dynamic construction of proof trees (Chapter 5), and we think that this is sufficient to deal

with dynamic changes to the AST as well, but leave this topic as future work.

Below, we look for a way to generate code similar to the code above, but using a description

that alleviates the programmer from the aforementioned problems.

3.2.2 Attribute Grammars

Attribute grammars take care of the problems mentioned above related to visitors, but are not

flexible enough to take side effects into account. Before we show the example, we first give

some background information on attribute grammars, and their encoding in JavaScript.

We introduced attribute grammars in Section 1.3.1, and we use a similar syntax here with

minor differences due to the JavaScript host language and to stay close to the syntax that we

introduce later with respect to RulerCore. To summarize, an attribute grammar is an extension

of a context-free grammar. Nonterminals are annotated with attributes. Productions specify

equations between attributes. The context-free grammar specifies the structure of the AST.

Each node of the AST is associated with a production, and thus also the nonterminal of the

nonterminal symbol that appears as left-hand side of the production. Each child of a node

corresponds to a nonterminal symbol on the right-hand side of the production.

115

3 AGs with Side Effects

For example, we can denote a production as well as the structure of a node in the AST

using a grammar definition (explained below):

grammar Menus -- nonterminal Menus

prod Cons hd :Menu tl :Menus -- production Cons, with two nonterminals

prod Nil -- production Nil, empty

This grammar definition introduces a nonterminal Menus with two productions, representing

a cons-list. The first production is named Cons. In BNF notation, it corresponds to Menus→
Menu Menus. The two nonterminals Menu and Menus in the right-hand side (RHS) have

explicitly been given the respective names hd and tl. Terminals only have a name (shown

later in Figure 3.2).

The grammar declaration corresponds to generated JavaScript constructor functions in the

host language, which can be used to construct ASTs. Each production is mapped to a con-

structor function that gets as parameter an object corresponding to the symbols in the RHS of

the production. Each nonterminal is mapped to a constructor function that creates a base ob-

ject that each of the objects corresponding to the productions inherits. Because of inheritance,

we can verify at the point of construction that the AST matches the grammar:

function Menus () { } -- nonterminal Menus: base class

function Menus Cons (hd, tl) { -- production Cons: subclass

this.hd = hd;assert (hd instanceof Menu);
this.tl = tl;assert (tl instanceof Menus);
}
Menus Cons.prototype = new Menus ();
Menus Cons.prototype.constructor = Menus Cons;

function Menus Nil () { } -- production Nil: subclass

Menus Nil.prototype = new Menus ();
Menus Nil.prototype.constructor = Menus Nil;

Cons-lists occur often in AGs. As a shortcut, the following shorthand notation may be used,

which specifies that the nonterminal Menus is a list of Menu nonterminals:

grammar Menus : [Menu]

This shorthand notation has an additional benefit: the list of menus is conceptually a cons-list

in the AG description but represented efficiently as a JavaScript array in the generated code.

This distinction is hidden from the programmer.

The evaluation of an attribute grammar constitutes to running an evaluation algorithm on

each node. The algorithm is derived from the equations of the production that is associated

with the node. The algorithm describes the decoration of the node with attributes. We assume

that attributes are physically represented as JavaScript properties of the AST objects. Nodes

are decorated with two types of attributes: inherited attributes are computed during evaluation

of the parent of that node, and synthesized attributes are computed during evaluation of the

node itself.

116

3.2 Example

We declare the attributes of a nonterminal using an attribute declaration:

attr Menu inh depth -- inherited attribute

syn gathMax -- synthesized attribute

These attribute names are mapped to object properties named inh depth and syn gathMax.

At some point during attribute evaluation, given a participating Menu object m, the objects

properties m . inh depth and m . syn gathMax will be defined. An inherited attribute may

have the same name as a synthesized attribute: they are mapped to differently named proper-

ties. As an aside, nodes may define a number of local attributes, which can be seen as local

variables.

To give a semantics to these attributes, we organize equations (rules) per production in

semantics-blocks. We explain the following example below:

datasem Menu -- nonterminal Menu

prod Menu -- production Menu

cs :depth = 1+ lhs :depth -- rule

loc :width = 20∗ lhs :width -- rule

lhs :gathMax = Math.max (loc :width,cs :gathMax) -- rule

The full details of the nonterminal and its semantics can be found in Figure 3.2.

The left-hand side of an equation designates an attribute. The notation for attribute occur-

rences nodename : attrname refers to an attribute attrname of some node nodename, where

nodename is either the name of a child, or loc or lhs. The colon ensures that attribute oc-

currences are district from JavaScript notation for properties. Attribute occurrences in the

left-hand side of a rule refer to inherited attributes of children, but a synthesized attribute

of lhs and a local attribute in case of loc. Thus, the attributes we need to define appear as

left-hand side. For example, the above attribute occurrences refer to the JavaScript properties

this.cs . inh depth, this . loc width, and this . syn gathMax respectively.

Similarly, the right-hand side consists of a JavaScript expressions, with embedded attribute

occurrences. In this case, we may refer to the synthesized attributes of children, or with lhs

to the inherited attributes of the current node. The terminals of a production are available as

local attributes. In production Menu, there is a terminal called name, which is available as

attribute loc :name. The translation of attribute references is similar as described above. For

example, the last rule expands to the JavaScript statement:

this . syn gathMax = Math.max (this . loc width, this.cs . syn gathMax);

Evaluation of an attribute grammar corresponds to traversing the AST one or more times,

and executing rules, according to an evaluation strategy. In this chapter, we restrict ourselves

to the class of well-defined attribute grammars, whose attribute dependencies can be statically

proven to be acyclic [Knuth, 1968]. For these grammars, the attributes can be computed by

visiting each node a bounded number of times. This corresponds precisely with typical uses

of the visitor-design pattern.

117

3 AGs with Side Effects

grammar Root prod Root root :Menu -- node with a child named root

grammar Menu prod Menu name cs :Menus -- node with a property name, and a child cs

grammar Menus : [Menu] -- conceptually a cons-list, physically an array

var root = new Root Root (-- the Menus are physically represented

new Menu Menu ("a", [-- as an array. However, conceptually

new Menu Menu ("b", [-- we define its attributes using the

new Menu Menu ("c", []) -- above cons-list representation.

,new Menu Menu ("d", [])])]));

attr Menu Menus inh depth finMax count -- gathMax: width of submenu

syn gathMax count -- note: count is both inh and syn

function align (root,anchor) { -- uses embedded attribute grammars

datasem Root prod Root -- equations of production Root of nont Root

root :depth = 0 -- initial depth

root :count = 0 -- initial count

root :finMax = root :gathMax -- choose gathered max as global max

datasem Menu prod Menu -- production Menu of nonterm Menu

cs :depth = 1+ lhs :depth -- increase depth for submenus

cs :count = 1+ lhs :count -- increase count

lhs :count = cs :count -- provide the updated count to the parent

loc :elem = document.getElementById (loc :name)
loc :offset = lhs :depth∗20 -- indentation

loc :width = loc :offset+ loc :elem.clientWidth

lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

loc :dummy = (function () { -- side-effectful statements (wrapped)

loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";

loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";

loc :elem.style.width = (lhs :finMax− loc :offset)+"px";

loc :elem.style.height = 30+"px"; }) () -- unwrap directly

datasem Menus prod Cons -- equations of production Cons

hd :depth = lhs :depth -- pass depth downwards through the menus

tl :depth = lhs :depth

hd :count = lhs :count -- thread the count through the menus, in an

tl :count = hd :count -- in-order fashion. First to the head, then to

lhs :count = tl :count -- the tail, then back up to the parent.

lhs :gathMax = Math.max (hd :gathMax, tl :gathMax)
hd :finMax = lhs :finMax -- pass global maximum downwards

tl :finMax = lhs :finMax

datasem Menus prod Nil -- equations of production Nil

lhs :count = lhs :count -- thread count through without changing it

lhs :gathMax = 0 -- initial maximum

var inhs = new Inh Root (); -- contains inh attrs of the root (empty)

eval Root (sem Root,root, inhs); } -- run the attribute evaluator

Figure 3.2: Attribute grammar-based near-solution to menu alignment.

118

3.2 Example

From a semantics-blocks (datasem-blocks in Figure 3.2), a function is generated that con-

tains the evaluation algorithm. For example, the function sem Menu is generated from the se-

mantics of nonterminal Menu. Furthermore, to interface with the decorated tree in JavaScript

code, a function eval Menu is generated that takes the AST, the function sem Menu, and an

object containing values for the inherited attributes. It applies the semantic value and returns

an object with the synthesized attributes:

var inhs = new Inh Menu ();
inhs.depth = 0; -- provide inh attrs of root

syns = eval Menu (sem Menu,menu, inhs); -- initiate evaluation

window.alert (syns.gathMax); -- access syn attrs of root

In Figure 3.2, we show an attribute grammar version of the example that we presented ear-

lier. It is a non-solution, for reasons explained later, but exhibits various important properties.

Below, we comment on some aspects of the example.

The attribute grammar code in Figure 3.2 starts with a number of grammar definitions that

describe the structure of the menu tree. We then define a number of attributes. In particular,

the idea is that we gather a maximum gathMax (synthesized), and use its value at the root

to pass down the global maximum finMax (inherited). Moreover, we count the menus. The

inherited attribute count specifies the count for the current menu, and the synthesized count

is the count incremented with the total number of children.

We define the semantics for these attributes in the function align. Because root and anchor

are its parameters, we also have access to these in the right-hand sides of rules.

A HTML item can be laid out using statements that assign to properties of an HTML

item. Since the right-hand side of an attribute equation (rule) is an expression, a sequence of

statements needs to be wrapped as an expression. In JavaScript, this can be accomplished in

a variety of ways. In the example, we choose to use a parameterless anonymous function for

this purpose.

In the semantics of Menus, rules are given to compute the attributes for lists of menus using

the cons-list representation. These rules follow standard patterns. The attributes depth and

finMax are passed topdown. The attribute gathMax is computed bottom-up. The attribute

count is threaded through the tree. In the visitor-example, the fields in the visitor combined

with side effects took care of this behavior. With attribute grammars, we have to describe

it explicitly. However, with copy rules (Section 1.3.12), collection rules [Magnusson et al.,

2007], and a generalization called default rules (Chapter 5), we can abstract from these pat-

terns, so that a more concise semantics of Menus can be given (as we see later).

The AG code has three nice properties. Firstly, the order of appearance of the rules is

irrelevant. This allows the rules for depth and count to be written separately and merged

automatically [Löh et al., 1998]. In the example, we give all the rules without using such

composition facilities. However, for larger projects the ability to write such rules separately

is important with respect to modularity.

Secondly, a nice property is the absence of invocations of visits (the accept calls in the

visitor-example). The number of visits is totally implicit. From the dependencies between

attributes in the rules, it can be determined automatically that the attribute root : gathMax

119

3 AGs with Side Effects

(in the semantics of Root) must be computed in a visit before the visit where it is passed as

root :finMax.

Thirdly, we check statically if there is an evaluation order of statements such that all at-

tributes are defined before their value is accessed. The attribute declarations describe the

attributes that must be defined, and those that are available. The rules describe what at-

tributes must be available before computing an attribute, and an evaluation order is possible

if the transitive closure of the dependencies is acyclic [Knuth, 1968].

Unfortunately, when the above is evaluated on-demand it is incorrect because the order of

evaluation of rules is determined is not only determined by dependencies on attributes but

also by the side effects that rearrange the HTML items. Since the latter effects are not present

as a dependency between rules and attributes, the order of evaluation may be wrong. In fact,

the root of the tree does not have any attributes defined, so when assuming a on-demand

evaluation of the grammar, it is actually expected that none of the rules are evaluated. Hence,

we allow the programmer to explicitly encode the dependencies imposed by side effects in

the next section.

3.2.3 RulerCore

We now present a solution using RulerCore in Figure 3.3 which resembles the code in Fig-

ure 3.2. We discuss similarities and differences below.

The essential difference is that RulerCore has notation to explicitly describe visits to an

AST node during attribute evaluation, and notation to associate side effects with individual

visits.

Interfaces. Instead of declaring attributes for a nonterminal, we declare an interface for a

nonterminal. An interface declaration specifies the visits of a nonterminal and attributes per

visit. The following example specifies that the attributes of Menu are computed in two visits:

itf Menu -- interface for nonterminal Menu

visit gather -- declaration of first visit

syn gathMax -- synthesized attr computed by visit

visit layout -- declaration second visit

inh finMax count -- two inherited attributes

syn count -- synthesized attr computed by visit

The order of appearance of visit declarations dictates the order of visits to AST nodes with

this interface. In order to visit a node, all previous visits must have occurred. Values for

inherited attributes must be provided prior to the visit. Values for synthesized attributes are

only available after a visit has been performed.

Scheduling. The rules of a semantics-block are automatically scheduled over visits using

an as-late-as-possible strategy (Section 3.5.2). If the rules are cyclic, the scheduling is not

possible, and a static error is reported. The scheduling determines which children to visit and

in what order. However, since Root has no attributes, there is no need to invoke any visits of

120

3.2 Example

grammar Root prod Root root :Menu -- node with a child named root

grammar Menu prod Menu name cs :Menus -- node with a property name, and a child cs

grammar Menus : [Menu] -- conceptually a cons-list, physically an array

var root = new Root Root (-- the Menus are physically represented

new Menu Menu ("a", [-- as an array. However, conceptually

new Menu Menu ("b", [-- we define its attributes using the

new Menu Menu ("c", []) -- above cons-list representation.

,new Menu Menu ("d", [])])]));

itf Root visit perform -- root node has one visit, but no attrs

itf Menu Menus -- itf for nonterminals Menus (menu nodes)

visit gather inh depth syn gathMax -- first visit: compute maximum

visit layout inh finMax count syn count -- second visit: layout the HTML items

function align (root,anchor) { -- uses embedded attribute grammars

datasem Root prod Root -- equations of production Root of Root

root :depth = 0 -- initial depth

root :count = 0 -- initial count

root :finMax = root :gathMax -- global max is the gathered max here

invoke layout of root -- require that visit layout of root is invoked

datasem Menu prod Menu -- equations scheduled to visits of Menu

cs :depth = 1+ lhs :depth -- increase depth for submenus

cs :count = 1+ lhs :count -- increase count

lhs :count = cs :count -- provide the updated count to the parent

loc :offset = lhs :depth∗20 -- indentation

loc :width = loc :offset+ loc :elem.clientWidth

lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down final maximum

visit gather

pin loc :elem = document.getElementById (loc :name)
visit layout -- equations for visit layout and later

pin = (function () { -- side-effectful statements (wrapped as function)

loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";

loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";

loc :elem.style.width = (lhs :finMax− loc :offset)+"px";

loc :elem.style.height = 30+"px";

}) () -- directly call the anonymous function

datasem Menus -- standard patterns for Menus

default depth = function (depths) {return depths [depths.length−1]; }
default finMax = function (maxs) {return maxs [maxs.length−1]; }
default gathMax = function (maxs) {return Math.max.apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
prod Cons -- each production must be explicitly listed,

prod Nil -- even if they do not have individual rules

var inhs = new Inh Root perform (); -- contains inh attrs for the root (empty)

eval Root (sem Root,root, inhs); } -- run the attribute evaluator

Figure 3.3: RulerCore solution to menu alignment.

121

3 AGs with Side Effects

root. Therefore, we specify through an invoke-rule that visit layout must be invoked, which

requires through attribute dependencies that also visit gather must be invoked, and kickstarts

the evaluation.

Scheduling constraints. Rules can be constrained to visits. Rules that appear in a visit-

block are constraint to that visit or a later visit. The example below illustrates the various

possibilities. An attribute definition that is prefixed with the keyword pin is restricted to

exactly the visit that it appears in, and is executed during that visit even where there are no

value dependencies on the attributes that it defines:

datasem Menu -- rules for nonterminal Menu

prod Menu -- rules for production Menu

cs :count = lhs :count+1 -- scheduled in visit gather or later

visit gather

pin loc :elem = ... -- precisely in visit gather

visit layout -- rules for visit layout or later

pin = ... -- precisely in visit layout

lhs :count = cs :count -- constrained to layout or later

With an underscore, we bind the value of the RHS of a rule to an anonymous attribute that

we cannot refer to anymore.

A visit-block may contain rules and optionally either a nested visit-block or a nested clause-

block. We use and explain clause-blocks later.

A visit-block introduces a subscope. A local attribute defined in a visit-block is not avail-

able for a rule defined in a higher scope, even if that rule is scheduled to a subscope. Attributes

of children are available to higher scopes.

After all these preparations, we finally present the RulerCore solution in Figure 3.3. In

this example, we express that the side effects that query the widths of the HTML items are

constrained to the first visit, and that the side effects that change the locations and dimensions

are constrained to the second visit.

For the Menus-nonterminal, we give default-rules for equality named attributes in its pro-

ductions. If such an attribute (e.g. ki : a) does not have an explicit definition, it is implicitly

defined by the default rule. Associated with the children in a production is their order of ap-

pearance. The default-rule provides a function which receives a list (an array in JavaScript)

as argument that contains the values of the attributes a of the children in the production and

preserving the order of the children. Children without an attribute a do not have a value of

this list. Also, the value of inherited lhs :a is added to the end of the list if it exists.

Remarks. In the above example, we combined both side effects and attribute evaluation.

We retain the advantages that AGs offer, such as the ease of adding attributes. As we show

later, the description still permits the AG to be analyzed and the rules to be ordered.

However, we require the programmer to manually assign attributes to visits, and to con-

strain side-effectful rules to particular visits, which is not necessary for conventional attribute

grammars. In practice, this is only a minimal amount of extra work that has as an additional

advantage that it makes attribute evaluation more predictable and thus easier to understand.

122

3.2 Example

function align (root,anchor) { -- uses embedded attribute grammars

var sem Root = -- semantic function with itf Root

sem prodRoot :Root -- equations for itf Root

visit perform -- equations for the perform, the only visit

clause Root -- production named Root

child root :Menu = sem Menu -- introduce a child root of nonterm Menu

root :ast = lhs :ast -- use lhs :ast as AST

root :depth = 0 -- initial depth

root :count = 0 -- initial count

root :finMax = root :gathMax -- global max is the gathered max of here

invoke layout of root -- demand invocation layout of root

var sem Menu = -- semantic function with itf Menu

sem prodMenu :Menu -- equations for itf Menu

visit gather -- equations for first visit

clause Menu -- production named Menu

child cs :Menus = sem Menus -- introduce a child cs of nonterm Menus

cs :ast = lhs :ast.cs -- pass submenus as AST for cs

cs :depth = 1+ lhs :depth -- increase depth for submenus

pin loc :elem = document.getElementById (loc.name)
loc :offset = lhs :depth∗20 -- indentation

loc :width = loc :offset+ loc :elem.clientWidth

lhs :gathMax = Math.max (cs :gathMax, loc :width)
cs :finMax = lhs :finMax -- pass down global maximum

visit layout -- equations for visit layout

clause Menu′ -- subproduction named Menu′

cs :count = 1+ lhs :count -- increase count

lhs :count = cs :count -- provide the updated count to the parent

pin = (function () { -- side-effectful statements

loc :elem.style.left = (anchor.offsetLeft+ loc :offset)+"px";

loc :elem.style.top = (anchor.offsetTop+ lhs :count ∗30)+"px";

loc :elem.style.width = (lhs :finMax− loc :offset)+"px";

loc :elem.style.height = 30+"px";

}) () -- directly call the anonymous function

... -- See Figure 3.5

var inhs = new Inh Root perform (); -- contains inh attrs for the root

inhs.ast = root -- AST as inherited attribute

eval Root perform (sem Root, inhs); -- run the attribute evaluator

}

Figure 3.4: Desugared RulerCore solution to menu alignment (part 1).

123

3 AGs with Side Effects

3.2.4 Desugared RulerCore

In Figure 3.4 (explained below), we give a different desugared of Figure 3.3. Both versions

are valid RulerCore programs. This desugared version only uses a subset of RulerCore,

which we call RulerBack. This representation is more verbose, but more suitable for code

generation.

RulerBack generalizes over higher-order [Vogt et al., 1989] and conditional [Boyland,

1996] attribute grammars. In the next section, we introduce RulerBack. The example in

Figure 3.4 serves as preparation. In Figure 3.4, we omit the grammar definitions, interface

declaration, and root variable, which are equal to those in the first half of Figure 3.3.

In an attribute grammar, there is a fixed association between a node in the AST and a

production and a fixed association between a production and a collection of rules. The code

to execute for a node in the AST is derived from the associated collection of rules. RulerBack

virtualizes productions: we define grammars that describe traversals instead of data structures

(Section 1.3.12). The rules of a RulerBack production are organized in clauses (introduced

below), and rules can programmatically determine which clauses to evaluate.

The above functionality allows us to define a single production per nonterminal. The non-

terminal has an inherited attribute ast which contains the AST as an inspectable value. Note

that in RulerBack the representation of cons-lists using arrays becomes visible whereas this is

hidden in the RulerCore example. In the translation from RulerCore to RulerBack additional

RulerBack rules are generated to treat the explicit array representation. We show this in the

example.

Semantics blocks, which are of the form sem P : N..., introduce a production P of nonter-

minal N. The visits and attributes of N are declared separately with an interface declaration.

Additionally, the code generated from a sem-block is a constructor-function that produces an

AST node with attributes as described by N. The AST is provided explicitly as the inherited

attribute ast.

In Figure 3.4, we start with a definition of the semantics for the root. The interface Root

declares one visit, and we give rules for that visit in a visit-block. RulerBack provides clauses

as a means to generalize over productions. Each clause provides a way to compute the at-

tribute values of a visit. Moreover, a clause may specify constraints. Clauses are executed

in the order of appearance. A clause is selected if its constraints are satisfied. Conventional

productions, which specify a constraint on the node of the tree, can thus be represented with

clauses.

Clauses and visit-blocks may contain rules. Rules given for a visit are in scope of all

clauses declared for that visit. Rules for a clause are only visible in that clause. We introduce

child-rules. A child-rule introduces child. In the example, we introduce a child root, with

interface Menu, and the semantics defined by the JavaScript value sem Menu. This is an

example of a higher-order child (Section 1.3.7) and is used to virtualize the AST. Unlike

in later chapters, in this chapter the virtual AST is isomorphic to the actual AST. Also, we

assume that a visit v to child x is only possible if there exists an invoke-rule for it.

The left-hand sides of an evaluation-rule may be a pattern. This is either an attribute

reference, an underscore, or a constant. Evaluation of such a rule fails when its execution

throws an exception or the left-hand side is a value that is not equal to the value computed for

124

3.2 Example

function align (root,anchor) { -- uses embedded attribute grammars

... -- See Figure 3.4

var sem Menus = -- semantic function, also itf Menu

sem prodMenus :Menu -- equations for itf Menu

visit gather -- equations for visit gather

default depth = function (depths) {return depths [depths.length−1]; }
default finMax = function (maxs) {return maxs [maxs.length−1]; }
default gathMax = function (maxs) {return Math.max.apply (Math,maxs); }
default count = function (counts) {return counts [0]; }
clause Cons -- production Cons as clause

match true = lhs :ast.length> 1 -- clause matches if array has an element

child hd :Menu = sem Menu -- introduce child hd using sem Menu

hd.ast = lhs :ast [0] -- head of the array

child tl :Menu = sem Menus -- introduce child tl using sem Menus

tl.ast = lhs :ast.slice (1) -- tail of the array

clause Nil -- production Nil (matches always)

var inhs = new Inh Root perform (); -- contains inh attrs for the root

inhs.ast = root -- AST as inherited attribute

eval Root perform (sem Root, inhs); } -- run the attribute evaluator

Figure 3.5: Desugared RulerCore solution to menu alignment (part 2).

the right-hand side. Such a failing rule causes an exceptional termination of the evaluation,

unless the evaluation-rule is prefixed with the match-keyword, and the rule does not throw an

exception other than a special fail-exception. In this case, we say that the clause fails. Thus,

the match-rules allow us to distinguish clauses Cons and Nil of ntMenus by matching on the

length of the list.

Invoke rules and visit-blocks may be annotated with strategies of various kinds. Chapter 2

describes these strategies: in this chapter the strategies partial and total, which describe

backtracking behavior, appear.

During attribute evaluation, the clauses of a visit are evaluated in the order of appearance.

When evaluation for a clause fails, the evaluation backtracks to the next clause2. A backtrack

does not revert potential side effects of the results that are evaluated so far. If the last clause

fails, the default behavior is that the evaluation fails exceptionally. However, if both the visit

itself and the invoke-rule of the parent are annotated with the strategy partial, then the invoke-

rule of the parent fails and causes backtracking in the parent. By default, a total strategy is

assumed.

Unspecified visit-blocks are implicitly defined as an empty visit-block. A visit-block with-

out clauses implicitly has a single clause. This clause matches always unless match-rules are

present. Therefore, we neither have to specify the visit-block layout nor clauses for it in the

2 Chapter 6 describes a different strategy where clauses are simultaneously tried.

125

3 AGs with Side Effects

e ::=J [b] -- embedded RulerBack blocks b in JavaScript code J
b ::= i | s | o -- RulerBack blocks

i ::= itf I v -- interface decl, with visit sequence v

v ::=visit x inh x1 syn x2 z v -- visit decl, with atributes x1 and x2 and strategy z

| � -- terminator visit (optional in the notation)

s ::= sem x : I t -- semantics expr, defines production x

t ::=visit x r k -- visit-block, with rules r and clauses k

| � -- no visit (serves as terminator)

k ::= clause x r t -- clause definition, with next visit t

r ::=p = e -- assert-rule, evaluates e, binds to pattern p

| pin p = e -- pinned assert rule (bound to visit it occurs in)

| match p = e -- match-rule, backtracking variant

| invoke x of c z -- invoke-rule, invokes visit x on c

| child c : I = e -- child-rule, introduces a child c of itf I

z ::=partial | total -- behavior in case of rule failure

o ::= c :x -- attribute reference in some embedded code

p ::= c :x -- attribute reference in pattern

| -- wildcard

| K -- constant K

x,c p,e -- identifiers, child identifiers, patterns, expressions respectively

Γ,Σ ::= ε -- attr+child environment (used in semantics)

| Γ,◦ -- new scope

| Γ, inh c :x -- inh attr c :x

| Γ,syn c :x -- syn attr c :x

| Γ,c : I v -- child c with available visit sequence v

Φ ::= ε -- interface environment (used in semantics)

| Φ, I v -- itf I with visit decls v

Figure 3.6: Syntax of RulerBack

126

3.3 Static Semantics of RulerBack

itf S visit v1 inh l syn /0 total -- decompose array l down

visit v2 inh /0 syn s total -- compute sum s up

� -- end of visit decls

var sumArr = sem sum :S

visit v1 /0 -- first visit

clause sumNil -- when list is empty

match 0 = lhs : l.length -- match empty l

visit v2 /0 -- second visit

clause sumNil2 -- single clause

lhs :s = 0 -- empty list, zero sum

� -- end of visit blocks

clause sumCons -- when list non-empty

loc :x = lhs : l [0] -- head of the list

loc :xs = lhs : l.slice (1) -- tail of the list

child tl :S = sumArr -- recursive call

tl : l = loc :xs -- l param of call

invoke v1 of tl total -- invoke on child

visit v2 /0 -- second visit

clause sumCons2 -- single clause

invoke v2 of tl total -- invoke on child

lhs :s = loc :x+ tl :s -- sum of head and tail

� -- end of visit blocks

Figure 3.7: Example of RulerBack syntax: summing an array of integers.

semantics of ntMenus. Also, because of the automatic ordering of rules, many of the rules

defined in visit layout of ntMenu, could also be defined one level higher, in visit gather.

Note that this representation is more general than conventional attribute grammars, and that

an attribute grammar can easily be mapped to this representation, as shown by the difference

between Figure 3.3 and Figure 3.4.

3.3 Static Semantics of RulerBack

In this section, we introduce RulerBack, a small subset of RulerCore. It serves as an inter-

mediate language for RulerCore. Figure 3.6 shows the syntax of RulerBack. A RulerBack

program e is a JavaScript program J , with embedded RulerBack blocks b. A block b is either

an interface declaration, semantics-block, or attribute reference. The syntax of visits in inter-

face declarations and semantics-blocks use a cons-list representation which is convenient for

the specification of translation schemes later. We explain the individual forms of syntax in

more detail below.

127

3 AGs with Side Effects

There are some essential differences with respect to RulerCore that we gradually intro-

duced in the previous section. The order of appearance of rules defines the evaluation order,

and each invocation of a visit must explicitly be stated through an invoke rule. Grammar

blocks can be desugared and are optional in RulerBack. Instead, with clauses and (match)

rules, we provide a general mechanism to traverse arbitrary JavaScript data structures.

The embedded blocks may occur anywhere in a JavaScript program. The programmer is

required to position semantics blocks and attribute references at expression positions in the

host language, and interface declarations at statement positions. It is the responsibility of the

programmer to handle the scoping of embedded blocks.

Figure 3.7 shows a RulerBack program that computes the sum of an array of integers in two

visits. This simple example can also be formulated as a single visit. However, it serves here

as a short example of a dual-visit program. The first visit has two clauses: a clause sumNil

when the array is empty, and sumCons when there is at least one element. In the second visit,

the actual sum is computed, using the rules that depend on which clause is chosen in the first

visit.

A semantics-block introduces a visitor-object with an interface I. The interface dictates

what visits can be made to the object, and what the inputs (inherited attributes) and outputs

are (synthesized attributes). The outputs for a visit are produced by executing rules. We write

these rules down in a tree of clauses and visits, as illustrated by the indentation in Figure 3.7

and the state diagram in Figure 3.8.

v1 /0 sumNil

sumCons v2 /0 sumCons2 ()

v2 /0 sumNil2 ()

Figure 3.8: States of nodes with semantics sum.

The black nodes represent the state of the AST-node prior to a visit and the white nodes

indicate a branch point. Upon creation, an AST node is in the state represented by the root

node. With each edge, alternatively the rules of a visit or the rules of a clause are associated.

With each visit, an AST node changes state to a next black node by executing the rules on the

path to such a node. Execution of all of the rules must succeed. At a branch-point, rules on

edges of clauses are tried in order of appearance. Results produced by executing rules are in

scope of rules further along the path.

There are four types of rules in RulerCore.

• match p = e -- match-rule

match loc :x = 3 -- example that succeeds

match true = false -- example that fails

The pattern p must match the value of the right hand side. If the evaluation of e re-

sults in an exception, or the match fails, a backtrack is made to the next clause. If p

128

3.3 Static Semantics of RulerBack

Γ ⊢ s v ; Γ ⊢ t Σ ; Γ0 ⊢ r : Γ1 Γ ⊢ e -- signatures of the relations

Γ ⊢ o v ; x ; Γ ⊢ c Σ ; Γ0 ⊢ p : Γ1 -- used by judgments below

x unique

I v ∈Φ v ; Γ,◦ ⊢ t

Γ ⊢ sem x : I t
SEM

� ; Γ ⊢� END

Γ0∪avail (visit x r k) ; Γ0∪{ inh lhs :a | a ∈ i} ⊢ r : Γ1 v ; s ; Γ1 ⊢ k

visit x inh i syn s v ; Γ0 ⊢ visit x r k
VISIT

x unique

Γ0∪avail (clause x r k) ; Γ0 ⊢ r : Γ1 v ; Γ1 ⊢ t {syn lhs :a | a ∈ s} ⊆ Γ1

v ; s ; Γ0 ⊢ clause x r t
CLAUSE

Σ ; Γ0 ⊢ p : Γ1 Γ0 ⊢ e

Σ ; Γ0 ⊢ pin? p = e : Γ1

ASSERT
Σ ; Γ0 ⊢ p : Γ1 Γ0 ⊢ e

Σ ; Γ0 ⊢match p = e : Γ1

MATCH

Φ (Ic) = v visit x inh i syn s z2 ∈ v z1 ⊑ z2 c : Ic w ∈ Γ0 next w v = x

{inh c :a | a ∈ i} ⊆ Γ0 Γ1 = Γ0∪{syn c :a | a ∈ s}∪{c : Ic (w,visit x inh i syn s)}
Σ ; Γ0 ⊢ invoke x of c z1 : Γ1

INVOKE

Γ0 ⊢ e Γ1 = Γ0∪{c : I /0}
Σ ; Γ0 ⊢ child c : I = e : Γ1

CHILD
inh lhs :a ∈ Γ

Γ ⊢ lhs :a
OCC.LHS

syn c :a ∈ Γ

Γ ⊢ c :a
OCC.CHILD

syn lhs :a ∈ Σ

Σ ; Γ0 ⊢ lhs :a : Γ0,syn lhs :a
PAT.LHS

Σ ; Γ0 ⊢ loc :a : Γ0,syn loc :a PAT.LOC

inh c :a ∈ Σ

Σ ; Γ0 ⊢ c :a : Γ0, inh c :a
PAT.CHILD

Σ ; Γ ⊢ K : Γ CONST Σ ; Γ ⊢ : Γ ANY

avail (visit x r k) = avail∪ (r)∪avail∩ (k)
∪{syn lhs :b | visit x inh a syn b ∈Φ (Ix)}

avail (clause x r t) = avail∪ (r)∪avail (t)

avail (p = e) = /0

avail (match p = e) = /0

avail (invoke x of c) = {inh c :a | a ∈ a,visit x inh a syn b ∈Φ (Ic)}
avail (child c : I = e) = {c : I (Φ I)}

Figure 3.9: Static semantics of RulerBack

129

3 AGs with Side Effects

represents an attribute, the attribute gets defined.

• pin? p = e -- eval-rule (optionally pinned)

Similar to the above, except that the match is expected to succeed. If not, the evaluation

itself aborts with an exception. For that reason, we also call these rules assert-rules.

Note that these are the conventional rules of attribute grammars.

• child c : I = e -- child-rule

child root :Menu = ntMenu -- example that introduces a Menu child

Evaluation of the rule above creates a child c, visitable according to the interface I, and

created by executing the constructor function e.

• invoke x of c z -- invoke rule

Executes visit x of child c. The inherited attributes of x must be defined, and all prior

visits to c must have been performed. The invocation fails if no clause matches and

the strategy z is partial. Otherwise, the evaluation aborts exceptionally. If success-

ful, the synthesized attributes of x become available. If there is an invoke with a

partial-annotation, then the visit of the corresponding interface must also have a partial-

annotation.

Figure 3.9 shows RulerBack’s static semantics for sem-blocks. We omitted the rules that

state the uniqueness of interfaces and attributes of interfaces. A RulerBack program that

satisfies these conditions never crashes due to an undefined attribute, invalid rule order, or

forgotten invocation to a child. The dynamic or static type checking we leave as responsibility

of the host language.

We briefly consider some aspects of these rules. Three environments play an important

role. The environment Φ contains for each interface the sequence of visits. The environment

Γ represents the children and attributes defined so far for one node (to test for missing and

duplicated definitions). The environment Σ represents the attributes that are allowed to be de-

fined (to test for definitions of unknown attributes). As additional constraint on environments,

we consider it a static error when there is a duplicate attribute in the environment within two

scope markers.

Visit-blocks must be specified in the order as declared on the interface, and none may

be omitted. The relation for visits t gets a sequence of pending visits v as declared in the

interface. In rule VISIT, we verify that the name of the visit matches the expected visit in the

head of v. The next visit must match the head of the tail of this list, until in the end v is empty.

We also add the inherited attributes of the visits to the environment.

The function avail defines which attributes may be defined. Higher-up in the visit-clauses-

tree, we may only define those attributes that are common to all lower clauses. In rules

PAT.LHS and PAT.CHILD, we verify that we are indeed defining an attribute belonging to a

certain child. The avail-function either generalizes over lists using intersection or union.

130

3.4 Translation of RulerBack to JavaScript

Rule SEM forms the root of derivation trees. Since semantics blocks can occur nested, Γ

contains potential bindings in scope from encapsulating semantics blocks. A new scope entry

is added to Γ. The rule matches the visits blocks t against the declared visits v. Rule END

matches with the end of a sequence of visits blocks, and requires also to have reached the

end of the declared visits. Rule VISIT requires that the clauses and rules are well-formed.

From the rules r it obtains an environment Γ1 with additional bindings that are available to

the clauses. Both the rules and the clauses may refer to the inherited attributes of the visit.

Each clause must define the set s of synthesized attributes of the visit. We assume that the

type rule for a rule r is lifted to a list of rules r by chaining the environment Γ.

Rule CLAUSE verifies that the rules it contains and the next visit are well-formed. Further-

more, it verifies that the synthesized attributes of the visit are defined. The type rules ASSERT,

MATCH, INVOKE, and CHILD correspond to RulerBack rules. The ASSERT and MATCH rules

verify that the pattern and expression are well-formed. The CHILD rule adds the child in an

empty state to the environment.

Rule INVOKE verifies that visit x is indeed the next visit in the expected sequence of visits

v, given the previous invocations w. It furthermore verifies that the inherited attributes for

the visit of c are defined, and adds the synthesized attributes to the environment. Finally,

the strategy annotation of the invoke-rule must be greater than the strategy annotation of the

visit. If the visit is declared as total, then as sanity-check, an invoke may not have partial as

strategy.

3.4 Translation of RulerBack to JavaScript

In this section, we describe how to translate RulerBack programs to JavaScript. We translate

each semantics-block to a coroutine, which we implement as one-shot continuations. Each

call to the coroutine represents a visit. The parameters of the coroutine are the inherited

attributes of the visit. The result of the call is an object containing values for the synthesized

attributes, and the continuation to call for the visit.

As an example, we show in Figure 3.10 the translation of the example in the previous

section. To deal with backtracking, we use the exception mechanism, and throw an exception

to switch to the next clause. Note that this does not rollback any side effects that the partial

execution of the rules may have caused. To be able to do so, we can run the rules in a software

transaction [Heidegger et al., 2010], which are nowadays supported by many programming

languages. Alternatively, when the side effects matter, the programmer can schedule the rule

to an earlier or later visit, such that it is not influenced by backtracking.

To deal with continuations, we use closures. The function to be used for the next visit is

constructed in the previous visit. This function has access to all the results computed in the

previous visit. Furthermore, we store values for attributes in local variables. Those values

that are not needed anymore are automatically cleaned up by the garbage collector.

Figure 3.11 shows the general translation scheme, and the naming scheme for attributes.

In particular, for each visit, we generate a closure that takes values for inherited attributes as

parameter. Clauses are dealt with through exception handling. When a clause successfully

executed all statements, it returns an object containing values for synthesized attributes, as

131

3 AGs with Side Effects

var sumArr = function () { -- semantic function

function nt sum (inps) { -- visit v1

var lhsIl = inps.l; -- extract lhs : l

try { -- try clause sumNil

if (lhsIl.length ! =0) throw eEval; -- if lhs : l is empty

var res = new Object (); -- produce results of v1

res . next = function (inps) { -- cont. for visit v2

var lhsSs = 0; -- lhs :s rule

var res = new Object (); -- produce results of v2

res . next = null; -- no next visit

res.s = lhsSs; -- store lhs :s

return res; -- return result of v2

};
return res; -- return result of v1

} catch (err) { -- try clause sumCons

var locLx = lhsIl [0]; -- loc :x rule

var locLxs = lhsIl.slice (1); -- loc :xs rule

var vis tl = sumArr (); -- creation of child tl

tlIl = locLxs; -- tl : l rule

var args = new Object (); -- inputs for v1 of tl

args.l = tlIl; -- store tl : l

var res = vis tl (args); -- invoke v1 of tl

var vis tl = res . next; -- extract results

var res = new Object (); -- produce results of v1

res . next = function (inps) { -- cont. for visit v2

var args = new Object (); -- inputs for v2 of tl

var res = vis tl (args); -- invoke v2 of tl

var tlSs = res.s; -- extract tl :s result

var lhsSs = locLx+ tlSs; -- compute lhs :s

var res = new Object (); -- produce results of v1

res . next = null; -- no next visit

res.s = lhsSs; -- store lhs :s

return res; -- return result of v2

};
return res; -- return result of v1

}};return nt sum; }; -- return visitor function

Figure 3.10: Example translation

132

3.5 Translation of RulerCore to RulerBack

well as the continuation function for the next visit.

The above translation is relatively straightforward. In practice, the selection of a clause is

functionally dependent on the value of an inherited attribute, or a local attribute computed in

a previous visit. In those cases, the selection of clauses can be implemented more efficiently

using conventional branching mechanisms. Also, instead of using the exception mechanism

to implement backtracking, we can use code duplication, which results in more efficient code.

Chapter 7 shows such a translation scheme.

We verified that the above implementation runs in time linear in the size of the tree when we

use a version of the slice operation that does not make a copy of the array. With a throughput

of about hundred array elements per microsecond, and about a thousand per microsecond

with the exception handling replaced by conventional branching, this is still about one or two

orders of magnitude slower than using a hand-written loop. In our experience, however, the

traversal performance is rarely an issue. In general, the asymptotic complexity of the traversal

is linear in the size of the tree, and the actual time taken by traversing the trees is insignificant

compared to the work performed by the right-hand sides of the rules in a real application.

3.5 Translation of RulerCore to RulerBack

In Section 3.2.4, we showed in an example how a RulerCore program can be encoded using

only syntax of RulerBack. We omit the data-type driven translation from a datasem into a

sem, nor the translation of default-rules. Instead, in this section we assume that RulerCore

consists of those programs that after insertion of invoke-rules and reordering of rules are a

valid RulerBack program.

3.5.1 Implicit Invocations

In RulerCore, invoke-rules may be omitted. From a RulerBack program, we derive a number

of implicit invocations. We first determine the attributes that are needed. From these we

determine the maximum needed visit, and thus the sequence of visits that is needed. An

invoke-rule needs to be inserted if there is no invoke-rule for any of these visits yet. We start

the insertion-process at the root of the tree, and check at each level downwards which invokes

need to be inserted. With this process, we insert the invoke-rules at the lowest point, while

still being in scope of all rules that need it. Automatic rule ordering then positions the invokes

at their appropriate places.

A synthesized attribute a of child c is needed if there exists a rule which has the attribute

reference c : a in its right-hand side. The needed attributes may differ per clause and visit,

which we define in a similar way as avail in Section 3.3:

need (visit x r k) = need∪ r∪need∩ k

need (clause x r t) = need∪ r∪need t

need (p = e) = need e

Note that need generalizes to lists by using either intersection or union, which we denoted

explicitly with need∪ and need∩.

133

3 AGs with Side Effects

Jsem x : I tK function () {var Jnt xK = JtKI ;return Jnt xK; }
Jc :xK Jinp c xK

JεKI null

Jvisit x r k zKI function (inps) {
Jinp lhs (inhs I x)K = inps.Jinhs I xK;

JrK;JkKI,z,syns I x; }
J[]KI,partial,s throw eEval;

J[]KI,total,s throw eAbort;

Jk :kKI,z,s try {JkKI,s; }
catch (err) {

if (err == eEval) {JkKI,z,s; }
else throw err; }

Jclause x r tKI,s JrK;

var outs = new Object ();
outs . next = JtKI ;

outs.s = Jout lhs sK;

return outs;

Jpin? p = eK Jvar res = JeKKtotal;

JpKeAbort

Jmatch p = eK var res = JeK;JpKeEval;

Jchild c : I = eK var Jvis cK = (JeK) ();
Jinvoke x of c zK var args = new Object ();

args.Jinhs Ic xK = Jout c (inhs Ic x)K;

Jvar res = Jvis cK (args)Kz;

var Jinp c (syns Ic x)K = res.Jsyns Ic xK;

var Jvis cK = res . next;

JeKpartial e

JeKtotal try {e; } catch (err) {
if (err == eEval) throw eAbort;else throw err; }

Jc :aKe var Jout c aK = res;

J Ke ;

JkKe if (res ! = k) throw e;

out "loc" x = "locL" x inp "loc" x = "locI" x

out "lhs" x = "lhsS" x inp "lhs" x = "lhsI" x

out c x = c "I" x inp c x = c "S" x

vis c = "vis_" c nt x = "nt_" x

syns I x inhs I x -- respectively, inh and syn attrs of x of I

Figure 3.11: Denotational semantics of RulerBack

134

3.5 Translation of RulerCore to RulerBack

In our actual implementation, we defined the function need in a slightly more subtle way.

A default-rule may indirectly express a need on an attribute (and corresponding visit). Fur-

thermore, when a programmer provided an explicit invoke rule for a visit of a child c, then

the programmer must give explicit invoke rules in all clauses that require attributes of this

visit of c. This is a policy that we impose, because apparently the programmer had a reason

to explicitly specify an invocation of the visit, instead of using the implicit specification.

3.5.2 Rule Ordering

To order the rules, we first create production dependency graphs (PDGs) (Section 1.3.4).

Note that we do not need nonterminal dependency graphs, because these are fully implied by

the interface of a nonterminal. In comparison to conventional PDGs, the PDGs of RulerCore

contain also vertices that represent visits, clauses, and invocations of visits. The graph is also

slightly less complex because rules do not depend on synthesized attributes of children, but

on the visits of the children that produce these attributes.

In the PDG of a production (thus, a semantics block), there exists a begin and end vertex for

each visit in the interface. There exists also a vertex for each clause and each rule. Figure 3.12

lists the dependencies between vertices, and gives an impression of the dependency graph of

Menu in Figure 3.3. The dependency graph is acyclic, thus the rules can be ordered.

In this sketch, the ovals represent rules, and the square boxes represent the begin and end

of visits and clauses. The numbers represent the line numbers3. The squares immediately

following the root are the begin points of the clauses for that visit. Clauses are constrained

by begin and end points of visits. Therefore, branches come together again. Some rules are

constrained to visits (notably match rules). For other rules, we have more flexibility in their

scheduling. For Menu, we did not define clauses for the second visits, hence the implicit

clause in the graph.

Note that we consider the edges in the direction of their dependency, not in the direction

of the value flow. Thus, p is a successor of q if p needs to be defined before q. To make the

distinction clearer, we refer to the direct and indirect successors as dependencies and direct

and indirect predecessors as users.

The acyclic graph represents a partial order between rules, visits and clauses. We turn the

partial order in a total order in a number of preprocessing steps. Any total order that satisfies

the partial order must result in a semantically equivalent result. However, differences between

total orders may affect the performance of the resulting algorithm. In the dependency graph,

each rule is associated with a unique vertex.

Step 1: order by visit. First, we determine for each rule to which visit to schedule it.

Sometimes, rules can be scheduled to more than one visit. The visit a rule is scheduled to

influences the amount of data that has to be transported between visits. The inputs for the

rule need to be transported to the visit of the rule, and the result of the rule to the visits where

these results are used. The set of visits to which a rule r of a production of nonterminal N

3 See https://svn.science.uu.nl/repos/project.ruler.systems/ruler-core/examples/JsMenu.

rul.

135

https://svn.science.uu.nl/repos/project.ruler.systems/ruler-core/examples/JsMenu.rul
https://svn.science.uu.nl/repos/project.ruler.systems/ruler-core/examples/JsMenu.rul

3 AGs with Side Effects

source node destination node

begin visit end of previous visit

end visit begin visit, clauses, syn attr def. rules, match and pin rules

clause begin visit

any rule begin visit or clause

invoke rule prev invoke or child, inh attr def. rules

any rule w. rhs begin visit for inh attrs, loc attrs def., invoke of attr

 match@58

 vis start perform@27

 clause Root@59

 match@65

 vis start gather@31

 clause Menu@66

 match@72

 match@78

 eval@73

 vis start layout@77

 match@85

 vis start gather@41

 clause Cons@90

 match@85

 clause Nil@91

 eval@58

 eval@60

 eval@61

 eval@62

 invoke root.gather@58

 eval@65

 eval@67

 eval@68

 eval@69

 eval@70

 invoke cs.layout@65

 eval@74

 eval@75

 invoke cs.gather@65

 eval@85 eval@85

 eval@90

 dflt 4

 invoke hd.layout@85

 invoke tl.layout@85

 vis start layout@45

 clause layout_Cons_Menus@90

 eval@90

 dflt 1

 eval@90 eval@90

 dflt 2

 eval@90

 eval@90

 eval@90

 eval@90

 dflt 3 invoke hd.gather@85 invoke tl.gather@85

 eval@91

 clause layout_Nil_Menus@91

 eval@91

 child@58

 child@65

 child@85 child@85

 invoke root.layout@63

 vis end gather@31<

 vis end gather@41<

 clause impl_Menu_Menu@77

 vis end layout@77< vis end layout@45< vis end perform@27<

Figure 3.12: Dependencies between RulerCore entities, and the dependency graph of Menu.

136

3.5 Translation of RulerCore to RulerBack

can be scheduled to are all visits of N, except the visits associated with end-visit nodes in the

dependencies of r, and the visits associated with the begin-visit nodes in the users of r.

Given these sets of visits for rules, we can apply scheduling strategies. For example, in

Chapter 5, we present notation to specify the iteration of visits. We try to avoid scheduling a

rule to such visits, if possible.

We may schedule rule r to any of these visits, however, by doing so, the scheduling may

affect the set of possible visits for dependencies and users of r. As our default scheduling

strategy, we schedule each rule to its last possible visit4, and add correspondingly a schedul-

ing dependency from the rule to the beginning of that visit to the graph. This approach has the

advantage that the order in which we make decisions for rules does not influence the resulting

graph, and also ensures that the graph remains acyclic.

Step 2: order by partition. Secondly, we determine per visit the order of its rules. The

order of the rules may affect the amount of overhead in the clause selection. We need to

consider the following items.

• Rules are preferably executed once per visit. As heuristic, we schedule rules that do

not depend on any clause before the clause selection5.

• Match-rules and invoke-rules with the partial-strategy may fail. Such rules are prefer-

ably scheduled early, because all computations that are performed for a clause that fails

is overhead. For example, the match-rules that test the value of an inherited attribute,

as introduced by the translation of datasems, should be scheduled upfront.

• Rules may have expressions that are expensive to compute. An accurate estimation of

such costs requires an analysis of host-language terms and is hard in general.

• Rules of a particular form may depend on other rules of a different form. We therefore

cannot straightforwardly group all match-rules together.

To take these items into account, we use a customizable strategy. We associate with each rule

a partition and class for a finite sequence of partitions and a finite sequence of classes. Rules

of one partition are scheduled before rules of a later partition. Within a partition, we schedule

rules iteratively. With each iteration, we schedule the rules of the earliest class that has rules

that can be scheduled. With this approach, rules of an earlier class precede rules of a later

class, if possible. We describe this approach in more detail below.

We define an ordered sequence of partitions. Each rule must be associated with one parti-

tion, and a rule may not have a dependency that belongs to a later partition. For a given visit,

we schedule the rules of one partition before those of the next partition. The default partitions

are:

4 Each nonterminal has a terminator visit ε , which does not have any attributes, and for which no code is generated.

Rules that are scheduled to that visit are discarded during code generation.
5 An alternative approach is to keep track of which rules that do not depend on clauses are already applied during

the evaluation of a previous clause. However, the savings on overhead are likely small. For visits declared as

total, such rules eventually need to be applied.

137

3 AGs with Side Effects

data P = InCommon | InClause deriving (Eq,Ord)

We associate with InCommon all rules of a visit that are not users of a begin-clause-node of

that visit, and with InClause the remaining rules of that visit.

type of rule classification strategy

match-rules Earliest quick clause selection

partial invoke-rules Earlier clause selection

pin-rules Middle early side effect, preferably no backtrack

total invoke-rules Later visit children when needed

eval-rules Latest minimize distance between computation and use

Figure 3.13: Association of rules with classes.

Step 3: order by classification. For each partition, we define the order of the rules based

on a classification of the rule. Each rule must be associated with a class, which represents a

scheduling preference. By default, we distinguish the following classes:

data C = Earliest | Earlier |Middle | Later | Latest deriving (Eq,Ord)

Figure 3.13 shows the default association based on a rule’s type. To influence the ordering,

a programmer can specify more classes, and explicitly specify such a class for some of the

rules.

The classes specify a scheduling preference: a rule of an earlier class is preferably sched-

uled before a rule of a higher class. However, this is not possible when a rule of an earlier

class depends on a rule of a later class. Moreover, to schedule some rules of an earlier class,

there may be different minimal subsets of rules of a later class possible, so that it is not

obvious which subset to take.

In the following example, the first match-rule is scheduled first. None of the other match-

rules can be scheduled, unless either the rule for loc.a or the rule for loc.b is scheduled before.

To ensure a deterministic scheduling, we schedule both loc.a and loc.b rules, and use their

order of appearance as final distinguishing factor:

match loc.x = 3 -- class: Earliest

loc.a = e -- class: Latest

loc.b = loc.x -- class: Latest

match loc.y = f loc.a -- class: Earliest

match loc.z = g loc.b -- class: Earliest

However, if the rule for loc.y would additionally mention loc.z in its RHS, then the rule for

loc.a is scheduled directly after the rule for loc.x, followed by the rule for loc.z, and only then

the rule for loc.b.

Figure 3.14 shows the scheduling algorithm rankVertices. It uses the rank monad R, which

is a combination of a list, state, and continuation monad with monad comprehensions [Mid-

delkoop, 2011c], to describe algorithms with the enumeration combinator foreach and the

138

3.5 Translation of RulerCore to RulerBack

-- gives each vertex of verts a unique rank based on classes

rankVertices :: [C]→ [Node]→ R ()
rankVertices classes verts = do

c← foreach classes

iter $ do

vs← unionM [ps | v← verts,hasClass v c, let ps = deps′ verts v

,allM (λn→ hasClass n c ‘impliesM‘ isRanked n) (ps\\ [v])]
guard (notNull vs)
iter $ do

vss← filterM notNull $ mapM (readyNodes verts vs) classes

guard (notNull vss)
v ← foreach $ sortAsc cmpNodePos $ head vss

rank v

-- returns the subset of vs that can be scheduled

readyNodes :: [Node]→ [Node]→ C→ R [Node]
readyNodes verts vs c =
[v | v← vs, isNotRanked v,hasClass v c,allM isRanked (deps verts v)]

-- returns v and its indirect dependencies

deps′ :: [Node]→ Node→ [Node]
deps′ verts v = [v]∪map (deps′ verts) (deps verts v)

iter :: R ()→ R () -- iterate param until a guard is False

guard :: Bool→ R () -- check a condition; fail if False

foreach :: [a]→ R a -- repeat cont. for each item in list

rank :: Node→ R () -- gives the node the next rank

deps :: [Node]→ Node→ [Node] -- direct dependencies

hasClass :: Node→ C→ R Bool -- True iff the node has the given class

isRanked :: Node→ R Bool -- True iff the node is ranked

sortAsc :: (Node→ Node→ Ordering)→ [Node]→ R [Node]
cmpNodePos :: Node→ Node→ Ordering

Figure 3.14: Order algorithm for the visit’s rules.

139

3 AGs with Side Effects

iteration combinator iter. As parameters, it gets the sequence of classes in the order from ear-

liest to latest, and the set of vertices of the partition to schedule. The result of the algorithm

is an association with a unique rank for each of these vertices.

With this algorithm, we try to schedule rules in increasing class order by giving the vertices

of such rules an increasing rank. The class c is the class we currently schedule for. For class

c, we determine the set vs, which is the smallest set that contains all vertices of rules of class

c that do not depend on an unranked vertex of class c or an earlier class. Moreover, the set

contains the indirect dependencies of these rules. This set may include vertices of a later

class, or already ranked vertices. Thus, vs contains the largest set of vertices of class c that

can be ranked when we only consider already ranked vertices of the same class or earlier.

Also, it contains the smallest set of vertices of a later class that need to be ranked to allow the

ranking of all the vertices of an earlier class in vs. For an acyclic graph, and as long as there

are unscheduled rules of class c, the set vs has at least one rule. We ensure that each rule in

vs is scheduled. Thus, by repeating this process we rank all rules of class c. Consequently,

after processing all classes, all vertices in verts are ranked.

We rank the vertices of vs in iterations. With readyNodes we determine for each class the

set of unranked vertices that have ranked dependencies, and take the nonempty subset of the

earliest class. Such a set exists, unless all vertices of vs are ranked. We rank these vertices in

the order of the appearance of their rules. The algorithm guarantees that an unranked node is

ranked if all its dependencies are ranked (soundness property), and that there is per iteration

at least one vertex ranked as long as there are unranked vertices left (progress property).

Assume the number of vertices to be ranked is n, and the number of classes is c. Both

the worst-case asymptotic time and memory complexity of deps′ is O(n), where |vs| 6 n.

The functional implementation assumes that vertices are represented as an integer. The cor-

responding rule can be determined in constant time via a lookup table. For readyNodes the

time and memory complexities are O(n2). The time complexity of the algorithm for vss is

thus O(cn2), and of the algorithm for vs is O(n2). The memory complexity is O(n2). Despite

the double iter-blocks, each line is at most repeated n+c times, because with every repetition

at least one vertex is ranked. The worst-case time complexity of rankVertices is thus O(cn3)
and the worst-case memory complexity is O(n2). Note that in practice the values for c and n

are small, and that most rules have only a small number of dependencies.

Step 4: cleanup. We schedule the rules in a partition in the order of their rank. For the

purely functional eval-rules, we make an exception. Starting with the highest-ranked eval-

rule, we shift it just before the lowest-ranked of its users in the dependency graph. Scheduling

such rules later does not affect the overhead of clause selection, and our strategy is to bring

such rules close to where their results are used. Since eval-rules have the Latest-classification,

it is already likely that these rules are already at such a position. In a similar way, we could

also move total invoke-rules. However, the visit invoked by total invoke-rules may contain

pin-rules, thus for such rules we keep the scheduling via the classification mechanism.

Remarks. The implicit invokes and automatic ordering allow a straightforward transfor-

mation from a datasem-block to a sem-block. Essentially, a datasem-block is syntactic sugar

140

3.6 Discussion

for a number of clauses, each with a match-rule, and a number of child-rules. We also al-

low in RulerCore omitted visits and clauses to be implicitly defined. Combined with implicit

invocations, this makes it easy to add additional visits to an interface. Furthermore, the auto-

matic rule ordering allows us to write independent rules separately from each other (possibly

in separate files) and use a preprocessing step to merge the rules together.

The scheduling also offers opportunities to exploit parallelism. When the head vss con-

sists of total invoke-rules, during rankVertices, these invocations are candidates to evaluate in

parallel because their computations are independent. However, whether or not parallelism is

beneficial depends on how expensive the computation of the visit is. With the classification

mechanism, a rough static approximation can be expressed by the programmer. For example,

we can introduce a class for total invocation rules that take priority over conventional invoca-

tion rules. When multiple of these invocation-rules are scheduled together, we can actually

generate code that performs the visits in parallel.

3.6 Discussion

RulerCore can be used to express traversals over tree-like data structures. To a limited extend

RulerCore may be applicable to graphs traversals that are technically tree traversals (such

as a traversal over a depth-first forest). Loops and iteration can be expressed with higher-

order attributes. In related work, we expressed these by iterating visits [Middelkoop et al.,

2010a]). However, RulerCore is not suitable to express traversals over drastically changing

data structures.

In our actual implementation, we also provide a notion of internal visits. A conventional

visit is invoked externally by the parent, and can choose a clause. This means that we can

only conditionally compute attributes once per visit. In contrast, an internal visit is invoked at

the end of the clause, and is not visible externally. An internal visit may again have clauses,

and these clauses may again specify an internal visit as next visit, or a conventional visit.

With this relatively simple extension, we can arbitrarily often branch inside a visit.

In the Haskell version of RulerCore, we require type signatures for attributes. In JavaScript,

instead of type signatures, the notion of a type signature represents a dynamic check in the

form of assertion-functions that validate the values for attributes.

To fully enjoy the benefits of attribute grammars, the host language requires support for

purely functional data structures [Okasaki, 1998]. Such data structures can be encoded in

JavaScript, but efficient versions with copy-on-write semantics are cumbersome to implement

manually.

3.7 Related Work

Related to this chapter are various visitor-like approaches and attribute grammar techniques.

The purpose of the Visitor design pattern [Gamma et al., 1993] is to decouple traversal

operations from the specification of the tree to be traversed, in order to make it easier to

add new operations without changing the existing specification of the tree. This allows us to

write a multi-visit traversal using a separate visitor per traversal. Multi-methods [Chambers

141

3 AGs with Side Effects

and Leavens, 1994] are supposed to replace the visitor pattern. A multi-method allows over-

loading of methods on multiple parameters, and makes accept-methods superfluous. This,

however, is orthogonal to the problems and solutions that we presented in this chapter.

In Section 3.2.1, we discussed advantages and disadvantages of modeling traversals with

visitors. In particular, side effects are permitted, and used to store results for use in later visits.

The side effects make it hard to predict if results needed in a next visit are actually stored by

a first visit. This is a fundamental problem of visitors. Oliveira et al. [2008], for example,

show many enhancements with respect to the type safety of visitors, but do not address the

transfer of results between visits.

Attribute grammars [Knuth, 1968, 1990] are considered to be a promising implementation

for compiler construction. Several attribute grammar techniques are important for our work.

Kastens [1980] introduces ordered attribute grammars. In OAGs, the evaluation order of

attribute computations as well as attribute lifetime can be determined statically, allowing

severe optimizations.

Boyland [1996] introduces conditional attribute grammars. In such a grammar, semantic

rules may be guarded. A rule may be evaluated if its guard is satisfied. Evaluation of guards

may influence the evaluation order, which makes the evaluation less predictable. In compar-

ison, in our clauses-in-visits model, we have to explicitly indicate in which visits guards are

evaluated (the match-statements of a clause), which makes it clear what the evaluation order

is. Our approach has the additional benefit that children may be conditionally introduced and

visited.

Recently, many Attribute Grammar systems arose for mainstream languages, such as Sil-

ver [Van Wyk et al., 2008] and JastAdd [Ekman and Hedin, 2007] for Java, and UUAG [Löh

et al., 1998] for Haskell. In contrast to the work in this chapter, these systems strictly dis-

courage or disallow the use of side effects. The design of RulerBack is inspired by the

language of execution plans of UUAG. In certain languages, AGs can be implemented via

meta-programming facilities, which obliviates the need of a preprocessor. Viera et al. [2009]

show how to implement AGs in Haskell through type level programming. The ideas that

we presented in this chapter are orthogonal to such approaches, although the necessary de-

pendency analysis may be difficult to express depending on the expressiveness of the meta

language.

3.8 Conclusion

We introduced the language RulerCore, an extension of Attribute Grammars that makes visits

to nonterminals explicit. As a consequence, it is possible to use side effects in rules. Ruler-

Core combines the freedom of visitors as described by the visitor design pattern with the

convenience of programming with attributes, as shown in Section 3.2.

Moreover, we presented RulerBack, a subset of RulerCore, which serves as a small core

language for visitor-based Attribute Grammars. In RulerBack, the lifetime of attributes is

explicit, as well as the evaluation order of rules and visits to children. We described how

RulerCore programs are mapped to RulerBack in Section 3.5. A RulerBack program has

a straightforward translation to many languages. In Section 3.4, we gave a translation to

142

3.8 Conclusion

JavaScript by making use of exceptions in combination with the try-catch mechanism. A

more sophisticated translation is possible that does not require exceptions, as we show in

later chapters.

Future work. A direction of future work is to consider destructive updates on attributed

trees. Event-handling traversals over data structures may need to respond to dynamic changes

induced by user input or external events. In RulerFront, the visits performed on an attributed

tree explicitly specify which attributes are defined. When we apply a destructive update to

the tree, we thus know precisely what information is based upon the previous structure of

the tree. This knowledge can be exploited to reason about mutations of the attributes tree.

Incremental evaluation of attribute grammars [Vogt et al., 1991, Yeh and Kastens, 1988] may

be used to efficiently recompute attributes after modifications of the AST.

This chapter treated the scheduling of rules in the presence of side effects. Side effects are

not visible in value dependencies between attributes. In Chapter 7 we show how to incorpo-

rate dependently-typed programming languages, which have type assumptions resulting from

pattern matches as ‘effect’.

143

4 AGs with Commuting Rules

In Chapter 3 we described a programming model based on visits as an extension of attribute

grammars. Using this model, attribute declarations are not as easily composed as with con-

ventional attribute grammars. In this chapter, we introduce phases as a generalization of

visits, for which attribute declarations are composable.

Further, we introduce commuting rules, which are rules that thread a chained attribute

(Section 1.3.11 and Section 1.3.12), with the difference that the rules in the chain can be

reordered. To preserve referential transparency, the commuting rules must satisfy a liberal

commutativity law.

This chapter is orthogonal with respect to the subsequent chapters. It presents the technical

material which can be used to generalize the contents of the subsequent chapters.

4.1 Introduction

In this chapter, we show three related extensions of the explicit visit-approach in Chapter 3

and ordered attribute grammars in general.

Definition (Phase). A phase is a generalization of a visit. It gives a name to a unit of evalua-

tion for attributes associated with a nonterminal symbol.

Firstly, instead of associated visit declarations with nonterminals as in the previous chapter,

we associate sets of phase declarations with nonterminals in this chapter. We allow attribute

declarations and rules to depend on the beginning of a phase or be constrained by the end

of a phase, and impose a partial order on phases. When the value dependencies between

attributes and rules and the dependencies induced by phases are acyclic, the attributes that

are associated to a previous phase are defined before any attributes that are associated with a

later phase, which provides a way to specify the order of evaluation of rules.

Secondly, we use a statically ordered evaluation to compute values of attributes, and we

present a scheduling algorithm in the style of Kennedy and Warren [1976] which infers mul-

tiple visit interfaces from the phase interface of a nonterminal. For each visit interface, a

production has a potentially different execution plan. An execution plan specifies an explicit

ordering of rules per visit (Section 1.3.3). Such a plan specifies also for each child which

visit interface is used for its evaluation.

In the generated code, semantic functions are indexed by the choice of the visit interface

for which it provides a semantics, and we show how to encode this in a strongly typed, purely

functional language. There may be many possible visit interfaces given the phase interface

of a nonterminal. The constraints on rule and attribute ordering as mentioned above can be

used to significantly limit the number of possible visit interfaces.

145

4 AGs with Commuting Rules

Finally, we present commutable rules, which allows us to functionally encode side effects.

A functional encoding of side effects as mentioned in Chapter 3 can be accomplished with

a chained attribute that is threaded through each operation, where an operation is a rule or

higher-order child. For example, a substitution attribute captures the side effects that result

from substitutions during type inference, and an attribute with the type RealWorld captures

arbitrary I/O. The attribute’s threading determines the order in which the side effects are

observable in the values of the attribute.

For some threaded attributes, the order imposed by the threading may be irrelevant, for

example when the rules represent commuting operations, such as when handing out unique

numbers. However, the order imposed by threading the attribute may induce cycles in the

dependencies of attributes. We present a mechanism to allow the order to be left unspecified

and given the freedom to be determined by the implementation.

Definition (Commutable rule). A commutable rule is a rule that threads a chained attribute,

but does not depend (indirectly) on previous rules in the chain.

Commutable rules thus provide more freedom in their ordering. To preserve referential

transparency, the composition of commutable rules must satisfy a liberal commutativity law,

as we show later. Commutable rules also allow the functional encoding of a side-effectful

rule that is scheduled to different implicit visits.

We thus offer a mechanism to explicitly enforce constraints on the evaluation order of at-

tributes, and another mechanism to loosen the constraints imposed by rules. The combination

offers convenient ways to declaratively specify side-effectful operations and their algorithmic

evaluation order.

Phases and commutable rules have in common that the associated scheduling algorithm

takes information into account that is not visible in the attribute dependencies induced by the

rules. Phases induce ordering constraints based on dependencies between attributes and the

lexical scope of rules. Commutable rules require a barrier between rules that commute over

an attribute and rules that do not. Therefore, we introduce barrier attributes and dependency

rules, which allow the encoding of such additional dependencies.

Definition (Designator). A designator d (Figure 4.2) is either an attribute occurrence or a

symbolic representation of a rule.

Definition (Dependency rule). A dependency rule d1 ≺ d2 is a rule that specifies that desig-

nator d1 must be scheduled before designator d2.

Definition (Barrier attribute). A barrier attribute is an attribute that can be used as a des-

ignator (dependee/depender) in combination with dependency rules. The value of a barrier

attribute is implicitly defined.

In this chapter, we first work out the concepts of barrier attributes and dependency rules

(Section 4.2), and then show how these concepts can be exploited to deal with phases (Sec-

tion 4.8) and commutable rules (Section 4.9).

146

4.2 Example with Barriers

grammar Tree -- grammar for nonterm Tree

| Leaf x :: Int -- production Leaf with one terminal

| Bin l,r : Tree -- production Bin with two nonterminals

attr Tree syn gath :: Int -- attributes for nonterm Tree

inh mini :: Int

syn repl :: Tree

sem Tree -- semantics for nonterm Tree

| Leaf lhs.gath = loc.x

lhs.repl = Leaf lhs.mini -- replacement tree

| Bin lhs.gath = min l.gath r.gath -- global minimum gathering

l.mini = r.gath -- crossover between r and l

r.mini = l.gath

lhs.repl = Bin l.repl r.repl -- replacement tree

Figure 4.1: A variant of the Repmin example.

4.2 Example with Barriers

We use Haskell as host language. Figure 4.1 shows a variant of the classical Repmin exam-

ple [Bird, 1984], which requires more than one visit to compute the attributes with a statically

ordered evaluation strategy. The attribute repl contains a clone of the tree with each leaf-child

replaced with the minimum of its sibling’s subtree. In order to get the min attribute of l, the

gath attribute of r is needed and vice versa. With statically ordered evaluation, this can be

accomplished by first computing the gath attribute in a first visit, then compute min and repl

in a later visit.

Barriers. The evaluations for l.repl and r.repl are independent. For debugging purposes,

we may want to specify that the l.repl attribute is computed before the r.repl attribute. Since

the syn.repl attribute depends on the inh.min attribute, we get the desired behavior when l.repl

is a dependency of r.min. The following dependency rule expresses this dependency:

sem Tree | Bin order l.repl≺ r.min

This rule requires that inh.min is a dependency of syn.repl. Note that, as usual, the depen-

dency relation is transitive.

The dependencies imposed by dependency rules may not be clear when multiple synthe-

sized attributes are involved, nor remain stable after code changes. For this purpose, we

introduce a barrier attribute:

attr Tree inh sync barrier

sem Tree

147

4 AGs with Commuting Rules

| Leaf order lhs.sync≺ lhs.repl

| Bin order lhs.sync≺ l.sync

order lhs.sync≺ r.sync

order l.repl ≺ r.sync -- actually subsumes lhs.sync≺ r.sync

Barrier attributes are not defined by a rule. Instead, these attributes are defined implicitly.

However, we require that for a synthesized barrier attribute y, that there is at least one pro-

duction with a dependency rule where lhs.y occurs as RHS, and at least one production with

a child k where k.y occurs as LHS in a dependency rule. For an inherited barrier attribute

y, we require the inverse. There is actually no technical reason for this requirement: if the

requirement is not met, it should be taken as a warning that a barrier is not used.

Definition (Updatable attribute). An updatable attribute is an attribute that has a value which

is a reference into a shared state. Via attribute occurrences (Figure 4.2), we specify operations

on this shared state. An attribute occurrence z◦ in expressions represents the value in the

shared state referenced by z. An occurrence z◦ in a pattern means that the shared state at the

location pointed to by z is updated with the matched value. An occurrence z× in a pattern

means that a new shared location is allocated with the matched value and a reference to it

stored in z.

We incorporate side-effect in BarrierAG (Chapter 3) in the form of updatable attributes. In

the following example an updatable attribute unq is created, read from, and updated:

attr Tree inh unq :: IORef Int -- inherited unique number dispenser

sem Root | Root

root.unq× = 1 -- creates reference and assigns initial value

sem Tree | Leaf -- reads and updates reference

(loc.myId,alhs.unq◦) = (alhs.unq◦,alhs.unq◦+1)

Normally, attribute occurrences in a pattern are at defining positions. However, when z◦ is

used to specify a store to a shared state, the attribute occurrence z is at a usage position.

Hence, alhs.unq refers to the inherited attribute alhs.unq, and is a dependency of the rule.

Rules that write to a reference are guaranteed to be applied at most once. The order in

which these writes take place depends on the scheduling of attributes. If the attribute loc.myId

is not used, the write actually does not take place. The only guarantee that is given for such

a write is that the reference is created and initialized. For more guarantees, barriers can be

used to control and specify the order.

Remarks. Barriers and updatable references should be used sparingly. In particular, rules

with updatable references are not functional, which breaks equational reasoning. We present

them here as an implementation mechanism for phases and commutable rules. With the later

property, we can recover equational reasoning. Note that the code generated from an AG may

be functional even if the AG description itself is non-functional.

148

4.3 Core Representation of AGs with Barriers

I ::=attr N a -- attr decls for nonterminal N

a ::= k x t -- attribute declaration with form k, attr name x and type t

k ::= inh | syn -- attribute forms (often also written as identifier)

t ::= :: τ -- attribute type (host language)

| barrier -- barrier type

s ::= sem Γ P : N r -- semantics of a production P of nonterm N in env Γ

r ::= child x : N = f z⊲ -- (higher order) child declaration

| x : p z⊳ = f z⊲ -- evaluation rule named x with LHS p and RHS f

| order d1 ≺ d2 -- order declaration

d ::= child x -- designates child x

| rule x -- designates a rule named x

| z -- designates an attribute occurrence

z⊳ ::= z• -- store in occurrence z

| z◦ -- write to location referenced by z

| z× -- store new handle in z

z⊲ ::= z• | z◦ -- respectively read (closed), and deref (open)

z ::=h.c.x -- occurrence attr x of c with form h

h ::= k | loc -- attribute forms (extended with locals)

c ::= lhs | loc | x -- child designators

x, f ,p,P -- identifiers

Figure 4.2: AG core representation.

4.3 Core Representation of AGs with Barriers

In this section, we define the semantics of the dependency rules and barrier attributes using the

core language BarrierAG, a desugared subset of higher-order AGs. BarrierAG also permits

attributes that have references to a global state as value, which we need later.

Syntax. Figure 4.2 gives the syntax of BarrierAG. BarrierAG serves as a core language

for AGs. Hence, we assume that static checks, desugaring, item grouping, and copy rule

insertion have been performed (Section 1.3.6 and Section 1.3.12). This core representation

serves two purposes: it allows formal reasoning with AGs, and specifying the construction of

dependency graphs and execution plans (also see Section 1.3.2).

The main (meta) nonterminals in the (meta) grammar of Figure 4.2 are I (attr-block) and

s (semantics blocks). An attr-block consists of a set of attribute declarations. A semantics

block provides the rules for a single production. The environment Γ is often left implicit.

Figure 4.3 shows a desugared version of the earlier example in BarrierAG. The context

free grammar is translated to terms in the host language, and is not part of the core language.

The symbols of the production are represented as higher-order children and local attributes.

149

4 AGs with Commuting Rules

sem Tree (Leaf x) = sem Leaf x

sem Tree (Bin l r) = sem Bin (sem Tree l) (sem Tree r)

attr Tree syn gath :: Int

inh mini :: Int

inh sync barrier

syn repl :: Tree

sem Leaf field x =
sem {f1 = field x, f2 = Leaf } Leaf : Tree

r0 : id loc.loc.x• = f1
r1 : id syn.lhs.gath• = id loc.loc.x•

r2 : id syn.lhs.repl• = f2 inh.lhs.mini•

order inh.lhs.sync≺ syn.lhs.repl

sem Bin field l field r =
sem {f1 = field l, f2 = field r, f3 = min, f4 = Bin} Bin : Tree

child l : Tree = f1
child r : Tree = f2

r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl•

r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

order inh.lhs.sync≺ inh.l.sync

order inh.lhs.sync≺ inh.r.sync

order syn.l.repl ≺ inh.r.sync

ast = sem Bin (sem Leaf 1) (sem Leaf 2)

Figure 4.3: Desugared example.

Evaluation rules are explicitly named, and consist of a function symbol p and f . The evalua-

tion rule represents the function z1 = p (f z2). For example, the rule r3 represents the function

syn.lhs.gath = id (f3 syn.l.gath syn.r.gath). The definition of these functions are bound in

the environment Γ, which is an annotation of the sem-block. This representation has the

advantage that the rules can be duplicated without duplicating the body of the function.

Semantics. Ultimately, we generate host-language code for the core language term. How-

ever, to facilitate reasoning with terms in the core language, we first define an operational

semantics1 in Figure 4.4 which denotes a tree walking automaton (Section 1.3.3). The se-

mantics refers to rules in Figure 4.5, which can be interpreted as a dynamic version of the

1 This operational semantics is also implemented as part of the ruler-interpreter: https://svn.science.

uu.nl/repos/project.ruler.papers/archive/ruler-interpreter-0.1.tar.gz.

150

https://svn.science.uu.nl/repos/project.ruler.papers/archive/ruler-interpreter-0.1.tar.gz
https://svn.science.uu.nl/repos/project.ruler.papers/archive/ruler-interpreter-0.1.tar.gz

4.3 Core Representation of AGs with Barriers

dependency analysis that we define in the next section or as a specification of a tree-walking

automaton (Section 1.3.3). Since we deal with higher-order AGs, the operational semantics

describes both the construction and decoration of the AST.

A decorated node of the AST is represented as a tuple (N,P,Γ,H), where N is the associ-

ated nonterminal, P is the associated production, Γ is an environment that contains bindings

for the functions that are mentioned in the rules of P, and the heap H contains values for

attributes and nodes that form the children of P.

More precisely, a heap H is a partial map between descriptors d and a value v. A descriptor

is either an identifier for an attribute or a child:

v ::=ν | ı | n | ℓ -- atomic value ν , or unit value ı, or node n, or reference ℓ

n ::=(N,P,Γ,H) -- node associated to N and P, with env Γ, and heap H

H ::= /0 | H,d 7→δ v -- heap of a node (partial map from descriptor to value)

Ψ ::= /0 |Ψ, ℓ 7→ v -- threaded heap (partial map from reference to value)

ϒ ::= /0 | ϒ, ℓ -- set of references ℓ

A value of an attribute is either an atomic value ν in the domain of the attribute, or a tree in

case of a higher-order attribute.

Definition (Normal form). A tree n is in normal form when the synthesized attributes of the

root have been computed, thus when the root node n has a heap with bindings for all syn.lhs.x

where syn.x is a synthesized attribute declared for the nonterminal of n.

The small-step relation Γ0 ⊢Ψ ; v−→ v′ ; Ψ
′ (Figure 4.4) describes how to evaluate a tree

v one step further to v′ in a global environment Γ0. The threaded heap Ψ contains bindings

for references, and is threaded through the evaluation.

To reduce a tree, we start with an initial tree and gradually grow the tree by modifying the

heaps. In the initial tree v0 = (N,P,Γ, /0), N is the nonterminal of the root, P is the production

of the root, and Γ contains bindings for functions as mentioned in the rules of P. In particular,

for each child-rule in P, there is a binding for a function in Γ that provides the semantics for

that child. When the AG is well-formed, the resulting tree is in normal form when the rules

are applied exhaustively.

We use the following notation in the rules. The operator ∪ represents the left-biassed

union of its two operands heaps, and operator ⊎ takes the union of two heaps with disjoined

keys. The domain dom (H) of a heap H is the set of the heap’s keys. A heap H applied

to a designator d, written H (d), returns the binding for d in H. Similarly, Γ0 Γ1 f returns

the function binding for f in the right-biassed union of Γ0 and Γ1. Juxtaposition of heaps

represents the left-biassed union.

In Figure 4.4, rule E.DECENT incorporates the idea of nondeterministically selecting a node

constructed so far, and reducing it a bit further. Each node has its own heap that explicitly

tracks which attributes have been computed, which children have been constructed, and which

rules have been applied. A test to check if a rule can be applied then boils down to verifying

that their dependencies are met (Figure 4.5).

With Rule E.INH bindings for the inherited attribute of a child can be copied to the heap of

that child when the child is ready to receive these bindings. For example, inherited attributes

151

4 AGs with Commuting Rules

Γ ⊢Ψ0 ; v0 −→ v1 ; Ψ1

H(child x) = v0 Γ0 ⊢Ψ0 ; v0 −→ v1 ; Ψ1

Γ0 ⊢Ψ0 ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ v1}∪H) ; Ψ1

E.DESCENT

H(inh.x.y) = v H(child x) = (N′,P′,Γ2,H
′) N′ ; P′ ; H′

√
inh.lhs.y

Γ0 ⊢Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ (N′,P′,Γ2,{inh.lhs.y 7→ v}⊎H′)}∪H) ; Ψ
E.INH

H(child x) = (N′,P′,Γ2,H
′) H′(syn.lhs.y) = v N ; P ; H

√
syn.x.y

Γ0 ⊢Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{syn.x.y 7→ v}⊎H) ; Ψ
E.SYN

(child x : N′ = f (z⊲)) ∈ rules (N,P) N ; P ; H
√

child x Ψ ; H ⊢ z⊲ ↑ v

Γ0 ⊢Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{child x 7→ (Γ0 Γ1 f) v}⊎H) ; Ψ
E.CHILD

(x : p (z1
⊳) = f (z2

⊲)) ∈ rules (N,P) N ; P ; H0
√

rule x

Ψ0 ; H0 ⊢ z2
⊲ ↑ v0 v1 = (Γ0 Γ1 p . Γ0 Γ1 f) v0

H0 ⊢ v1 ↓ z1
⊳ H ; Ψ ; ϒ ϒ1⊎ ...⊎ϒn⊎dom Ψ = ℓ

Γ0 ⊢Ψ0 ; (N,P,Γ1,H0)−→ (N,P,Γ1,H⊎{rule x 7→ ı}⊎H0) ; Ψ Ψ0

E.EVAL

syn.y ∈ barriers N N ; P ; H
√

syn.lhs.y

Γ0 ⊢Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{syn.lhs.y 7→ ı}⊎H) ; Ψ
E.BAR.LHS

(child x : N′ = f (z⊲)) ∈ rules (N,P) inh.y ∈ barriers N′ N ; P ; H
√

inh.x.y

Γ0 ⊢Ψ ; (N,P,Γ1,H)−→ (N,P,Γ1,{inh.x.y 7→ ı}⊎H) ; Ψ
E.BAR.INH

Figure 4.4: Small-step evaluation rules for a node.

for a child can be computed even before the child is introduced. Rule E.SYN represents the

inverse for synthesized attributes. Note the careful use of disjoined unions which ensure that

a rule is only applicable once per attribute.

With rules E.CHILD, E.EVAL, E.BAR.INH, and E.BAR.SYN, bindings can be added to the heap.

Evaluation of the RHS of the AG’s child-rule gives us the initial tree to use for that child in the

heap. Evaluation of the AG’s evaluation rule results in bindings for one or more attributes.

The rule E.EVAL ensures in addition that potentially newly introduced references ϒ do not

clash with existing references. The rule E.BAR.INH defines an inherited barrier attribute of a

child x. Rule E.BAR.SYN defines a synthesized barrier attribute of lhs.

Figure 4.5 shows load, store, and ready rules. The relation Ψ ; H ⊢ z⊲ ↑ v represents a

load of value v using designator z in heap H. The load rule L.VAL requires the presence of a

designator in the heap. With the rule the value of the designator can be extracted from the

head. The load rule L.REF represents an indirect load from the threaded heap Ψ.

The relation H0 ⊢ v ↓ z H ; Ψ ; ϒ represents a store of value v. The heap H and treaded

heap Ψ contain the new bindings that result from storing v. The initial heap H0 is stores

152

4.3 Core Representation of AGs with Barriers

Ψ ; H ⊢ z⊲ ↑ v

H(z) = v

Ψ ; H ⊢ z• ↑ v
L.VAL

H(z) = ℓ Ψ(ℓ) = v

Ψ ; H ⊢ z◦ ↑ v
L.REF

H0 ⊢ v ↓ z⊳ H ; Ψ ; ϒ

H0 ⊢ v ↓ z× {z 7→ ℓ} ; {ℓ 7→ v} ; {ℓ} S.NEW H0 ⊢ v ↓ z• {z 7→ v} ; /0 ; /0 S.SAVE

H(z) = ℓ

H0 ⊢ v ↓ z◦ /0 ; {ℓ 7→ v} ; /0
S.UPDATE

N ; P ; H
√

d

N ; P ; H
√

dep d {d′ | (order d′ ≺ d) ∈ rules (N,P)} ⊆ dom H

N ; P ; H
√

d
D.ORDER

(x : p z1
⊳ = f z2

⊲) ∈ rules (N,P)

N ; P ; H
√

z1

N ; P ; H
√

dep rule x
D.R

N ; P ; H
√

dep child x
D.C

N ; P ; H
√

dep z
D.A

Figure 4.5: Load, store and designator dependency rules.

the reference when z⊳ is an indirection. The set of references ϒ contains the newly added

references. The store rule S.NEW represents the creation and assignment of a new reference

ℓ, and S.UPDATE an update via such a reference. With rule S.SAVE a binding for z is added

without an indirection.

The relation N ; P ; H
√

d describes when d is ready to be defined while taking dependency-

rules into account. These rules do not test for the existence of values in the heap, because

the load and store rules already cover for this. The rule D.ORDER handles dependency-rules

generically for the designators. The rule D.R states that an AG rule is ready when its LHS is

ready.

Remarks. If we can determine for a nonterminal that no subtree applies rule S.NEW or

S.UPDATE, only topdown behavior for Ψ is needed. If in addition L.REF cannot occur, the two

Ψ parameters can be omitted from the relation.

The rule E.DESCENT facilitates a walk down the tree until the node to reduce is reached.

An actual implementation performs multiple evaluation steps (if possible) on such a node in

order to reduce traversal overhead. In fact, it is possible to statically analyze the AG and

obtain a static scheduling of the rules.

153

4 AGs with Commuting Rules

Jsem P : N rKvert = {child lhs}∪ JaNKvert (lhs)∪ JrKvert

Jinh y tKvert (x) = {inh.x.y}
Jsyn y tKvert (x) = {syn.x.y}
Jchild x : N = f z⊲Kvert = {child x}∪ JaNKvert (x)
Jx : p z1

⊳ = f z2
⊲Kvert = {rule x}

Jorder d1 ≺ d2Kvert = /0

Jsem P : N rKedge = JrKedge

Jchild x : N = f z⊲Kedge = z← child x∪{child x← syn.x.y | syn.y ∈ aN }
Jx : p z1

⊳ = f z2
⊲Kedge = z2← rule x∪ Jz1

⊳Kpre (x)
Jorder d1 ≺ d2K· = {d1← d2}
Jz•Kpre (x) = {rule x← z}
Jz×Kpre (x) = {rule x← z}
Jz◦Kpre (x) = {z← rule x}

Figure 4.6: Vertices and edges of the initial production dependency graph.

4.4 Static Dependency Graphs

In order to obtain a static scheduling of the rules, we first construct dependency graphs in the

style of Knuth-1 [Knuth, 1968]. If these graphs are cycle free, a static scheduling of the rules

is possible.

Unlike in Section 1.3.2, we mean an augmented PDG when we talk about a PDG. When we

talk about the initial PDG, we mean the non-augmented PDG as in Section 1.3.2. Thus, we

will be dealing with dependency graphs per production (augmented production dependency

graph pdg (N,P)) and dependency graphs per nonterminal (a nonterminal dependency graph

ndg (N)).
We first define the initial graphs, then specify the actual graphs as the fixpoints of the

functions:

pdg N P = pdginit N P∪{ instantiate x (ndg Nx) | x ∈ children P}
ndg N = ndginit N ∪{abstract (pdg N P) | P ∈ prods N}

The function instantiate translates the edges between declarations of Nc in the NDG as edges

between the attributes of child c in the PDG. Similarly, when there is a path between two at-

tributes of lhs in the PDG, then abstract translates these as edges between the same attributes

in N’s NDG.

Initial production dependency graph. Per production P of nonterminal N, we construct

a production dependency graph pdginit N P. Thus, each sem-block is translated to a PDG.

154

4.4 Static Dependency Graphs

Figure 4.6 shows that the vertices of pdginit N P consists of designators Jsem P : N rKvert. In

this notation, aN is the set of attribute declarations a of nonterminal N. The directed edges

Jsem P : N rKedge of pdg (N,P) relate designators. An edge from d2 to d1 denotes that d1 must

be defined before d2. Order rules are thus a means to arbitrarily add edges to the PDG.

The initial PDG does not contain the dependencies imposed by the semantics of each child

(e.g. the actual tree). We obtain the actual production dependency graph by augmenting it

with the edges taken from the nonterminal dependency graphs of the children which are an

approximation of the dependencies of such trees.

Initial nonterminal dependency graph. The vertices of the nondeterminal dependency

graph ndg (N) are the declarations a of N:

Jattr N aKvert = JaKvert
Jinh x tKvert = {inh.x}
Jsyn x tKvert = {syn.x}

The initial NDG does not have any edges. These edges are inferred from the PDGs, as we

see below.

Graph construction. The actual PDG is the least solution to the above equations with the

following definitions for abstract and instantiate. The relation d1 ←+ d2 represents a path

from d2 to d1, with d1 6≡ d2:

abstract g = {k1.x ← k2.y | k1.lhs.x←+ k2.lhs.y ∈ g}
instantiate x g = {k1.x.y← k2.x.z | k1.y ←+ k2.z ∈ g}

Conventionally, a synthesized attribute of a child only depends on an inherited attribute of a

child. However, due to dependency-rules, any attribute of a child can potentially depend on

any other attribute of the child, hence our definition of abstract and instantiate take these also

into account.

The construction of the graphs is a relatively straightforward fixpoint computation. As

intermediate data structure, a transitively closed PDG allows for efficient tests for paths be-

tween vertices.

Example. In the Leaf-production, there is dependency of syn.lhs.repl on inh.lhs.mini via

rule r2. This thus induces a dependency of syn.repl on inh.mini in the NDG. Figure 4.7 shows

the PDG of the production Bin. The solid edges are initial edges, and the dashed edges are

instantiated from the NDG. The Bin-production by itself does not induce any edges in the

NDG. We do not show the PDG of the Leaf-production here; it is shown in Figure 4.15(a).

Properties. A NDG can only be cyclic if at least one of the PDGs is cyclic. The reason

is that the edges of the NDG are projected into the PDGs, thus a PDG must have a subgraph

with these cyclic edges.

155

4 AGs with Commuting Rules

lhs.mini lhs.gath lhs.repl

child l child r

l.mini l.gath l.repl r.mini r.gath r.repl

r3 r4

r5

r6

Figure 4.7: Example of the (augmented) PDG of the Bin-production.

When the PDGs are acyclic, then an evaluation to normal form is possible for any well-

formed tree. In other words, the graph construction is sound. This property has a relatively

straightforward structural induction proof on the shape of the tree. The NDGs symbolize the

induction hypothesis. When an evaluation algorithm respects the dependencies of the PDGs,

and the constraints of each rule are preserved, the evaluation algorithm is sound. Moreover,

the evaluation algorithm is complete if it finds a scheduling when the PDGs are acyclic. We

show such an algorithm in Section 4.5.

Rules of a production may make an inherited attribute of a child dependent on a synthesized

attribute of a child. These dependencies are not part of the NDG. When we add these edges

also to the NDG, each occurrence of a nonterminal has the same dependencies of its inherited

attributes on its synthesized attributes. When the PDGs are cycle free without these edges,

they are typically also cycle free with these additional edges. In the next section, it becomes

clear that adding these edges may reduce the number of visit interfaces that a nonterminal

symbol needs to support, thus can be beneficial when the code size is an issue.

4.5 Visits Graphs

An interface for a nonterminal is a partitioning of the attributes into a finite sequence of visits.

Given such a sequence, we can produce an execution plan and generate code, as we showed

in Chapter 3. We derive such interfaces from acyclic PDGs.

Given such a sequence, it induces a dependency of all attributes of a later visit on attributes

of an earlier visit. When represented as scheduling-induced edges in the PDG, it may make

the PDG cyclic. It is typically possible to define a single visit sequence per nonterminal that

does not make the PDG cyclic. However, it is generally hard to automatically find such a

sequence [Kastens, 1980] when the sequence is not manually specified as we presented in

Chapter 3. Instead, if we allow multiple interfaces for a nonterminal, we can define visit

sequences so that they do not lead to additional dependencies. This is the approach taken by

Kennedy and Warren [1976].

156

4.5 Visits Graphs

Jvisit i k.yKvert (x) = {visit x i}
Jvisit i k.yKedge (x) = JiKedge (x,pre i)∪ Jk.yKedge (x,i)

JiKedge (x,ε) = {child x}
JiKedge (x,j) = {visit x j← visit x i}
Jinh.yKedge (x,i) = {inh.x.y ← visit x i}
Jsyn.yKedge (x,i) = {visit x i← syn.x.y}

Figure 4.8: The embedding of a context.

In our experience, Kastens’ approach requires severe manual intervention for large AGs,

thus we take the approach by Kennedy and Warren [1976]. However, it is not immediately

obvious how to deal with multiple interfaces in a strongly typed language, because the type

of the semantic function depends on the interface. In the next section, we solve this problem

using type indices in combination with GADTs. In this section, we show how to determine

these interfaces.

Contexts. A context C of a nonterminal N, or nonterminal symbol with N, or a production

of N is a visit sequence (many v) that is consistent with ndg N:

C ::= v -- a context consists of a sequence of visits v

v ::=visit i k.x -- a visit consists of a set of attributes k.v and globally unique i

i -- identifier

A context contains a subset of the attributes declared for a nonterminal. A nonterminal may

have a context with less attributes when not all attributes of a nonterminal symbol with this

nonterminal are needed.

A visit sequence is consistent with ndg N when the following conditions are met.

• For each attribute inh.x and syn.y in the sequence, with inh.x←+ syn.y in ndg N, either

syn.y is not part of the visit sequence ,or syn.y is in the same or later visit as inh.x.

• For each attribute syn.x and inh.y in the sequence, with syn.x←+ inh.y in ndg N, either

inh.y is not part of the visit sequence, or inh.y is in a later visit as syn.x.

The number of consistent visit sequences is finite, but potentially large, as it is in the worst

case exponential in the number of attributes.

Embedding of a context. We make the context of a child visible in the PDG. For that

purpose, we introduce a vertex form that represents a visit:

d ::= ...

| visit x i -- a visit to x identified by i

157

4 AGs with Commuting Rules

visit v1 visit v2

inh.l.mini

syn.l.gath syn.l.repl

child l

(a) Context C1 with all attributes.

visit v3

inh.l.mini

syn.l.gath syn.l.repl

child l

(b) Context C2 with only syn.gath.

Figure 4.9: Examples of visit-additions to the PDG.

For a child x in context Cx, we add additional vertices and edges to the PDG, which we call

the embedding of Cx of child x in the PDG. Informally, to embed a context, we add a visit-

node and add edges between this node and the associated inherited and synthesized attributes.

Additionally, a visit node is dependent on the node of the preceding visit, if any, and the child-

node otherwise. Formally, let pre i either be the preceding visit j of i, or ε when i is the first

visit. We add vertices JCKvert (x) and edges JCKedge (x) as described in Figure 4.8.

Definition (Visit PDG). For some given contexts of children, a visit PDG (VPDG) is the

embedding of these contexts in the PDG.

The following are exemplary contexts of child l of production Bin. The context C1 describes

the computation of all attributes in two phases. The context C2 only the computation of

syn.gath:

C1 = [visit v1 {syn.gath},visit v2 {inh.mini,syn.repl}]
C2 = [visit v3 {syn.gath}]
C3 = [visit v4 {syn.gath, inh.mini,syn.repl}]

Figure 4.9 shows the relevant subgraphs after embedding the respective contexts C1 and C2.

The dashed edges are already existing edges. The embedding of C3 would lead to a cycle in

the PDG.

A visit-node in a VPDG serves as bookkeeping that a visit to the child is needed to compute

the attributes it is associated with. It represents dependencies induced from the AG-wide

scheduling of attribute computations, and we will ensure later that each visit node has an

associated algorithm that computes the attributes.

Abstraction of visit-nodes. We see later as well that the bookkeeping with visits is too

verbose, so we establish a more compact representation. For that purpose, we change the

syntax of child-vertices. These additionally define in what state a the child is, which can be

used in the graph to abstract from a sequence of visits:

d ::= ...

| child x a -- a child x in state a (initially /0)

158

4.5 Visits Graphs

abstract g

| 〈invoke x i〉 ∈ g ∧ 〈child x a← invoke x i〉 ∈ g =
let v = 〈child x (a⊎ai) 〉

es = {v← syn.x.y | syn.x.y ∈ g}∪
{v← invoke x j | 〈invoke x j〉 ∈ g,〈invoke x i← invoke x j〉 ∈ g}

in abstract ((g∪{v}∪ es)−{invoke x i,child x a})
| otherwise = g

Figure 4.10: Abstraction on a VPDG.

Let g be an acyclic VPDG. Figure 4.10 shows how to abstract from the visit-vertices. We

first remove all visit-vertices. When a visit-vertex i is removed, its associated attributes ai are

added to the child-vertex. There are no visit-vertices left in g after abstract has been applied.

With abstraction applied to a VPDG we obtain scheduled PDGs:

Definition (Scheduled PDG). Given a production P in context C, and context C for its chil-

dren, its VPDG g is a scheduled PDG (SPDG) when:

• The VPDG g is acyclic.

• All reachable synthesized attributes of a child depend on a child node that includes the

synthesized attribute in its state. Thus, for each syn.y ∈ C, for each path in the VPDG

from vertex syn.lhs.y to a vertex syn.x.z, there exists a vertex child x a with syn.z ∈ a.

These two conditions allow us to gradually determine contexts, as we show in the remain-

der of this section. We show in the next section how to convert a SPDG to an execution plan

for a production.

Representation. We determine a set of contexts for each nonterminal, such that there

exists a SPDG for each context and each production. Preferably, the set of contexts is small,

because each context requires a different semantic function. Also, to save traversal overhead,

preferably each context contains visits with many attributes. To determine this set, we use a

more sophisticated representation, the visits graph, which we define below.

Note again that a context is a sequence of visits that is associated with a nonterminal N,

where each visit describes a transition of the configuration of a node associated with N. Given

a set of contexts, sequences of visits may have common intermediate configurations. Thus,

we can represent a set of contexts as a graph, which we call the visits graph:

Definition (Visits graph). Given a set of contexts C, a visits-graph is DAG where the vertices

are the union of JCKvert of each C ∈ C, and the edges are the union of JCKedge of each C ∈ C,

as described by Figure 4.11. The vertices represent configurations, and the edges represent

visits.

159

4 AGs with Commuting Rules

JCKvert = JCKvert (/0)

J /0Kvert (s) = {s}
Jvisit i a : vsKvert (s) = {s}∪ JvsKvert (s∪a)

JCKedge = JCKedge (/0)

J /0Kedge (s) = /0

Jvisit i a : vsKedge (s) = {s
i→ (s∪a)}∪ JvsKedge (s∪a)

Figure 4.11: Vertices and edges of the visits-graph.

s0 = /0 s2 = {inh.mini,syn.gath,syn.repl}

s1 = {syn.gath}

v3

v1 v2

Figure 4.12: Example of a visits-graph which represents contexts C1, C2 and C3.

Figure 4.12 shows the visits-graph that represents the contexts C1, C2 and C3. Note that the

context C2 is fully implied by the other contexts.

For a generated algorithm, a path in the visits-graph represents how a node is visited by its

parent. However, a parent may stop invoking visits after any visit. From a code generation

perspective, it may be beneficial to know at which vertex a parent stops. We can model this

situation in the graph, but we refrain from this complication here.

When two paths in the visits graph converge, this means that two different visit sequences

ended up in the same configuration. Consequently, the children are in the same configuration,

but were potentially subjected to different visit sequences. The VPDGs may thus differ in the

visit-vertices, therefore we need abstract (as defined earlier) to eliminate this difference.

We keep a more complex administration for the visits graph, with vertices of the form s and

edges of the form v, as described by Figure 4.13. We explain some aspects of this notation

below. Figure 4.14 shows this administration for the example.

A vertex of the visits graph represents a context. Per production, a vertex stores the VPDG

in this context, and the states of the children. An edge represents a visit, which is a transition

from one configuration to one of its next configurations. It stores the attributes a, which are

the inherited attributes provided by the parent for the visit, and the synthesized attributes that

need to be computed for the parent. Per production, an edge stores an ordered sequence of

invocations to children that are required for the visit. These visits are grouped in what we call

simultaneous visits. Visits of such a group visit children independently. Note that these visits

may be invoked in any order, and may also be invoked concurrently.

Figure 4.15(a) displays the graphs g1, g2, g3 and g4 that are mentioned in Figure 4.14. The

operation abstract is not yet applied in the graphs. The dotted edges represent the edges that

are inserted due to the embedding of visits. An important property of such a graph is that the

160

4.5 Visits Graphs

s ::= conf N a p -- configuration of a node with nonterminal N (key a)

p ::=prod P k g -- production in a context of nonterminal N

k ::= child x : N a -- configuration of child x (key a)

e ::= s ; v ; s′ -- edge between s and s′

v ::=visit i : N a c -- visit i with production info c (key i, non-empty a)

c ::=prod P r -- sequence of invocation sets r (possibly empty)

r ::= sim m -- simultaneous invocations m (non-empty, unordered)

m ::= invoke x i -- invocation of visit i to x (key i)

g -- VPDG of a production in a given context

N,P -- identifier (nonterminal), identifier (production)

Figure 4.13: Notation for visits-graphs.

simultaneous visits contain precisely those synthesized attributes that can be visited because

the inherited attributes are available (described below with the relation avail), and also need

to be visited in order to produce values for the synthesized attributes.

The example is rather symmetric. The children of the production Bin are treated in the same

way. This is in general not the case and will be handled correctly. For example, children may

be of different nonterminals, or may be visited in a different order. This situation arises when

we use 〈invoke l 3〉 for the left child of the bin-production, or in the example of Section 2.2.

Invariants. The representation of visits graph leads to a recursive set of constraints (pre-

sented below) for which we can incrementally construct a visits graph. For a given attribute

grammar, there may be many possible visits graphs. The way we represent the graph gives

rise to visit sequences that are relatively independent and only compute what is necessary,

but which are not guaranteed to be as large as possible. Different visits graphs may exhibit

small differences in performance, although in principle any visits graph suffices. We impose

a number of constraints on the visits graph for which it is possible to find a solution when the

PDGs are acyclic, and for which it is possible to fine a unique solution.

In the formalization below, we denote a relation as partial function without a right-hand

side, or as (partial) boolean functions. Moreover, when used in a boolean expression, we

consider such relations a total function from the arguments to a Boolean result value, which

is True if and only if the arguments form an element of the relation. When the expression of

a guard has the value ⊥, then the guard itself has the value False. Also, for unbound vari-

ables in pattern expressions we assume existential quantification, unless indicated explicitly

otherwise.

Definition (Available). A vertex d is available in a VPDG g when vertex d can be sched-

uled, and respects the order imposed by g. Formally, the relation avail a g d as defined in

Figure 4.16 (explained below) states whether a vertex d in a VPDG g is available when the

node is in configuration a.

161

4 AGs with Commuting Rules

s0 = conf Tree /0 {p1,p2}
s1 = conf Tree {syn.gath} {p3,p4}
s2 = conf Tree {inh.mini,syn.gath,syn.repl} {p5,p6}
p1 = prod Leaf /0 g1

p3 = prod Leaf /0 g1

p5 = prod Leaf /0 g1

p2 = prod Bin {child l : Tree /0,child r : Tree /0} (abstract g2)
p4 = prod Bin {child l : Tree {syn.gath},child r : Tree {syn.gath}} (abstract g3)
p6 = prod Bin {child l : Tree {inh.mini,syn.gath,syn.repl}

, child r : Tree {inh.mini,syn.gath,syn.repl}} (abstract g4)

v1 = visit 1 : Tree {syn.gath} {c1,c2}
v2 = visit 2 : Tree {inh.mini,syn.repl} {c3,c4}
v3 = visit 3 : Tree {inh.mini,syn.gath,syn.repl} {c5,c6}
c1 = prod Leaf /0

c3 = prod Leaf /0

c5 = prod Leaf /0

c2 = prod Bin {sim {invoke l 1, invoke r 1}}
c4 = prod Bin {sim {invoke l 2, invoke r 2}}
c6 = prod Bin {sim {invoke l 1, invoke r 1},sim {invoke l 2, invoke r 2}}

Figure 4.14: The contents of nodes and vertices of the visits graph of the example.

The relation avail states that a vertex d is available when all its dependencies are available,

with the exception that only the inherited attributes inh.lhs.y are available if they are part of

the configuration a, and that synthesized attributes of visits are only available if there was a

visit that computed them. Thus, avail gives us a notion of which vertices are scheduled in a

VPDG in a given configuration.

Definition (Well-formed). A visits-graph g is well-formed when it satisfies the invariants

below. Additionally, the visits-graph is acyclic, and so are the VPDGs that are stored in the

configurations. Also, in each edge of g or each vertex of g with some nonterminal N, there

is exactly an entry 〈prop P ... 〉 for each production P of N. We omit some straightforward

structural invariants, such as that each visit-edge is annotated with the same nonterminal N

as the nonterminal N of the two configurations it connects.

The main invariant is that all visits that are correctly represented in the graph, which is cap-

tured by the property in Figure 4.17. A visit-edge of nonterminal N requires a transformation

of the VPDG for each production of N. The visit must precisely mention the new attributes

a that are added to a0 to form a1. The sequence of simultaneous invocations r describes

these transitions for the children. When applied to the VPDG g0 of the old configuration,

embed a1 g0 r gives the unabstracted VPDG g1 of the new configuration. Moreover, g1 must

be complete, which means that all the synthesized attributes syn.lhs.y in the new configura-

162

4.5 Visits Graphs

syn.lhs.gath inh.lhs.mini syn.lhs.repl

r1 loc.loc.x r0 r2

(a) VPDG g1 of production Leaf , which has no children.

inh.lhs.mini syn.lhs.gath syn.lhs.repl

child l /0

child r /0

syn.l.gath inh.l.mini syn.l.repl syn.r.gath

inh.r.mini

syn.r.repl

r3 r4

r6

r5

(b) VPDG g2 of production Bin, which has children l and r.

inh.lhs.mini syn.lhs.gath inh.lhs.repl

child l /0

child r /0

syn.l.gath inh.l.mini syn.l.repl syn.r.gath

inh.r.mini

syn.r.repl

r3 r4

r6

r5

invoke l 1

invoke r 1

(c) VPDG g3 after visit v1 in which it visited v1 of the children.

inh.lhs.mini syn.lhs.gath syn.lhs.repl

child l

{syn.gath}

child r

{syn.gath}
syn.l.gath inh.l.mini syn.l.repl

syn.r.gath

inh.r.mini

syn.r.repl

r3

r4

r6

r5

invoke l 2

invoke r 2

(d) VPDG g4 after visit v2 or v3 in which it visited v2 and possibly v1 of the children.

Figure 4.15: VPDGs of the visits graph example.

163

4 AGs with Commuting Rules

avail a g d = all (avail a g) (deps g d) ∧ except a g d

except a g 〈 syn.x.y 〉 | 〈visit x i 〉 ∈ deps g 〈 syn.x.y 〉
| 〈child x a′ 〉 ∈ deps g 〈 syn.x.y〉 ∧ 〈syn.x.y〉 ∈ a′

except a g 〈 inh.x.y 〉 | True

except a g 〈 syn.lhs.y 〉 | True

except a g 〈 inh.lhs.y 〉 | inh.y ∈ a

except a g 〈 rule x 〉 | True

except a g 〈 child x 〉 | True

except a g 〈visit x i 〉 | True

Figure 4.16: The definition of avail.

〈 conf N a0 p0 ; visit i : N a c ; conf N a1 p1〉 ∈ edges VGN =
all3 (transition a1 a) p0 c p1 ∧ a1 ≡ a0⊎a

transition a1 a (prod P k0 g0) (prod P r) (prod P k1 g1) =

abstract (embed a1 g0 r)≡ g1 ∧ complete a1 a g1 ∧ all2 (trchild r) k0 k1

trchild r 〈 child x : N a 〉 〈child x : N a′〉 = a′ ≡ foldl (trsim x) a r

trsim x a 〈 sim m 〉
| x 6∈ children m = /0

| 〈 invoke x i〉 ∈1 m ∧ 〈s ; visit i : N a′ c ; s′〉 ∈ edges VGN = a⊎a′

children m = {x | 〈invoke x i〉 ∈ m}
complete a1 a g1 = all (avail a1 g1) {k.lhs.x | k.x ∈ a}

Figure 4.17: Main invariant: are all visits represented.

tion must be available in g1. Finally, the invocations r also describe the state transitions of

the children. The relation trchild r k0 k1 relates the old configuration k0 of a child to the new

configuration k1.

The relation req a g d in Figure 4.18 specifies if d is required for the synthesized attributes

of a to be available in g. Note that the relation d1 ←∗ d2 represents a possibly empty path

between d1 and d2.

The function embed in Figure 4.18 applies the invocations of visits r to the VPDG g. A visit

may only be invoked if its synthesized attributes are required, since our strategy schedules

only the attributes that are needed. Moreover, the inherited attributes must be available.

The simultaneous invokes represent invocations that can be applied in any order. Since we

test which inherited attributes are available according to g0, the order in which these visits

are applied does not affect the PDGs. This is because the synthesized attributes of the child

are not available in g0, and can thus not be used to make more inherited attributes of another

164

4.5 Visits Graphs

req a g d = d ∈ reqs a g

reqs a g = {d | inh.x ∈ a,syn.y ∈ a,(inh.lhs.x←∗ d←∗ syn.lhs.y) ∈ g}

embed a g 〈 r 〉 = foldl (embed a) g r

embed a g 〈 sim m 〉 = foldl (embed a g) g r

embed a g0 g 〈 invoke x i 〉
| all (avail g0 a) inhs ∧ all (req g0 a) syns

= Jvisit i a′Kvert (x)⊎ Jvisit i a′Kedge (x)⊎g

where

〈 s ; visit i : N a′ c ; s′〉 ∈ edges VGN

inhs = {inh.x.y | inh.y ∈ a′}
syns = {syn.x.y | syn.y ∈ a′}

Figure 4.18: The relations req and embed.

child available. This property allows us to determine visits graphs in a stable way. Some

modifications are possible to this approach to schedule attributes less eagerly.

Further, for each nonterminal N, there must be a vertex in the visits graph with an empty

configuration. An empty configuration consists of an empty configuration for the children

of each production. In addition, for the root symbols of the grammar with a non-empty set

of attributes, the configuration with all attributes defined must be part of the visits graph.

The configurations of the children do not have to be fully defined. Also, there must be an

appropriate edge between these configurations.

Properties. The invariants imposed on the visits graph ensure a number of properties for

which we sketch proofs.

The visits graph is acyclic. The destination configuration connected by an edge is larger than

the edge’s source configuration, because the set of attributes of an edge is not empty. Edges

thus connect distinct configurations. The configurations connected by edges form an ascend-

ing chain, and can thus not be cyclic.

The VPDGs are acyclic. The VPDGs of the initial configurations are by definition acyclic.

The transformation induced by a visit adds visit-vertices, although these keep the VPDG

acyclic. A vertex that is available requires its (indirect) dependencies to be available. Thus,

an available vertex cannot depend on an unavailable vertex. A visit-vertex connects available

vertices to unavailable vertices of synthesized attributes of a child. To form a cycle, such an

available vertex must depend (indirectly) on one of the synthesized attributes. Since such a

vertex is unavailable, a cycle is not possible.

165

4 AGs with Commuting Rules

Consistent visits to children. The edges of the NDG of a child forms the edges between the

child’s inherited and synthesized attributes in the VPDG of a production that contains the

child. Suppose that we visit child x with a as the attributes of the visit. As induction hy-

pothesis, we assume that the available inherited and synthesized attributes of x are part of a

consistent visit sequence. To prove that the visit sequence with the visit added is consistent,

the definition requires us to consider four cases. In each case, one of the attributes is an

element of a.

As the first case, given an attribute inh.x.y and an attribute syn.x.z, suppose that inh.y←+

syn.z in the NDG of x, and syn.x.z ∈ a. Consequently, vertex syn.x.z is unavailable. Then

inh.x.y← syn.x.z in the VPDG, which means that inh.x.y is available. Hence, syn.x.z must be

in the same or later visit as inh.x.y. Proofs for the remaining three cases are similar.

Consistent states. When two potential edges in the visits graph converge, they result in the

same state. Clearly, when two edges converge, the edges have an equivalent set of attributes

a1 as destination state, otherwise the edges would not converge. Then, for both a VPDG g1 of

one edge, and a VPDG g2 for the same production of the other edge, the reqs sets for a1 are

equivalent. The attributes of a child’s state are exactly those in the reqs set, hence the states

of the children are equivalent.

Dependencies between attributes of the same kind. A synthesized attribute syn.x.y can de-

pend on a synthesized attribute syn.x.z and still be computed as part of the same visit when

the inherited attributes both syn.x.y and syn.x.z depend on are available. Similarly, two inher-

ited attributes can both be passed simultaneously to a child when they are both available. An

inherited attribute that depends on a synthesized attribute of the same child, however, cannot

be scheduled to the same visit.

Construction. The size of the visits graph is in both the worst and average case exponential

in the number of attributes. However, we normally need only a small portion of this graph.

In the remainder of this chapter, we call the visits graph of a program a slice of the graph that

we inferred from the program.

To incrementally construct this slice, we distinguish partial and final vertices and edges.

A partial vertex contains the configuration a, but not the administration for the productions.

A final vertex does contain this information. Similarly, a partial vertex contains only the visit

identifier i and the attributes a.

The partial vertices and edges represent information of the graph that needs to be in the

graph, but what we did not compute yet. The final vertices and edges represent already

computed parts of the graph. For example, the initial vertices with an empty state are final

vertices. For the root symbols, we insert a partial edge and partial destination vertex to

the graph. As algorithm, we repeatedly take a partial edge with a final source vertex, and

perform scheduling to turn it into a final edge, and consequently the destination vertex into a

final vertex. Scheduling may result in new edges and vertices being added to the graph.

The algorithm that performs scheduling for final edges computes the information for the

edge as a function of the source state and the attributes a of the edge. This ensures that the

166

4.5 Visits Graphs

order in which we consider pending edges does not affect the resulting visits graph. More-

over, the visits graph is finite, thus if the computation for each pending edge is finite, then so

is the whole computation.

As a given, the input to the algorithm is a set of attributes a of the edge, and the VPDGs

of the productions of the previous configuration. To compute the remaining administration

of the edge, we infer the visits to the children. The embed relation tells us how. We first

determine which vertices are in the reqs set. Then we repeatedly which of the attributes of

the children are required and ready to be scheduled. Those form one group of simultaneous

visits. For each visit, we possibly add a pending edge and a pending vertex to the visits graph,

if such vertices are not yet in the graph. This process terminates because the VPDG is acyclic.

With each iteration, there is either at least one vertex that can be scheduled, or we are done.

The compilation of the largest AG of UUAG takes less than a minute using a slightly

optimized version of the algorithm as sketched above. To improve the performance, the

construction of the graph is relatively straightforward to parallelize. The processing of each

edge is independent and can be done in parallel. Most of the shared state is read-only. Only

updates on the state need to be properly synchronized, but these updates happen relatively

infrequent, and there is likely little contention. The construction of the graph is thus likely

to scale very well. Also, the process may be done incrementally. When a change in the AG

does not affect the PDGs of a nonterminal, the graphs constructed for that nonterminal so far

may be reused as initial visits graph. However, the implementation is performant enough to

be used in practice, even without such optimizations.

Remarks. Both the construction of the PDGs and the visits graph is a whole-program anal-

ysis of the sources related to an evaluation algorithm of a compiler for a particular tree (e.g.

one stage in the compiler pipeline). The requirement that the sources related to one algorithm

must be analyzed as a whole is usually not a problem in large compiler implementations,

because individual algorithms are usually monolithic. When plugins are concerned, such

plugins are typically a separate stage, and would thus be compiled independently. However,

it is in theory possible to defer the computations of the visits graph to load-time, although

then the composition of rules must also be determined at load-time, using meta programming

facilities such as Template Haskell.

There are various customizations posible in the construction on the visits graph which may

have severe consequences for the structure of the graph. The structure of the graph does not

influence the outcome of the attribute evaluation, but may affect execution time.

At the moment of writing, we are still gathering empirical data regarding performance. In

earlier measurements on UHC, the difference between on-demand (lazy) and eager (strict)

attribute evaluation turned out to be insignificant. This may be due to the use of strictness

annotations and DeepSeq in combination with the sequentialization of computations due to

unifications on a chained substitution attribute. However, in earlier measurements with the

AG implementation of the editor Proxima [Schrage and Jeuring, 2004], execution time almost

halved when eager AG evaluation was used. Note that with the rise of multi-core comput-

ing, the effects of visit sequences on parallel behavior may still be significant [Kuiper and

Swierstra, 1990, Klaiber and Gokhale, 1992, Wang and Ye, 1991].

167

4 AGs with Commuting Rules

4.6 Optimizations

The shape of the graph may have an impact on the performance of the generated code. In our

approach, visits are likely to be small and independent, which is beneficial for parallelism and

incremental evaluation. However, when the visits graph is huge, code size becomes a more

pressing issue. The visits graph of the largest AG in the UHC project features about 10,000

configurations. Hence, we require measures to limit the size of this graph.

Subsumption. When the graph is huge, there are many contexts that are similar, yet differ

in one or more attributes because such an attribute was not needed or only needed later. Such

a small difference can easily cause many visits to be needed in the graph.

An edge i from a configuration a with attributes inh.y and syn.z subsumes an edge k from

a with attributes inh.p and syn.q when syn.y ⊆ inh.p and syn.q ⊆ syn.q. When we are about

to declare a visit, but it is subsumed by an already declared visit, we may use that visit in-

stead. This approach can potentially save many contexts, at the expense of producing some

results that are not needed yet. That is usually not a problem, because non-trivial computa-

tions of some node normally have dedicated inherited attributes, thus if one of these inherited

attributes is needed then so is the non-trivial computation that computes the synthesized at-

tribute.

A downside of the subsumption approach is that the order in which edges in the visits graph

are considered may influence the outcome. The effects of such approaches requires further

investigation.

We experimented with the strategy to determine the inherited attributes of a visit based

on the synthesized attributes that are required, but determining the largest set of synthesized

attributes that can be computed from the inherited attributes available so far. This strategy

reduced the graph of UHC’s largest AG to 1,500 nodes, at the slight expensive of returning

one or two attributes more than is strictly necessary. Under the assumption that complex syn-

thesized attributes are always dependent on their own set of inherited attributes, the additional

cost is negligible.

Partial Kastens. Two other decisive factors are the number of attributes and productions,

and sparse dependencies between attribues. The number of productions is typically fixed,

but the number of attributes and the dependencies can be influenced. We can produce an

algorithm for any consistent visit sequence. Consequently, a PDGs can be replaced with

supergraphs as long as these remain acyclic.

In our experience, orderable AGs are absolutely non-circular (Section 1.3.4). If for one

production there is a child x with nonterminal N that has a dependency of an attribute inh.x.y

on an attribute syn.x.z, then this dependency can also be imposed for all other children with

nonterminal N. For such an AG, the approach of Kastens [1980] is applicable.

The approach of Kastens determines a total order on the attributes in the NDGs using

a late-as-possible strategy. As mentioned earlier, this approach likely causes the graphs to

become cyclic. By removing the edges between vertices of strongly connected components

that are not in the original PDG, we obtain a non-cyclic supergraph of the original PDG. This

168

4.6 Optimizations

supergraph has Kastens’ algorithm partially applied, and is likely to have a significant lower

number of possible contexts.

For large AGs, this appears to be the most effective step to limit the state explosion caused

by many productions and attributes. It does not require manual intervention. On the other

hand, it restricts the freedom in choosing smaller and independent visits.

Attribute elimination. In combination with copy rules, it is common practice to define

attributes on nonterminals where they are actually unused, or only used in chains of copy

rules. During the development of an AG, such attributes also show up because the AG is not

finished, thus not all attributes are in use.

Superfluous attributes seem innocent, but actually make the scheduling harder. These at-

tributes and their rules for such nonterminals are largely independent, thus easily lead to many

contexts in the visits graph, because many ways to interleave them are allowed. Further, the

Kastens’ algorithm typically schedules them too early, which causes cycles in the dependency

graphs, thus makes the above approach to reduce contexts less effective.

A combination of dead-code elimination and copy propagation [Nielson et al., 1999] can

be used to eliminate superfluous attributes of a nonterminal. As an additional benefit, their re-

moval may improve the performance of the application, because it prevents the trivial copying

of attributes around the tree.

Similarly to the dependency analysis itself, many analyses for AGs can be specified as a

recursive set of constraints. The common pattern is that some property of a nonterminal is

determined by combining the properties of each production, which we call abstraction. This

property of the nonterminal is then instantiated for each a child of the nonterminal. A fixpoint

can then be computed starting with a fixed value for the nonterminals that are roots, and a

bottom value for the other nonterminals.

In a similar way as shown in Section 4.4, we can define that an attribute is live if it is a

dependency of a live attribute. For the root nonterminal, all synthesized attributes are live.

Since this analysis is defined in terms of the attribute dependencies, the analysis can straight-

forwardly be defined in terms of the dependency graphs. As with dead-code elimination, the

attributes and rules that are not live are removed from the grammar.

Similarly, a collection attribute [Magnusson et al., 2007] is empty if it is composed with

either a copy rule or a monoid’s append from empty attributes. In this case, we start with

non-empty as bottom value, and do not treat start symbols of the grammar in a special way.

Instead, a use rule that depends on no attributes becomes empty as value eventually.

Finally, the output attribute of a copy rule is a copy of an attribute x, where x either equals

z when the input attribute y is a copy of another attribute z, or x equals y otherwise. This

also applies to rules for which we can syntactically determine that its body is essentially

the identity function, For other rules, the output attribute is not a copy of another attribute.

Initially, each attribute is not a copy of any attribute. set of attributes. During abstraction, a

synthesized attribute may be a copy of an inherited attribute if all productions agree on that

attribute.

Given the results of the copy and empty analyses, a rule that depends on an attribute x that

is a copy of y can substitute y for x. A rule that depends on an empty attribute can substitute

the attribute with the empty value, and thus remove the dependency on the attribute. Finally,

169

4 AGs with Commuting Rules

dead-code elimination cleans up the unused copies, unused empty attributes, and unused other

attribues.

The updatable attributes provide some more options for extensions. When an attribute

is constant or the attribute is unique [Hage et al., 2007], these attributes can be stored as a

mutable structure in a global state, and replaced by a single attribute that stores a reference

to that structure. These are analyses that are relatively straightforward to implement and

exploit for BarrierAG, in contrast to general purpose programming languages, which have

complications due to data types and higher-order functions.

4.7 Execution Plans and Generated Code

With each vertex in the visits graph, we uniquely associate an identifier j. For each edge of

the visits graph, and for each of its productions, we construct an execution plan. The vertices

of the VDPG that are required for the new state, but not required for the old state, are the

edges that belong in the plan. In Chapter 3, we described how to derive a total order for the

vertices. In this section, we simply assume that we take a topological sort of the graph.

Plan representation. Figure 4.19 shows the syntax of execution plans, and the execution

plans for the production Bin. We organize the plans per production. For each production, it

contains an execution plan for each edge in the visits graph. The rules are ordered, and visits

to children are made explicit.

Definition (Intra-visit dependency). With each vertex in the visits graph, we associate a set of

intra-visit dependencies. These are values (denoted as descriptors d) in the state of a node that

are potentially needed in later visits. Given a visits graph V , the set of descriptors contained

in s for a production P is intra P s in Figure 4.20 (explained below).

The set of descriptors is determined by taking the descriptors introduced by by a visit, and

those needed by rules of later visits. Also note that the graph g is the graph of the new state for

defs, and the graph of the old state for uses. The difference is in the state of the child-nodes.

Finally, the set of intra-visit dependencies of the initial state and each final state is empty.

From execution plans, we generate visit functions (see also Section 1.3.5). The process for

individual visit functions is largely conventional (Section 2.1, and Section 5.3). However, the

weaving of the visit functions is more complex, because we encode the visits graph, which is

in general not a linear sequence of visits.

The visits graph specifies the possible states of an attributed tree, and models the visits

that can be done on it. Moreover, it specifies which attributes are in which state, and which

attributes are an input or output of a visit. In the generated code, an attributed tree is a value

that represents a vertex in the visits graph. A visit function represents an edge. Figure 4.21

shows their types for the example. Below, we explain these types.

Types. For each vertex j of a nonterminal N in the visits graph, we generate a type T N sj.

This is the type for an attributed tree with nonterminal N and in configuration j. For each

edge i of a nonterminal N in the visits graph, we generate a type T N vi. This is the type

170

4.7 Execution Plans and Generated Code

S ::= sem Γ P : N c q j -- execution plans q of production P, and initial config j

c ::= conf j a -- description of a configuration j

q ::= s ; s′ ; v -- edge between configurations s and s′

v ::=visit i : N a r -- visit combined with rules of the visit

r ::= child x : N = f z⊲ -- (higher order) child declaration

| x : p z⊳ = f z⊲ -- evaluation rule

| sim m -- simultaneous invocations

m ::= invoke x i : N -- child invocation

s ::= conf j k -- configuration of a node

k ::= child x : N j -- configuration of child x

j -- configuration identifier

sem {f1 = field l, f2 = field r, f3 = min, f4 = Bin} Bin : Tree 1

{conf 1 /0,conf 2 {syn.gath},conf 3 {inh.mini,syn.gath,syn.repl}}
[conf 1 {child l : Tree 1,child r : Tree 1}
;conf 2 {child l : Tree 2,child r : Tree 2}
;visit 1 : Tree child l : Tree = f1

child r : Tree = f2
sim {invoke l 1 : Tree, invoke r 1 : Tree}
r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

,conf 2 {child l : Tree 2,child r : Tree 2}
;conf 3 {child l : Tree 3,child r : Tree 3}
;visit 2 : Tree r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

sim {invoke l 2 : Tree, invoke r 2 : Tree}
r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl•

,conf 1 {child l : Tree 1,child r : Tree 1}
;conf 3 {child l : Tree 3,child r : Tree 3}
;visit 3 : Tree child l : Tree = f1

child r : Tree = f2
sim {invoke l 1 : Tree, invoke r 1 : Tree}
r3 : id syn.lhs.gath• = f3 syn.l.gath• syn.r.gath•

r5 : id inh.l.mini• = id syn.r.gath•

r6 : id inh.r.mini• = id syn.l.gath•

sim {invoke l 2 : Tree, invoke r 2 : Tree}
r4 : id syn.lhs.repl• = f4 syn.l.repl• syn.r.repl•]

Figure 4.19: Syntax of execution plans, and the plans of production Bin.

171

4 AGs with Commuting Rules

intra P s = ∪{(uses P s s′∪ intra P s′)−defs P s s′ | (s ; s′ ; v) ∈ V }
uses P 〈 conf N a0 p0 〉 〈conf N a1 p1〉 | 〈prod P k g〉 ∈ p0 =
∪ (map (uses P) (reqs a1 g− reqs a0 g))

uses P 〈 k.x.y 〉 = /0

uses P 〈 child x a 〉
| abs a≡ 0 = ∪{map uses z | 〈child x : N = f z⊲〉 ∈ rules P}
| length a>0 = {child x a}

uses P 〈 rule x 〉 = ∪{z2∪map uses z1
⊳ | 〈x : p z1

⊳ = f z2
⊲〉 ∈ rules P}

uses 〈 z◦ 〉 = {z}
uses 〈 z• 〉 = /0

uses 〈 z× 〉 = /0

defs P 〈 conf N a0 p0 〉 〈conf N a1 p1〉 | 〈prod P k g〉 ∈ p1 =
∪ (map (defs P) (reqs a1 g− reqs a0 g))

defs P 〈 k.x.y 〉 = /0

defs P 〈 child x a 〉 = {child x a}
defs P 〈 rule x 〉 = ∪{map defs z1

⊳ | 〈x : p z1
⊳ = f z2

⊲〉 ∈ rules P}
defs 〈 z◦ 〉 = /0

defs 〈 z• 〉 = {z}
defs 〈 z× 〉 = {z}

Figure 4.20: Intra-visit dependencies of nodes.

for a visit function that takes the tree from its source configuration T N sJiKsource to its target

destination T N sJiKtarget .

We can apply one operation on an attributed tree. Given an typed key K N sj t and a tree

T N sj, the function inv N sj :: T N sj→ K N sj t→ t provides us with the visit function

of type t:

data T N sj where C N sj ::{inv N sj ::∀ t.K N sj t→ t}→ T N sj

The constructor C N sj is essentially a wrapper around the inv function.

The type t can be chosen by a parent by providing a key with this type. The key K N sj t

is a type index. The child can inspect the key to discover which type is actually represented

by t:

data K N sj t where

K N vi1 :: K N s T N vi1

...

K N vin :: K N s T N vin

For each outgoing edge i of j, K N sj contains a key K N vi that serves as evidence that t

172

4.7 Execution Plans and Generated Code

type T Tree = T Tree s1 -- initial configuration of the tree

-- type of tree in a given state s (function from key to visit)

data T Tree s1 where C Tree s1 ::{inv Tree s1 ::∀ t.K Tree s1 t→ t}→ T Tree s1

data T Tree s2 where C Tree s2 ::{inv Tree s2 ::∀ t.K Tree s2 t→ t}→ T Tree s2

data T Tree s3 where C Tree s3 ::{inv Tree s3 ::∀ t.K Tree s3 t→ t}→ T Tree s3

-- type of a key, which identifies a visit v from state s

data K Tree s1 t where

K Tree v1 :: K Tree s1 T Tree v1

K Tree v3 :: K Tree s1 T Tree v3

data K Tree s2 t where

K Tree v2 :: K Tree s2 T Tree v2

data K Tree s3 t where -- empty data declaration

-- type of a visit v, with continuation as the new state s

type T Tree v1 = IO (Int, T Tree s2)
type T Tree v2 = Int→ IO (Tree, T Tree s3)
type T Tree v3 = Int→ IO (Int,Tree,T Tree s3)

Figure 4.21: Types of keys and semantic functions.

equals T N vi. The type K N sj has no constructors when j has no outgoing edges in the

visits graph. Indeed, a tree in such a configuration cannot be visited.

The type of a visit function T N vi is a function of values of the visit’s inherited attributes

to a computation of a tuple of values of the visit’s synthesized attributes, and the new state

of the tree. Since BarrierAG includes updatable attributes, the computation takes place in the

IO monad:

type T N vi = τ inh1
→ ...→ τ inhn

→ IO (τsyn1
, ...,τsynm

,T N sJiKtarget)

The type τ inhk
is the type declared for the inherited attribute inhk of nonterminal N, and τsynk

the type for the synthesized attribute synk.

Translation of semantics-blocks. Figure 4.22 gives the generated code for a produc-

tion2. A sem-block is translated to a node constructor function stj for each state j, which

given values for the intra-dependencies of j, returns a node with this state, thus of type

T N sj. The node constructor st1 constructs the initial state. Therefore it has an empty

set of intra-dependencies and is thus represents the initial value of the node. In contrast, the

node constructor st2 takes the states of the live children as parameter, and values of the live

attributes.

2 The full code of the example can be downloaded from: https://svn.science.uu.nl/repos/project.

ruler.papers/archive/ExampleWarren.hs. It is compilable with GHC version 6.12.3.

173

https://svn.science.uu.nl/repos/project.ruler.papers/archive/ExampleWarren.hs
https://svn.science.uu.nl/repos/project.ruler.papers/archive/ExampleWarren.hs

4 AGs with Commuting Rules

sem Bin :: T Tree→ T Tree→ T Tree

sem Bin field l field r = st1 where

st1 = let k1 :: K Tree s1 t→ t

k1 K Tree v1 = v1

k1 K Tree v3 = v3

k1 = error "unreachable"

v1 :: T Tree v1

v1 = do l1← return f1
r1← return f2
(l gath, l2) ← inv Tree s1 l1 K Tree v1

(r gath,r2)← inv Tree s1 r1 K Tree v1

lhs gath ← return.id $ f3 l gath r gath

return (lhs gath,st2 l2 r2 l gath r gath)

v3 :: T Tree v3

v3 lhs mini = do l1 ← return f1
r1 ← return f2
(l gath, l2) ← inv Tree s1 l1 K Tree v1

(r gath,r2)← inv Tree s1 r1 K Tree v1

lhs gath ← return.id $ f3 l gath r gath

l mini ← return.id $ id r gath

r mini ← return.id $ id l gath

(l repl, l3) ← inv Tree s2 l2 K Tree v2 l mini

(r repl,r3) ← inv Tree s2 r2 K Tree v2 r mini

lhs repl ← return.id $ f4 l repl r repl

return (lhs gath, lhs repl,st3)
in C Tree s1 k1

st2 l2 r2 l gath r gath

= let k2 :: K Tree s2 t→ t

k2 K Tree v2 = v2

k2 = error "unreachable"

v2 :: T Tree v2

v2 lhs mini = do l mini ← return.id $ id r gath

r mini ← return.id $ id l gath

(l repl, l3) ← inv Tree s2 l2 K Tree v2 l mini

(r repl,r3)← inv Tree s2 r2 K Tree v2 r mini

lhs repl ← return.id $ f4 l repl r repl

return (lhs repl,st3)
in C Tree s2 k2

st3 = let k3 :: K Tree s3 t→ t

k3 = error "unreachable"

in C Tree s3 k3

f1 = field l ; f2 = field r ; f3 = min ; f4 = Bin

Figure 4.22: Generated code of the production Bin.

174

4.7 Execution Plans and Generated Code

Jchild x : N = f z⊲Kgen = JxKgen (init N)← lift|z⊲| f Jz⊲K⊲

Jx : p z⊳ = f z⊲Kgen = y← lift|z⊲| f Jz⊲K⊲

Jz⊳K⊳ y where y fresh

Jinvoke x i : NKgen = let vis = invokesJiKsource
JxKsource (i) (K N vi)

(JxKsyn (i),JxKtarget i)← vis JxKinh (i)

JxKinh (i) = {Jinh.x.yKgen | inh.y← aNi
}

JxKsyn (i) = {Jsyn.x.yKgen | syn.y← aNi
}

Jz•K⊳ y = let JzKgen = y

Jz◦K⊳ y = writeIORef JzKgen y

Jz×K⊳ y = JzKgen← newIORef y

Jz•K⊲ = return JzKgen
Jz◦K⊲ = readIORef JzKgen

Jh.c.xKgen = h c x

JxKgen (j) = x j

Figure 4.23: Translation scheme for rules in the execution plan.

The body of a node constructor is a wrapper around a function kj, which returns the visit

function vi given the key K N vi that identifies one of the outgoing edges of j. For each visit

i that is a successor of configuration j, we generate a visit function vi. The visit function vi

takes values for the inherited attributes as parameter that are declared on edge i. It returns

a computation that gives a tuple of the synthesized attributes that are declared on edge i. In

addition , it returns the result state of the node by applying the constructor for the next state

to the values of that state’s intra dependencies.

Figure 4.23 shows a straightforward translation of the rules in the execution plan. We

assume that barrier attributes and dependency rules are stripped from the execution plan and

the administration after the visits graph has been constructed.

For each visit to a child we pass as additional parameter the appropriate key to the invoke-

function of the child’s state, which results in the visit function vis. The function vis subse-

quently takes the inherited attributes as parameters.

For an attribute occurrence z at an input position, either the transcribed identifier JzKgen is

z’s value, or is a reference that can be read from to provide z’s value. In a similar way, an

attribute occurrence z at an output position is either stored as the transcribed identifier JzKgen,

or written to the reference under that name.

Remarks. A nice property of the translation is that we explicitly declare the types of the

visit functions with type signatures. Since the types of the functions f are monomorphic, type

errors are usually to be reported in functions f , which are defined in the actual source code,

so that type errors can be related back to the original locations in the source file. We do not

175

4 AGs with Commuting Rules

need to know the types of local attributes. Also, when we allow type variables in the types,

then these can be supported in our scheme using scoped type variables.

The translation can be optimized in various ways. When a configuration does not have

outgoing edges, a visit to a child that ends in this configuration does not need to construct

nor return the new state of the child, as the child cannot be visited anymore, and the state is

actually empty according to the definition of intra. When a configuration has one outgoing

edge, then the selection of a visit via a key is not needed. Also, when the visits graph for a

nonterminal is a tree, a single key that identifies the path in the tree can be given to the child

when it is created, instead of one segment of the path for each visit.

Instead of relying on Haskell to construct closures, the node constructors can use an un-

typed, updatable array instead. With conventional techniques from register scheduling, the

state can be represented such that needless copying of states is avoided during visits, which

makes visits cheap. In this thesis, we do not venture down this path, and rely on Haskell to

handle closures. A compiler that employes uniqueness and usage analysis [de Vries et al.,

2007, Hage et al., 2007] can apply this optimization transparently.

When a simultaneous invocation group contains more than one visit, we can use forkIO to

allow the Haskell runtime to evaluate the visits in parallel, since these do not have common

dependencies.

4.8 Generalization to Phases

We use BarrierAG as a host language to describe phases. A nonterminal declares a set of

phases. Attributes may be associated uniquely to a phase. A phase corresponds to one or

more implicit visits. Since a visit describes the smallest unit of evaluation of a node in the

tree, a phase describes a larger unit of evaluation. It allows us to express properties of chunks

of AG evaluation, without resorting to the low level details of visits.

The following example is a possible declaration of phases for nonterminal Tree. The in-

dentation determines which attribute is declared in which phase. The scope of the phase

declaration ends before a keyword at the same indentation level:

itf Tree -- declaration of attributes and phases of Tree

syn gath :: Int -- attribute not assigned to a phase

phase distribute -- declaration of a phase distribute

inh mini :: Int -- attribute mini in phase distribute

phase transform -- declaration of a phase transform

syn repl :: Tree -- attribute repl in phase transform

These phase declarations are unordered, and can be specified in any order.

Figure 4.24 shows the notation for phase interfaces. There is a high similarity with the

notation for visit interfaces of Chapter 3. The main difference is that we may specify multiple

blocks of subsequent phases in a phase-block. The lexical nesting of phase declarations (on a

nonterminal) and phase blocks (in a sem-block) impose a partial order on phases. Also order-

rules in combination with begin lhs ρ and end lhs ρ imposes a partial order. A phase-block

176

4.8 Generalization to Phases

I ::= itf N q -- a set of declaration of a phase-interface

q ::=a -- toplevel attribute decl (not associated with a phase)

| phase ρ q -- phase with attribute declarations

d ::= ... -- descriptors extended with phases

| begin x ρ -- begin of a phase ρ of child x

| end x ρ -- end of a phase ρ of child x

s ::= sem N prod P r t -- common rules r and a set of phase blocks t

t ::=phase ρ r t -- common rules r and subsequent phases t

r ::= ... -- AG rules

| invoke ρ of c z -- specifies invocation of phase ρ of c with strategy z

Figure 4.24: Notation for phase interfaces.

of phase ρ2 that is nested in a phase block ρ1 is evaluated either during the evaluation of ρ1

when there is a constraint begin lhs ρ2 ≺ end lhs ρ1, or after the evaluation of ρ otherwise.

Invoke-rules may be explicitly given or be implicit. An invoke-rule r with a phase ρ
corresponds to one or more actual visits to a child x. The rule itself precedes the first of these

visits, thus r ≺ begin x ρ .

The lexical scope of a phase block, which is relevant for local attributes and default-rules,

is only determined by the nesting of phase blocks in a production. Possibly more constraints

on the order induced by other productions or order-rules are not taken into account for scop-

ing. This technical detail ensures that we can determine the vertices of the PDGs before the

dependency analysis takes place.

We essentially have two main evaluation algorithms to choose from: demand-driven eval-

uation and statically ordered evaluation. We may specify several properties of a phase, such

as cyclic or acyclic, and pure or impure. Not all combinations are possible. For example, a

cyclic phase must use on-demand evaluation, and may not be impure. Also, the properties

impose constraints on rules in such a phase, or on rules that invoke such a phase. For example,

an invoke-rule in a pure phase may not invoke an impure phase on a child. The scheduling of

rules takes such constraints into account (Section 3.5.2). In a host language with lazy evalua-

tion, the on-demand algorithm is a simplification of the eager algorithm, hence in this thesis

we focus only on the latter.

Foundation. We express phases in terms of BarrierAG, which we sketch in Figure 4.25.

A dependency rule k.x ≺ k.y on attr-blocks of N is syntactic sugar for rule k.lhs.x ≺ k.lhs.y

in each production of N. For each phase ρ of nonterminal N, we introduce two barrier-

attributes beginρ and endρ . The attributes of the phase are enclosed by these barriers. There

is one master phase N for each nonterminal N where all attributes and phases are enclosed by

via dependencies on its barriers.

The lexical nesting of phases and rules induces additional order constraints, as sketched by

177

4 AGs with Commuting Rules

attr N inh beginN barrier -- begin master phase for N

syn endN barrier -- end master phase for N

attr N inh beginρ barrier -- begin barrier for each phase ρ of N

syn endρ barrier -- end barrier for each phase ρ of N

attr N inh.beginρ ≺ syn.endρ -- begin before end for each phase ρ

inh.beginN ≺ inh.beginρ -- begin ρ after begin master phase

syn.endρ ≺ syn.endN -- end ρ before end master phase

attr N inh.beginρ ≺ k.y -- for each attribute k.y of phase ρ

k.z ≺ syn.endρ -- for each attribute k.y of phase ρ
inh.beginρ ≺ inh.beginρ ′ -- for each nested phase ρ ′

syn.endρ ′ ≺ syn.endρ -- for each nested phase ρ ′

inh.beginN ≺ k.y -- for each attribute k.y not in a phase

k.z ≺ syn.endN -- for each attribute k.y not in a phase

Figure 4.25: Sketch of a translation of phases to BarrierAG.

master

translateanalyze

name tpcheck

Figure 4.26: Phase nesting visualized as a tree.

the following example:

sem N r1 -- inh.lhs.beginN ≺ r1

phase ρ1 -- inh.lhs.beginN ≺ inh.lhs.beginρ1

r2 -- inh.lhs.beginρ1
≺ r1

phase ρ2 -- inh.lhs.beginρ1
≺ inh.lhs.beginρ2

r3 -- inh.lhs.beginρ2
≺ r3

With order-dependencies, and with syntax as demonstrated in Chapter 3, more dependencies

between phases may be specified.

Further, we take the union of all constraints on phases of nonterminal N from each child

with nonterminal N, and integrate these in the NDG of N. The PDGs must remain acyclic,

otherwise the constraints on phases are inconsistent, which is considered a static error.

Phase nesting. A phase may be contained inside another phase. The parent of a node can

invoke the contained phase of the node as part of the evaluation of the containing phase. This

178

4.8 Generalization to Phases

model introduces levels of granularity that allow for more concise specifications. We can

visualize this model as a tree, which we show in Figure 4.26.

Definition (Nesting tree). A nesting tree describes the nesting of phase declarations.

In a nesting tree, the nodes are phases. When a node ρ2 is a child of a node ρ1, ρ1 is a

nested phase of ρ2. The above exemplary tree corresponds to the following phase interface:

itf Expr -- defines the siblings for the root (master phase)

phase analyze -- nested phase in master phase

phase name -- nested phase in phase name

phase tpcheck -- nested phase in phase tpcheck

phase translate -- nested phase in master phase

The above phase interface describes that during the evaluation of the analyze phase of a child,

the name phase of that child is invoked. Different strategies may be specified for the name

phase than for the analyze phase.

The nesting tree can be inferred from the NDG. Given a nonterminal N, N’s phase ρ1 is a

child of N’s phase ρ2, if either:

• inh.beginρ2
←+ inh.beginρ1

and syn.endρ1
←+ syn.endρ2

. In this case, ρ1 is fully

enclosed by ρ2.

• there exists a ρ3 so that ρ3 is a child of ρ1, and ρ3 is a child of ρ2, with in the NDG

inh.beginρ2
←+ inh.beginρ1

or syn.endρ1
←+ syn.endρ2

. In this case, ρ3 is both a child

of ρ1 and ρ2, which we resolve by making ρ1 a child of ρ2.

The constraints form a directed graph per nonterminal, and can be solved with a fixpoint

computation. If the resulting graph is not a tree, then either the constraints are inconsistent, or

too few constraints were specified. Such a nesting tree leads to additional edges between the

barriers of the NDG. If the PDGs become cyclic due to these additional edges, the constraints

on phases were inconsistent. This approach infers a single nesting tree per nonterminal.

The inference of the nesting tree has the advantage that it becomes easier to compose

phases. On the other hand, the nesting of phases is typically limited, and has a purpose, so it

is only a slight burden to specify the nesting fully.

Overlap prevention. Sibling phases may not overlap, otherwise it is unclear which eval-

uation of a node corresponds to which phase. Two phases overlap if either inh.x.beginρ2
←+

inh.x.beginρ1
and syn.x.endρ2

←+ syn.x.endρ1
, or the other way around. However, the de-

pendencies on barriers do not guarantee this property. Given two sibling phases ρ1 and ρ2,

we wish to express that either end ρ1 ≺ begin ρ2 or end ρ2 ≺ begin ρ1. Since siblings are

not ordered, we do not know which of the two to take.

Attribute scheduling is actually a reduction of the ordering of phases. If we define phases

such that each attribute is declared in a unique phase, then determining the order of phases is

attribute scheduling. The order of phases may thus be dependent on context. Therefore, we

take a similar approach as Section 4.5 and define the phases graph.

179

4 AGs with Commuting Rules

phases graph. The phases graph of a nonterminal is the phases graph of the master phase

of the nonterminal. A phases graph is a DAG where each represents a phase, and an edge

from a to b means that a comes before b in the sequence. A vertex is labelled with the phases

graph of its children:

g ::=phase ρ g e -- phases graph of phase ρ (initially the master phase)

e ::=g→ g -- edges connect phases subgraphs

Such a graph g may have several sources and sinks. However, each path from source to

sink must contain precisely all sibling phases, because each path corresponds to an ordered

sequence of siblings in the nesting tree of the nonterminal.

Similar as the visits graph, the phases graph contains all consistent ways to interleave

phases. An interleaving is consistent when it satisfies the partial order of the phases. In

practice, there are only a few phases per nonterminal, with relatively dense constraints, thus

the actual required portion of the graph contains little variety. Also, the problem is slightly

easier compared to Section 4.5 because each path from source to sink is equally long, and the

number of vertices on such a path is known beforehand.

We take a slightly different representation of the phases graph to stress the similarity with

the visits graph. The vertices s of the phases graph represent an ordered sequence of the avail-

able inh.beginρ attributes. An edge is annotated with the attribute that has become available:

s ::=a -- state of a vertex in the phases graph

e ::= s
→
a s -- edge in the phases graph

Note that we can construct the nesting tree from such a sequence.

The purpose of the phases graph is to determine a small number of totally ordered nesting

trees for a nonterminal. In a similar way as with visits, we determine a total order on the

phases of children of a production given the total order on the phases of the production. For

this analysis, we do not add visit-vertices to the PDGs. Instead, we add dependencies between

attributes syn.x.endρ1
and inh.x.beginρ2

for children x and phases ρ1 and ρ2.

Recall that a vertex in a PDG is available when all its dependencies are available. In

this situation, for a begin barrier to be ready, it must have been connected to an end barrier.

Figure 4.27 gives the definition. Further, an end-barrier is required when the begin-barriers

of the phase and its children are available. Sufficient child-edges must be added so that the

(indirect) dependencies of a required end-barrier are available.

Definition (Selectable). A begin-barrier is selectable when the following conditions are met.

• Its dependencies are available. This implies that the begin-barrier of its parent is avail-

able.

• If a begin-barrier of a sibling is available, then so is the end-barrier of that sibling. This

ensures that the phases do not overlap.

Options for child-edges can thus be determined by taking the intersection between se-

lectable and required begin-barriers. If this intersection is empty, then the dependencies on

180

4.8 Generalization to Phases

avail a g d = all (avail a g) (deps g d) ∧ except a g d

except a g 〈 inh.lhs.y 〉 | ¬ isBegin inh.lhs.y ∨ inh.y ∈ a

except a g 〈 inh.x.y 〉 | ¬ isBegin inh.x.y ∨ (d ∈ deps g 〈 inh.x.y〉 ∧ isEnd d)
except a g 〈 syn.c.y 〉 | True

except a g 〈 rule x 〉 | True

except a g 〈 child x 〉 | True

except a g 〈visit x i 〉 | True

isBegin 〈 k.x.beginρ 〉
isEnd 〈 k.x.endρ 〉

Figure 4.27: The relation avail with begin and end barriers.

phases are inconsistent, i.e. forcing the barriers to overlap. If there are multiple options

available, we prioritize based on some stable order, such as the order of appearance.

As initial solution, we start with only the begin-barrier of the master phase available for

each nonterminal. For the root nonterminals, we construct as initial solution a full path by

determining a last-as-possible order given the dependencies of the NDG, and prioritizing

based on the stable order mentioned earlier.

Attribute scheduling. The set of paths from sink to source is in practice small in the

phases graph. The amount of paths is the price to pay for not specifying a total order on

phases. For each path in the phases graph, we determine the accompanying nesting tree. The

set of these trees form the phase interfaces of a nonterminal. For each child, we specify which

phase interface to use, using a type index for the child-rule.

With each phase interface corresponds a specialized version of the NDG and PDGs. We

also construct a separate visits graph per phase interface. Due to the additional dependencies

imposed by the phases-interface, variability in the visits graph is reduced.

Moreover, on each nesting-tree, we can perform additional attribute scheduling. The at-

tributes are restricted by a partial order, and this order may be strengthened if it does not lead

to cycles in the NDG of the nesting tree. For example, we may schedule attributes to the latest

possible phase, or avoid scheduling attributes to certain phases. Such heuristics are similar to

those discussed for rule scheduling in Section 3.5.2.

Remarks. The generalization to phases ensures that our approach is a conservative exten-

sion of ordered attribute grammars. A conventional attribute grammar can be expressed by

associating all attributes with one phase.

The inference of the phases graph is similar to the inference of the visits graph. It may be

possible to combine the inference of both graphs. However, it is not immediately clear how

to express heuristics, such as the avoidance of certain phases, in a combined approach.

181

4 AGs with Commuting Rules

attr Tree thr unq :: Int -- declaration of threaded attribute

sem Root

| Root root.unq = 1 -- initial value of threaded attribute

loc.final = root.unq -- final value of threaded attribute

sem Tree -- modifications to the threaded attribute

| Leaf (loc.myId, lhs.unq) = (lhs.unq, lhs.unq+1) lhs.unq⋄ lhs.unq

| Bin l.unq = lhs.unq lhs.unq⋄ l.unq

r.unq = l.unq l.unq ⋄ r.unq

lhs.unq = r.unq r.unq ⋄ lhs.unq

Figure 4.28: Example of commuting rules.

4.9 Commuting Rules

In this section, we present AGs with commuting rules, which are chained rules that can be

reordered. These commuting rules provide an abstraction for the use of references in Sec-

tion 4.3. Given an explicit ordering of rules, the composition of two rules is commutative

when the two rules are commutable, which means that the rules may be swapped in the com-

position. Rule composition is a conditionally commutative operator. Commutable rules rep-

resent commutable operations. The swapping of rules models side effects, and commutativity

facilitates reasoning about the safe use of side effects.

Syntax. We assume some conventional AG to start with, and show later how to encode the

commutable rules in BarrierAG. Firstly, we introduce threaded attributes, which are a special

form of chained attributes. Secondly, we introduce commuting rules, which specify a set h of

commutable chains the rule participates in:

k ::= ... -- attribute forms (e.g. inh and syn)

| thr -- threaded attribute

r ::= ... -- rules

| x : p z1 = f z2 h -- rule x that commutes over h

h ::= z1 ⋄ z2 -- rule commutes with rules of z1 and z2

The syntax z1 ⋄ z2 specifies that the rule connects chains of z1 and z2. Attribute z1 must be on

an input position, and z2 on an output position. Also, both must be threaded attributes, and

their types must be the same.

The example in Figure 4.28 uses a threaded counter to demonstrate the commuting rules.

Each value of loc.myId is unique, although it is not guaranteed that a right-sibling of a node

has a higher loc.myId value. This would be the case if the rules were not commutable.

The example shows as the first rule of Root how to provide the initial value of a threaded

attribute. This is a rule that defines a threaded attribute, but does not commute over it. Also,

182

4.9 Commuting Rules

sem N | P -- k is a child of production P of nonterminal N

loc.krefx :: IORef τ -- local attribute declarations with type

loc.kwrx barrier -- local barrier declaration

loc.krdx barrier -- local barrier declaration

k.xref
• = loc.krefx

•
-- copy as reference for child

k.xwr ≺ loc.kwrx -- restrain read barrier of child

krdx ≺ k.xrd -- restrain write barrier of child

Figure 4.29: Sketch of the encoding of commuting rules in BarrierAG.

the example shows as the second rule of Root how to obtain the final value of a threaded

attribute, which is a rule that refers to the value of a threaded attribute, but does not commute

over it. Finally, the rules of Tree are commutable rules.

As additional requirement, a rule that defines a threaded attribute lhs.y must mention lhs.y

in its set of commuting chains h. This restriction ensures that the threaded attribute can be

represented as an inherited attribute.

The commuting chains h specifies in which chains a rule participates:

uses h = {z1 | 〈 z1 ⋄ z2〉 ∈ h}
defs h = {z2 | 〈 z1 ⋄ z2〉 ∈ h}

A rule with h connects uses h to defs h.

BarrierAG encoding. We use a BarrierAG encoding as a means to specify the implemen-

tation of commuting rules. We represent each threaded attribute thr x ::τ with three attributes

in BarrierAG:

inh xref :: IORef τ -- reference to the mutable state

syn xwr barrier -- all commutable updates before this barrier

inh xrd barrier -- all non-commutable updates after this barrier

Thus, a threaded attribute is a reference to a mutable state. We ensure in the encoding that

rules only depend on the reference, which permits the reordering. As invariant, the write

barrier of the child depends on all commuting rules of the child (and its subtree) that update

the reference. All non-commuting rules that refer to the reference depend on the read barrier.

For each threaded attribute thr y :: τ of a child k, we introduce three local attributes, and

rules to connect the local attributes with the attributes of the child. Figure 4.29 gives a sketch.

Note that krefx is the name of the attribute. The name of the child k is part of the name of the

attribute.

When a rule refers to the threaded attribute of k, we actually let it refer to the local at-

tributes, as we show below. For notational convenience, we also introduce these local at-

tributes for threaded attributes of lhs:

183

4 AGs with Commuting Rules

lhs.unqref lhs.unqrd lhs.unqwr

loc.lhsrefunq loc.lhsrdunq
loc.lhswrunq

loc.lrefunq loc.lrdunq
loc.lwrunq

l.unqref l.unqrd l.unqwr

loc.rrefunq loc.rrdunq
loc.rwrunq

r.unqref r.unqrd r.unqwr

r1 r2 r3r◦1

r◦2

ref

wr

rd

Figure 4.30: Attributes encoding the commutative rules of the production Bin.

loc.lhsrefx

•
= lhs.xref

• -- copy as reference

loc.lhswrx ≺ lhs.xwr -- restrain read barrier

k.lhsrd ≺ lhsrdx -- restrain write barrier

These rules for lhs are the contravariant version of the rules for children.

Non-commuting write. When a rule x with commuting chains h defines a threaded attribute

thr.k.y, but thr.k.y 6∈ defs h, rule x serves as initializer for the threaded attribute. In the encod-

ing, the defining occurrence thr.k.y in the left-hand side of rule x is replaced with loc.krefy
×

.

Moreover, we add the following dependency rule:

loc.kwry ≺ loc.krdy -- orders writes before reads

Since k is the start of the chain, and given the invariants on the read and write barriers, this

dependency rule ensures that commutable writes take place before non-commutable reads.

Non-commuting read. When a rule x with commuting chains h refers to a threaded attribute

thr.c.y, but thr.c.y 6∈ uses h, rule x reads the final value of the threaded attribute. Thus, we

replace the occurrence thr.c.y in the right-hand side of rule x with crefy
◦
, and add the following

dependency:

loc.crdy ≺ rule x -- the read depends on the read barrier

The identifier c is either a child k or lhs.

Commuting read and write. When a rule x with commuting chains h refers to a threaded

attribute thr.c.y, and thr.c.y ∈ defs h, we replace the defining occurrence in the left-hand

side of x with crefy
◦
. When thr.c.y ∈ uses h, we replace the occurrence in the righthand side

of x with crefy
◦
. Moreover, we insert a rule x◦ for each commuting chain, which copies the

reference and thus links the chain. Also, we connect the read and write barriers:

184

4.9 Commuting Rules

x◦ : id k.y2
• = id c.y1

• -- for each c.y1 ⋄ k.y2 ∈ h (copies the reference)

rule x ≺ loc.cwry -- for each attribute y in h (rule before write barrier)

loc.cwry2
≺ loc.kwry1

-- for each c.y1 ⋄ k.y2 ∈ h (connect write barriers)

loc.crdy1
≺ loc.krdy2

-- for each c.y1 ⋄ k.y2 ∈ h (connect read barriers)

When lhs.y ∈ defs h, the read and write barrier are not connected, as it would create a cycle.

Also, note the contravariant behavior between the read and write barrier.

The barrier attributes and dependency rules enforce the proper ordering of rules that use

threaded attributes. Figure 4.30 demonstrates the encoding for the Bin-production. The boxes

represent attributes. The circles represent the relevant rules. The barriers and their dependen-

cies are not part of the generated code, and thus do not have a runtime overhead. As a

consequence, we actually transformed a chained attribute into an inherited attribute with a

reference to a mutable state.

Referential transparency. Referencial transparency is important for equational reason-

ing. For AGs, it is also important to ensure that the order of evaluation does not affect the

result. In BarrierAG, rules that use updatable attributes break referential transparency. How-

ever, with commutable rules, we can establish a weaker version of referential transparency.

When two rules commute, the actual values for the attributes that these rules define may be

different, but in the context where these rules are defined, the final result, which abstracts

from the values of the attributes, may still be equivalent to any ordering of the commutable

rules.

The composition of rules, and the context of rules can be made explicit with arrow nota-

tion. A commuting rule r1 : (x1,y1) = f (x0,y0), x0 ⋄ x1 and a commuting rule r2 : (x2,z1) =
g (x1,z0), x1 ⋄ x2 correspond respectively to the arrows (x1,y1)← f ≺ (x0,y0) and (x2,z1)←
g ≺ (x1,z0). Section 1.3.9 shows that the composition of these rules can be expressed as an

arrow:

proc (x0,y0,z0)→ do

(x1,y1)← f ≺ (x0,y0)
(x2,z1)← g≺ (x1,z0)
returnA (x2,y1,z1)

Alternatively, when we reorder f and g, and rename the attributes, we obtain the following

arrow:

proc (x0,y0,z0)→ do

(x1,z1)← g≺ (x0,z0)
(x2,y1)← f ≺ (x1,y0)
returnA (x2,y1,z1)

This notion can straightforwardly be generalized to rules that commute over many attributes,

or define and use many other attributes.

185

4 AGs with Commuting Rules

These two rules are commutable over attributes of x0,x1 and x1,x2 if their compositions are

equivalent for a given rule context h, and r1 6≺ r2:

h

proc (x0,y0,z0)→ do

(x1,y1)← f ≺ (x0,y0)
(x2,z1)← g≺ (x1,z0)
returnA (x2,y1,z1)

≡ h

proc (x0,y0,z0)→ do

(x1,z1)← g≺ (x0,z0)
(x2,y1)← f ≺ (x1,y0)
returnA (x2,y1,z1)

If there exists directly or indirectly a dependency between r1 and r2 then the rules may not

commute. This is for example the case when r1 defines a (non-threaded) attribute that is used

by r2, or because of a dependency rule.

The rule context h is an abstraction of the composition in which the composition of f and

g is contained. For example, h can represent the composition of the rules of the entire tree,

and thus the rule states that the end result of the computation is not affected. In practice, we

take a more abstract notion of h. For example, the property that all loc.myId attributes have a

unique value. In Section 2.2 we give some examples of the function h.

Remarks. To reason with commutable rules, we may need to make assumptions about the

order of evaluation. This is, for example, the case when the values of the attributes are trace

monoids [Diekert and Métivier, 1997]. Phases can be used for this purpose.

The identification of commuting rules may be relevant for the parallel and incremental

evaluation of attribute grammars. Chained attributes sequentialize code, whereas commuting

rules allow more interleaving. Similarly, during incremental evaluation, changes in a subtree

that appears earlier in the evaluation may be lifted over a later subtree if these changes are

visible in a threaded attribute.

Commutable rules can also be used to collect statistics or other runtime properties about

the evaluation process, such that the attribute-dependencies of the collecting rules have only

a minor influence on the evaluation process. For example, a count of the nodes of the tree

traversed so far may be an indication of how much work has been done.

In case of type inference, substitutions may be represented as a threaded attribute, so that

the threading of the substitution does not influence the order of evaluation. Traditionally,

unification is only a commutable operation when all unifications succeed. By encoding the

substitution as a graph structure, it is possible to make unification a commutable operation

also in the case of a type conflict [Heeren, 2005].

4.10 Related Work

The ability to compose attribute grammars is an important benefit that attribute grammars

offer. In fact, AGs are so easily composed that the compositions may accidentally become

inconsistent, i.e. have attributes with a cyclic definition. Knuth [1968] proves that an AG

is well-defined if and only if the dependency graphs of productions are cycle-free according

to his refined algorithm (Knuth-2). When the dependency graphs are cycle-free according

to Knuth’s original algorithm (Knuth-1) then the AG is well-defined, but not necessarily

186

4.11 Conclusion

the other way around. These are static properties of AGs that provide guarantees that the

evaluation of an AG terminates.

Knuth-2 uses a dependency graph per production/child production combination, in contrast

to a single dependency graph per production as the Knuth-1 approach uses. Knuth-2 leads to

an approximate number of dependency graphs per production in the order (pb), where p is the

number of productions of the child nonterminals, and b is the number of children. In practice,

e.g. for the let-production of a lambda calculus, p is rather large (p> 10), but b is typically

small (b 6 2). However, we usually define a fine granularity of nonterminals so that distinct

dependency graphs per production/child production combination does not offer an advantage

over a single graph per production.

In our experience, AGs are either necessarily cyclic, or are cycle-free in both Knuth-1 and

Knuth-2. If the AG is not cycle-free with Knuth-1, then this is an indication that the AST does

not have sufficient structure, which is not likely in strongly typed languages. In the first case,

on-demand evaluation may still yield results for attributes, although it is the responsibility

of the programmer to ensure this. In the second case, we know that an evaluation order

exists, and can use a statically ordered evaluation algorithm. A statically ordered evaluation

algorithm is likely to exhibit better time and space behavior, and actually permits minor

assumptions about the evaluation order to be made.

Kastens [1980] presented an approach to infer a visit interface per nonterminal. Unfor-

tunately, when using the Kastens approach, we often encounter cycles that are induced by

the scheduling as resulting from Kastens’ scheduling algorithm. These induced cycles ham-

per compositionality, because as remedy, we need to add artificial dependencies between

attributes to the AG to control the scheduling. Also, the effect of scheduling is not visible

in the original rules of the grammar, which makes such cycles very hard to understand and

resolve.

The approach by Kennedy and Warren [1976] can find a solution, but may possibly result in

an exponentially large solution. In practice the solution is not so large: In our experience, this

approach works very well for small AGs. For large AGs, however, the exponential behavior

may show up. To counter this behavior, we provide sufficient mechanisms to restrict the set

of solutions.

4.11 Conclusion

This chapter demonstrates one of the great strengths of attribute grammars: the ability to

statically analyse the grammar with abstract interpretations. As one of the main contributions

of this chapter, we reformulated the approach of Kennedy and Warren [1976] so that it can be

used to generate code for a strongly typed, purely functional host language. For absolutely

non-circular AGs, this approach finds a way to order the rules statically.

By using such an approach, it is not needed to explicitly schedule attributes and rules,

unless these need to be given special properties. We introduce the notion of phases for this.

Since the ordering of attributes and rules can be inferred, we may omit such details from our

specification. Consequently, the specification becomes more concise and easier to compose,

which is beneficial from an engineering point of view.

187

4 AGs with Commuting Rules

The price that we pay is that such an analysis can only give an answer per context, such as

a context dependent phase or visit interface, and a nonterminal may be in exponentially many

contexts. A programmer typically has some evaluation order in mind, thus is usually able to

specify a single order that works in all contexts, which may reduce the size of the generated

code, compile time, and the execution time. On the other hand, if there is not a single order

that works in all contexts, then a programmer is not likely to be able to keep track of all the

possibilities manually. We presented phases as a means to specify knowledge about the order

of evaluation, without going into the fine details, as in Chapter 3.

Also, for some problems, the order imposed by attribute dependencies may be too restric-

tive. We presented commuting rules as a means to loosen some restrictions. Commuting rules

can be used when a number of rules form a chain, and the individual ordering of the rules

is not relevant for the result. A typical example is a sequence of rules that provides unique

numbers to nodes in the tree. When the requirement is only that each number is unique, the

actual order in which numbers are handed out is does not invalidate that requirement.

As future work, more quantitative insight is needed about the effects of dependency anal-

ysis on the performance of the generated code. In earlier experiments, the impact seemed

negligible, although the results differed from one AG to another. Also, we need more insight

which heuristics have impact on the size of the visits graph. For example, it appeared that

our approach in which we only compute what is needed resulted in less paths in the visits

graph than the approach where we compute as much as possible. However, more quantitative

evidence is required to draw such conclusions.

Another direction of future work is an extension of the Kennedy-Warren approach with

support for cyclic AGs. Given a collection of cyclic PDGs, we can determine which attributes

of the NDGs are mutually dependent. By grouping these attributes in a separate phase that

uses lazy evaluation (for example) as evaluation algorithm, we can support a combination of

a cyclic and non-cyclic AGs.

188

5 Derivation Tree Construction

Type inference on a program is the gradual process of constructing a typing derivation, which

is a proof that relates the program to a type. During this process, inference algorithms analyze

the intermediate states of the typing derivation to direct the construction of the proof.

Since a typing derivation is a decorated tree, we aim to use attribute grammars to implement

type inference. In their present form, it is hard to express type inference in attribute grammars,

because attributes are defined in terms of the final state of the decorated tree.

We present the language RulerCore, a conservative extension to ordered, higher-order at-

tribute grammars, that permits both the structure and attributes of the tree to be defined based

on intermediate states of the tree. We show that both iteration-based and constraint-based

inference algorithms can be expressed straightforwardly in RulerCore.

5.1 Introduction

Attribute grammars (AGs) are traditionally used to specify the static semantics of program-

ming languages [Knuth, 1968]. Moreover, when semantic rules of an AG are written in a gen-

eral purpose programming language, the AG can be compiled into an (efficient) multi-visit

tree walk algorithm that implements the specification [Kennedy and Warren, 1976, Kastens,

1980].

We implemented a substantial part of the Utrecht Haskell Compiler (UHC) [Dijkstra and

Swierstra, 2004, Fokker and Swierstra, 2009] with attribute grammars using the UUAG sys-

tem [Löh et al., 1998]. Haskell [Hudak et al., 1992] is a purely functional programming lan-

guage, with an elaborate and expressive type system. We also compile our attribute grammars

to Haskell. The ideas presented in this chapter, however, are not restricted to any particular

language.

Attribute grammars benefit the implementation of a compiler for several reasons. Firstly,

the evaluation order of semantic rules is determined automatically, unrelated to the order of

appearance. Rules may be written separately from each other, and grouped by aspect, which

makes attribute grammars highly composable [Viera et al., 2009, Saraiva, 2002]. Secondly,

semantic rules for idiomatic tree traversals (such as: topdown, bottom-up, and in-order) can

be inferred automatically, thus allowing for concise specifications. These advantages play an

important role in the UHC project [Dijkstra et al., 2009].

Two essential components of UHC’s type inferencer, polymorphic unification and context

reduction, would benefit from an AG-based implementation. For example, when polymorphic

unification is defined as an AG, many of its required attributes can be automatically provided

by the AGs of expressions and declarations. However, we implemented these components

directly in Haskell, because it is not obvious how to express these as an attribute grammar.

189

5 Derivation Tree Construction

These two components present two challenges to attribute grammars. Firstly, the grammar

needs to produce typing derivations. The structure of such a derivation depends on what is

known about types, and this information gradually becomes available during inference, typ-

ically as a result of unifications. This requires a mixture of tree construction and attribute

evaluation, which are normally separate tasks if one takes an AG view. Secondly, the con-

struction of a proof of a subgoal may need to be postponed when it depends on a type that is

not known yet. After more of the structure of the proof is determined, the type may become

known and the postponed construction can continue.

An evaluator for an attribute grammar starts from a given tree (usually constructed by the

parser), and evaluates the attributes using a fixed algorithm. We present AG extensions to

customize the algorithms, without loosing the advantages that AGs offer. More precisely, our

contributions are:

• We present the language RulerCore, a conservative extension of ordered attribute gram-

mars. It has three concepts to deal with the above challenges:

– We exploit the notion of visits to the tree. In each visit, some attributes are com-

puted, as we explained in Chapter 3. Visits can be done iteratively. The number

of iterations can be specified based on the values of attributes.

– We define abstract grammars on the structure of typing derivations. Productions

are chosen based on the values of attributes. Moreover, we present clauses, which

allows the choice of a production to be refined per visit.

– Derivation trees are first class values in RulerCore. They can be passed around as

attributes, and can be inspected by visiting them.

In Section 5.3, we define a denotational semantics for RulerCore via a translation to

Haskell.

• In Chapter 3, we gave an introduction to RulerCore. In this chapter, we show how

RulerCore can be used to express type inference. Section 5.2 presents an extensive

example that motivates the design of RulerCore.

• An implementation of RulerCore is available at: https://svn.science.uu.nl/

repos/project.ruler.papers/archive/ruler-core-1.0.tar.gz. It includes

several examples. The implementation supports both statically ordered and demand

driven evaluation of attributes.

• We compare our approach with other attribute grammar approaches (Section 5.4) as a

further motivation for the need for RulerCore’s extensions.

5.2 Motivation

In this section, we show how to implement a small compiler for an example language we

named SHADOW, written with attribute grammars using RulerCore. The implementation of

SHADOW poses exactly those challenges mentioned in the previous section, while being small

enough to fit in this chapter.

190

https://svn.science.uu.nl/repos/project.ruler.papers/archive/ruler-core-1.0.tar.gz
https://svn.science.uu.nl/repos/project.ruler.papers/archive/ruler-core-1.0.tar.gz

5.2 Motivation

5.2.1 Example: the Shadow-language

We take for SHADOW the simply-typed lambda calculus, with two small modifications: we

annotate bindings with a unique label u (i.e. λxu.), and allow identifiers to refer to shadowed

bindings. For example, in the term λxu1 .λxu2 .f x, the expression x normally refers to the

binding annotated with u2. However, if the expression cannot be typed with that binding,

we allow x to refer to the shadowed binding annotated with u1 instead, if this interpretation

would be well-typed1. The interpretation of this expression is thus by default λu1.λu2.f u2,

but under some conditions (defined more precisely further below) it may be λu1.λu2.f u1.

The compiler for SHADOW takes an expression (of type ExprS), type checks it with respect

to the environment Env, and maps it to an expression (of type ExprT) in the simply-typed

lambda calculus. It is realized as a function compile :: Env→ ExprS→ ExprT:

-- concrete syntax and its abstract syntax in Haskell

eS ::= x | eS eS | data ExprS = VarS Ident | AppS ExprS ExprS

λxu.eS | LamS Ident Ident ExprS

eT ::=u | eT eT | data ExprT = VarT Ident | AppT ExprT ExprT

λu.eT | LamT Ident ExprT

τ ::=α | Int | τ → τ data Ty = TyVar Var | TyInt | TyArr Ty Ty

Before delving into the actual implementation, we first give a specification of the type system,

together with translation rules.

Γ ⊢ eS : τ eT

innermost xu of all:

xu : τ ∈ Γ

Γ ⊢ x : τ u
VAR

Γ ⊢ f : τ1→ τ2 f ′

Γ ⊢ a : τ1 a′

Γ ⊢ f a : τ2 f ′ a′
APP

Γ,xu : τ1 ⊢ e : τ2 e′

Γ ⊢ λxu.e : τ1→ τ2 λu.e′
LAM

Each lambda is assumed to be annotated with a unique identifier u. Rule VAR is rather infor-

mal2. Of all the bindings for x with the right type τ , the innermost one is to be chosen. Its

annotation u is used as name in the translation. The rule APP is standard. In rule LAM, the

type of a binding is appended to the environment. The annotation of the binding is used as

the name of the binding in the translation.

Given an (empty) environment, a SHADOW expression, and optionally a type, we can man-

ually construct a derivation tree using these translation rules. The lookup of a binding poses

a challenge due to context sensitivity. For example, for λxu1 .λxu2 .f x, the choice between

translations λu1.λu2.f u1 and λu1.λu2.f u2 depends on what the program, where this expres-

sion occurs in, states about the type of f and the type of the entire expression by itself. When

1 The language SHADOW can be used to model typed disambiguation of duplicately imported identifiers from

modules. However, SHADOW is only an example. Its design rationale is out of the scope of this section.
2 Actually, the specification itself is incomplete and informal. We stress that our goal is not to rigorously discuss

and prove properties about SHADOW. Instead, we show RulerCore and its concepts. The translation for SHADOW

acts as illustration.

191

5 Derivation Tree Construction

the context imposes insufficient restrictions to find a unique solution, the VAR states that we

should default to the innermost possibility3.

5.2.2 Relation to Attribute Grammars

We focus on writing an implementation for the above translation rules with attribute gram-

mars using RulerCore. For each relation in the above specification, we introduce a nonter-

minal in the RulerCore code. The parameters of the relations become attributes of these

nonterminals, thus also the expression part which is normally implicit in an AG based de-

scription. Derivation rules become productions, and their contents we map to semantic rules.

The productions do not contain terminals: only the values of attributes determine the struc-

ture of the derivation tree. Thus, the grammar defines the language of derivation trees for

the translation rules. Note that this differs from the standard AG approach, where a single

specific parameter of the relations fully determines the shape of the derivation tree.

Operationally, the algorithm, which specifies the construction of the derivation tree, picks

a production, recursively builds the derivations for the children of the production, computes

attributes, and if there is a mismatch between the value of an attribute and what is expected

of it, backtracks to the next production.

We treat productions a bit differently in order to capture the gradual process of type infer-

ence. Final decisions about what productions are chosen to make up the derivation tree cannot

be made until sufficient information is available. Therefore, we construct the derivation tree

in one or more sequential passes called visits.

As key feature of RulerCore, the grammar may contain productions per visit of a non-

terminal. To make the distinction clearer, we call these productions clauses. During the

construction of the part of a derivation for a visit, we try to apply the available clauses to

build the portion of the derivation tree for that visit. When successful, we finalize the choice

for that clause (similar to the cut in Prolog). The next visit can thus assume that those parts of

the derivation tree constructed in previous visits is final. Moreover, we often wish to repeat a

visit when type information was discovered that sheds new light upon decisions taken earlier

during the visit. The upcoming example code shows this behavior several times.

In a conventional AG, each node in the AST is associated with exactly one production. In

RulerCore, however, we may at each visit refine the production that is associated with the

node. So, we can regard our approach as having our productions organized as the leafs of a

tree of clauses, and at each next visit we specialize the choice by going down one of the paths

in the tree. Paths in this tree determine actual productions.

A RulerCore program is a Haskell program augmented with attribute grammar code. We

generate plain Haskell code from such a program. For each production of RulerCore we gen-

erate a coroutine in Haskell. These coroutines are encoded as continuations. The following

is a code snippet of a RulerCore program. We explain the syntax further below:

module MyCompiler where

data ExprS = ... -- Haskell data declaration

3 This example has a strong connection to context reduction in Haskell. The inference rules are type-directed. Such

rules may be overlapping, and the choice of which rule to apply in a typing derivation may be ambiguous.

192

5.2 Motivation

itf TransExpr ... -- RulerCore nonterminal and attribute declaration

itf TransExpr ... -- additional attribute declarations for nonterminal

ones = 1 : ones -- Haskell binding

translate = sem transExpr :: TransExpr -- embedded production

... rules ... -- rules of RulerCore

sem transExpr ... rules ... -- additional rules for production

sem transExpr ... rules ... -- even more rules

With an itf-block, we define a nonterminal and its attributes. With a sem-block, we we

define a production, and its clauses and rules, inside a Haskell expression. The sem-block is

substituted with the coroutine that is generated for transExpr. This coroutine is thus a Haskell

expression that, and is bound to the Haskell identifier translate. Additional clauses and rules

can be given in separate toplevel sem-blocks.

The coroutines that we generate from productions are known as visit functions [Swierstra

and Alcocer, 1998]. Inputs to and outputs of the coroutine represent inherited and synthesized

attributes respectively. Clauses are mapped to function alternatives of the coroutine. The

internal state of the coroutine represents the derivation tree. This state contains instances of

coroutines (their closures) that represent the children. An invocation of such a visit function

corresponds to a visit in the attribute grammar description. An invocation of a visit function

of a root nonterminal thus corresponds to the partial construction of the root node of the

derivation tree. Section 5.3 shows the translation to Haskell.

In RulerCore, a production is the root of a tree of clauses. Thus, we can represent a pro-

duction of a conventional grammar as a production in RulerCore. Alternative, as we do in

the example, we can also introduce only one production per nonterminal, and use clauses to

represent productions of a conventional grammar. The distinction is mainly technical: pro-

ductions can be used when the tree is determined before attribute evaluation (the productions

form an algebra), whereas clauses can be used to determine the structure of the tree based on

attribute values.

5.2.3 Typing Expressions

Figure 5.1 gives a rudimentary sketch of a derivation tree and some of the nonterminals and

productions that we introduce. The root node corresponds to production wrapper of non-

terminal Compile. It has a child which is related to production transExpr of nonterminal

TransExpr. Production transExpr consists of clauses exprVar, exprLam, etc. for the various

forms of syntax of SHADOW. In locating an identifier in the environment, three nontermi-

nals play a role. Clause lookupTy of nonterminal Lookup has a list of children, each with

nonterminal LookupMany. Each child is associated with a clause lookupLam of nonterminal

LookupOne, and represent a choice for a binding. The dotted line points to that binding. At

the end of inference, at most one of these choices remains per child with nonterminal Lookup.

We declare a type TransExpr for the production transExpr, which describes the interface

of a nonterminal. The interface declares the visits and attributes of a nonterminal:

itf TransExpr -- declaration of nonterminal TransExpr

inh env :: Env -- inherited attr (belongs to some visit)

193

5 Derivation Tree Construction

Compile.wrapper

TransExpr.exprLam

TransExpr.exprLam

TransExpr.exprVar

Lookup.lookupTy

LookupMany.lkCons

LookupMany.lkCons

LookupMany.lkNil

LookupOne.lookupLam

LookupOne.lookupLam

u2

u1

Figure 5.1: Sketch of a derivation tree for λxu1 .λxu2 .x

visit dispatch -- declares a visit

inh expr :: ExprS -- inherited attr (belongs to visit dispatch)

type Env = Map Ident [LookupOne] -- shown further below

In this case, a production of a nonterminal TransExpr has a single visit named dispatch, and

two inherited attributes. The attribute expr contains the expression to translate. We define

more attributes and visits on TransExpr below.

The visits are totally ordered based on value-dependencies between attributes that are de-

rived from the clauses in the whole program. This order is constructable when the attribute

dependencies are acyclic. Chapter 3 explains how to derive this order, and Chapter 4 general-

izes that approach. Attribute expr is declared explicitly for visit dispatch (note the indenting).

The env attribute is not declared for a particular visit. The latest visit it can be allocated to is

determined automatically.

From the interface of a nonterminal, a Haskell type for the coroutines is generated. Also,

wrapper functions (Section 1.3.1) to invoke the coroutines and access or provide values for

attributes from the Haskell code are generated from the interface.

We introduce a production transExpr with nonterminal TransExpr using a sem-block, em-

bedded in Haskell code. This sem-block is translated to a coroutine in plain Haskell:

-- embedded toplevel Haskell code:

translate = sem transExpr :: TransExpr

We bind it to the Haskell name translate, such that we can refer to it from the Haskell code.

The nonterminal name transExpr is global to the entire program. The Haskell name translate

follows Haskell’s scoping rules.

If we visit a transExpr-node for the first time, we have to see what kind of expression we

have at hand. We do so by defining a number of alternative ways to deal with the node by

194

5.2 Motivation

introducing a couple of named clauses. For each of the clauses, we subsequently introduce

further sem-rules to determine what has to be done. Unlike most of the other code that we

give in this section, the order of appearance is relevant for clauses. Operationally, clauses are

tried in that order:

sem transExpr -- production with clauses

clause exprVar of dispatch -- typical name of first visit

clause exprApp of dispatch

clause exprLam of dispatch

sem exprVar -- clause with rules (or clause of next visit)

-- semantic rule (i.e. to match against attributes)

-- semantic rule (i.e. to define a child)

-- perhaps clause of next visit (in scope of this clause)

Clauses provide a means of scoping. For example, we typically declare clauses of the next

visit in the scope of the parent clause (i.e. clause taken at the previous visit). These inherit all

the attributes and children in scope of that clause. Otherwise, they only inherit the common

attributes and children. This enforces as well that the embedded clause takes place after the

enclosing clause.

With a clause, we associate a couple of semantic rules, all of which may fail and cause

backtracking, may have an effect on the derivation tree we are constructing, or lead to a

runtime error.

• match pattern = code -- match-rule

match (VarS loc.nm) = lhs.expr -- example

The Haskell pattern pattern must match the value of the right hand side. Evaluation of

the rule requires the full pattern match to take place, or causes a backtrack to the next

clause.

Variables in the pattern refer to attributes, and have the form childname.attrname. The

child name lhs is reserved to refer to the attributes of the current node. Furthermore,

child name loc is a virtual child that conveniently stores local attributes, analogously

to local variables. In the example, lhs.expr thus refers to the inherited attribute expr of

the current node.

• pattern = code -- assert-rule (not prefixed with a keyword)

The meaning of an assert-rule is similar to the match-rule, except that the match is

expected to succeed. If not, its evaluation aborts with a runtime error.

• child name :: I = code -- child-rule

child fun :: TransExpr = translate -- example

In contrast to a conventional attribute grammar, we construct the tree during attribute

evaluation. The rule above creates a child with the given name, described by a non-

terminal with interface I, and defined by the coroutine code. For example, code could

195

5 Derivation Tree Construction

be the expression translate, or a more complex expression. Further below, we show an

example where the code for a child is provided by an attribute. Evaluation of the child

rule creates a fresh instance of this coroutine. This child will thus have its own set of

attributes defined by I.

• default name [= f] -- default rule

Provides a default definition for all synthesized attributes named name of the produc-

tion and all inherited attributes of the children that are in scope. This default definition

applies only to an attribute if no explicit definition is given. We come back to this rule

further below.

We introduce more forms of rules further below.

The evaluation order of rules is determined automatically based on their dependencies

on attributes. Rules may refer to attributes defined by previous rules, including rules of

clauses of previous visits. Similarly, attributes are mapped automatically to visits based on

requirements by rules. Cyclic dependencies are considered to be a static error. The rules may

be scheduled to a later visit, except for match-rules. These are scheduled in the visit of the

clause they appear in. Visits to children are determined automatically based on dependencies

of attributes of the children. If a visit to a child fails, which is the case when none of the

children’s clauses applies, the complete clause backtracks as well.

The following sem-block defines rules for clause exprVar. It states that the value of at-

tribute lhs.expr must match the VarS constructor:

sem exprVar -- clause exprVar of nonterminal TransExpr

match (VarS loc.nm) = lhs.expr -- if succesful, defines loc.nm

An attribute grammar distinguishes two categories of attributes: inherited and synthesized.

The names of attributes within the same category need to be distinct. Attribute variables in

patterns refer to synthesized attributes of lhs, or inherited attributes of the children. Likewise,

attribute variables in the right-hand side of a match refer to inherited attributes of lhs or

synthesized attributes of the children. This ensures that attribute occurrences are uniquely

identifyable.

The following clause for exprApp demonstrates the use of child-rules. It introduces two

children f and a with interface TransExpr, represented as instances of the translate coroutine:

sem exprApp -- clause exprApp of nonterminal TransExpr

match (AppS loc.f loc.a) = lhs.expr -- test for AppS

child f :: TransExpr = translate -- recurses on f

child a :: TransExpr = translate -- recurses on a

f .expr = loc.f -- passes loc.f as expr-attribute

a.expr = loc.a -- passes loc.a as expr-attribute

f .env = lhs.env -- passes the environment topdown

a.env = lhs.env -- passes the environment topdown

196

5.2 Motivation

The last two lines express that the environment is passed down unchanged. We may omit

these rules, and write the rule default env instead. When a child has an inherited attribute

env, but no explicit rule has been given, and the production has lhs.env, then that value is

automatically passed on:

sem transExpr -- for all clauses of transExpr

default env

There are several variants of default-rules. We show further below a default rule for synthe-

sized attributes.

We skip the clause exprLam for now, and consider types and type inference first. As

usual with type inference, we introduce type variables for yet unknown types, and compute a

substitution that binds types to these variables:

itf TransExpr -- extends the interface of TransExpr

syn ty :: Ty -- synthesized attr in unspecified visit

chn subst1 :: Subst -- chained attr in unspecified visit

data Subst -- left implicit: a mapping from variables to types

The chained attribute subst1 stands for both an inherited and synthesized attribute with the

same name. We can see this as a substitution that goes in, and comes out again updated

with new type information that became available during the visit. We get automatic threading

of the attribute through all children that have a chained attribute with this name, using the

default-rule:

sem transExpr default subst1

To deal with types and substitutions, we define several helper nonterminals:

itf Lookup -- finds a pair (nm, ty′) ∈ env

inh nm :: Ident -- such that ty′ matches ty.

inh ty :: Ty

inh env :: Env

itf Unify -- computes a substitution s such

visit dispatch -- that s (ty1) equals s (ty2), if

inh ty1 :: Ty -- possible. Attributes for the

inh ty2 :: Ty -- substitution and errors added below.

itf Fresh -- produces a fresh type

syn ty :: Ty

chn subst :: Subst

lookup = sem lookupTy :: Lookup

unify = sem unifyTy :: Unify

fresh = sem freshTy :: Fresh

The implementation of fresh delegates to a library function varFresh on substitutions:

197

5 Derivation Tree Construction

sem freshTy

(lhs.subst, loc.var) = varFresh lhs.subst

lhs.ty = TyVar loc.var

We did not explicitly declare any visits for nonterminal Fresh. Therefore, it consists of a

single anonymous visit. When a production does not specify a visit-block, an anonymous

visit-block is implicitly defined. Similarly, when a production does not define clauses for a

production, an anonymous clause-block is implicitly defined.

We can wrap any Haskell function, including a data constructors, as a production, and

represent an application of this function as child of the production (Section 1.3.7). This

is convenient in case of fresh, because we use default rules to automatically deal with the

substitution attribute.

Both fresh and lookup are of use to refine the implementation of exprVar. With fresh we

get a fresh variable to use as the type of the expression. The Lookup-child then ensures that

at some point this fresh type is constrained in the substitution to the type of a binding for the

variable:

sem exprVar -- repeated sem-block: extends previous one

child fr :: Fresh = fresh

child lk :: Lookup = lookup

lk.nm = loc.nm -- pass loc.nm to lk (loc.nm matched earlier)

lk.ty = fr.ty -- pass the fresh type to lk

lhs.ty = fr.ty -- also pass it up

We pass the substitution to child fr, and pass the resulting substitution upwards to the parent

node:

sem exprVar

sem exprVar rename subst := subst1 of fr

fr.subst = lhs.subst1 -- pass down

lhs.subst1 = fr.subst -- pass up

Recall that subst1 is a chained attribute, hence there is an inherited lhs.subst1, and a synthe-

sized lhs.subst1. These names are not ambiguous: the right hand side of the rule refers to

the inherited attribute, the left hand side to the synthesized. With a rename-rule, we rename

attributes of children to choose a more convenient name, for example to benefit from default-

rules. The two explicit rules may actually be omitted, because of default-rule mentioned

earlier.

In the application clause, we use the Unify nonterminal to express that various types should

match:

sem exprApp

child fr :: Fresh = fresh

child u :: Unify = unify

u.ty1 = f .ty

198

5.2 Motivation

u.ty2 = TyArr a.ty fr.ty

lhs.ty = fr.ty

rename subst := subst1 of fr -- for default-rule

Rules for the substitution may be omitted. The default-rule threads it properly through the fr

and u children, which (after renaming) both have a subst1 chained attribute.

5.2.4 Unification

So far, the example can be implemented with most attribute grammar systems that operate

on a fixed abstract syntax tree [Dijkstra and Swierstra, 2004, 2006b]. In the above example,

the choice of productions solemnly depends on the expr inherited attribute. The attribute

grammar is directly based on the grammar of expressions. In the remainder of this section,

we move beyond such systems. For unification, we allow a selection of clauses based on two

inherited attributes: the attributes ty1 and ty2 of nonterminal Unify defined above.

The idea behind unification is to recursively compare these types. If one is a variable, then

the other type is bound to that variable in the substitution:

sem unifyTy

clause matchEqVars of dispatch -- the same variables

clause matchVarL of dispatch -- variable on the left

clause matchVarR of dispatch -- variable on the right

clause matchArr of dispatch -- both an arrow

clause matchBase of dispatch -- both the same constant

clause matchFail of dispatch -- failure

To implement these clauses, we need additional infrastructure to obtain the free variables of

a type, and bind a type in the substitution. We omit here the actual implementation, since the

implementation similar to other examples in this section:

itf Ftv inh ty :: Ty -- determines free vars of ty

inh subst :: Subst -- after applying the subst

syn vars :: [Var]

itf Bind inh var :: Var -- appends to subst:

inh ty :: Ty -- [var := ty]
chn subst :: Subst

ftv = sem ftv :: Ftv -- implemented with RulerCore

bind = sem bind :: Bind -- wrapper around library fun

We define several additional attributes on the Unify nonterminal. For the synthesized at-

tributes success and errs, we give a default definition of the form default attr = f . This

function f gets as its first parameter a list of values of attributes attr of the children that have

this attribute. If f is not given, we use the Haskell function last for f (Section 2.1):

itf Unify

visit dispatch

199

5 Derivation Tree Construction

chn subst1 :: Subst

syn success :: Bool -- True iff unification succeeds

syn changes :: Bool -- True iff any variables were bound

visit outcome

inh subst2 :: Subst -- take subst2 more recent as

syn errs :: Errs -- subst1 for better error messages

sem unifyTy

default success = and -- and [] = True

default changes = or -- or [] = False

default errors = concat

loc.ty1 = tyExpand lhs.subst1 lhs.ty1 -- apply subst one level

loc.ty2 = tyExpand lhs.subst1 lhs.ty2 -- apply subst one level

The inherited types need to be compared with what is known in the substitution to ensure that

we do not bind to a variable twice. Hence, we introduce attributes loc.ty1 and loc.ty2, which

are computed by applying the substitution to lhs.ty1 and lhs.ty2. Their values are shared

among all clauses and are computed only once. We match on these values to select a clause:

sem matchEqVars -- applies if we get two equal vars

match True = same lhs.ty1 lhs.ty2 ∨ same loc.ty1 loc.ty2

-- embedded Haskell code:

same (TyVar v1) (TyVar v2) | v1 ≡ v2 = True

same = False

sem matchVarL -- a yet unknown type left

match (TyVar loc.var) = loc.ty1

loc.ty = loc.ty2

sem matchVarR -- a yet unknown type right

match (TyVar loc.var) = loc.ty2

loc.ty = loc.ty1

sem matchVarL matchVarR -- common part of above

child fr :: Ftv = ftv -- determine free fr.vars

fr.ty = loc.ty -- of loc.ty

child b :: Bind = bind -- add substitution

b.var = loc.var -- [loc.var := loc.ty]
b.ty = loc.ty

rename subst := subst1 of fr b

loc.occurs = loc.var ∈ fr.vars -- occur check

lhs.subst1 = if loc.occurs then lhs.subst1 else b.subst1

lhs.success = ¬ loc.occurs

lhs.changes = ¬ loc.occurs

lhs.errs = if loc.occurs

then [CyclErr lhs.subst2 loc.var loc.ty]

200

5.2 Motivation

else []

sem matchArr -- t1→ t2 left and t3→ t4 right

match (TyArr t1 t2) = loc.ty1

match (TyArr t3 t4) = loc.ty2

child l :: Unify = unify -- recurse with argument types

child r :: Unify = unify -- recurse with result types

l.ty1 = t1 ; l.ty2 = t3 ; r.ty1 = t2 ; r.ty2 = t4

sem matchBase -- applies when e.g. both are TyInt

match True = loc.ty1 ≡ loc.ty2

sem matchFail -- mismatch between types

lhs.success = False

lhs.errs = [UnifyErr lhs.subst2 lhs.ty1 lhs.ty2]

The clauses of unifyTy are total, thus there is always one that applies, with matchFail as

fallback. The visits to unification thus always succeed. Potential problems that arose during

unification can be inspected through attributes success and errs.

We now have the mechanisms ready to deal with the case of a lambda expression. For the

type of the binding, we introduce a fresh type fr.ty, and add this type together with the name

to the environment:

sem exprLam

match (LamS loc.nm loc.u loc.b) = lhs.expr

child b :: TransExpr = translate -- recurse

child fr :: Fresh = fresh

rename subst := subst1 of fr

b.expr = loc.b

b.env = insertWith (++) loc.nm [loc.lk] env -- append

lhs.ty = TyArr fr.ty b.ty -- result type is fr.ty→ b.ty

loc.lk = sem lookupLam :: LookupOne -- see below

Environments are treated in an unconventional way. Instead of transporting the information

needed to construct the lookup-derivation tree in exprVar, the environment transports a corou-

tine loc.lk defined in exprLam. We define the production lookupLam locally in exprLam, such

that the rules of lookupLam have access to the attributes of exprLam:

itf LookupOne -- nonterminal of nested production lookupLam

visit dispatch inh ty :: Ty

The idea is that we instantiate this coroutine at the exprVar, then pass it the expected type of

the expression, and determine if the expected type matches the inferred type of the binding.

The rules for this nested production (shown further below) have access to the local state (i.e.

attributes) of the enclosing production. At the binding-site, we have information such as the

type and annotation of the binding, which we need to construct the derivation.

201

5 Derivation Tree Construction

5.2.5 Lookups in the Environment

At exprVar, the goal is to prove that there is a binding in the environment with the right type.

The overall idea is that we construct all possible derivations of bindings for an identifier,

using the lookupLam nonterminal mentioned earlier.

When there is only one possibility, we incorporate it in the substitution, and repeat the

visits. The extra type information may rule out other derivations, and result in new type

information, etc. Eventually a fixpoint is reached. From all the remaining ambiguous deriva-

tions, we pick the deepest ones, and default to those, by incorporating their changes into the

substitution. We then repeat the process from the beginning, until no ambiguities remain.

We run this process on the expression as a whole. In more complex examples that have a let-

binding, this process could be repeated per binding group. In the purely functional RulerCore

language, we encode this necessarily imperative process using repeated invocation of visits

combined with a chained substitution.

We show the implementation of the above algorithm in a step by step fashion. Recall

Figure 5.1. Three nonterminals play an essential role: Lookup is invoked from the exprVar

clause and delegates to LookupMany to create all derivations possible. To create one deriva-

tion, LookupMany creates LookupOne derivations, one for each nested production lookupLam

that was put for that identifier into the environment at exprLam:

sem lookupTy -- invoked from exprVar

child forest :: LookupMany = lookupMany

forest.lks = find [] lhs.nm lhs.env -- all LookupOnes

forest.ty = lhs.ty -- inherited attr of Lookup

The lks attribute is a list of coroutines. The coroutine lookupMany instantiates each of them,

and passes on the ty attribute to each:

itf LookupMany

visit dispatch inh lks :: [LookupOne]
inh ty :: Ty

lookupMany = sem lkMany :: LookupMany

sem lkMany

clause lkNil of dispatch -- when lhs.lks is empty

clause lkCons of dispatch -- when it has an element

sem lkNil

match [] = lhs.lks -- reached end of the list

sem lkCons

match (loc.hd : loc.tl) = lhs.lks

child hd :: LookupOne = loc.hd -- taken from list

child tl :: LookupMany = lookupMany -- recurse

tl.lks = loc.tl -- remainder of the lookups

default ty -- passes the types by default downwards to hd and tl

If all the matching lookupsOnes are reduced to one, we pick that one and return its substi-

tution. Otherwise, we return the substitution belonging to the innermost binding (which has

202

5.2 Motivation

highest depth):

itf Lookup LookupOne LookupMany

visit resolve -- hunt for a derivation

chn subst :: Subst

syn status :: Status -- outcome of the visit

syn depth :: Int -- depth of the binding

visit resolved -- invoked afterward

data Status = Fails | Succeeds {amb :: Bool,change :: Bool}
isAmbiguous (Succeeds True) = True

isAmbiguous = False

Every visit is invoked at least once, unless it is declared to be hidden for a child. We intend

to invoke the resolve visit multiple times. We show further below how this is done.

The depth information is easily determined at the binding-site for lambda expressions, with

an inherited attribute depth, starting with 0 at the top, and incrementing it with each lambda:

itf TransExpr inh depth :: Int

sem transExpr default depth = 0

sem exprLam b.depth = 1+ lhs.depth

The default-rule for an inherited attribute optionally takes a Haskell expression (0 in this

case), which is only used when there is no parent attribute with the same name.

The rules for lookupLam demonstrate the use of the hide-rule:

sem lookupLam -- defined inside exprLam above

child m :: Unify = unify -- try match of binding type

rename subst1 := subst of m -- to use-site type lhs.ty

hide outcome of m -- declare not to visit outcome

m.ty1 = outer.fr.ty -- of enclosing exprLam

m.ty2 = lhs.ty

lhs.status = if m.success then Succeeds False m.changes else Fails

lhs.depth = outer.lhs.depth -- of enclosing exprLam

With hide, we state not to invoke a visit and the visits that follow. Referencing to attributes

of such a visit is considered a static error.

The rules of the lkCons clause represent a choice. If from the attributes of the children

can be concluded that one derivation remains, it delivers that one’s substitution as result.

Otherwise, it indicates that an ambiguous choice remains. The lookup with the highest depth

is by construction at the beginning of the list:

sem lkNil

lhs.depth = 0 -- lowest depth

lhs.subst = lhs.subst -- no change to subst

lhs.status = Fails

203

5 Derivation Tree Construction

sem lkCons

hd.subst = lhs.subst -- passed down to

tl.subst = lhs.subst -- both

(loc.pick, lhs.status, lhs.depth, lhs.subst)
= case hd.status of

Fails→ (False, tl.status, tl.depth, tl.subst)
Success hdc→

let status′ = case tl.status of

Fails → hd.status

Success tlc→ Success True (hdc ∨ tlc)
in (True,status′,hd.depth,hd.subst)

When a visit is invoked again, we typically want to access some results of a previous

invocation. To retain state between multiple invocations of a visits, we allow visits to take

visit-local chained attributes. For example, an attribute decided for visit resolve:

sem lookupTy visit.resolve.decided = False -- initial value

From inside the visit, we can match on these attributes to select a clause. Furthermore, there

is an implicit default rule for them:

sem lookupTy

clause lkRunning of resolve -- no final choice yet,

match False = visit.decided -- try again

visit.decided = isAmbiguous lk.status

default status depth subst -- just pass on

clause lkFinished of resolve -- made final choice

match True = visit.decided

lhs.status = Success False False -- no change

lhs.depth = 0

default subst

The states of child nodes that are introduced by a previous visit are properly maintained if

their visits are also repeated. However, child nodes that are created in a visit are not retained

when the visit is repeated. To prevent a created node from being discarded, it is possible

to store a node in an attribute. Recall that children are derivations, which are instances of

a coroutine, and these are first class values. The detach-rule can exactly be used for this

purpose:

attr = detach visitname of childname 〉

Evaluation of a detach-rule takes the child childname that is evaluated up to but not including

visit visitname, and stores it in an attribute attr.

A detached child can be attached with an attach-rule:

attach visitname of childname = expr

204

5.2 Motivation

The Haskell expression expr represents a tree in a state prior to visit visitname. If childname

already exists as child, the attach-rule overrules the visits starting from visitname.

The resolve visits on lookupTy are invoked from resolve visits of transExpr. In map

deflMap, we maintain the substitutions of ambiguous lookups per depth. These have not been

incorporated in subst2 yet. Applying the deepest of those substitutions defaults the choice for

the corresponding bindings:

itf TransExpr

visit! resolve

chn subst2 :: Subst

syn changes :: Bool -- True iff subst2 was affected

syn deflMap :: IntMap [Subst] -- defaulting subst/depth

The bang at the resolve visit indicates that all attributes must be scheduled explicitly to this

visit. No attribute is automatically assigned to this visit. This gives the visit a predictable

interface, which is convenient when invoking the visit explicitly, as we do further below:

sem transExpr

default changes = or

default deflMap = unionsWith (++)
default subst2

For ambiguous lookups in the exprVar, we add to deflMap:

sem exprVar

clause varLkAmb of resolve -- put lk.subst in deflMap

match (Success True) = f .status

lhs.deflMap = singleton lk.depth [lk.subst]
lhs.subst2 = lhs.subst2 -- bypass lk.subst

clause varLkOther of resolve -- default rules only

To drive the iterations, we introduce a production iterInner, which invokes visit resolve

one or more times. The iterate-rule denotes the repeated invocation of a visit of a child:

iterate visitname of childname = expr

The expression expr represents the coroutine of a special production (iterNext, explained

further below) that computes the inherited attributes for the visit of the next iteration from

synthesized attributes of the previous iteration. The iterations stop when this special produc-

tion does not have an applicable clause:

iterInner = sem iterInner :: ExprTrans

sem iterInner

child e :: ExprTrans = translate -- iterInner is an extra node

e.expr = lhs.expr -- on top of the derivation tree

default ... -- omitted: same defaults as transExpr

205

5 Derivation Tree Construction

iterate resolve of e = next -- until e.changed is False

lhs.subst2 = let pairs = toAscList e.deflMap++[(0, [e.subst2])]
substs = head pairs -- deepest substitutions

in foldl substMerge e.subst2 substs -- apply them

lhs.changes = ¬ (null e.deflMap)

This special production has as interface the contravariant interface of the visit resolve of

ExprTrans, i.e. the inherited attributes turn to synthesized attributes, and vice versa. The

triple instead of dual colons indicate this difference:

next = sem iterNext ::: ExprTrans.resolve -- one anonymous clause

match True = lhs.changes -- stops when there are no changes

default subst2 -- pass prev subst2 into the next iter

Finally, we introduce a production wrapper, which forms the root of the derivation tree and

invokes the visits on the derivation for expressions, including again an iteration of the inner

loop:

itf Compile inh expr :: ExprS

inh env :: Env

syn subst :: Subst

syn ty :: Ty

compile = sem wrapper :: Compile

sem wrapper

child e :: TransExpr = iterInner

default env expr ty

iterate resolve of e = next -- repeat the inner loop

lhs.subst = e.subst2

5.2.6 Translation to the Target Expression

The code so far computes the information needed to translate the source expression. The

shape of the derivation is determined, and after iterations, subst2 contains the substitution for

the types. We wrap up with generating the target expression as attribute trans and collecting

the errors:

itf ExprTrans visit generate

inh subst3 :: Subst

syn trans :: ExprT

syn errs :: Errs

sem exprVar lhs.trans = VarT lk.nm′ -- lk delivers the name

sem exprApp lhs.trans = AppT f .trans a.trans

sem exprLam lhs.trans = LamT loc.u b.trans

sem exprDeriv default errs = concat

206

5.2 Motivation

itf Compile syn trans :: ExprT

sem wrapper default trans

e.subst3 = e.subst2

The lookupTy nonterminal delivers the name for a variable. The alternatives were con-

structed in iterations of the resolve visits, and stored in the loc.mbDeriv attribute. We take it

out and continue from there. From the derivations of nonterminal lkMany, we pick the name

for the first one that has loc.pick equal to True:

itf Lookup visit resolved

syn nm′ :: Ident

syn errs :: Errs

sem lookupTy

lhs.errs = maybe [Err unresolved lhs.nm] (const []) lk.mbNm

lhs.nm′ = maybe lhs.nm id lk.mbNm

itf LookupMany

syn mbNm :: Maybe Ident

sem lkNil lhs.mbNm = Nothing

sem lkCons lhs.mbNm = if loc.pick then Just hd.nm′ else tl.mbNm

itf LookupOne syn nm′ :: Ident -- use u as name

sem lookupLam lhs.nm′ = outer.loc.u -- defined in exprLam

The remaining code of the compiler invokes the coroutine generated from the compile

production. It provides the ExprS expressions, and obtains the type and an ExprT back. We

omit these details.

5.2.7 Discussion

Performance. Clauses introduce backtracking. In the worst case, this leads to a number

of traversals that are exponential in the size of the (longest intermediate) tree. In practice,

clause selection is typically a function of some inherited attributes (i.e. deterministic), which

only requires a constant number of traversals over the tree. For example, this is the case

for RulerCore programs expressible in UUAG. We verified that programs generated from

RulerCore exhibit the same time and memory behavior as programs generated from UUAG.

Expressiveness. With attributes, we conveniently compute information in one part of the

tree, and transport the information to other parts, which allows context-dependent decisions

to be made. The notion of visits gives us sufficient control to steer the inference process.

On the other hand, it is not possible to simply plug a type system in RulerCore and auto-

matically obtain an inference algorithm. We provide the building blocks to write inference

algorithms for many type systems, but it is up to the programmer to ensure that the result is

sound and complete.

Soundness of a RulerCore program is typically easy to prove. Completeness, however,

is a different issue. That largely depends on decisions made about unknown types. With

207

5 Derivation Tree Construction

RulerCore, we make explicit when choices are made, and when visits are repeated. We

believe this helps when reasoning about completeness.

Constraint-based inference. We establish the following relation to constraint-based in-

ference: a detached derivation can be seen as a constraint, can be collected in an attribute

and solved elsewhere. Solving constraints corresponds invoking visits (such as resolve in

Section 5.2.5) on the derivation, potentially multiple times.

Solving a constraint may result in more constraints. We store these either in a node’s state,

or collect them in attributes.

A constraint is typically parametrized with information from the context that created it. We

provide access to this context via nested nonterminals, which have access to the attributes of

their outer nonterminals.

5.3 Semantics

We define RulerBack, a small core language for Attribute Grammars. We translate a Ruler-

Core program in two steps to Haskell. We first desugar RulerCore. This gives us a Ruler-

Back program. We then translate the latter to Haskell. The separately defined attributes of

RulerCore are grouped together in RulerBack, visits are ordered, attributes allocated to vis-

its, covariant interfaces translated to normal interfaces, rules ordered based on their attribute

dependencies, and rules augmented with default rules. We omit description of this transla-

tion, as it is similar to the frontend of UUAG [Löh et al., 1998]. Instead, we focus on the

translation to Haskell, which precisely defines the semantics of RulerBack, and thus forms

the underlying semantics of RulerCore.

5.3.1 Syntax

The RulerBack language is Haskell extended with additional syntax for toplevel interface dec-

larations, semantic expressions, and attribute occurrence expressions. The following gram-

mar lists these syntax extensions:

i ::= itf I v -- interface decl, with visits v

v ::=visit x inh a1 syn a2 -- visit decl, with atributes a1 and a2

a ::= x :: τ -- attribute decl, with Haskell type τ

s ::= sem x :: I t -- semantics expr, defines production x

t ::=visit x1 chn x2 r c -- visit def, with common rules r

| � -- end of the visit sequence

c ::= clause x r t -- clause definition, with next visit t

r ::=p← e -- assert-rule, evaluates monadic e

| match p← e -- match-rule, backtracking variant

| invoke x of c← e -- invoke-rule, invokes x on c, while e

| attach x of c :: I← e -- attach-rule, attaches a partially evaluated child

| p = detach x of c -- detach-rule, stores a child in an attr

208

5.3 Semantics

o ::= x.x -- expression, attribute occurrence

x, I,p,e -- identifiers, patterns, expressions respectively

There are some differences in comparison with the examples of the previous section. Invo-

cations of visits to children are made explicit through the invoke-rule, which also represents

the iterate-rule. Similarly, the attach rule also takes care of introducing children. A visit

definition declares number of visit-local chained attributes y, and has a number of rules to be

evaluated prior to the evaluation of clauses. A clause defines the next visit, if any.

The order of appearance of rules determines the evaluation order, which allows them to be

monadic. Non-monadic expressions are lifted with return. The implementation is parametriz-

able over any backtracking monad. In this chapter, we use IO as example.

5.3.2 Example

The following example is taken from Section 3.3. It demonstrates how to to compute the sum

of a list of integers in two visits in RulerBack. In the first visit, the attribute l is inspected to

obtain the elements in the list. In the second visit, the elements are summed up:

itf S visit v1 inh l :: [Int] syn /0 -- decompose list l down

visit v2 inh /0 syn s :: Int -- compute sum s up

sum′ = sem sum :: S

visit v1 chn /0 /0

clause sumNil1 -- when list is empty

match []← return lhs.l -- match [] = l

visit v2 chn /0 /0 -- no visit-local attrs

clause sumNil2
lhs.s← return 0 -- empty list, zero sum

� -- no next visit

clause sumCons1 -- when list non-empty

match (loc.x : loc.xs)← return lhs.l -- match (x : xs) = l

attach v1 of tl :: S← return sum -- recursive call

tl.l← return loc.xs -- l param of call

invoke v1 of tl← noIterationS -- visit it to pass l

visit v2 chn /0 /0

clause sumCons2

invoke v2 of tl← noIterationS -- visit it to get the sum

lhs.s← return (loc.x+ tl.x) -- sum of hd and the tl

� -- no next visit

We translate a RulerBack production to a coroutine, in the form of continuations. From the

interface, we generate a type signature for these coroutines:

type S = S v1

newtype S v1 = S v1 ([Int]→ IO ((),(S v1,S v2)))
newtype S v2 = S v2 (()→ IO (Int,(S v2,�)))

209

5 Derivation Tree Construction

Inherited attributes become parameters, and synthesized attributes are returned as a tuple of

results. Each visit also returns two continuations of type S v1 and S v2 respectively. The first

continuation represents the current visit itself (which may be re-invoked with updated internal

state), the second continuation represents the next visit, or � if there is no subsequent visit.

Since no inherited attributes have been declared for the second visit, the continuation of type

S v2 can actually be represented as a value:

newtype S v2 = S v2 (IO (Int,(S v2,�)))

The coroutine sum′ has S as type. Attributes are encoded as a variable childIattr or

childOattr, depending on whether the attribute is an input or output of the clause. Clause

selection relies on backtracking in the monad. When a match-statement doesn’t match, a

failure is generated in the monad, which we catch to switch to the next clause.

sum′ = S v1 vis v1 where -- the initial state

vis v1 lhsI l = (-- first clause of visit v1

do []← return lhsI l -- match on lhs.l

let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.

vis v2 = (-- clause of visit v2

do lhsOs← return 0 -- lhs.s computation

let r = S v2 vis v2 -- repetition

k =� -- no next visit

return (lhsOs,(r,k)) -- deliver result v2

) ‘catch‘ (\ →⊥) -- no other clause for v2

return ((),(r,k)) -- deliver result of visit v1

) ‘catch‘ (\ → -- second clause

do (locLx : locLxs)← return lhsI l -- match on lhs.l

tlOl ← return locLxs -- inherited attr tl.l

(S v1 vis tl v1)← return sum′ -- attach child tl

((),(,S v2 vis tl v2))← vis tl v1 tlOl -- first visit on tl

let r = S v1 vis v1 -- repetition cont.

k = S v2 vis v2 where -- next visit cont.

vis v2 = (-- clause of visit v2

do (tlIs,(,))← vis tl v2 -- second visit on tl

lhsOs← return (locLx+ tlIs) -- lhs.s

let r = S v2 vis v2 -- repetition

k =� -- no next visit

return (lhsOs,(r,k)) -- deliver result v2

) ‘catch‘ (\ →⊥) -- no other clause for v2

return ((),(r,k))) -- deliver result of visit v1

The above code is slightly simplified. Below, we show the general translation.

210

5.3 Semantics

5.3.3 Translation

We use the following naming conventions from RulerCore names to Haskell names. The

right-hand sides of these definitions consist of string concatenations:

outp "loc" x = "locL" x inp "loc" x = "locL" x

outp "lhs" x = "lhsS" x inp "lhs" x = "lhsI" x

outp c x = c "I" x inp c x = c "S" x

outp y = "visitS" y inp y = "visitI" y

vis c x = "vis_" c "_" x prod x = "sem_" x

vis x = "vis_" x ity I x = I "_" x

s I x i I x -- respectively, inh and syn attrs of x of I

Note that an attribute c.x for some child x at an output position represents the inherited at-

tribute x of c, and vice versa for attributes at input positions.

The types of the coroutines are generated from an interface declaration:

Jitf I vK type JIK = Jity I x′K;JvKI -- x′ next visit,

Jvisit x inh a syn bKI newtype Jity I xK = -- otherwise ()

Jity I xK (JaK→ IO (JbK,(Jity I xK,Jity I x′K)))

From these interfaces, we actually also generate wrappers to interface with the coroutines

from Haskell code. The translations for them bear a close resemblance to the translation of

the attach and invoke rules below.

The clauses of a visit are translated to a function Jvis xK that tries the clauses one by one.

This function takes as parameters the coroutines (JchldsK) of the children in scope prior to

invoking the visit, the visit-local attributes y, and the inherited attributes:

Jsem x :: I tK let Jprod xK = JtKI inJprod xK

J()KI ()
Jvisit x chn y r cKI

let Jvis xK JchldsK Jinp yK Jinp lhs (i I x)K
= catch (do {JrK;JcKI,x,y})⊥ inJity I xK Jvis xK

The clauses themselves translate to a sequence of statements, consisting of the translated

statements of the semantic rules, and the construction of the two continuations. We partially

parametrize both continuations with the updated children:

J[]KI,v,y error "no clause applies"

Jclause x r t : csKI,v,y

catch (do {JrK; let {Jinp x y = outp yK}
; let {r = Jity I xK Jvis xK JchldsK Joutp x yK

;k = JtKI,chlds}
;return (Joutp lhs (s I x)K,(r,k))})

(\ → JcsKI,v,y)

211

5 Derivation Tree Construction

J()KI,ks ()
Jvisit x chn y r cKI,ks Jvisit x chn y r cKI JksK Joutp x yK

Semantic rules translate to monadic statements. For the assert-rule, we match using a let-

statement, which ensures that a pattern match failure is considered a runtime error, instead of

cause backtracking in the monad:

Jmatch p← eK JpK← JeK
Jp← eK x← JeK; let {JpK = x} -- x fresh

Jattach x of c :: I← eK (Jity I xK Jvis c xK)← JeK
Jp = detach x of cK let {JpK = Jity I xK Jvis c xK}

Invoke invokes a visit x (named f in the translation) on child c once, then repeats invoking

it, as long as e (named g) succeeds in feeding it new input:

Jinvoke x of c← eK
(Jinp c (s Ic x)K,(,k))
← let iter f Joutp c (i Ic x)K = do

{(JcoIty Ic xK g)← JeK
; z@(Jinp c (s Ic x)K,(Jity Ic xK f ′,))
← f Joutp c (i Ic x)K

; catch (do {(Joutp c (i Ic x)K,)← g Jinp c (s Ic x)K
; iter f ′ Joutp c (i Ic x)K})

(\ → return z)}
in iter Jvis c xK (outp c (i Ic x))

; let (Jity Ic x′K Jvis c x′K) = k -- x′ is next visit, or line omitted

Finally, we add bangs around patterns to enforce evaluation, and replace attribute occur-

rences with their Haskell names:

JC pK !(C JpK)
J(p, . . ,q)K !(JpK, ...,JqK)
Jc.xK !Jinp c xK

JeK e [c.x := Joutp c xK]

The translation exhibits a number of properties. If the RulerCore or RulerBack program

is well typed, then so is the generated Haskell program, and vice versa. Furthermore, the

translation is not limited to Haskell. A translation similar to above can be given for any

language that supports closures.

5.4 Related Work

Attribute grammars as defined by Knuth [1968] are extensions of context free grammars.

Typically, an attribute grammar is defined in terms of a context-free abstract grammar of the

language to analyze or compile. The attribute evaluator computes attributes of the abstract

212

5.4 Related Work

syntax tree that is determined apriori by a parser. In case of type inference, when the typing

relations are not directed by syntax, the derivation tree is not known beforehand. Thus, the

derivation tree cannot be expressed directly in terms of attribute grammars, unless higher-

order attributes are used [Vogt et al., 1989].

Tree manipulations. There are many extensions to attribute grammars to facilitate chang-

ing the tree during attribute evaluation. Silver [Van Wyk et al., 2008], JastAdd [Ekman and

Hedin, 2007] and UUAG [Löh et al., 1998] support higher-order attributes. These grammars

allow the tree to be extended with subtrees that are computed from attributes, and subse-

quently decorated. The responsibility of selecting a production of a higher-order child lies

with the parent of that child, and the choice is final. In RulerCore, a child itself selects a

clause to make a choice, and a choice can be made per visit.

JastAdd and Aster [Kats et al., 2009], support conditional rewrite rules, which allows rig-

orous changes to be made to the tree. Coordination between rewriting and attribute evaluation

is difficult to express due to mutual influence, especially if the transformations are not con-

fluent. To limit interplay, JastAdd’s rewriting of a tree is limited to the first access of that

tree.

Many type inference algorithms, especially for type and effect systems, iteratively tra-

verse the tree. Some algorithms construct additional subtrees during this process. Circular

Attribute Grammars [Jones, 1990], supported by JastAdd and Aster, iteratively compute cir-

cular attributes until a fixpoint is reached. UUAG and Silver can deal with circularity via lazy

evaluation with streams. CAGs, however, do not support changes to the tree during these

iterations. Stratego’s rewrite mechanism that underlies Aster, however, is more general and

can change the tree. In RulerCore, a visit may be iterated several times. Each node in the

derivation tree can maintain a per-visit state to keep track of newly constructed parts of the

tree.

Non-deterministic trees. The attribute grammar systems above have in common that

they massage a tree until it has the right form. Alternatively, a tree can be constructed non-

deterministically, using e.g. logic programming languages. The grammar produces only the

empty string, and the semantic rules disambiguate the choice of productions. Arbab [1986]

show how to translate attribute grammars to Prolog. However, this approach does not allow

the inspection of partial LookupOne derivations of Section 5.2.5, nor the defaulting, to be

implemented easily. With RulerCore, we offer alternative constructions of the tree per visit

in combination with backtracking. The notion of a visit provides an intuitive alternative for

the cut operator.

Prolog-like approaches also offer unification mechanisms to deal with non-determinism

in attribute computations. In contrast, we require the programmer to either program unifi-

cations and substitutions manually, or use a logic monad combined with a unification in the

translation of Section 5.3.

Engelfriet and Filé [1989] show the expressiveness of classes of attribute grammars. Un-

surprisingly, deterministic AG evaluators have lower computational complexity bounds com-

pared to non-deterministic ones. With RulerCore, we target large compilers (i.e. UHC), that

213

5 Derivation Tree Construction

processes large abstract syntax trees, thus we need the control on the exploration of alterna-

tives that visits offer.

Related attribute grammar techniques. Several attribute grammar techniques are im-

portant to our work. Kastens [1980] introduces ordered attribute grammars. In OAGs, the

evaluation order of attribute computations as well as attribute lifetime can be determined

statically, allowing severe optimizations.

Boyland [1996] introduces conditional attribute grammars. In such a grammar, semantic

rules may be guarded. Our clauses-per-visit model also provide guarded rules, but in addition

also allow children to be conditionally defined.

Saraiva and Swierstra [1999, chap. 3] describe multi-traversal functions in a functional

language (or visit functions [Swierstra and Alcocer, 1998]). These visit functions are one-

shot continuations, or coroutines without looping. We improved upon this mechanism to

support iterative invocation of visits, thus encoding coroutines with loops.

5.5 Conclusion

We presented the extensions that RulerCore, a conservative extension of ordered attribute

grammars, provides to describe type inference algorithms. We explained RulerCore with an

extensive example in Section 5.2 and described its semantics in Section 5.3.

RulerCore has several distinct features. Firstly, in contrast to most attribute grammar sys-

tems, construction of a derivation tree and the evaluation of its attributes is intertwined in

RulerCore. This allows us to define a grammar for the language of derivations of some typ-

ing relations, instead of being limited to the grammar of expressions or types.

Secondly, we use the notion of explicit visits to capture the gradual, effectful nature of type

inference. Each visit corresponds to a state transition of the derivation tree under construction.

These visits may be repeated to form fixpoint iterations.

Thirdly, many inference algorithms reason about what part of the derivation is known, or

is still pending, e.g. by means of constraints. In RulerCore, derivation trees are first class

and can be inspected by visiting them, which facilitates such reasoning in terms of attributed

trees.

214

6 AGs with Stepwise Evaluation

Attribute Grammars are a powerful formalism to specify and implement the semantics of

programming languages (e.g. as in a compiler), in particular when the semantics are syntax

directed. Advanced type systems, however, have declarative specifications that encode deci-

sions that are independent of syntax. The implementation of such decisions is hard to express

algorithmically using conventional attribute evaluation.

This chapter presents Stepwise Attribute Grammars (SAGs). In a SAG, nondeterministic

choices can be expressed in a natural way in conjunction with unambiguous resolution strate-

gies based on attribute values. SAGs preserve the functional relationships between attributes

and support on-demand evaluation. The exploration of alternatives are encoded as a choice

between the semantic results of children. Evaluation of a child can be performed in a stepwise

fashion: it is paused after each step and yields a progress report with intermediate results, un-

til the child is reduced to its semantic value. This facilitates a breadth-first exploration of

choices, until choices can be resolved based on the progress reports.

6.1 Introduction

Attribute Grammars (AGs) [Knuth, 1968] are a formalism that is particularly suited for the

concise implementations for semantics of programming languages (e.g. static, operational,

denotational), in the form of a compiler or interpreter. Hereby, attributes play a crucial role:

properties of Abstract Syntax Trees (ASTs) can easily be expressed as attributes, and com-

bined to form more complex properties. These attributes can be shared and additional at-

tributes can be added on demand. For example, attributes related to name analysis and type

checking can be used in a later stage for code generation or the collection of error mes-

sages. We used AGs for many small, but also several large projects, including the Utrecht

Haskell Compiler (UHC) [Dijkstra et al., 2009], the Helium compiler for learning Haskell,

the Generic Haskell Compiler, and the editor Proxima. AGs, and corresponding tool support,

proved to be essential for these projects.

Modern programming languages allow a compiler to take some of the implementation ef-

fort away from the programmer. In C#, local type inference is employed, such that an abun-

dance of type signatures can be omitted. Many typed OO languages have an auto-boxing

feature to automatically wrap primitive values into objects. Such features save programmers

from tedious tasks. To specify this freedom, programming language specification are declar-

ative, and impose sufficient restrictions such that a deterministic algorithm exists.

Unfortunately, it is hard to deal with declarative type systems using conventional AGs.

For example, it is not immediately obvious how to express Haskell’s overloading for UHC

using an AG. In fact, we currently rely on a constraint solver external to UHC’s AGs. A lot

of boilerplate code is required to interface with such a solver, and it introduces an artificial

215

6 AGs with Stepwise Evaluation

phase distinction (which hampers on-demand evaluation). Consequently, it increases code

complexity severely. The goal of this chapter is therefore to extend AGs such that inference

algorithms for declarative type systems can be expressed in a natural way.

Since an AG is both a functional specification and implementation, our challenge is to

describe algorithms that resolve declarative aspects. The declarative aspects in a seman-

tics occurs in two forms: attributes with a non-functional definition (e.g. fresh types), and

productions that are not syntax-directed, but where their applicability depends on values of

attributes. These two aspects are mutually expressible (Appendix G). As we prefer attributes

to be functionally defined, we focus on the second notion. Typically, we can deal with declar-

ative aspects using a unification-based approach, which integrates well with AGs [Dijkstra

and Swierstra, 2004]. However, some applications require a more powerful approach, with

an algorithm that actively tries out alternatives at choice points. For example, in a Haskell

compiler, to search for an equality proof for GADTs, and to resolve overloading in the pres-

ence of undecidable instances. Unfortunately, exploration of alternatives does not fit AGs

straightforwardly.

Such explorations do not fit out of the box, because productions are selected based on the

syntax (e.g. the parsed AST), and not on the values of attributes. To lift this restriction, there

are approaches that generate Prolog [Walsteijn and Kuiper, 1986, Arbab, 1986]. However,

we have several additional demands:

1. The approach needs to be compatible with any general purpose host language. From a

theoretical perspective: to allow the extension we propose to be integrated in other AG

systems as well; from a practical perspective: we have a large Haskell code base, thus

want to use Haskell as a host language.

2. We need a breadth-first evaluation with online results to deal with potential infinite

ASTs. Online results are also needed for integration with conventional on-demand

evaluation.

3. We need complex disambiguation strategies. In general, for deterministic results and

error reporting; in particular, to deal with some extensions to type classes that UHC

offers [Dijkstra et al., 2007].

In this chapter, we present an approach that adds exploration of alternatives to AGs and meets

the above demands.

Our approach consists of following three key ideas:

1. We encode declarative aspects and their resolution as a choice function between chil-

dren of a production. Overall, attributes are evaluated using conventional on-demand

evaluation. Attributes of children participating in a choice, however, are evaluated

strictly.

2. We annotate productions such that they yield user-defined progress reports that contain

intermediate results upon strict attribute evaluation. After yielding a progress report,

evaluation for a child pauses. This allows the choice function to evaluate its children

in a step-by-step fashion until it has observed sufficient progress reports to commit to

one of the children. It may yield progress reports itself in the mean time.

216

6.2 Example of a Stepwise AG for a Predicate Language

3. As implementation strategy, we map each production to a special form of coroutine that

can both be run greedily until it yields the next progress report, and be run to comple-

tion directly but with a lazy result. This implementation facilitates a hybrid evaluation

model between stepwise and on-demand evaluation, and is therefore compatible with

other AG techniques that depend on the conventional on-demand evaluation.

We motivate these ideas via an example in Section 6.2.

These ideas are inspired by a parsing technique by Swierstra [2009], Hughes and Swier-

stra [2003] to explore alternatives based on progress information reported by parsers. The

approach in this chapter is not directly related to parsing, but ultimately has its roots in the

above technique (for a detailed comparison, cf. Section 6.7).

In the text, we refer to appendices published in an accompanying technical report [Middel-

koop et al., 2010e] where certain topics are explored in more detail. The main contributions

of this chapter are:

• We define SAGs, a language extension to Attribute Grammars that copes with declara-

tive aspects in a semantics, while keeping the AG purely functional. We explain SAGs

in Section 6.2, and show how to translate them to Haskell as a host language in in

Section 6.3. We implemented this extension in the UUAG system [Löh et al., 1998].

• We introduce lazy coroutines, or stepwise computations, for which we provide an ref-

erence implementation (Section 6.4). In this chapter, we focus on the main ideas. The

Haskell library1 shows and explains many additional features that are useful in practice

(see also Section 6.6). The library may also be used by Haskell programs that need

powerful exploration capabilities, but are not related to AGs.

• As a proof of concept that these techniques are portable to other languages as well, we

also provide an implementation of the example in Section 6.2 in Java (Section 6.5).

6.2 Example of a Stepwise AG for a Predicate

Language

In this section, we take as running example an operational semantics2 for a Boolean predicate

language Pred. We show how to write Pred’s semantics as an AG using the notation as

supported by the UUAG system. The semantics is executable: its implementation yields an

interpreter in Haskell for Pred. Initially, the example is a functional specification, such that

we can resort to a conventional AG and explain the notation involved [Löh et al., 1998]. Next

we show that the semantics has an efficiency problem which we can solve by making the

specification more declarative. With a Stepwise AG we then deal with it.

1 Stepwise monad: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

stepwise-1.0.2.tar.gz
2 For an example related to type systems, see Appendix F.

217

https://svn.science.uu.nl/repos/project.ruler.papers/archive/stepwise-1.0.2.tar.gz
https://svn.science.uu.nl/repos/project.ruler.papers/archive/stepwise-1.0.2.tar.gz

6 AGs with Stepwise Evaluation

6.2.1 Syntax of the Predicate Language

Consider the following grammar for the abstract syntax of Pred:

data Pred -- Grammar for nonterm Pred as algebraic data type.

| Var nm :: String -- Variable with value in Env.

| Let nm :: String -- Binds (non-recursively) a

expr :: Pred -- name to the value of expr,

body :: Pred -- in scope of body.

| And left :: Pred -- The logical ∧ of two preds.

right :: Pred

| Or left :: Pred -- The logical ∨ of two preds.

right :: Pred

type Env = Map String Bool -- Environment that maps names to Booleans.

The data declaration introduces a nonterminal Pred, and a number of productions Var,

Let, etc. The fields of the production comprise the symbols of the RHS of the production,

consisting of a name nm, expr, etc. and a type. Some built-in types such as Bool and String

specify that the symbol is a terminal, otherwise the symbol is a nonterminal.

From the grammar, we generate constructor functions sem Var, sem Let, etc. which are

used to build attributed ASTs. Given an initial environment {"f"→ False,"t"→ True},
which binds a truth value to the free variables in the predicates, we turn a predicate into a

proposition. For example:

taut = sem Or (sem Var "t") (sem Var "f") -- True

contr = sem And (sem Var "t") (sem Var "f") -- False

alias = sem Let "a" (sem Var "t") (sem Var "a") -- True

big1 = sem And (sem Var "f") big1 -- False

big2 = sem And big2 (sem Var "f") -- False

Informally speaking, the Boolean value of taut is True and of contr is False. The big1 and

big2 predicates are large sequences of False that are combined with ands. In fact, these se-

quences are infinitely long, although we only use that for emphasis. Their truth value is False.

Formally, however, we have to define an operational semantics to make such statements.

6.2.2 Deterministic Operational Semantics

An operational semantics for a predicate takes an environment and provides a truth value.

We model these two aspects as attributes, which correspond to values attached to the nodes

of an AST: an inherited attribute env that represents the environment for the subtree, and a

synthesized attribute val that denotes the value of the subtree (for the given environment):

attr Pred inh env :: Env syn val :: Bool -- Typed attributes for nonterm Pred.

The obligation to define an inherited attribute for a node in the AST lies with the parent,

for a synthesized attribute it lies with a child. Via a sem-block, we define for each production,

218

6.2 Example of a Stepwise AG for a Predicate Language

the production’s synthesized attributes, and the inherited attributes of its children using rules

written in the AG’s host language (in our case: Haskell expressions). These rules may refer

to the inherited attributes of the production and the synthesized attributes of the children. We

refer to an attribute using chld.atname notation. To refer to the attributes of the production

itself, we use the special name lhs. We refer to terminals by their name. Thus, we define the

semantics for predicates as:

sem Pred -- Specifies rules for productions of nonterm Pred.

| Var lhs.val = lookup nm lhs.env

| Let lhs.val = body.val -- Takes val from child body.

body.env = insert nm expr.val lhs.env

| And lhs.val = left.val ∧ right.val

left.env = lhs.env -- Copies down env to the left.

right.env = lhs.env -- Copies down env to the right.

| Or lhs.val = left.val ∨ right.val

left.env = lhs.env

right.env = lhs.env

Thus, we simply pass down the environment from top to bottom. For a variable, we lookup the

associated value in the environment. For a let-binding, we insert the value in the environment.

Finally, for the And and Or, we take the Haskell (short-circuiting) (∧) and (∨) on Boolean

values of the children.

From this AG, the UUAG compiler generates an interpreter that takes a predicate, defines

the root’s env attribute, and demands a value for root’s val attribute. On-demand evaluation

proceeds to compute those attributes when their values are needed during the computation

of the val attribute. In a purely functional language such as Haskell, we can represent a

decorated tree as a function from inherited to synthesized attributes [Saraiva and Swierstra,

1999]. More precisely, for each production (e.g. Var, And), we generate a function (sem Var,

sem And, respectively) that, given the functions corresponding to its children, represents a

Haskell function takes values for inherited attributes as parameter, and returns a product with

values for the synthesized attributes (Section 6.3).

When we run the interpreter on the examples given earlier, it gives the expected outcomes,

with a single exception: the computation for big2 diverges. The reason is that both (∨) and

(∧) start with the left argument first. This may involve a lot of computation (e.g. in case of

big2) that could be avoided by looking at the second argument first. Then, however, big1’s

evaluation would diverge. If big2 would be a long but finite sequence, then its evaluation

would not diverge but take a long time to produce an answer.

6.2.3 Declarative Operational Semantics

The ∧ and ∨ operators do not distribute evaluation over their operands well. To give more

freedom with respect to the evaluation order, we could add non-determinism to the spec-

ification, for example via multiple (conditional) interpretations of a production, using the

following (fictional) notation:

219

6 AGs with Stepwise Evaluation

sem Pred -- Productions with conditional alternatives.

| And1 lhs.val = left.val when left.val = False

| And2 lhs.val = right.val when right.val = False

| And3 lhs.val = left.val when otherwise

| Or1 lhs.val = left.val when left.val = True

| Or2 lhs.val = right.val when right.val = True

| Or3 lhs.val = left.val when otherwise

In this specification, there is freedom in the alternative to apply. A clever AG evaluator could

use a breadth-first exploration of alternatives combined with prioritizing those attributes that

are closer to the root and thus provide a more balanced evaluation strategy.

However, we want to be precise in this strategy. When both left.val and right.val are True,

the choice between Or1 and Or2 is ambiguous. For predictability reasons (and referential

transparency), it must be clear which one should be taken; also, we may prefer one over the

other based on some other available information. In some cases we may want to be biased

towards a particular subtree, potentially based on results computed at runtime. Hence, as

mentioned in Section 6.1, we want to be able to define this strategy ourselves.

6.2.4 Stepwise Operational Semantics

To define such a strategy, we take a less ad-hoc solution. In particular, we encode alterna-

tives as a choice between children instead of productions. We do not loose expressiveness

(Appendix E), and gain the ability to define strategies in terms of the evaluation of children.

In the remainder of this chapter, we focus on Or-predicates only, and leave the strategies for

And-predicates to the reader. For the Or-predicate, if we know that one of the children’s val

attribute evaluates to True, we can commit the choice to that child. We express this as follows,

using a function chooseor (to be defined later):

sem Pred | Or -- Rules for production Or of nonterm Pred.

left.env = lhs.env -- Copies down env to the left.

right.env = lhs.env -- Copies down env to the right.

merge left right as res = chooseor -- Creates child res using chooseor to merge.

lhs.val = res.val -- Pass val up from child res.

The merge-rule transforms children left and right into a single virtual child res. We may refer

to the synthesized attributes of res, but not to those of left and right. Similarly, we need to

define the inherited attributes of left and right, but may not define those of res.

The function chooseor takes the synthesized attributes of left and right as arguments, and

is required to provide values for the synthesized results for res3. As initial attempt, we define

chooseor as:

chooseor :: Bool→ Bool→ Bool

chooseor left val right val -- Synthesized attributes of left and right as parameter.

3Due to Haskell’s laziness, on-demand evaluation starts as soon as we scrutinize a value of an attribute.

220

6.2 Example of a Stepwise AG for a Predicate Language

| left val = left val -- Takes the left value, or

| right val = right val -- takes right value, or

| otherwise = left val -- otherwise takes the left value.

With this function, we unambiguously specify what kind of solution we want. However, in

terms of evaluation we are back where we started: we evaluate the entire left child first, thus

evaluation is still left biased.

Scrutinizing the value of a synthesized attribute leaves us little control over the scheduling

of the evaluation4. In the example, we cannot return a result until we make the choice, but in

order to do so, we need to inspect the result, which causes one of the children to evaluate fully

before we have a chance to inspect the other one. Instead, we want the scheduling decisions to

be based on explicitly indicated intermediate results. On-demand evaluation does not help us

here, and therefore we propose a different evaluation scheme to choose between alternatives.

This leads us to the second idea of this chapter: we evaluate a child under a choice strictly

(instead of on-demand), thus computing attributes of children in a fixed order5. Instead of

completely evaluating all synthesized attributes of such child, however, we evaluate it just

far enough to yield a progress report. It then suspends to be resumed later. We explain later

how to emit such progress reports during evaluation. To explore or merge two children both

gradually and simultaneously, as well as report intermediate results to the parent, we take

their progress reports alternatively, and intertwine them (explained below).

In our example, we wish to prioritize evaluation to the child that we estimate has performed

the least amount of work, to balance out evaluation. For that, the progress reports need to give

an indication that some work has been done. Hence, we define a type for progress reports

(e.g. Info), with a plain constructor Work as possible value:

data Info = Work -- Application-specific type defined by programmer.

The value for a child that is passed to the chooseor function is not just the value of the

synthesized attribute, but now a stepwise computation of the type Stepwise Info Bool, where

Info is the type of the progress reports, Bool is the type of the synthesized attribute. The type

of chooseor changes to:

chooseor :: Stepwise Info Bool→ Stepwise Info Bool

→ Stepwise Info Bool

A computation of the type Stepwise Info Bool can be manipulated with a simple monadic API

(Section 6.4):

emit :: i→ Stepwise i () -- Type i equals Info here.

smallStep :: Stepwise i α → Report i α -- Evaluates to next report.

4 We can use Haskell’s lazy evaluation to return lazy approximations of the final values as result. This, however,

complicates the AG severely, as rules must be manually lifted to operate on approximations.
5In this chapter, we take the order of appearance of children in a production as strict evaluation order. UUAGC

actually supports Ordered Attribute Grammars (OAGs) [Kastens, 1980] that takes attribute dependencies into

account, and ensures that all attributes are well-defined (non-cyclic). Using OAGs, the order of appearance is

not important.

221

6 AGs with Stepwise Evaluation

data Report i α = Done α | Step i (Stepwise i α) -- Result of smallStep.

return :: α → Stepwise i α
(>>) :: Stepwise i α → Stepwise i beta → Stepwise i α
(>>=) :: Stepwise i α → (α → Stepwise i α)→ Stepwise i α

Function emit yields a progress report, and smallStep evaluates the computation until it is

Done (with attribute values) or yields a Step (with continuation). Computations are compos-

able via monadic operators. The monadic sequence (m1 >>m2) performs m1, throws away

its result, then performs m2 and delivers m2’s result. The monadic bind m>>= f performs f

parameterized with the result of m.

Using the above API, we now redefine chooseor as:

chooseor left right = choose′ (smallStep left) (smallStep right) where

choose′ (Done v) = if v then left else right -- Choose.

choose′ (Done v) = if v then right else left -- Choose.

choose′ (Step Work left′) (Step Work right′) -- Both yielded a Work.

= emit Work>> chooseor left′ right′ -- Pass on the report.

Both children perform a step. When one of them evaluates to Done, we inspect its attribute

and make a choice. By replacing the expression with either left or right, we eliminate the

other choice. Otherwise, we emit a step that a bit of work has been done (for the current node),

and retain the choice between the continuations of the children. This strategy effectively

encodes a breadth-first exploration of the children.

We emit a Work progress report for each Var node. To inject such reports, we extend the

Var production with a special built-in nonterminal Progress67. This nonterminal has a sin-

gle inherited attribute named info, and no synthesized attributes. Since it has no synthesized

attributes, a child of this nonterminal is never evaluated during on-demand evaluation. Dur-

ing strict evaluation, however, each child is evaluated. In that case, the implementation of

Progress yields the progress report that it took as parameter8. This is exactly the behavior

that we want. We are not interested in progress reports during on-demand evaluation, but the

more we are interested in them during strict evaluation.

data Pred | Var report : Progress -- Additional child of production Var.

sem Pred | Var report.info = Work -- Defines its inherited attribute.

The info attribute is defined by a conventional rule, thus as right-hand side, we have access to

any intermediate result (not needed for this example).

6 Alternatively, the additional child can be specified as a higher-order attribute using Higher-Order AGs [Vogt et al.,

1989] (supported by UUAG), which does not require us to change the production.
7 Actually, the Progress nonterminal can be implemented using a merge-rule (Appendix A).
8 Visits to children may be omitted if the synthesized attributes of that child are not used. This is undesirable

when the child may emit a progress report. In Appendix A, we explain that progress reports themselves can be

considered to be a hidden attribute. Hence, visits to children that emit progress reports can never be omitted

during stepwise evaluation. Also, referential transparency is preserved.

222

6.3 SAG Translation

6.2.5 Hybrid On-demand and Stepwise Evaluation

The attribute rules are oblivious towards stepwise evaluation. They are still pure functions

between attribute values, which is important to reason with AGs. Access to progress re-

ports is only possible in merge functions. Additionally, this allows stepwise and on-demand

evaluation to coexist.

Stepwise evaluation is strict, therefore it cannot deal with attributes defined in a cyclic way.

However, we only need stepwise evaluation while making a choice: once only one alternative

is left, we can continue with on-demand evaluation. For that purpose, we provide a function:

lazyEval :: Stepwise i α → α -- Runs computation lazily, returns syn attributes.

It takes a partially reduced child as parameter, ignores progress reports, and returns the at-

tributes (α is instantiated to a product of the attribute types) on which we may perform con-

ventional on-demand evaluation. Further details for lazyEval can be found in Section 6.4.

The global picture is that we start with lazyEval at the root of the AST. When lazyEval

needs an attribute value of a merged child, it asks for the result of the merge function (e.g.

chooseor). Consequently, chooseor invokes smallStep on its children, gradually reducing

the candidate children, and ultimately returns one of the residual children (e.g. left). Then

lazyEval proceeds with this child.

To implement these ideas, we arrive at the third idea of this chapter: The AG is compiled to

a special form of coroutines (Section 6.3). A coroutine is a function that may yield an inter-

mediate result and then suspends. Its caller receives that result, and can reinvoke the coroutine

again to resume its execution. This gives us the behavior of smallStep. For lazyEval, we need

some special behavior: in that case, a coroutine resumes and runs immediately towards its

end. It constructs only the administration needed to perform the remaining computations in

an on-demand fashion. We give an implementation for these special coroutines in Section 6.4.

6.3 SAG Translation

A SAG is a conservative extension of an AG that adds the merge rule. We sketched its

static semantics in the previous section. In this section, we sketch its denotational semantics:

we describe how to map a SAG to a monadic Haskell program (Translation scheme in Ap-

pendix B). The monad is defined in Section 6.4. The SAG translation is largely based on a

conventional translation to Haskell, as implemented in UUAG [Saraiva and Swierstra, 1999].

To translate a SAG, we translate each production to a coroutine (e.g. sem And), imple-

mented as a monad. With the coroutines we build an attributed tree (e.g. taut and big1 in

Section 6.2.1). This tree is represented as a function from the inherited attributes to a product

of the synthesized attributes (and, as mentioned in the previous section, lifted in the step-

wise monad). We call this tree the semantic value or simply the semantics (of the associated

nonterminal/production). Thus, a coroutine is a function that takes the semantic values (or,

simply: semantics) of its children as parameter, and returns its own semantics. For example,

in case of nonterminal Pred, the type of its semantics (named I Pred) and the signature of

sem And are:

223

6 AGs with Stepwise Evaluation

type I Pred = Env→ Stepwise Info Bool -- Function type for attributed tree.

sem And :: I Pred→ I Pred→ I Pred -- Coroutine for And production.

We first discuss a translation of conventional AGs (sem And does not use merge). Corou-

tine sem And takes the semantics of its children as parameter. It must return its own se-

mantics, which is a function from its single inherited attribute env to its single synthesized

attribute val lifted in the stepwise monad. We use the encoding childXattr to unambiguously

refer to an attribute, where X equals I for an inherited attribute and S for a synthesized at-

tribute. The function body—the monad—comprises the plan for a production: it consists of

the calls to the children, and definitions of the attributes. At a function call to a child, we

pass its inherited attributes, then we obtain a monadic value with the synthesized attributes,

which we can match against. Recursive do-notation [Erkök and Launchbury, 2000] allows us

to write such plans concisely.

sem And left right = λ lhsIenv→ do rec -- Takes inh attr env.

leftSval ← left leftIenv -- Calls left child.

rightSval← right rightIenv -- Calls right child.

let leftIenv = lhsIenv

let rightIenv = lhsIenv

let lhsSval = leftSval ∧ rightSval

return lhsSval

>>=

>>=

parent f1

parent f2

active m pending

pending

Under the hood, the do-notation reorders the statements to produce a linearized plan as a

sequence of monadic binds9, e.g. (let-bindings omitted, replaced by dots):

left leftIenv>>=(λ ...→ right rightIenv>>=(λ ...→ return lhsSval))

A monadic bind m>>= f , expresses that the remainder of the plan f is parametrized with the

results of plan m (see the figure above). Strict evaluation goes from left to right, thus reducing

a plan gradually.

To translate the merge rule, consider the translation for sem Or. The calls to the involved

children are not made part of the plan: we do not match against their results. Instead, chooseor

takes the plans (stepwise computations) of its input children, and as result, must provide a

plan (computation) for its output child. Subsequently, we match against the output child to

obtain the synthesized attribute res.val of merged child res:

sem Or left right = λ lhsIenv→ do rec -- Function from lhs.env to lhs.val.

resSval← chooseor (left leftIenv) (right rightIenv) -- Translation for merge.

let leftIenv = lhsIenv -- Defines env for left.

let rightIenv = lhsIenv -- Defines env for right.

let lhsSval = resSval -- Takes val attribute from res child.

return lhsSval -- Returns result for Or production.

9 In general, also calls to mfix are inserted to deal with cyclic definitions. We provide a definition for mfix in the

library associated to this chapter. In practice, with UUAG, we use Ordered Attribute Grammars, that result in a

more sophisticated translation that only needs non-recursive do-notation, without mfix.

224

6.4 Lazy Coroutines and the Stepwise Monad

SAGs are thus only a modest extension to the conventional translation. Most of the addi-

tional complexity is hidden in the implementation of the coroutine (Section 6.4).

6.4 Lazy Coroutines and the Stepwise Monad

We use a coroutine to represent the residual attributed tree after strict evaluations. We either

transform this coroutine to its lazy result via lazyEval, or run it greedily using smallStep to to

the point where it yields the next progress report. The data type Stepwise i a represents such

a coroutine. It exposes the following structure:

data Stepwise i a where -- Stepwise is a ‘defunctionalized’ monad.

Yield :: i→ Stepwise i a→ Stepwise i a -- Paused computation

Fail :: String → Stepwise i a -- Aborted computation

Return :: a → Stepwise i a -- Finished computation

Pending :: Stepwise i b→ Parents i b a→ Stepwise i a

data Parents i a b where -- Parent stack (root of type b, active child a).

None :: Parents i a a -- Bottom of the stack.

Bind :: (a→ Stepwise i z)→ Parents i z b→ Parents i a b

Yield means that the coroutine paused to yield a progress report of the type i. The second

component represents the continuation. Fail represents an aborted computation, and Return

means it succeeded, providing a value of type a.

During strict evaluation, reduction of a child starts only when its preceding sibling is fully

reduced (linear execution of the plans in Section 6.3). Hence, every node has at most one

child active, and a continuation of what to do after that child is finished. A Pending value

encodes this: the first component is the deepest child awaiting further evaluation. The second

component is the stack of parent-continuations. The GADT Parents i a b represents the parent

nodes that await a value of type a, to ultimately compute a value of type b. When we match

None, we reached the bottom of the stack, where we ensure that b equals a.

We can now give a Monad instance for Stepwise. The bind m>>= f is encoded as active

child m with single pending parent f :

instance Monad (Stepwise i) where -- Via the monad combinators, we

return = Return -- thus build a Stepwise-value, and

fail = Fail -- reduce this value via

m>>= f = Pending m (Bind f None) -- smallStep or lazyEval.

emit i = Yield i (return ())

Given a coroutine, we can run it immediately to its lazy result value. This process describes

how we transform a residual tree into a tree on which we can perform on-demand evaluation.

We step over any progress reports it may yield in the process. When we encounter a Pending,

we apply lazyEval to get a lazy result of the child, and use evalPending to provide it to its

parent, which in turn passes it to its parent, until we reach the root:

225

6 AGs with Stepwise Evaluation

lazyEval :: Stepwise i a→ a -- Interprets computation lazily.

lazyEval (Yield m) = lazyEval m -- Skips progress report.

lazyEval (Fail s) = error s -- Interpreted as ⊥.

lazyEval (Return v) = v

lazyEval (Pending m p) = evalPending p (lazyEval m)

evalPending :: Parents i a b→ a→ b -- lazyEval on chain of parents.

evalPending None a = a -- Reached the root.

evalPending (Bind f r) a = evalPending r (lazyEval (f a))

Given a coroutine, we can also run it greedily until it yields the next progress report. Either

it fails, is finished, or is paused with the yielded information i and the continuation to resume

it with:

data Report i a where -- Outcome of smallStep.

Failed :: String → Report i a -- Aborted with message.

Done :: a → Report i a -- Finished with value.

Step :: i→ Stepwise i a→ Report i a -- Paused with user report.

The function smallStep performs a strict reduction. Once it encounters a Yield it can stop

and return a Step:

smallStep :: Stepwise i a→ Report i a -- Evaluate until next report.

smallStep (Yield i m) = Step i m -- Pause after a yield.

smallStep (Fail s) = Failed s

smallStep (Return v) = Done v

smallStep (Pending m p) = reduce m p -- Continues with m, and possibly p.

For a Pending, its result depends on the reduction of the active child. If it finishes without

yielding a progress report, we pass the result to its parent and continue reducing the parent.

If the active child itself turns out to be a Pending, we push its stack on the stack we already

have, and continue reduction:

reduce :: Stepwise i a→ Parents i a b→ Report i b

reduce (Yield i m) r = Step i (Pending m r) -- Keeps residual parents.

reduce (Fail s) = Failed s

reduce m None = smallStep m -- No parents left.

reduce (Return v) (Bind f r) = reduce (f v) r -- Proceeds with parent f .

reduce (Pending m r′) r = reduce m $ push r′ r -- Concatenates stacks.

push :: Parents i a b→ Parents i b c→ Parents i a c

push None r = r -- Appends to the bottom.

push (Bind f r′) r = Bind f (push r′ r) -- Walk towards the bottom.

The merging of the parent stacks is important. The stack represents a whole subtree, with

the active child on top, and the root of the subtree on the bottom. When we want to reduce this

subtree one step, we can thus immediately reduce the active child without having to traverse

through the parents.

226

6.5 Imperative Implementation

We provide the API that we discussed in this section as a Haskell library. Its implemen-

tation satisfies the monad laws (Appendix H) for both lazyEval and smallStep evaluation.

Furthermore, if it holds that smallStep∗ m = Done v then also lazyEval yields this value

lazyEval m = v. The converse is not necessarily true: lazyEval (⊥>>return ()) = (), whereas

smallStep∗ (⊥>>= return ()) = ⊥. However, when the AG is ordered, and each rule well-

founded, then also the converse holds.

6.5 Imperative Implementation

The reference implementation that we presented in the previous section relies on several

Haskell features, such as lazy evaluation, monads and GADTs. Despite that, the approach is

portable to imperative languages and AG systems for these languages. As a proof of concept,

we ported the example of Section 6.2 to Java (Appendix J), and implemented a small Stepwise

support library10.

We encode demand-driven AGs as conventional for object oriented languages. AST nodes

are represented by objects, using subclasses for productions. Attributes are encoded as fields

on such nodes using getters and setters together with lazy initialization. We map each rule to

a Runnable object. A rule is associated with one or more attributes. When the value of an

attribute is not yet defined, the associated rule is executed, and the rule defines these attributes

using side effect. A rule may refer to the values of other attributes, thus driving on-demand

evaluation. Executing a rule twice has no effect.

Additionally, a node exposes a visit method that encodes the coroutine for strict evaluation.

The visit method may be invoked multiple times, and returns either with progress information,

or a pointer to a child node to evaluate first, or indicates that evaluation is done for the subtree.

With each execution, the visit method executes some of the rules. Nodes can thus be evaluated

strictly via the visit method, and on-demand by accessing the attributes directly.

As discussed in Section 6.3, children of a production come in two fashions: conventional

children and merged children. Conventional children are conventional AST nodes, which

expose inherited attributes. Merged children do not expose inherited attributes. To start

evaluation and access the synthesized attributes from both types of children, a stepwise com-

putation can be requested from a child. A stepwise computation is a coroutine-object that

supports the lazyEval and smallStep operations of Section 6.4. It represents the evaluation of

the subtree rooted by the child.

The stepwise computation obtained from a conventional child x represents the stack of

nodes under strict evaluation. A node on the stack has been partially evaluated strictly and is

waiting for strict evaluation of nodes above it to complete before proceeding with strict eval-

uation. The child x is on the bottom of the stack. The active child is the top of the stack. For

the lazyEval operation, the stepwise computation obtained from a conventional child directly

returns x. This corresponds to the evalPending operation, except that in contrast to the func-

tional implementation, we do not have to thread the lazy outcomes around because these are

represented by pointers and side effect in the imperative implementation. For smallStep, strict

10 Stepwise Java example: https://svn.science.uu.nl/repos/project.ruler.papers/archive/

jstepwise.jar

227

https://svn.science.uu.nl/repos/project.ruler.papers/archive/jstepwise.jar
https://svn.science.uu.nl/repos/project.ruler.papers/archive/jstepwise.jar

6 AGs with Stepwise Evaluation

evaluation proceeds with the active node. If it yields progress info, then these are returned as

the report for smallStep, and the evaluation is effectively paused again. If evaluation of the

active node is finished, the node is popped from the stack and evaluation continues with its

parent. If an active node requests evaluation of a child first, these are pushed on the stack.

The stepwise computation obtained from a merged child is an object with a visit method

that has access to the stepwise computation of the children that are being merged. With each

visit, it must return a progress report. In particular, it can report that the computation is to be

replaced with a computation of the children, thereby resolving the choice. Essentially, such a

computation is an imperative version of the monadic chooseor.

The imperative implementation closely resembles the functional implementation, although

more verbosely. A language with native support for coroutines would simplify the implemen-

tation slightly.

6.6 Remarks

6.6.1 Extensions

We used SAGs to rapidly prototype a type-directed transformation. It required a small exten-

sion of the presented ideas: semantic lookahead (Appendix C). Often, a choice for a subtree

has consequences at another location in tree. We thus (may) need to investigate potential al-

ternatives beyond the evaluation of the subtree. To this end, we added a mechanism to obtain

the continuation, and investigate the steps coming out of the continuation.

To combine progress reports of different types, and allow them to depend on the result type

of the computation itself, we implemented transcoding (Appendix D). It can also be used to

replace multiple reports by a single report (compression) to trade interleaving granularity

with fewer reports to examine.

Finally, we offer explicit sharing via references. We use this mechanism to deal with the

MonadFix instance required for recursive do-notation, and also to offer memoization (to turn

the AG under user-defineable conditions into a graph).

6.6.2 Benchmarks

We benchmarked our approach (Appendix I) on a standard MacBook 2.1 with a 2 GHz dual-

core processor, 2 GB of main memory, and GHC 6.12.1. We compared the execution time of

code generated the conventional way by UUAG against code that uses stepwise evaluation,

and meassured the runtime overhead. The throughput of stepwise binds is about thirty times

slower than the bind of the identity monad. The overhead is constant for nextStep, and is a bit

more erratic for lazyEval (but comparable). On the other hand, the overhead is negligible in

practice. We compared the compilation speeds of UHC, which makes heavy use of AGs (for

both large and small tasks). The compilation time only marginally increased, and stays under

random noise induced by garbage collection.

228

6.7 Related Work

6.7 Related Work

This chapter is heavily inspired by uu-parsinglib [Swierstra, 2009, Hughes and Swierstra,

2003]. The parsing library supports both context-free and monadic grammars, and offers

online results as well as error correction. It offers a data-type similar to our Stepwise. The

essential difference is that uuparsing-lib’s bind cannot yield a result until the LHS of the

bind is fully step-wise evaluated11. Instead, required for the hybrid evaluation model, our

implementation can yield a result when the RHS can do so (when using lazyEval). Also,

uuparsing-lib’s implementation manually manages stacks with semantic values computed so

far (the outcome of the history parser), or semantic values still to come (the outcome of the

future parser). Instead, in our implementation, these values are implicitly represented as local

variables in closures.

Our work is related to various disambiguation strategies. Some approaches allow ambigu-

ous ASTs and impose syntactic restrictions to resolve these, e.g. by conditionally rejecting

certain productions based on the AST structure, or prioritizing some productions over oth-

ers [van den Brand et al., 2002]. Other approaches generate a parse forest and filter later,

potentially using semantic information [Bravenboer et al., 2005]. In contrast, our approach

does not require all alternatives to be available a priori, and works for also in case of infinite

trees and in combination with nonterminal attributes.

AGs are traditionally considered to select productions deterministically based on the syntax

of a language. Conditional Attribute Grammars [Boyland, 1996], as supported by the FNC-2

system [Jourdan and Parigot, 1991] and our experimental Ruler system [Middelkoop et al.,

2010a], allow multiple definitions for a productions guarded by conditions. These conditions

need to be evaluated first, thus offer limited control over the exploration of alternatives.

There are AG evaluators that generate Prolog code [Walsteijn and Kuiper, 1986, Paakki,

1991]. Such an approach that depends on a logic language is unacceptable for us, as it does

not mix well with our existing Haskell code. In contrast, our approach can be implemented in

an arbitrary general purpose host language. The lazy evaluation our Haskell implementation

relies on, actually just represents on-demand evaluation that other AG approaches provide.

Moreover, as sketched by Section 6.2.5, our approach is compatible with circular and remote

AGs [Magnusson and Hedin, 2007].

There are several different techniques to deal with declarative aspects in the specifications

of programming languages. We classify declarative sources in increasing complexity:

• Deterministic. Both the production selection and the value of attributes are purely

functional. A problem in this class trivially fits an AG. For example, auto-boxing and

implicit coercions fall in this category.

• k pass. A priori unknown values (type variables) and derivations (deferred judgments)

are replaced with place holders. Nodes in the AST are traversed at most k times. A

11 Formally: we can write a conventional AG as a lazy applicative functor. Monads are more expressive, hence we

require the following equality to hold, which is not the case for uu-parsinglib:

p⋆q ≡ p>>=λ f → q>>=a→ return (f a)

229

6 AGs with Stepwise Evaluation

decision about a place holder must be taken during one of these traversals. Typically,

information about place holders is maintained in a substitution (concrete assignments

to variables) or constraints (symbolic representation of a deferred judgment). For ex-

ample, Hindley-Damas-Milner type inference (algorithm W) has k = 1. After one

traversal, a type variable either got assigned a concrete type, or it is fixed by a skolem

constant (and generalized later). Haskell 98 overloading resolving is an example of

k = 2. In the first pass, type equalities are resolved and class-constraints are collected.

In the second pass, the class-constraints are resolved. Such problems can be dealt with

in AGs using additional attributes for substitutions and constraints.

• ω pass. Declarative aspects that are resolved by fixpoint iteration falls in this class.

This includes the class of type and effect systems. Also, resolution of Haskell’s over-

loading in combination with functional dependencies falls in this class. AGs with cir-

cular references can be used to encode such problems [Magnusson and Hedin, 2007,

Jones, 1990], or AGs that can express iteration [Middelkoop et al., 2010a].

• Exploration of alternatives. In the previous classes, declarative aspects are resolved

by sufficiently constraining a value, where the constraints are a pure function of the

(attributed) AST. In the exploration class, declarative aspects are resolved by explor-

ing assignments to place holders. This requires instantiations for place holders to be

enumerable. Haskell’s overloading combined with overlapping instances, and the con-

struction of equality coercions for GADTs fall in this class. This chapter positions

itself in this class.

• Undecidable. Inference for some declarative aspects is undecidable. For example, a

polymorphic type can in general not be inferred for an argument of a recursive function.

Haskell offers several library approaches for backtracking, via folklore Maybe and list

monads to more advanced monads [Hinze, 2000, Kiselyov et al., 2005, Fischer et al., 2009]

that deal with nondeterminism and lazyness. Alternatives are only explored for a value when

this value is required. However, the order of appearance of alternatives affect memory retain-

ment and how online the results are. See the discussion in Swierstra [2009, Section 4.1].

Coroutines were considered for many compilation tasks [Marlin, 1980]. Nowadays, they

are mostly used to implement producer-consumer patterns. Kastens [1980] showed how to

compile multi-visit AGs to coroutines. In this chapter we apply coroutines in a different

fashion. We use coroutines to expose explicitly indicated parts of the internal state of an AG

evaluation, in order to describe exploration strategies.

There are several approaches for monadic coroutines in Haskell. These implementations

have their roots in the folklore CPS monad to pause, abort and merge computations. Kise-

lyov’s Iteratees [Kiselyov, 2008] come close to our implementation. However, technical

differences aside, there is a conceptual difference. Typical coroutine implementations allow

invocations to take additional arguments. Since the result may depend on the value of such

a parameter, a lazy result cannot be given until the last invocation. Therefore, the hybrid

evaluation model that we presented cannot be implemented with such coroutines.

230

6.8 Conclusion

6.8 Conclusion

We presented SAGs, a powerful language extension to Attribute Grammars to cope with

declarative aspects in the semantics of programming languages. We stated our requirements

in Section 6.1, and showed how our approach meets these demands by example in Section 6.2,

and sketched the implementation in Section 6.3 and Section 6.4. We implemented SAGs in

the UUAG system.

The idea central to our approach is to encode alternatives as a choice between children of

a production, and resolve this based on stepwise inspection of intermediate results of these

children in the form of progress reports.

As future work, we intend to replace the overloading mechanism as currently implemented

in UHC using the new AG features as presented in this paper. Also, a remaining question is if

the stepwise monad is powerful enough to simplify the implementation of uu-parsinglib.

In Appendix A, Appendix E, and Appendix B we go into more detail of the AG part of the

story. Appendix C and Appendix D show improvements of the stepwise monad. Appendix F

gives an example that makes use of the additional improvements. Appendix G shows how

various declarative aspects can be expressed in terms of each other. Proofs for some of

our claims related to the monad laws can be found in Appendix H, and benchmark results

in Appendix I. Finally, we show a translation to Java in Appendix J. The thesis contains

appendices A-D. The extended edition contains the remaining appendices.

6.A Progress Reports and their Emission

As we mentioned in Section 6.2, we annotate productions with the built-in nonterminal

Progress to yield progress reports. Actually, this built-in nonterminal is only a notational

convenience: it is definable in terms of the merge-syntax that we presented before. In this

section, we show the implementation.

The data type Progress, as mentioned in this chapter, can be implemented as follows:

data Progress | Progress

attr Progress inh info :: a

sem Progress | Progress

merge as res : Progress = emit lhs.info>> return ()

It has a single inherited attribute, and a single production. This production has a single child

res, merged out of an empty set of children. To define the semantics of this child, we thus do

not get any semantics of children as parameter. Since Progress does not have any synthesized

attributes, defining a semantics for res is straightforward: we return the empty tuple ().

It is not immediately clear why this implementation would work: nonterminals without

any synthesized attributes never need to be visited. Referential transparency tells us that we

may replace a child with a product of its synthesized attributes, and attribute references with

the corresponding values. A child without synthesized attributes may never be evaluated, and

the progress report never yielded.

231

6 AGs with Stepwise Evaluation

The essential realization here is that there is that a hidden attribute plays a role: the

progress reports themselves are a purely functional attribute. Hence, during strict evaluation

via smallStep, we still visit children without any explicitly declared synthesized attributes in

order to get the progress reports. In contrast, during on-demand evaluation via lazyEval, we

ignore progress reports, hence do not evaluate children without synthesized attributes.

6.B Translation Scheme

In this section, we formalize SAGs. We first define a small core language sagcore, consisting

of Haskell extended with embedded AG blocks, obtained by desugering AG descriptions.

The following grammar lists the syntax of these embedded AG blocks:

i ::=attr I inh a1 syn a2 -- attribute delcs

a ::= x :: hty -- attribute decl, with Haskell type hty

s ::= sem I r -- semantics expr, defines production for I

r ::=p = e -- binds to p to pure e

| child c :: I = e -- declares child

| merge c as c :: I = e -- declares merged child

o ::= x.x -- expression, attribute occurrence

x, I,p,e -- identifiers, patterns, expressions respectively

Attribute declarations i declares all attributes (name and type) of a nonterminal I. A semantics

block defines a single production for a nonterminal I, and gives its rules r. Productions in

sagcore are nameless: we use a Haskell declaration to give it a name. Furthermore, we

declare its children through rules. Rules either define attributes, or declare children: we

introduce all children as higher-order attributes (Appendix E). The expressions e are Haskell

expressions, with possible attribute occurrences o. Patterns p are Haskell patterns, also with

possible attribute occurrences o.

For example, we show how the production Or as mentioned in Section 6.2 is encoded

in sagcore. In UUAG-notation, we declare a production Or, declare the attributes of the

corresponding nonterminal, and give the rules for the attributes:

data Pred | Or left,right :: Pred

attr Pred inh e :: Env syn b :: Bool

sem Pred | Or

left.e = lhs.e

right.e = lhs.e

merge left right as res :: Pred = chooseor

lhs.b = res.b

In sagcore, we declare the attributes of the nonterminal, then use a Haskell function to repre-

sent the production: it takes the semantics of the children as parameter, then uses an embed-

ded semantics block to define the semantics for the production itself:

232

6.B Translation Scheme

attr Pred inh e :: Env syn b :: Bool

sem Pred And l r =
sem Pred

child left :: Pred = l

child right :: Pred = r

merge left right as res :: Pred = chooseor

left.e = lhs.e

right.e = lhs.e

lhs.b = res.b

We thus keep the rules, yet express the grammar directly as Haskell functions:

data N | C c :: I sem N C c = sem N

sem N | C r child c :: I = c;r

With such a function that represents a production, we can construct attributed trees. Each

node in the tree has its own set of inherited and synthesized attributes: the associated nonter-

minal specifies their name and their types. The rules of the production define the attributes of

the production, and declare what attributes the children have. The production must define its

synthesized attributes, and the inherited attributes of its children exactly once (with a correct

type). Attribute references in the expressions may refer to the inherited attributes of the pro-

duction, or the synthesized attributes of the children. There is one exception: the inherited

attributes of the merged child (e.g. res) may not be defined, and the synthesized attributes of

the merging children (e.g. left and right) may not be referred to.

We define a translation to Haskell (denotational semantics) that gives both a static and

operational semantics to SAGs. If the generated Haskell program is type correct then so is

the sagcore program. The execution of the generated Haskell functions shows how the rules

are used to construct the attributed trees.

As mentioned in Section 6.3, we translate a semantics-block to an execution plan of the

production. We use a naming conventional to translate AG names to Haskell names. At-

tributes are referred to by an identifier cXa. In this notation, c and a are the name of the child

and the name of the attribute respectively. X is a subscript I for an inherited attribute, and

S for a synthesized attribute. Merging children are prefixed with an underscore (we assume

that names of children do not start with an underscore).

Each rule corresponds to an instruction in the execution plan. In the end, we return a tuple

with values for the synthesized attributes:

Jsem I rK λ lhsI ins1 ... lhsI insn→ do rec

{JrK;return (lhsSout1, ..., lhsSoutm)}
Jchild c :: I = eK, conventional (cSout1, ...,cSoutm)← e cI ins1 ... cI insn

Jchild c :: I = eK, merged let c = e cI ins1 ... cI insn

Jp = eK let JpK = JeK
Jmerge cs as c : N = eK (cSout1, ...,cSoutm)← JeK c1 ... ck

The indices m and n range over the inherited and synthesized attributes of nonterminal I.

233

6 AGs with Stepwise Evaluation

In previous work [Middelkoop et al., 2010a], we described different (more sophisticated)

translations of (Ordered) Attribute Grammars to execution plans (in Haskell). The merge-

syntax is fully compatible with those translations.

6.C Semantic Lookahead

In this section, we show how to deal with a choice that has a potential global effect on at-

tributes of the tree. For example, suppose that we deal with a type inferencer that needs to

choose between int and double for the type of a numerical constant. This choice may have

a global effect: a wrong choice potentially causes a typing error in the remainder of the pro-

gram to type. To explore such a choice, we want to look at the steps of a child and the steps

that the remaining computation gives if we would choose that child. In terms of the monad:

if k is the continuation after the choice, i.e. choose l r>>= k, then we want to lift the choice

to choose (l>>= k) (r>>= k).
We provide a monadic operation Ahead (explained below) to access the continuation k.

This operations comes at a price: since the continuation is not known until runtime, so we

wish our choose-function to work for arbitrary continuations. In particular, we refrain from

making static assumptions on the type of the result the continuation computes.

data Stepwise i a where

Ahead :: (forall b.(a→ Stepwise i b)→ Stepwise i b)→ Stepwise i a

Ahead takes as argument a function f that takes the continuation k as argument. To use Ahead,

we provide this function f . The continuation takes the result that we are supposed to compute,

and returns a computation of some existential type b. The computation passed to ahead thus

wraps around the computation: it specifies an input for the continuation, and allows us to

modify the result of the continuation. Thus, this lifted the choice to toplevel, as mentioned in

the previous paragraph. Also, modifying the result of the continuation instead of building an

input for the continuation based on trying out the continuation is what makes this approach

different from Continuation Passing Style’s call/cc.

As an example, a computation m is equivalent to Ahead (λk → m >>= k). As another

example, a global choice can be made using:

Ahead (λk→ choose (l>>= k) (r>>= k))

Although we cannot make an assumption about the type of the result of k, we can make an

assumption on the type of progress reports, and thus use the contents of the progress reports

to direct the exploration between the two choices (depending on the search strategy).

When we encounter an Ahead f in lazyEval, the question is what continuation we pass in.

The function f is required to get the computation that resembles the remaining continuation.

However, since we are in lazyEval, the continuation cannot return any progress reports, and

cannot observably fail. Thus we simply pass in Return, which succeeds immediately, and

gives us the result that f passes to its continuation:

lazyEval (Ahead f) = f Return

234

6.D Watchers

When we encounter an Ahead f in smallStep without parents on the parent stack, we pause

the computation. The evaluation can only continue if the caller specifies how the computation

proceeds (possibly by calling Ahead itself):

data Report i a where

Lookahead :: (forall b.(a→ Stepwise i b)→ Stepwise i b)→ Report i a

smallStep (Ahead f) = Lookahead f

If there are parents on the parent stack, however, we continue to reduce f . The continuation

to pass to f are the remaining parents on the parent stack:

reduce (Ahead f) (Bind g r) = smallStep $ f $ λa→ Pending (g a) r

The use of Ahead has an interesting interplay with the hybrid evaluation model. On-

demand evaluation skips progress reports, and passes a Return as continuation. If a parent of a

child that uses lookahead is evaluated on-demand, then the lookahead of the child does not ob-

serve the skipped progress reports. So, lookahead does not see beyond on-demand evaluated

AST nodes. So, if a progress report contains information essential to a choice using looka-

head, we need to take sufficient smallSteps at a common ancestor node such that the looka-

head observed the report. For example, we can emit a progress report e.g. DoneGreedy when

a choice using lookahead inspected the progress reports it was interested in, take smallSteps

at the root of the tree (or a common ancestor), until we encounter DoneGreedy, then switch

to lazyEval.

Also, Ahead has an interplay with multi-visit AGs (deriveable from Ordered Attribute

Grammars). Without Ahead, stepwise evaluation yields a Done for a child when the first visit

is finished. When using Ahead, however, yields a Done when the continuation finished with

its last visit. Again, the progress report mechanism can be used to limit the exploration to

certain visits, or yield the outcome of a visit as intermediate result.

It is advisable to ensure that all choices can be made based on results of the first visit. If

it requires a progress report that is emitted in a second visit, this requires the first visit to

finish completely, which is likely already a full exploration of the tree (for that choice). It

is possible to make the approach more flexible and offer just on-demand evaluation for first

visits, and (hybrid) stepwise evaluation for later visits. That would allow exploration in a

later visit based on (lazily) computed results in earlier visits. This requires visits to be made

explicit in the AG specification (Chapter 3 and Chapter 5).

6.D Watchers

With the approach described so far, the type i of a progress is fixed: given an m>>= k, both

m and the computation returned by k must have the same i type. This limitation affects

the compositionality of stepwise computations. Also, sometimes we wish to return progress

reports of the same type as the result of the computation12. On the other hand, since the type

12 See Example 7 of Examples.hs in the cabal package at https://svn.science.uu.nl/repos/project.

ruler.papers/archive/stepwise-1.0.2.tar.gz

235

https://svn.science.uu.nl/repos/project.ruler.papers/archive/stepwise-1.0.2.tar.gz
https://svn.science.uu.nl/repos/project.ruler.papers/archive/stepwise-1.0.2.tar.gz

6 AGs with Stepwise Evaluation

i is fixed, we know that a continuation has this type, thus when using Ahead (Appendix C)

we can inspect the progress reports of the continuation. This we cannot do without knowing

i.

To get the best of both ways, we parametrize the type i with a type w that functions as an

index, the watcher. A computation has the type Stepwise i w a, which returns progress reports

with values of the type i w. When w is an existential type, e.g. when using Ahead, we can

still scrutinize on all values not dependent on w. If w is a concrete type, we can scrutinize the

depending values as well.

To embed a computation with a different watcher type, we provide a transcoding operation:

data Stepwise i w a where

Transcode :: (i v→ [i w])→ Stepwise i v a→ Stepwise i w a

It takes a progress report of type i v and converts it to zero or more progress reports of type

i w. For example, smallStep (Transcode (const []) m) does not return any progress reports. In

the actual implementation, we maintain composed transcoders on the parent stack, such that

we can immediately apply them without having to traverse the stack.

In practice, we also allow the transcoding function to store a local state, such that it can

remember a number of progress reports and combine them into a single progress report (com-

pression). If paths in the tree are long, and many nodes are inspecting and passing on progress

reports, then each node gets many reports to process (especially near the root). With the

transcoding mechanism, we can trade evaluation granularity for the number of reports.

236

7 AGs with Dependent Types

Attribute Grammars (AGs) are a domain-specific language for functional and composable

descriptions of tree traversals. Given such a description, it is not immediately clear how to

state and prove properties of AGs formally. To meet this challenge, we apply dependent types

to AGs. In a dependently typed AG, the type of an attribute may refer to values of attributes.

The type of an attribute is an invariant, the value of an attribute a proof for that invariant. Ad-

ditionally, when an AG is cycle-free, the composition of the attributes is logically consistent.

We present a lightweight approach using a preprocessor in combination with the dependently

typed language Agda.

7.1 Introduction

Functional programming languages are known to be convenient languages for implementing

a compiler [Appel, 1998]. As part of the compilation process, a compiler computes prop-

erties of Abstract Syntax Trees (ASTs), such as environments, types, error messages, and

code. In functional programming, these syntax-directed computations are typically written

as catamorphisms1. An algebra defines an inductive property in terms of each constructor of

the AST, and a catamorphism applies the algebra to the AST. Catamorphisms thus play an

important role in a functional implementation of a compiler.

Attribute Grammars (AGs) [Knuth, 1968] are a domain-specific language for composable

descriptions of catamorphisms. AGs facilitate the description of complex catamorphisms that

typically occur in complex compiler implementations.

An AG extends a context-free grammar by associating attributes with nonterminals. Func-

tional rules are associated with productions, and define values for the attributes that occur

in the nonterminals of associated productions. As AGs are typically embedded in a host

language, the rules are terms in the host language, which may additionally refer to attributes.

Attributes can easily be composed to form more complex properties. An AG can be compiled

to an efficient functional algorithm that computes the synthesized attributes of the root of the

AST, given the root’s inherited attributes.

It is not immediately clear how to formally specify and write proofs about programs im-

plemented with AGs. For example, it is common to prove that a type inferencer is a sound

and complete implementation of a type system, and that the meaning of a well typed source

program is preserved. Dependent types [Bove and Dybjer, 2009] provide a means to use

1 Catamorphisms are a generalization of folds to tree-like data structures. We consider catamorphisms from the

perspective of algebraic data types in functional programming instead of the equivalent notion in terms of func-

tors in category theory. A catamorphism cataτ (f1, ..., fn) replaces each occurrence of a constructor ci of τ in

a data structure with fi. The product (f1, ..., fn) is called an algebra. An element fi of the algebra is called a

semantic function.

237

7 AGs with Dependent Types

types to encode properties with the expressiveness of (higher-order) intuitionistic proposi-

tional logic, and terms to encode proofs. Such programs are called correct by construction,

because the program itself is a proof of its invariants. The goal of this chapter is therefore to

apply dependent types to AGs, in order to formally reason with AGs.

Vice versa, AGs also offer benefits to dependently typed programming. Because of the

Curry-Howard correspondence, dependently typed AGs are a domain-specific language to

write structurally inductive proofs in a composable, aspect-oriented fashion; each attribute

represents a separate aspect of the proof. Additionally, AGs alleviate the programmer from

the tedious orchestration of multi-pass traversals over data structures, and ensure that the

traversals are total: totality is required for dependently typed programs for reasons of logical

consistency and termination of type checking. Hence, the combination of dependent types

and AGs is mutually beneficial.

We make the following contributions in this chapter:

• We present the language AGDA (Section 7.3), a light-weight approach to facilitate

dependent types in AGs, and vice versa, AGs in the dependently typed language Agda.

AGDA is an embedding in Agda via a preprocessor.

In contrast to conventional AGs, we can encode invariants in terms of dependently

typed attributes, and proofs as values for attributes. This expressiveness comes at a

price: to be able to compile to a total Agda program, we restrict ourselves to the class

of ordered AGs, and demand the definitions of attributes to be total.

• We define a desugared version of AGDA programs (Section 7.4) and show how to

translate them to plain Agda programs (Section 7.5).

• Our approach supports a conditional attribution of nonterminals, so that we can give

total definitions of what would otherwise be partially defined attributes (Section 7.6).

In Section 7.2, we introduce the notation used in this chapter. However, we assume that the

reader is both familiar with AGs (see [Löh et al., 1998]) and dependently typed programming

in Agda (see [Norell, 2009]).

7.2 Preliminaries

In this warm-up section, we briefly touch upon the Agda and AG notation used throughout

this chapter. As an example, we implement the sum of a list of numbers with a catamorphism.

We give two implementations: first one that uses plain Agda, then another using AGDA.

This example does not yet use dependently typed attributes. These are introduced in the next

section.

In the following code snippet, the data type List represents a cons-list of natural numbers.

The type T ′List is the type of the value we compute (a number), and A′List is the type of an

algebra for List. Such an algebra contains a semantic function for each constructor of List,

which transforms a value of that constructor into the desired value (of type T ′List), assuming

that the transformation has been recursively applied to the fields of the constructor. The

catamorphism cataList performs the recursive application.

238

7.2 Preliminaries

data List : Set where -- represents a cons-list of natural numbers

nil : List -- constructor has no fields

cons :N→ List→ List -- constructor has a number and tail list as fields

T ′List = N -- defines a type alias T ′List : Set,

A′List = (T ′List,N→ T ′List→ T ′List) -- and A′List : Set

cataList : A′List→ List→ T ′List -- applies algebra to list

cataList (n,) nil = n -- in case of nil, replaces nil with n

cataList alg l with alg | l -- otherwise, matches on alg and l

cataList alg l | (,c) | cons x xs with cataList alg xs -- recurses on xs

cataList alg l | (,c) | cons x xs | r = c x r -- replaces cons with c

In Agda, a function is defined by one or more equations. A with-construct facilitates pattern

matching against intermediate values. An equation that ends with with e1 | ... | en parame-

terizes the equations that follow with the values of e1, ...,en as additional arguments. Vertical

bars separate the patterns intended for the additional parameters.

The actual algebra itself simply takes 0 for the nil constructor, and + for the cons con-

structor. The function sumList shows how the algebra and catamorphism can be used.

semnil : T ′List -- semantic function for nil constructor

semnil = 0 -- T ′List = N (defined above)

semcons :N→ T ′List→ T ′List -- semantic function for cons constructor

semcons = + -- + :N→ N→ N (defined in library)

sumList : List→ T ′List -- transforms the List into the desired sum

sumList = cataList (semnil,semcons) -- algebra is semantic functions in a tuple

In the example, the sum is defined in a bottom-up fashion. By taking a function type for

T ′List, values can also be passed top-down. Multiple types can be combined by using prod-

ucts. Such algebras quickly become tedious to write. Fortunately, we can use AGs as a

domain-specific language for algebras. In the code below, we give an AG implementation:

we specify a grammar that describes the structure of the AST, declare attributes on produc-

tions, and give rules that define attributes.

We now give an implementation of the same example using AGDA. The code consists of

blocks of plain Agda code, and blocks of AG code. To ease the distinction, Agda’s keywords

are underlined, and keywords of AGDA are typeset in bold.

A grammar specification is a restricted form of a data declaration (for an AST): data con-

structors are called productions and their fields are explicitly marked as terminal or nontermi-

nal. A nonterminal field represents a child in the AST and has attributes, whereas a terminal

field only has a value. A plain Agda data-type declaration can be derived from a grammar

specification. In such a specification, nonterminal types must have a fully saturated, outer-

most type constructor that is explicitly introduced by a grammar declaration. Terminal types

may be arbitrary Agda types2.

2 In general, although not needed in this example, nonterminal types may be parametrized, production types may

refer to its field names, and field types may refer to preceding field names.

239

7 AGs with Dependent Types

grammar List : Set -- declares nonterminal List of type Set

prod nil : List -- production nil of type List (no fields)

prod cons : List -- production cons of type List (two fields)

term hd :N -- terminal field hd of type N

nonterm tl : List -- nonterminal field tl of type List

With an interface specification, we declare attributes for nonterminals. Attributes come in

two fashions: inherited attributes (used in a later example) must be defined by rules of the

parent, and synthesized attributes may be used by the parent. Names of inherited attributes are

distinct from names of synthesized attributes; an attribute of the same name and fashion may

only be declared once per nonterminal. We also partition the attributes in one or more visits.

These visits impose a partial order on attributes. Inherited attributes may not be defined in

terms of a synthesized attributes of the same visit or later. We use this order in Section 7.4 to

derive semantic functions that are total.

itf List -- interface for nonterminal List,

visit compute -- with a single visit that is named compute,

syn sum :N -- and a synthesized attribute named sum of type N

Finally, we define each of the production’s attributes. We may refer to an attribute using

child.attr notation. For each production, we give rules that define the inherited attributes of

the children and synthesized attributes of the production itself (with lhs as special name),

using inherited attributes of the production and synthesized attributes of the children. The

special name loc refers to the terminals, and to local attributes that we may associate with a

production.

datasem List -- defines attributes of List for constructors of List

prod nil lhs.sum = 0 -- rule for sum of production nil

prod cons lhs.sum = loc.hd+ tl.sum -- refers to terminal hd and attr tl.sum

The left-hand side of a rule is a plain Agda pattern, and the right-hand side is either a plain

Agda expression or with-construct (not shown in this example). Additionally, both the left

and right-hand sides may contain attribute references.

During attribute evaluation, visits are performed on children to obtain their associated syn-

thesized attributes. We do not have to explicitly specify when to visit these children, neither is

the order of appearance of rules relevant. However, an inherited attribute c.x may not depend

on a synthesized attribute c.y of the same visit or later (in the interface). This guarantees that

the attribute dependencies are acyclic, so that we can derive when children need to be visited

and in what order.

AGs are a domain-specific language to write algebras in terms of attributes. From the

grammar, we generate the data type and catamorphism. From the interface, we generate the

T ′List type. From the rules, we generate the semantic functions semnil and semcons. AGs pay

off when an algebra has many inherited and synthesized attributes. Also, there are many AG

extensions that offer abstractions over common usage patterns (not covered in this chapter).

In the next section we present AGs with dependent types, so that we can formulate properties

of attributes (and their proofs).

240

7.3 Dependently Typed Example

7.3 Dependently Typed Example

In this section, we use AGDA to implement a mini-compiler that performs name checking

of a simple language Source, and translates it to target language Target if all used identifiers

are declared, or produces errors otherwise. A term in Source is a sequence of identifier

definitions and identifier uses, for example: def a⋄use b⋄use a. In this case, b is not defined,

thus the mini-compiler reports an error. Otherwise, it generates a Target term, which is a

clone of the Source term that additionally carries evidence that the term is free of naming

errors. Section 7.3.2 shows the definition of both Source and Target.

We show how to prove that the mini-compiler produces only correctly named Target terms

and errors messages that only mention undeclared identifiers. The proofs are part of the

implementation’s code. Name checking is only a minor task in a compiler. However, the

example shows many aspects of a more realistic compiler.

7.3.1 Support Code Dealing With Environments

We need some Agda support code to deal with environments. We show the relevant data

structures and type signatures for operations on them, but omit the actual implementation. See

Section 7.A for more details about the actual implementation. We represent the environment

as a cons-list of identifiers.

Ident = String -- Ident : Set

Env = List Ident -- Env : Set

In intuitionistic type theory, a data type represents a relation, its data constructors deduction

rules for such a relation, and values built using these constructors are proofs for instances of

the relation. We use some data types to reason with environments.

A value of type ι ∈ Γ is a proof that an identifier ι is member of an environment Γ. A value

here indicates that identifier is at the front of the environment. A value next means that the

identifier can be found in the tail of the environment, as described by the remainder of the

proof.

data ∈ : Ident→ Env→ Set where

here :{ι : Ident} {Γ : Env}→ ι ∈ (ι :: Γ)
next :{ι1 : Ident} {ι2 : Ident} {Γ : Env}→ ι1 ∈ Γ→ ι1 ∈ (ι2 :: Γ)

The type Γ1 ⊑ Γ2 represents a proof that an environment Γ1 is contained as a substring

(with each mapping as a symbol) of an environment Γ2. A value subLeft means that the

environment Γ1 is a prefix of Γ2, and subRight means that Γ1 is a suffix. With trans, we

transitively compose two proofs.

data ⊑ : Env→ Env→ Set where

subLeft :{Γ1 : Env} {Γ2 : Env}→ Γ1 ⊑ (Γ1 ++Γ2)
subRight :{Γ1 : Env} {Γ2 : Env}→ Γ2 ⊑ (Γ1 ++Γ2)
trans :{Γ1 : Env} {Γ2 : Env} {Γ3 : Env}→ Γ1 ⊑ Γ2→ Γ2 ⊑ Γ3→ Γ1 ⊑ Γ3

241

7 AGs with Dependent Types

The following functions operate on proofs. When an identifier occurs in an environment,

function inSubset produces a proof that the identifier is also in the superset of the environ-

ment. Given an identifier and an environment, ι ∈? Γ returns either a proof ι ∈ Γ that the

element is in the environment, or a proof that it is not.

inSubset :{ι : Ident} {Γ1 : Env} {Γ2 : Env}→ Γ1 ⊑ Γ2→ ι ∈ Γ1→ ι ∈ Γ2

∈? : (ι : Ident)→ (Γ : Env)→¬(ι ∈ Γ)⊎ (ι ∈ Γ)

A value of the sum-type α ⊎β either consists of an α wrapped in a constructor inj1 or of a β
wrapped in inj2.

7.3.2 Grammar of the Source and Target Language

Below, we give a grammar for both the Source and Target language, such that we can analyze

their ASTs with AGs3. The Target language is a clone of the Source language, except that

terms that have identifiers carry a field proof that is evidence that the identifiers are properly

introduced.

grammar Root : Set -- start symbol of grammar and root of AST

prod root : Root nonterm top : Source -- top of the Source tree

grammar Source : Set -- grammar for nonterminal Source

prod use : Source -- ’result type’ of production

term ι : Ident -- terminals may have arbitrary Agda types

prod def : Source -- ’result type’ may be parametrized

term ι : Ident

prod ⋄ : Source -- represents sequencing of two Source terms

nonterm left : Source -- nonterminal fields must have a nonterm as

nonterm right : Source -- outermost type constructor.

grammar Target : Env→ Set -- grammar for nonterminal Target

prod def : Target Γ -- production type may refer to any field,

term?
Γ : Env -- e.g. Γ. Agda feature: implicit terminal

term ι : Ident -- (inferred when building a def)

term φ : ι ∈ Γ -- field type may refer to preceding fields

prod use : Target Γ

term?
Γ : Env -- a Target term carries evidence: a

term ι : Ident -- proof that the identifier is in the

term φ : ι ∈ Γ -- environment

⋄ : Target Γ

term?
Γ : Env

nonterm left : Target Γ -- nonterm fields introduce children that

nonterm right : Target Γ -- have attributes

data Err : Env→ Set where -- data type for errors in Agda notation

3 In our example, we could have defined the type Target using conventional Agda notation instead. However, the

grammar for Target serves as an example of a parameterized nonterminal.

242

7.3 Dependently Typed Example

scope :{Γ : Env} (ι : Ident)→¬(ι ∈ Γ)→ Err Γ

Errs Γ = List (Err Γ) -- Errs : Env→ Set

As shown in Section 7.2, we generate Agda data-type definitions and catamorphisms from

this specification.

The concrete syntax of the source language Source and target language Target of the mini-

compiler is out of scope for this chapter; the grammar defines only the abstract syntax. Sim-

ilarly, we omit a formal operational semantics for Source and Target: it evaluates to unit if

there is an equally named def for every use, otherwise evaluation diverges.

7.3.3 Dependent Attributes

In this section, we define dependently typed attributes for Source. Such a type may contain

references to preceding4 attributes using inh.attrNm or syn.attrNm notation, which explicitly

distinguishes between inherited and synthesized attributes. The type specifies a property of

the attributes it references; an attribute with such a type represents a proof of this property.

In our mini-compiler, we compute bottom-up a synthesized attribute gathEnv that contains

identifiers defined by the Source term. At the root, the gathEnv attribute contains all the

defined identifiers. We output its value as the synthesized attribute finEnv (final environment)

at the root. Also, we pass its value top-down as the inherited attribute finEnv, such that we

can refer to this environment deeper down the AST. We also pass down an attribute gathInFin

that represents a proof that the final environment is a superset of the gathered environment.

When we know that an identifier is in the gathered environment, we can thus also find it in

the final environment. We pass up the attribute outcome, which consists either of errors, or of

a correct Target term.

itf Root -- attributes for the root of the AST

visit compile syn finEnv : Env

syn outcome : (Errs syn.finEnv)⊎ (Target syn.finEnv)

itf Source -- attributes for Source

visit analyze syn gathEnv : Env -- attribute of first visit

visit translate inh finEnv : Env -- attributes of second visit

inh gathInFin : syn.gathEnv⊑ inh.finEnv

syn outcome : (Errs inh.finEnv)⊎ (Target inh.finEnv)

itf Target Γ -- interface for Target (parameterized) is not used in the example.

As we show later, at the root, we need the value of gathEnv to define finEnv. This re-

quires gathEnv to be placed in a strict earlier visit. Hence we define two visits, ordered by

appearance.

Attribute gathInFin has a dependent type: it specifies that gathEnv is a substring of finEnv.

A value of this attribute is a proof that essentially states that we did not forget any identifiers.

4 We may refer to an attribute that is declared earlier (in order of appearance) in the same interface. There is one

exception due to the translation to Agda (Section 7.5): in the type of an inherited attribute, we may not refer to

synthesized attributes of the same visit.

243

7 AGs with Dependent Types

Similarly, in order to construct Target terms, we need to prove that finEnv defines the iden-

tifiers that occur in the term. In the next section, we construct such proofs by applying data

constructors. We may use inherited attributes as assumptions and pattern matches against val-

ues of attributes as case distinctions. Thus, with a dependently typed AG we can formalize

and prove correctness properties of our implementation. Agda’s type checker validates such

proofs using symbolic evaluation driven by unification.

7.3.4 Semantics of Attributes

For each production, we give definitions for the declared attributes via rules. At the root, we

pass the gathered environment back down as final environment. Thus, these two attributes

are equal, and we can trivially prove that the final environment is a substring using either

subRight or subLeft.

datasem Root prod root -- rules for production root of nonterm Root

top.finEnv = top.gathEnv -- pass gathered environment down

top.gathInFin = subRight { []} -- substring proof, using: []++Γ4 ≡ Γ4

lhs.finEnv = top.gathEnv -- pass gathEnv up

lhs.outcome = top.outcome -- pass outcome up

For the use-production of Source, we check if the identifier (terminal loc.ι) is in the envi-

ronment. If it is, we produce a Target term as value for the outcome attribute, otherwise we

produce a scope error. For def , we introduce an identifier in the gathered environment. No

errors can arise, hence we always produce a Target term. We prove (loc.φ1) that the identifier

loc.ι is actually in the gathered environment, and prove (loc.φ2) using inSubset and attribute

lhs.gathInFin that it must also be in the final environment. For ⋄ , we pass finEnv down to

both children, concatenate their gathEnvs, and combine their outcomes.

datasem Source -- rules for productions of Source

prod use

lhs.gathEnv = [] -- no names introduced

lhs.outcome with loc.ι ∈? lhs.finEnv -- tests presence of ι
| inj1 notIn = inj1 [scope loc.ι notIn] -- when not in env

| inj2 isIn = inj2 (use loc.ι isIn) -- when in env

prod def

lhs.gathEnv = [loc.ι] -- one name introduced

loc.φ1 = here {loc.ι } {syn.lhs.gathEnv} -- proof of ι in gathEnv

loc.φ2 = inSubset lhs.gathInFin loc.φ1 -- proof of ι in finEnv

lhs.outcome = inj2 (def loc.ι loc.φ2) -- never any errors

prod ⋄
lhs.gathEnv = left.gathEnv++ right.gathEnv -- pass names up

left.finEnv = lhs.finEnv -- pass finEnv down

right.finEnv = lhs.finEnv -- pass finEnv down

left.gathInFin = trans subLeft lhs.gathInFin -- proof for left

244

7.4 AG Descriptions and their Core Representation

right.gathInFin = trans (subRight {syn.lhs.gathEnv} { lhs.finEnv})
lhs.gathInFin -- proof for right

lhs.outcome with left.outcome -- four alts.

| inj1 es with right.outcome

| inj1 es1 | inj1 es2 = inj1 (es1 ++ es2) -- 1: both in error

| inj1 es1 | inj2 = inj1 es1 -- 2: only left

| inj2 t1 with left.outcome

| inj2 t1 | inj1 es2 = inj1 es2 -- 3: only right

| inj2 t1 | inj2 t2 = inj2 (t1 ⋄ t2) -- 4: none in error

Out of the above code, we generate each production’s semantic function (and some wrapper

code), such that these together with a catamorphism form a function that translates Source

terms. The advantage of using AGs here is that we can easily add more attributes (and thus

more properties and proofs) and refer to them.

7.4 AG Descriptions and their Core Representation

In the previous sections, we presented AGDA (by example). To describe the dependently-

typed extension to AGs, we do so in terms of the core language AGX
DA (a subset of AGDA).

Implicit information in AG descriptions (notational conveniences, the order of rules, visits

to children) is made explicit in AGX
DA. We sketch the translation from AGDA to AGX

DA. In

previous work [Middelkoop et al., 2010c,a], we described the process in more detail (albeit

in a non-dependently typed setting).

AGX
DA contains interface declarations, but grammar declarations are absent and semantic

blocks encoded differently. Each production in AGDA is mapped to a semantic function in

AGX
DA: it is a domain-specific language for the contents of semantic functions. A terminal

x : τ of the production is mapped to a parameter loclx : τ . Implicit terminals are mapped

to implicit parameters. A nonterminal x : N τ is mapped to a parameter loccx : T ′N τ . The

body of the production consists of the rules for the production given in the original AGX
DA

description, plus a number of additional rules that declare children and their visits explicitly.

sem⋄ : T ′Source→ T ′Source→ T ′Source -- derived from (non)terminal types

sem⋄ loccleft loccright = -- semantic function for ⋄
sem : Source -- AGX

DA semantics block

child left : Source = loccleft -- defines a child left

child right : Source = loccright -- defines a child right

invoke analyze of left -- rule requires visiting analyze on left

invoke analyze of right -- rule requires visiting analyze on right

invoke translate of left

invoke translate of right

lhs.gathEnv = left.gathEnv++ right.gathEnv -- the AGDA rules

... -- etc.

245

7 AGs with Dependent Types

e ::=AGDA [b] -- embedded blocks b in AGDA

b ::= i | s | o -- AGX
DA blocks

o ::= inh.c.x | syn.c.x | loc.x -- embedded attribute reference

i ::= itf I x : τ v -- with first visit v, params x, and signature τ
v ::=visit x inh a syn a v -- visit declaration

| � -- terminator of visit decl. chain

a ::= x : e -- attribute decl, with Agda type e

s ::= sem : I e t -- semantics expr, uses interface I e

t ::=visit x r t -- visit definition, with next visit t

| � -- terminator of visit def. chain

r ::=p e′ -- evaluation rule

| invoke x of c -- invoke-rule, invokes x on child c

| child c : I = e -- child-rule, defines a child c, with interface I e

p ::=o -- attribute def

| .{e} -- Agda dot pattern

| x p -- constructor match

e′ ::=with e p′ e′? -- Agda with expression (e′ absent when p′ absurd)

| = e -- Agda = expression

p′ -- Agda LHS

x, I,c -- identifiers, interface names, children respectively

τ -- plain Agda type

Figure 7.1: Syntax of RULER-CORE

A child rule introduces a child with explicit semantics (a value of the type T ′Source). Other

rules may declare visits and refer to the attributes of the child. An invoke rule declares a visit

to a child, and brings the attributes of that visit in scope. Conventional rules define attributes,

and may refer to attributes. The dependencies between attributes induces a def-use (partial)

order.

Actually, there is one more step to go to end up with a AGX
DA description. A semantics

block consists of one of more visit-blocks (in the order specified by the interface), and the

rules are partitioned over the blocks. In a block, the lhs attributes of that and earlier visits

are in scope, as well as those brought in scope by preceding rules. Also, the synthesized

attributes of the visit must be defined in the block or in an earlier block. We assign rules to

the earliest block that satisfies the def-use order. We convert this partial order into a total

order by giving conventional rules precedence over child/invoke rules, and using the order of

appearance otherwise:

sem⋄ : T ′Source→ T ′Source→ T ′Source -- signature derived from itf

sem⋄ loccleft loccright = -- semantic function for ⋄

246

7.5 Translation to Agda

sem : Source -- AGX
DA block

visit analyze -- first visit

child left : Source = loccleft -- defines a child left

invoke analyze of left -- requires child to be defined

child right : Source = loccright -- defines a child right

invoke analyze of right -- requires child to be defined

syn.lhs.gathEnv = syn.left.gathEnv++ syn.right.gathEnv

visit translate -- second visit

inh.left.finEnv = inh.lhs.finEnv -- needs lhs.finEnv

inh.right.finEnv = inh.lhs.finEnv -- needs lhs.finEnv

inh.left.gathInFin = trans ... -- also needs lhs.gathEnv

inh.right.gathInFin = trans ... -- also needslhs.gathEnv

invoke translate of left -- needs def of inh attrs of left

invoke translate of right -- needs def of inh attrs of right

syn.lhs.outcome with ... -- needs translate attrs of children

It is a static error when such an order cannot be satisfied. Another interesting example is the

semantic function for the root: it has a child with an interface different from its own, and has

two invoke rules in the same visit.

sem root : T ′Source→ T ′Root -- semantic function for the root

sem root locStop = -- Source’s semantics as parameter

sem : Root visit compile -- only one visit

child top : Source = locctop -- defines a child top

invoke analyze of top -- invokes first visit of top

inh.top.finEnv = syn.top.gathEnv -- passes gathered environment back

invoke translate of top -- invokes second visit of top

syn.lhs.output = syn.top.gathEnv -- passes up the gathered env

syn.lhs.output = syn.top.outcome -- passes up the result

Figure 7.1 shows the syntax of AGX
DA. In general, interfaces may be parametrized. The

interface has a function type τ (equal to the type of the nonterminal declaration in AGDA)

that specifies the type of each parameter, and the kind of the interface (an upper bound of

the kinds of the parameters). For an evaluation rule, we either use a with-expression when

the value of the attribute is conditionally defined, or use a simple equation as RHS. In the

next section, we plug such an expression in a function defined via with-expressions; hence

we need knowledge about the with-structure of the RHS.

7.5 Translation to Agda

To explain the preprocessing of AGX
DA to Agda, we give a translation scheme in Figure 7.2

(explained via examples below). This translation scheme is a denotational semantics for

AGX
DA. Also, if the translation is correct Agda, then the original is correct AGX

DA.

247

7 AGs with Dependent Types

Jitf I x : τx→ τK v Jiv vKx:τx

I,τ ; Jsig IK : JτK ; Jsig IK = Jsig I (name v)K

Jiv visit x inh a syn b vK
g
I,τ Jiv vK

g++a++b
I,τ -- interface type for later visits

Jsig I xK : Jat g1K→ ...→ Jat gnK→ Jresultty τK

Jsig I xK Jan gK = Ja inh.a1K→ ...→ Ja inh.anK→
Jtyprod (syn.b) (sig I (name v))K

Jiv �K
g
I,τ Jsig I �K =� -- terminator (some unit-value)

Ja x : eK Jatname xK : JeK -- extract attribute name and type

Jat x : eK JeK -- extract attribute type

Jan x : eK Jatname xK -- extract attribute name

Jsem x : I e tK Jvis lhs (name t)K where JevtKe, /0
I -- top of semfun

Jevvisit x r tK
e,g
I Jvis lhs xK : Jsig I xK JeK Jan gK -- type of visit fun

Jvis lhs xK Jinhs I xK = Jr rKJςK -- chain of rules

JςK = Jvalprod (syns I x) (vis lhs (name t))K

where JevtK
g++a++b
I -- next visit

Jev�K
e,g
I Jvis lhs�K : Jsig I �K JeK Jan gK ; Jvis lhs�K =�

Jr child c : I = eKk with JeK ... | Jvis I (firstvisit I)K JkK -- k: remaining rules

Jr invoke x of cKk with Jvis (itf c) xK Jinhs (itf c) xK -- pass inh values

... | (valprod (syns (itf c) x)) JkK -- match syn values

Jr p e′Kk Jep e′Kk
p -- translation for attr def rule

Jep with e p e′Kk
p with e ... | JpK Jr p e′Kk -- rule RHS is with-constr

Jep = eKk
p with e ... | JpK k -- rule RHS is expr

atref inh.c.x = cix atname inh.x = inhax -- naming conventions

atref syn.c.x = csx atname syn.x = synax -- atref : ref to attr value

atref loc.x = loclx atname x = x -- atname: ref to attr in type

vis I x = vis lhs x sig I = T ′I -- vis: name of visit function

vis c x = cvx sig I x = T ′I′x -- sig: itf types

Figure 7.2: Translation of AGX
DA to Agda.

248

7.5 Translation to Agda

A semantics block in an AGX
DA program is actually an algorithm that makes precise how

to compute the attributes as specified by the interface: for each visit, the rules prescribe when

to compute an attribute and when to visit a child. The idea is that we map such a block

to an Agda function that takes values for its inherited attributes and delivers a dependent

product5 of synthesized attributes. However, such a function would be cyclic: in the presented

example, the result gathEnv would be needed for as input for finEnv. Fortunately, we can

bypass this problem: we map to a k-visit coroutine instead. A coroutine is a function that can

be invoked k times. We associate each invocation with a visit of the interface. Values for the

inherited attributes are inputs to the invocation. Values for the synthesized attributes are the

result of the invocation. In a pure functional language (like Agda), we can encode coroutines

as one-shot continuations (or visit functions [Saraiva and Swierstra, 1999]).

We generate types for coroutines and for the individual visit functions that make up such

a coroutine. These types are derived from the interface. For each visit (e.g. translate of

Source), we generate a type that represents a function type from the attribute types of the

inherited attributes for that visit, to a dependent product (Σ) of the types of the synthesized

attributes and the type of the next visit function. These types are parameterized with the

attributes of earlier visits (e.g. T ′Source′translate synagathEnv). The type of the coroutine

itself is the type of the first visit. The type of the last visit is a terminator �.

T ′Source = T ′Source′analyze

T ′Source′analyze = Σ Env T ′Source′translate

T ′Source′translate synagathEnv =
(inhafinEnv : Env) → (inhagathInFin : synagathEnv⊑ inhafinEnv) →

Σ (Errs inhafinEnv⊎Target inhafinEnv)
(T ′Source′� synagathEnv inhafinEnv inhagathInFin)

T ′Source′� synagathEnv inhafinEnv inhagathInFin synaoutcome =�

The restrictions on attribute order in the interface ensure that referenced attributes are in

scope. This representation can be optimized a bit by passing only on those attributes that

are referenced in the remainder. The scheme for Jiv vKI
g,τ formalizes this translation, where

g is the list of preceding attribute declarations, and τ the type for I. The typrod function

mentioned in the scheme constructs a right-nested dependent product.

The coroutine itself consists of nested continuation functions (one for each visit). Each

continuation takes the visit’s inherited attributes as parameter, and consists of a tree of with-

constructs that represent intermediate computations for computations of attributes and invo-

cations of visits to children. Each leaf ends in a dependent product of the visit’s synthesized

attributes and the continuation function for the next visit6.

sem⋄ : T ′Source→ T ′Source→ T ′Source -- example translation for ⋄
sem⋄ loccleft loccright = lhsvanalyze where -- delegates to first visit function

lhsvanalyze : T ′Source′analyze -- signature of first visit function

lhsvanalyze with ... -- computations for analyze here

5 A dependent product Σ τ f = (τ, f τ) parameterizes the RHS f with the LHS τ .
6 As a technical detail, a leaf of the with-tree may also be an absurd pattern. These are used in Agda to indicate an

alternative that is never satisfiable. A body for such an alternative cannot be given.

249

7 AGs with Dependent Types

...= (lhssgathEnv, lhsvtranslate) ahwere -- result of first visit function

lhsvtranslate : T ′Source′translate lhssgathEnv -- last visit function

lhsvtranslate lhsifinEnv lhsigathInFin with ... -- computations for translate here

...= (lhssoutcome, lhsv�) where -- result of second visit function

lhsv� : T ′Source′� lhssgathEnv lhsifinEnv lhsigathInFin lhssoutcome

lhsv�=� -- explicit terminator value

The scheme JevvKe,g
I formalizes this translation for a visit v of interface I, where e are type

arguments to the interface (empty in the example), and g are the attributes of previous visits.

The with-tree for a visit-function consists of the translation of child-rules, invoke-rules and

evaluation rules. Each rule plugs into this tree. For example, the translation for Jchild left :

Source = locsleftK is:

...with locsleft -- evaluate RHS to get first visit fun

... | leftvanalyze with ... -- give it a name + proceed with remainder

For Jinvoke translate of leftK the translation is:

...with leftvtranslate leftifinEnv leftigathInFin -- visit fun takes inh attrs

... | (leftsoutcome, leftvsentinel) with ... -- returns product of syn attrs

For Jlhs.gathEnv = left.gathEnv++ right.gathEnvK:

...with leftsgathEnv++ rightsgathEnv -- translation for RHS

... | lhssgathEnv with ... -- LHS + remainder

For Jlhs.outcome with...K (where the RHS is a with-construct), we duplicate the remaining

with-tree for each alternative of the RHS:

...with leftsoutcome -- translation for RHS

... | inj1 es with rightsoutcome

... | inj1 es1 | inj1 es2 with inj1 (es1 ++ es2) -- alternative one of four

... | inj1 es1 | inj1 es | lhssoutcome with ... -- LHS + remainder

... | inj1 es1 | inj2 with inj1 es1 -- alternative two of four

... | inj1 es1 | inj2 | lhssoutcome with ... -- LHS + remainder

... | inj2 ... -- remaining two alternatives

The scheme Jr rKk formalizes this translation, where r is a rule and k the translation of the

rules that follow r.

The size of the translated code may be exponential in the number of rules with with-

constructs as RHS. It is not obvious how to treat such rules otherwise. Agda does not allow

a with-construct as a subexpression. Neither can we easily factor out the RHS of a rule to

a separate function, because the conclusions drawn from the evaluation of preceding rules

are not in scope of this function. Fortunately, for rules that would otherwise cause a lot of

needless duplication, the programmer can perform this process manually.

When dependent pattern matching brings assumptions in scope that are needed across

rules, the code duplication is a necessity. To facilitate that pattern matching effects are visible

250

7.6 Partially Defined Attributes

across rules, we need to ensure that the rule that performs the match is ordered before a rule

that needs the assumption. Chapter 3 shows how such non-attribute dependencies can be

captured.

The translated code has attractive operational properties. Each attribute is only computed

once, and each node is at most traversed k times.

7.6 Partially Defined Attributes

A fine granularity of attributes is important to use an AG effectively. In the mini-compiler

of Section 7.3, we could replace the attribute outcome with an attribute code and a separate

attribute errors. This would be more convenient, since it would not require a pattern match

against the output attribute to collect errors. This is convenient in general, as a finer granular-

ity of attributes gives more opportunities to use default rules. However, we cannot produce a

target term in the presence of errors, thus code would not have a total definition. Therefore,

we were forced to combine these two aspects into a single attribute outcome. It is common

to use partially defined attributes in an AG. This holds especially when the attribute’s value

(e.g. errors) determines if another attribute is defined (e.g. code). We present a solution that

uses the partitioning of attributes over visits.

The idea is to make the availability of visits dependent on the value of a preceding attribute.

We split up the translate visit in a visit report and a visit generate. The visit report has errors

as synthesized attribute, and generate has code. Furthermore, we enforce that generate may

only be invoked (by the parent in the AST) when the list of errors reported in the previous

visit is empty. We accomplish this with an additional attribute noErrors on generate that gives

evidence that the list of errors is empty. With this evidence, we can give a total definition for

code.

itf Source -- Root’s visit needs to be split up in a similar way

visit report syn errors : Errs inh.finEnv -- parent can inspect errors

visit generate inh noErrors : syn.errors≡ [] -- enforces invariant

syn code : Target inh.finEnv -- only when errors is empty

datasem Source prod use -- example for production use

loc.testInEnv = loc.ι ∈? lhs.finEnv -- scheduled in visit report

lhs.code with loc.testIn | lhs.noErrors -- scheduled in visit generate

| inj1 | () -- cannot happen, hence an absurd pattern

| inj2 isIn | refl = use loc.ι isIn -- extract the evidence needed for the code term

datasem Source prod⋄ -- leftNil : (α : Env)→ (β : Env)→ (α ++β ≡ [])→ (α ≡ [])
left.noErrors = leftNil left.errors right.errors lhs.noErrors -- right.noErrors similar

lhs.code = left.code⋄ right.code -- scheduled in visit generate

For this approach to work, it is essential that visits are scheduled as late as possible, and only

those that are needed.

Another application of the above idea is related to proofs for special cases, i.e. when

we want to prove that with additional assumptions on inherited attributes, the synthesized

attributes meet additional criteria. These assumptions are modeled as additional inherited

251

7 AGs with Dependent Types

attributes. However, since we are required to pass values for inherited attributes, our AG

would only work for these special cases. For example, suppose that we want to prove that

an AG for a type inferencer is complete. To do so, we give a typing derivation as input, and

require a proof that the inferred type is more general than the type of the typing derivation.

To infer a type, we do not want to provide a typing derivation, and in the proof, we do not

want that the typing derivation would be defined in terms of the typing derivation. The typing

derivation assumption is thus partially defined: only needed for the proof. Hence, we define

the attributes for the proof in a separate visit.

itf Expr

visit infer inh env : Env syn self : Expr syn errs : Errs

visit typed inh φ1 : syn.errs≡ [] syn τ : Ty

visit proof -- special visit for proof

inh τ ′ : Ty

inh deriv : inh.env ⊢ syn.self : inh.τ ′ -- description of typing derivation.

syn φ2 : syn.τ 6 inh.τ ′

We can generalize the presented approach (Section 7.B) by defining a fixed number of alter-

native sets of attributes for a visit, and use the value of a preceding attribute to select one of

these sets [Middelkoop et al., 2010d].

7.7 Related Work

Dependent types originate in Martin-Löf’s Type Theory. Several dependently-typed program-

ming languages increasingly gain popularity, including the languages Agda [Norell, 2009],

Epigram [McBride, 2004], and Coq [Bertot, 2008]. We present the ideas in this chapter with

Agda as host language, because it has a concept of a dependent pattern match, to which we

straightforwardly map the left-hand sides of AG rules. Also, in Coq and Epigram, a program

is written via interactive theorem proving with tactics or commands. The preprocessor-based

approach of this chapter, however, suits a declarative approach more.

Attribute grammars [Knuth, 1968] are considered to be a promising implementation for

compiler construction. Recently, many Attribute Grammar systems arose for mainstream

languages, such as the systems JastAdd [Ekman and Hedin, 2007] and Silver [Van Wyk et al.,

2008] for Java, and UUAG [Löh et al., 1998] for Haskell. These approaches may benefit

from the stronger type discipline as presented in this chapter; however, it would require an

encoding of dependent types in the host language.

In languages languages with meta-programming facilities, it is sometimes possible to im-

plement AGs without the need of a preprocessor. Viera et al. [2009] show how to implement

AGs into Haskell via type level programming. Each rule exposes in its type the attributes that

it needs and the attributes that it defines. The rules can be composed via combinators. At

one place in the program, the knit point, a proof is constructed that the set of used attributes

equals the defined attributes. This proof is subsequently mapped to a semantic function. A

combination of that paper with our work, would fit well in Agda, if Agda had a mechanism

252

7.8 Conclusion

similar to Haskell’s class system. Alternatively, it may be possible to embed first-class AGs

in Agda, while using a preprocessor to generate boilerplate code.

AGs have a straightforward translation to cyclic functions in a lazy functional program-

ming language [Swierstra and Alcocer, 1998]. To prove that cyclic functions are total and

terminating is a non-trivial exercise. Kastens [Kastens, 1980] presented Ordered Attribute

Grammars (OAGs). In OAGs, the evaluation order of attribute computations as well as at-

tribute lifetime can be determined statically. Saraiva [Saraiva and Swierstra, 1999] described

how to generate (noncyclic) functional coroutines from OAGs. The coroutines we generate

are based on these ideas.

7.8 Conclusion

We presented AGDA, a language for ordered AGs with dependently typed attributes: the

type of an attribute may refer to the value of another attribute. This feature allows us to

conveniently encode invariants in the type of attributes, and pass proofs of these invariants

around as attributes. With a dependently typed AG, we write algebras for catamorphisms in a

dependently typed language in a composable way. Each attribute describes a separate aspect

of the catamorphism.

A particular advantage of composability is that attributes can easily be added and shared.

Moreover, via local attributes we can specify invariants and proofs at those places where the

data is. We prove for the example in Section 7.3 that the final environment must be equal to

the gathered environment at the root of the tree:

datasem Root prod root -- more rules for the root production

loc.eqEnvs : inh.top.finEnv≡ syn.top.gathEnv -- signature for local attr

loc.eqEnvs = refl -- proof of the equality

The approach we presented is lightweight, which means that we encode AGs as an embed-

ded language (via a preprocessor), such that type checking is deferred to the host language.

To facilitate termination checking, we translate the AG to a coroutine (Section 7.5) that en-

codes a terminating, multi-visit traversal, under the restriction that the AG is ordered and

definitions for attributes are total.

The preprocessor approach fits nicely with the interactive Emacs mode of Agda. Type er-

rors in the generated program are traceable back to the source: in a statically checked AGDA

program these can only occur in Agda blocks. These Agda blocks are literally preserved; due

to unicode, even attribute references can stay the same. Also, the Emacs mode implements

interactive features via markers, which are also preserved by the translation. The AG pre-

processor is merely an additional preprocessing step. Not all features integrate seamlessly,

however. Syntactical errors in Agda blocks, such as an omitted closing parenthesis, may

only be discovered during parsing of the generated code surrounding the block. This can be

remedied by validating the syntax of Agda blocks during the preprocessing. A complication

arises because the code of rules may occur multiple times in the generated code. Also, the

case splitting feature causes the generated program to be transformed, such that it scrutinizes

253

7 AGs with Dependent Types

on a variable chosen by the programmer. The additional equations generated by case split-

ting need to be transformed back to rules with a with-construct. Fortunately, these are not

fundamental problems.

With some generalizations, the work we have presented is a proposal for a more flexible

termination checker for Agda that accepts k-orderable cyclic functions, if the function can be

written as a non-cyclic k-visit coroutine.

As future work, it may be possible to exploit patterns in AG descriptions to generate boil-

erplate for proofs. For example, we can generate boilerplate code to express termination and

monotonicity properties of fixpoint iteration in AGs (Chapter 5), and generate boilerplate

code for standard environment lookup and extension patterns. Also, it may be possible to

generate proof and AG templates from a type system specification [Dijkstra and Swierstra,

2006b].

7.A Implementation of the Support Code

In this section, we give a definition of the support code mentioned briefly in Section 7.3. This

section also serves to give a bit more background information about Agda’s syntax.

In a dependently typed language, the interpretation of an algebraic data type in an intu-

itionistic logic is a relation between the type parameters of the data type. A data constructor

is an axiom for the relation. A type is a theorem; a value of that type is a proof that the

theorem holds.

We defined the following data types and data constructors to work with proofs for environ-

ments. We use the ∈ data type to prove that an identifier is in the environment, and ⊑
to prove that an environment occurs as substring in an environment.

data ∈ : Ident→ Env→ Set where -- member of environment

here :{ι : Ident} {Γ : Env}→ ι ∈ (ι :: Γ)
next :{ι1 : Ident} {ι2 : Ident} {Γ : Env}→ ι1 ∈ Γ→ ι1 ∈ (ι2 :: Γ)

data ⊑ : Env→ Env→ Set where -- substring of environment

subLeft :{Γ1 : Env} {Γ2 : Env}→ Γ1 ⊑ (Γ1 ++Γ2)
subRight :{Γ1 : Env} {Γ2 : Env}→ Γ2 ⊑ (Γ1 ++Γ2)
trans :{Γ1 : Env} {Γ2 : Env} {Γ3 : Env}→ Γ1 ⊑ Γ2→ Γ2 ⊑ Γ3→ Γ1 ⊑ Γ3

A membership proof for an identifier in the environment states that either the identifier is at

the head of the environment, or there is a proof that it is in the tail of the environment. The

substring-proof gives prefixes and suffixes to the encapsulated environment that together give

the encapsulating environment. Note the use of curly braces here. These represent implicit

parameters, which are denoted with similar syntax as implicit parameters for Haskell. An

argument for an implicit parameter may be omitted if it can be derived from the context via

unifications.

The arrow type constructor can be interpreted as the logical implication. The parameters

of a function are assumptions, and the return type is the conclusion. A function thus takes

proofs for these assumption as parameter, and transforms these into a proof for the result.

The following functions operate on proofs of the above types. When an identifier exists in an

254

7.A Implementation of the Support Code

environment, then append proves that it also exists in a suffixed version of that environment.

Similarly, prefix gives a prove for a prefixed environment. Function inSubset uses these two

to prove that when an identifier occurs in a substring of an environment, it also occurs in the

environment itself.

append :{ι : Ident} {Γ : Env}→ (ι ∈ Γ)→ (Γ′ : Env)→ (ι ∈ (Γ++Γ
′))

append {ι } { .ι :: Γ} (here) Γ
′ = here {ι } {Γ++Γ

′}
append {ι } {nm′ :: Γ} (next inΓ) Γ

′ = next (append {ι } {Γ} inΓ Γ
′)

append { } { []} ()

prefix :{ι : Ident} {Γ
′ : Env}→ (ι ∈ Γ

′)→ (Γ : Env)→ (ι ∈ (Γ++Γ
′))

prefix inΓ
′ [] = inΓ

′

prefix inΓ
′ (x :: Γ) = next (prefix inΓ

′
Γ)

inSubset :{ι : Ident} {Γ : Env} {Γ
′ : Env}→ (Γ′ ⊑ Γ)→ ι ∈ Γ

′→ ι ∈ Γ

inSubset (subLeft { } {Γ
′}) inΓ

′ = append inΓ
′
Γ
′

inSubset (subRight {Γ}) inΓ
′ = prefix inΓ

′
Γ

inSubset (trans subL subR) inΓ
′ = inSubset subR (inSubset subL inΓ

′)

In case of append, the environment cannot be empty when we have a proof than an identifier

occurs in it. However, to satisfy the totality checker, we are required to give a function

definition for this case. Since a match against such a pattern cannot succeed, the match is

called absurd, and no function body has to be given.

The operator ∈? takes an identifier ι and an environment Γ, and either gives a prove that

the identifier is in the environment, or gives a proof that it is not in the environment. The

sum type ⊎ (named Either in Haskell) provides constructors inj1 (Left in Haskell) and inj2
(Right in Haskell) for this purpose.

For the definition of ∈?, we use function notFirst to prove by contradiction that if an iden-

tifier does not occur in the tail of the environment, and is also not equal to the head of the

environment, that it is neither in the whole environment.

notFirst :{ι : Ident} {nm′ : Ident} {Γ : Env}→
¬(ι ≡ nm′)→¬(nm′ ∈ Γ)→¬(nm′ ∈ (ι :: Γ))

notFirst φ1 = λhere → φ2 refl

notFirst φ1 = λ (next φ2)→ φ1 φ2

Negation of a type (neg tau) is defined as a function τ → ⊥. The type ⊥ (falsum) does

not have any data constructors, so we cannot construct it explicitly, but can match against it

with an absurd pattern. If we can derive its value, we proved a contradiction between the

assumptions we made.

∈? : (ι : Ident)→ (Γ : Env)→¬(ι ∈ Γ)⊎ (ι ∈ Γ)
nm′ ∈? [] = inj1λ ()
nm′ ∈? (ι :: Γ) with ι ≡? nm′

nm′ ∈? (.nm′ :: Γ) | yes refl = inj2 here

nm′ ∈? (ι :: Γ) | no φ ′ with nm′ ∈? Γ

255

7 AGs with Dependent Types

nm′ ∈? (ι :: Γ) | no φ ′ | inj2 φ = inj2 (next {nm′} {ι } φ)
nm′ ∈? (ι :: Γ) | no φ ′ | inj1 φ = inj1 (notFirst φ ′ φ)

When the environment is empty, the identifier is not in the environment. We thus use inj1
and need to construct a negation. This is a function, with an absurd pattern as first parameter,

since none of the data constructors of ∈ can be applied. The other cases apply when the

environment is not empty. Also note that patterns in Agda must be strictly linear: there may

only be one introduction of an identifier. If there are multiple locations, the identifier must be

prefixed with a dot.

In Section 7.6, we used the helper function leftNil. It is implemented by case distinction

on its first argument. When α is empty, the requested property trivially holds. When α is not

empty, normalization of α ++β gives another constructor than [], hence the absurd pattern.

leftNil : (α : Env)→ (β : Env)→ (α ++β ≡ [])→ (α ≡ [])
leftNil [] refl = refl

leftNil (::) ()

7.A.1 Absurd Rules

There may be productions for which no semantics for a given interface exists. For example,

consider a grammar for a statically sized bit array.

grammar BitArray :N→ Set -- statically sized bit array

prod nil : BitArray 0 -- empty bit array

prod cons : BitArray (suc n) -- non-empty bit array

term? n :N -- length of the tail

term hd : Bool -- bit at the head of the array

nonterm tl : BitArray n -- tail of the bit array

We declare a synthesized attribute head that stands for the head bit of the array. We can

extract this bit when the array is not empty. Hence, we state this requirement as inherited

attribute.

itf BitArray n visit extract -- Interface to extract the head

inh prf : n>0 -- Proofs that the array is not empty

syn head : Bool -- Must return the head bit

If the array is empty, then we cannot give a value for lhs.head. Fortunately, the proof helps

us out. If the array would be empty, then we would not be able to give the proof. Indeed, we

can match with an absurd pattern against the proof, so that we do not have to give a definition

for lhs.head.

datasem BitArray

prod nil lhs.head with lhs.prf -- would be proof of suc 06 0

256

7.A Implementation of the Support Code

| () -- not inhabited

prod cons lhs.head = loc.hd -- trivial

Under these conditions, a semantics for nil cannot be given.

When the interface has multiple attributes, or even multiple visits, then the above code

would have to be duplicated for each synthesized attribute of the production, and each inher-

ited attribute of the children. To prevent such code duplication, we introduce an absurd-rule.

Its LHS p must be an absurd pattern that matches against the outcome of the RHS e.

r ::= absurd p = e -- absurd rule (with absurd p)

For example, we can use it to match against lhs.prf in the nil production.

datasem BitArray prod nil

absurd () = lhs.prf -- would be proof of suc 06 0

Attribute definitions and child declarations must be omitted if these would appear later than

the absurd-rule in the rule order. The translation is relatively straight-forward.

Jr absurd p = eKk with e ... | JpK -- ends the current with-branch

Since each with-branch ends in an absurd pattern, the continuation k is not needed. Since

the follow-up rules on an absurd rule are not generated, we also demand that these are not

specified in the first place.

These absurd-rules have consequences for the rule scheduling algorithm. We want the

absurd-rules to be scheduled early, such that we can omit the rules that would follow. Also,

we want their scheduling to be predictable, such that we know which rules we can and must

omit. The scheduling algorithm consists of a number of phases.

• In the first phase, attributes are scheduled to visits of the interface. We assume that

this step is performed manually, although it can be automated to a large extend, as is

implemented in UUAGC [Löh et al., 1998].

• In the remaining phases, we can deal with each productions independently. For each

production we construct a DAG that captures the dependencies between rules (Chap-

ter 3). In this DAG, we identify the (indirect) predecessors of absurd-rules. These

predecessors, combined with the absurd-rules, we schedule as early as possible. The

partial order imposed by the DAG is turned into a total order by giving precedence first

to absurd-rules, then evaluation rules, invoke rules, and finally child rules.

• In the final phase, we schedule the remaining rules as late as possible. Superfluous

rules end up in the terminator visit.

If the DAG is non-cyclic, this algorithm properly schedules the rules. The DAG models the

def/use dependencies of the rules. Each subsequent pass preserves these dependencies. Thus,

the algorithm is sound. Also, if an absurd-rule r1 could be scheduled earlier than a non-absurd

rule r2, then r2 is not a predecessor of r1. However, then r1 would have been scheduled earlier

as absurd-rules take precedence.

257

7 AGs with Dependent Types

An absurd-rule thus forces the attributes its RHS refers to, to be scheduled as early as

possible. It preferably does not have too complex dependencies (i.e. transitively speaking,

only dependencies on inherited attributes and local attributes), so that it is clear when it is

scheduled.

7.B Dependent Nonterminal Attribution

In Section 7.6, we showed how to deal with an attribute p that is only defined when another

attribute q has a particular value v. The trick is to move p to a later visit than q, and add the

invariant to p’s visit that requires that it can only be invoked when q equals v. This invariant

is expressed as additional attribute, which can then also be used in the definition of p. This

is an example of a dependent attribution of nonterminals: depending on the value of q, the

remaining attributes were either all present, or none were present. This approach can be

generalized to allow a fixed number of different sets of attributes depending on the value of

preceding attributes.

The responsibility for choosing a set of attributes can be given to the caller or the callee.

The callee is the node that is a child of the caller. We divide responsibilities as follows.

The caller invokes a visit on the callee, and is responsible for selecting one of the alternative

interfaces that are offered by the callee. The callee is required to produce results for that

choice. The callee can encode restrictions on the available choices for the parent as inherited

attributes. The caller must provide values for the inherited attributes of the alternative inter-

face it chooses. With this choice, both the caller and callee can impose demands. The caller

imposes these demands by choosing an interface of the callee, and the callee imposes these

demands through inherited attributes.

We change the syntax of interfaces to cater for contexts. A visit consists of a set of explic-

itly named contexts z.

i ::= itf I x : τ v -- with first visit v, params x, and signature τ
v ::=visit x z -- visit declaration with a set of contexts (many z)

z ::= context x inh a syn a v -- context x for a visit

Notationally, layout becomes important. The contexts z must have the same indentation, and

visits and contexts occurring inside a context must have a deeper indentation. As syntactic

sugar, we assume that the context-keyword and name may be omitted if there is only one

context for a visit. The syntax for the terminator visit is not needed anymore. It can be

modeled as a visit with zero contexts. The names of contexts must be unique per interface.

It allows us to distinguish contexts of different visits from each other, which is needed in

AGDA because of its syntactical conveniences.

For example, we define two contexts for the generate visit of the earlier example. The

context errorfree contains the code attribute, but it may only be invoked when errors are

absent. The context haserrors provides a pretty attribute with a pretty print of the program. It

does not pose restrictions on the errors attribute.

itf Source

visit report syn errors : Errs inh.finEnv

258

7.B Dependent Nonterminal Attribution

visit generate -- a visit may consist of one or more contexts

context errorfree -- a context has a name

inh noErrors : syn.errors≡ []
syn code : Target inh.finEnv

context haserrors -- a context may also contain subsequent visits

syn pretty : Doc

The callee must provide rules for each context. We split a semantics-block t for a visit up

into a context u for each declared context of that visit in the corresponding interface. Such a

context defines the next visit. For visits with more than one context, the caller must explicitly

invoke them by means of an invoke rule.

t ::=visit x u -- visit definition, with next visit t

u ::= context x r t -- context with next visit t

r ::= invoke x1 of c context x2 -- modified invoke rule

Similarly to the notational conveniences above, we allow the context-keyword and name to

be omitted if there is only one context declared for a visit.

For example, for production ⋄, we choose contexts of the children depending on the context

the visit itself is in. In this example, the context for the child is the same as the context of the

parent. This is not a requirement.

datasem Source prod⋄
lhs.errors = left.errors++ right.errors -- collect errors

context errorfree -- rules exclusive for errorfree

invoke generate of left context errorfree -- explicit invoke

invoke generate of right context errorfree -- explicit invoke

left.noErrors = leftNil left.errors right.errors lhs.noErrors

left.noErrors = rightNil left.errors right.errors lhs.noErrors

lhs.code = left.code⋄ right.code

context haserrors -- rules exclusive for haserrors

invoke generate of left context haserrors -- explicit invoke

invoke generate of right context haserrors -- explicit invoke

lhs.pretty = left.pretty⊕ right.pretty -- collect pretty print

Ultimately, the choice for the context is made at the root. Either we make this choice external

to the AG in terms of the generated coroutine, or use another AG extension [Middelkoop

et al., 2010a]: clauses. A context may be split further into clauses. A clause may contain

special match-rules, which may contain failing pattern matches. When a pattern match fails,

execution backtracks to the next clause. The clauses are a means of case distinction on

multiple rules at once. This is needed, in order to use different invoke-rules, depending on

the values of an attribute.

itf Root visit compile syn outcome : (Errs syn.finEnv)⊎ (Target syn.finEnv)

datasem Root prod root -- some rules omitted

259

7 AGs with Dependent Types

visit compile -- clauses of visit/context

clause emptyerrors -- linear sequence of clauses

match [] = top.errors -- possibly failing test

top.noErrors = refl -- if match succeeds

invoke generate of top context errorfree -- take errorfree visit

lhs.outcome = inj2 top.code

clause nonemptyerrors -- ¬([]≡ top.errors)
invoke generate of top context haserrors -- take haserrors visit

lhs.outcome = inj1 top.errors

Clauses and match rules are confined to the visit/context they are defined in. The clauses must

be exhaustive. Within these constraints, match-rules can be scheduled as usual. Match-rules

are also scheduled as early as possible, similarly to absurd-rules (Section 7.A.1). There is a

good reason to do so: we typically do not have explicit dependencies on a match rule, and its

in general better to distinguish cases as soon as possible.

In the AGX
DA translation, the visit function that corresponds to a visit has a parameter for

each attribute of that visit. For the translation of contexts we give an additional, initial param-

eter to such a visit function. The value is a handle [Middelkoop et al., 2010b]: it describes

what context we want, and what the type of that context is supposed to be. The handle can

be considered a typed version of the control parameter in Kennedy and Warren [1976]. For

example, for visit generate, there are two contexts, errorfree and haserrors respectively. For

each context, we generate a type that specifies the types of the attributes (as described earlier):

T ′Source′errorfree ...

T ′Source′haserrors ...

Each constructor of the handle-type is indexed by one of these context types:

data H′Source′generate : (lhssgathEnv : Env)→ (lhsserrors : Errs lhssgathEnv)→ Set→ Set

where

errorfree :∀ {lhssgathEnv} { lhsserrors}→
H′Source′translate lhssgathEnv lhsserrors (T ′Source′errorfree lhssgathEnv lhsserrors)

haserrors :∀ {lhssgathEnv} { lhsserrors}→
H′Source′translate lhssgathEnv lhsserrors (T ′Source′haserrors lhssgathEnv lhsserrors)

The visit function takes such a handle (H′Generate β) and returns β . The caller thus knows

what β is, and the callee can find this out by pattern matching against the data constructors.

The actual type of the visit function, and its implementation becomes:

T ′Source′generate synagathEnv synaerrors

= ∀ {β }→ H′Source′synagathEnv synaerrors generate β → β

lhsvgenerate : T ′Source′generate lhssgathEnv lhsserrors

lhsvgenerate errorfree = ... -- translation for errorfree

lhsvgenerate haserrors = ... -- translation for haserrors

The types in question seem rather complex, although this is mainly plumbing to pass at-

tributes around on the type level. Fortunately, AGs alleviate us from writing such code by

hand.

260

7.C Ideas Transferrable to AG Systems for Haskell

The presented mechanism opens up the possibility to have non-linear visit sequences. It

also allows us to express interfaces for the ordered AGs as presented by Kennedy and Warren

[1976]. Each context can represent an operation or query to be performed on the AST. For

example, we could define an interface on the AST of types, such that one context computes

the free variables, and another one applies a substitution to the type. The presented approach

only permits branching. However, it may be possible to generalize the approach further and

allow branches to merge and loop. Merging of branches could be of use for proofs of special

cases that span multiple visits (Section 7.6). Also, the interfaces can be seen as session types

for coroutines.

7.C Ideas Transferrable to AG Systems for Haskell

Some of the above ideas carry over to AG systems for Haskell, such as UUAG [Löh et al.,

1998]. In a dependently typed AG, attributes can represent both values and types. In Haskell,

there is a clear distinction between values and types. In an AG for Haskell, we can make an

explicit distinction between attributes that represent types (and have a kind as type), and at-

tributes that represent values. The type of a type attribute may not refer to other attributes. The

type of a value attribute, however, may refer to a type attribute. Type attributes correspond

to quantification. An inherited type attribute corresponds to universal quantification, since

the caller can choose its instantiation. A synthesized type attribute corresponds to existential

quantification. The callee can choose its type, but the caller cannot make an assumption about

it. This mechanism allows us to deal with polymorphism in interfaces.

Currently, UUAG only supports kind star data types. We showed how to deal with param-

eterized data types, and GADT-style data constructors. These extensions allow AGs to be

written for data types with a stronger typing discipline. Also, we can deal with class con-

straints in constructors by introducing explicit wrappers for dictionaries that we can store as

additional fields, e.g.:

data DictEq ::∗→ ∗where

DictEq :: Eq a⇒ DictEq a

With such extensions, we can handle even non-regular data types, as long as nonterminals

have an outermost type construct described by a grammar declaration.

The handles of Appendix 7.B are conventional GADTs, hence the context-idea can be

implemented in Haskell.

261

8 Conclusion

This thesis presented several extensions to attribute grammars. With these extensions, com-

plex type inference algorithms can be expressed. When viewed from a high level perspective,

this thesis explored notation that allows units of evaluation in an AG to be made explicit,

to be annotated, and to be controlled. More concretely, we regard type inference as the si-

multaneous construction of a derivation tree and the evaluation of the tree’s attributes. In an

inference algorithm, attribute evaluation and tree construction take turns. The construction of

a derivation tree thus introduces the notion of phasing. Certain attributes must be evaluated to

decide on the structure of the tree. We provided several examples, in particular in Chapter 5.

With our extensions, we organize the evaluation of attributes in phases, which makes ex-

plicit in what state the tree is before and after the evaluation of a phase. We showed how

to exploit this additional information to encode fixpoint computations and search algorithms.

Although we focussed on type inference, our extensions are actually making it possible to

describe complex tree walking automata.

8.1 Addressed Challenges

We briefly restate the challenges as mentioned in the instruction. A declarative specifica-

tion of a type system is used for formal reasoning and explanation. An inference algorithm

describes how to infer admissible types for a program. The former is therefore an implemen-

tation of the latter. To show that an inference algorithm is indeed an implementation, it is

desirable to have a proof that it is consistent with the type system.

As discussed in Section 1.1, it is a non-trivial exercise to construct an inference algorithm

for languages such as Haskell (with extensions), which integrate several cross-cutting type

systems. In this setting, a formal specification (if it exists at all) and the implementation

are complex, which makes it hard to keep both consistent, let alone proof that this is the

case. Moreover, such an implementation changes continuously to support more language

features or to use different implementation techniques, thus it is likely to be inconsistent. The

apparent inconsistency leaves a big gap between theory and practice. With this thesis, we

worked towards a solution where the gap is closed by specifying a formal type systems that

contain sufficient algorithmic details to be executable.

A question that arose is what execution model to associate with type rules. Despite the

absence of a general inference algorithm that fits any type system (Section 1.2.4), most infer-

ence algorithms are a complex composition of standard inference techniques. An executable

specification thus describes how to tailor these algorithms to the type system. In this thesis,

we zoomed in on the description of such underlying algorithms.

Previous work on the language Ruler posed an initial solution. Ruler is a language in

which syntax-directed, algorithmic type rules can be described, which in combination with

263

8 Conclusion

some additional annotations can be translated automatically to AGs (Section 1.4). Type rules

coincide with productions, and metavariables with attributes. The inference algorithm is thus

expressed as the evaluation of AGs.

For a declaratively specified type system, type inference for declarative aspects boils down

to inferring the structure of the derivation tree and inferring instantiations for non-functionally

constrained meta variables. Higher-order AGs withstanding, AGs assume an apriori fixed

tree, and require functional definitions for attributes. Therefore, an inference algorithm for

declarative type rules cannot be obtained via a straightforward translation to attribute gram-

mars. We addressed this issue in this thesis by extending the AG language to cater for several

inference strategies, and mechanism to combine these strategies.

8.2 Solutions

As initial setting, we showed that we can model an AG on type derivation trees instead of

parse trees. To deal with non-functional attributes such as types, we used a conventional

unification-based strategy with an additional threaded substitution attribute (Section 1.3.11),

and expressed unifications in the AG in a declarative manner using higher-order children

(Section 1.3.12). The substitution in combination with placeholders in types makes the rela-

tions on types functional. Moreover, the implementation of the higher-order child expresses

the standard unification algorithm, and the threading of the substitution its algorithmic coor-

dination, since the threading defines the relative order of the unifications and other operations

that depend on the substitution. To this setting, we made various improvements which we

describe in the remainder of this section.

The explicit threading of the substitution is a tedious job. Alternatively, we can regard

unification as an operation with side effects that affects the substitution. In Chapter 3, we

showed how to make the visit order explicit and use this order to declaratively specify the

relative order of the operations with side effects in addition to the usual order constraints

induced by attribute dependencies. To retain the desired referential transparency of attributes

in the programming model, side effects may only be used in the construction of higher-order

children. In particular, this approach allows AGs to be integrated in a compiler that uses

inference monads.

The relative order of operations that provide fresh placeholders and perform unification is

largely irrelevant. In Chapter 4, we presented commutable rules for threaded attributes to both

model side effects and to relax the order induced by attribute dependencies. In Chapter 4, we

abstracted from visits to phases, where a phase corresponds to one or more inferred visits,

and allowed us to decouple the actual AG evaluation algorithm. Visits provide a fine-grained

model to describe aspects of the evaluation of AGs, whereas with phases we can specify

properties of larger chunks of evaluation. We also showed how to encode the Kennedy-

Warren AG evaluation algorithm in a strongly-typed functional language.

We exploited the notion of a visit to express typical inference algorithms. In Chapter 5, we

presented how to express fixpoint iteration by iterating visits. An invocation of a visit on a

subtree specifies how to compute the visit’s inherited attributes from its synthesized attributes

of the previous iteration. In contrast to conventional fixpoint evaluators for AGs, the notion

264

8.3 Remarks

of visits allows us to compute stop conditions as synthesized attribute, and have visit-local

chained attributes that retain computed values of previous visits.

When an attribute contains an unconstrained placeholder, residuation is a strategy that

defers a dependent computation until the placeholder is sufficiently constrained. In Chapter 5,

we presented an example that implements the residuation strategy by decoupling a child at

one location in the tree and provide input at another location in the tree. This mechanism also

provides an integration with constraints (Section 5.2.7).

In Chapter 5, we also presented how to infer the derivation tree as a function of the in-

herited attributes. In a case study [Middelkoop, 2011a], we illustrated the need for search

strategies to infer the structure of derivation trees when the structure of the derivation tree is

not functionally defined. Chapter 6 showed how to encode such search strategies.

Finally, our work provides solutions in other contexts than type inference. We illustrated

this in the extended edition of this thesis [Middelkoop, 2011b], where we applied our work

to graphs. Since many analyses in compilers are based on control-flow or data-flow graphs,

we showed how to associate a semantics with each node of such a graph with an AG, while

explicitly specify visits to these nodes with a traversal algorithm. Moreover, this approach

allows the encoding of reference attributes in an ordered AG.

In Chapter 7, we applied our work to dependently-typed languages. With dependently-

typed attributes, invariants between attributes can be expressed, and proven to hold, which

allows formal reasoning with attribute grammars. Moreover, the type attributes provide a

mechanism for the universal and existential quantification of the type of a semantic functions.

8.3 Remarks

We put great effort in ensuring that our extensions retain the ease of composition as offered by

AGs so that attributes and rules can still be defined in an aspect-wise and order-independent

fashion. Also, our ideas are conservative extensions of AGs. A conventional AG can be

expressed straightforwardly, which allows features of RulerCore to be retrofitted on an im-

plementation using conventional AGs.

However, to exploit the visit order, we need to specify in which order the children are vis-

ited. For conventional AGs, the traversal over the AST and order of evaluation of rules does

not need to be specified, which has the advantage that it is no concern for the programmer.

This is only a small price to pay. Such orders are declaratively specified (Chapter 3), and only

where needed.

8.4 Implementations

We implemented several prototypes to experiment with the extensions presented in this the-

sis. We validated that our extensions have reasonably efficient implementations. In particular,

the ideas are implementable in Haskell. Our prototypes depend on language features such as

lazy evaluation, monads and GADTs. However, the underlying ideas themselves are imple-

mentable in mainstream languages and other AG systems.

265

8 Conclusion

To our attribute grammar system UUAG, we added higher-order children (Section 1.3.7)

and stepwise evaluation (Chapter 6). In essence, we added only features that do not conflict

with the conventional notion of AGs. Also, we implemented several features to support the

use of AGs in large compiler implementations. In particular, we organized the code generated

by UUAG such that separate compilation, debugging, and profiling is possible.

In the tool ruler-core, we implemented the programming model with explicit visits

(Chapter 3). We experimented with clauses, fixpoint iteration, and other features that benefit

from the notion of a visit (Chapter 5). As further case study, ruler-core was used in a

master project to implement the inference algorithm of the HML type system [Leijen, 2009].

In the tool ruler-interpreter we implemented the operational semantics as outlined in

Chapter 4. The interpreter provides custom judgment syntax, aspect-weaving of type rules,

and a built-in efficient unification mechanism. The simplicity of an interpreter facilitated

rapid prototyping with some of RulerCore’s features.

8.5 Future Work

We implemented and validated our ideas with several prototype implementations. We pro-

vided powerful building blocks for the description of inference algorithms with AGs, and

the description of patterns that often occur in these contexts. However, to fully exploit our

techniques, an integrated implementation of all extensions is needed.

The features that we implemented in UUAG were used to improve the UHC implementa-

tion. Moreover, we used UHC as motivation to investigate AG extensions using RulerCore

for prototyping purposes. We claim that we provide sufficient expressive power to implement

unification and context reduction more concisely in UHC, but to actually do so remains as

future work.

We provide the algorithmic underpinning of inference algorithms for AGs. This takes us

one step closer to our ultimate goal to derive type inference algorithms from type system

specifications. However, the remaining challenges as mentioned in Section 1.5 need to be

addressed as well, such as special syntax and first-class abstractions for AGs. Moreover,

visits are a prominent component in our current work. A direction of future work is to infer

properties of visits from a more abstract specification.

A question that remains open is how we can formally prove and ensure properties of the

implementations that we generate. We address this topic briefly in Chapter 7. A direction of

future work is to generate boilerplate code to support typical proofs.

This thesis provides a core language for inference algorithm descriptions, which paves

the way for high-level abstractions of inference algorithms, thus facilitates more complex

language implementations, and ultimately leads to software of higher quality.

266

Bibliography

A. V. Aho and J. D. Ullman. Translations on a Context Free Grammar. In STOC ’69, pages

93–112, 1969.

J. Aldrich, R. J. Simmons, and K. Shin. SASyLF: an Educational Proof Assistant for Lan-

guage Theory. In FDPE ’08, pages 31–40, 2008.

A. W. Appel. Modern Compiler Implementation in ML. Cambridge University Press, 1998.

B. Arbab. Compiling Circular Attribute Grammars into Prolog. IBM Journal on Research

and Development, 30:294–309, 1986.

I. Attali and D. Parigot. Integrating Natural Semantics and Attribute Grammars : the Minotaur

System. Technical Report RR-2339, INRIA, 1994.

Y. Bertot. Coq in a Hurry. CoRR ’06, 2006.

Y. Bertot. A Short Presentation of Coq. In TPHOLs ’08, pages 12–16, 2008.

R. S. Bird. Using Circular Programs to Eliminate Multiple Traversals of Data. Acta Infor-

matica, 21:239–250, 1984.

A. Bove and P. Dybjer. Dependent Types at Work. In Language Engineering and Rigorous

Software Development, volume 5520, pages 57–99, 2009.

J. T. Boyland. Conditional Attribute Grammars. ACM Transactions on Programming Lan-

guages and Systems, 18(1):73–108, 1996.

E. C. Brady. IDRIS: Systems Programming meets Full Dependent Types. In PLPV ’11, pages

43–54, 2011.

B. Braßel, S. Fischer, M. Hanus, and F. Reck. Transforming Functional Logic Programs into

Monadic Functional Programs. In WFLP’10, 2010.

M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized Type-Based Disambigua-

tion of Meta Programs with Concrete Object Syntax. In GPCE ’05, pages 157–172, 2005.

C. Chambers and G. T. Leavens. Typechecking and Modules for Multi-Methods. In OOPSLA

’94, pages 1–15, 1994.

J. Cheney and R. Hinze. First-Class Phantom Types. Technical report, Cornell University,

2003.

267

Bibliography

N. Chomsky. Three Models for the Description of Language. Transactions on Information

Theory, 2:113–124, 1956.

E. de Vries, R. Plasmeijer, and D. M. Abrahamson. Uniqueness Typing Simplified. In IFL

’07, pages 201–218, 2007.

T. Despeyroux. TYPOL : a Formalism to Implement Natural Semantics. Technical Report

RT-0094, INRIA, 1988.

V. Diekert and Y. Métivier. Partial Commutation and Traces. In Handbook of Formal Lan-

guages, pages 457–533. Springer-Verlag, 1997.

A. Dijkstra. Stepping through Haskell. PhD thesis, Universiteit Utrecht, 2005.

A. Dijkstra and D. S. Swierstra. Exploiting Type Annotations. Technical report, Universiteit

Utrecht, 2006a.

A. Dijkstra and S. D. Swierstra. Typing Haskell with an Attribute Grammar. In AFP ’04,

pages 1–72, 2004.

A. Dijkstra and S. D. Swierstra. Ruler: Programming Type Rules. In FLOPS ’06, pages

30–46, 2006b.

A. Dijkstra, G. van den Geest, B. Heeren, and S. D. Swierstra. Modelling Scoped Instances

with Constraint Handling Rules, 2007.

A. Dijkstra, A. Middelkoop, and S. D. Swierstra. Efficient Functional Unification and Sub-

stitution, 2008.

A. Dijkstra, J. Fokker, and S. D. Swierstra. The Architecture of the Utrecht Haskell Compiler.

In Haskell Symposium, pages 93–104, 2009.

T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler. In OOPSLA ’07, pages

1–18, 2007.

J. Engelfriet and G. Filé. Passes, Sweeps, and Visits in Attribute Grammars. Journal of the

ACM, 36(4):841–869, 1989.

J. Engelfriet and H. J. Hoogeboom. Tree-Walking Pebble Automata. In Jewels are Forever,

pages 72–83, 1999.

L. Erkök and J. Launchbury. Recursive Monadic Bindings. In ICFP ’00, pages 174–185,

2000.

R. Farrow. Sub-Protocol-Evaluators for Attribute Grammars. Sigplan Notices, 19:70–80,

1984.

R. Farrow. Automatic Generation of Fixed-Point-Finding Evaluators for Circular, but Well-

Defined, Attribute Grammars. In CC ’86, pages 85–98, 1986.

268

Bibliography

R. Farrow, T. J. Marlowe, and D. M. Yellin. Composable Attribute Grammars: Support for

Modularity in Translator Design and Implementation. In POPL ’92, pages 223–234, 1992.

K.-F. Faxén. A Static Semantics for Haskell. JFP, 12(4&5):295–357, 2002.

S. Fischer, O. Kiselyov, and C. Shan. Purely Functional Lazy Non-deterministic Program-

ming. In ICFP ’09, pages 11–22, 2009.

J. Fokker and S. D. Swierstra. Abstract Interpretation of Functional Programs using an At-

tribute Grammar System. ENTCS, 238(5):117–133, 2009.

T. Frühwirth. Theory and Practice of Constraint Handling Rules. JLP, 37(1-3):95–138, 1998.

E. M. Gagnon and L. J. Hendren. SableCC, an Object-Oriented Compiler Framework. In

TOOLS (26), pages 140–154, 1998.

E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design Patterns: Abstraction and

Reuse of Object-Oriented Design. In ECOOP ’93, pages 406–431, 1993.

S. Glesner and W. Zimmermann. Using Many-Sorted Natural Semantics to Specify and

Generate Semantic Analysis, 1998.

J. Hage, S. Holdermans, and A. Middelkoop. A Generic Usage Analysis with Subeffect

Qualifiers. In ICFP ’07, pages 235–246, 2007.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to Practice.

JLP, 19/20:583–628, 1994.

R. Harper. Practical Foundations for Programming Languages, 2010.

B. Heeren, J. Hage, and S. D. Swierstra. Scripting the Type Inference Process. In ICFP ’03,

pages 3–13, 2003a.

B. Heeren, D. Leijen, and A. van IJzendoorn. Helium, for Learning Haskell. In Haskell

Workshop, pages 62 – 71, 2003b.

B. J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, 2005.

P. Heidegger, A. Bieniusa, and P. Thiemann. DOM Transactions for Testing JavaScript. In

TAICPART ’10, pages 211–214, 2010.

R. Hinze. Deriving Backtracking Monad Transformers. In ICFP ’00, pages 186–197, 2000.

P. Hudak, S. L. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. H. Fasel, M. M. Guzmán,

K. Hammond, J. Hughes, T. Johnsson, R. B. Kieburtz, R. S. Nikhil, W. Partain, and J. Pe-

terson. Report on the Programming Language Haskell, A Non-strict, Purely Functional

Language. SIGPLAN Notices, 27(5):1–164, 1992.

G. Huet. The Zipper. JFP, 7:549–554, 1997.

269

Bibliography

J. Hughes. Programming with Arrows. In AFP ’04, pages 73–129, 2004.

R. J. M. Hughes and S. D. Swierstra. Polish Parsers, Step by Step. In ICFP ’03, pages

239–248, 2003.

T. Jim. What Are Principal Typings and What Are They Good For? In POPL ’96, pages

42–53, 1996.

L. G. Jones. Efficient Evaluation of Circular Attribute Grammars. ACM Transactions on

Programming Languages and Systems, 12(3):429–462, 1990.

M. P. Jones. Functional Programming with Overloading and Higher-Order Polymorphism.

In AFP ’95, pages 97–136, 1995.

M. Jourdan and D. Parigot. Internals and Externals of the FNC-2 Attribute Grammar System.

In AGAS ’91, pages 485–504, 1991.

T. Kaminski and E. Van Wijk. Integrating Attribute Grammar and Functional Programming

Language Features (to appear), 2011.

U. Kastens. Ordered Attributed Grammars. Acta Informatica, 13:229–256, 1980.

L. C. L. Kats, A. M. Sloane, and E. Visser. Decorated Attribute Grammars: Attribute Evalu-

ation Meets Strategic Programming. In CC ’09, pages 142–157, 2009.

K. Kennedy and S. K. Warren. Automatic Generation of Efficient Evaluators for Attribute

Grammars. In POPL ’76, pages 32–49, 1976.

O. Kiselyov. Iteratee IO: Safe, Practical, Declarative Input Processing, 2008.

O. Kiselyov, C. Shan, D. P. Friedman, and A. Sabry. Backtracking, Interleaving, and Termi-

nating Monad Transformers (functional pearl). In ICFP ’05, pages 192–203, 2005.

A. Klaiber and M. Gokhale. Parallel Evaluation of Attribute Grammars. IEEE Transactions

on Parallel and Distributed Systems, 3(2):206–220, 1992.

D. E. Knuth. Semantics of Context-Free Languages. Mathematical Systems Theory, 2(2):

127–145, 1968.

D. E. Knuth. Semantics of Context-free Languages: Correction. Theory of Computing Sys-

tems, 5:95–96, 1971.

D. E. Knuth. The Genesis of Attribute Grammars. In WAGA ’90, pages 1–12, 1990.

M. F. Kuiper and J. Saraiva. Lrc - A Generator for Incremental Language-Oriented Tools. In

CC ’98, pages 298–301, 1998.

M. F. Kuiper and S. D. Swierstra. Parallel Attribute Evaluation: Structure of Evaluators and

Detection of Parallelism. In WAGA ’90, pages 61–75, 1990.

270

Bibliography

D. Leijen. Flexible Types: Robust Type Inference for First-Class Polymorphism. In POPL

’09, pages 66–77, 2009.

M. Y. Levin and B. C. Pierce. TinkerType: a Language for Playing with Formal Systems.

JFP, 13(2):295–316, 2003.

A. Löh, A. I. Baars, and D. S. Swierstra. Homepage of the Universiteit Utrecht Attribute

Grammar System. http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem,

1998.

E. Magnusson and G. Hedin. Circular Reference Attributed Grammars - their Evaluation and

Applications. SCP ’07, 68(1):21–37, 2007.

E. Magnusson, T. Ekman, and G. Hedin. Extending Attribute Grammars with Collection

Attributes–Evaluation and Applications. SCAM ’07, 0:69–80, 2007.

C. D. Marlin. Coroutines: A Programming Methodology, a Language Design and an Imple-

mentation, volume 95. Springer-Verlag, 1980.

C. McBride. Epigram: Practical Programming with Dependent Types. In AFP ’04, pages

130–170, 2004.

E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Programming. In AFP,

volume 925, pages 228–266, 1995.

A. Middelkoop. Case Study with GADTs. In Inference of Program Properties with Attribute

Grammars, Revisited (extended edition). Universiteit Utrecht, 2011a.

A. Middelkoop. AGs on Graphs. In Inference of Program Properties with Attribute Gram-

mars, Revisited (extended edition). Universiteit Utrecht, 2011b.

A. Middelkoop. AGs with Side Effects (Appendices). In Inference of Program Properties

with Attribute Grammars, Revisited (extended edition). Universiteit Utrecht, 2011c.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. A Leaner Specification for Generalized

Algebraic Data Types. In TFP, volume 9, pages 65–80, 2008.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Iterative Type Inference with Attribute

Grammars. In GPCE ’10, pages 43–52, 2010a.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Visit Functions for the Semantics of Pro-

gramming Languages, 2010b.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Attribute Grammars with Side Effect. In

HOSC, 2010c.

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Visit Functions for the Semantics of Pro-

gramming Languages. In WGT ’10, 2010d.

271

http://www.cs.uu.nl/wiki/HUT/AttributeGrammarSystem

Bibliography

A. Middelkoop, A. Dijkstra, and S. D. Swierstra. Stepwise Evaluation of Attribute Grammars

(extended version), 2010e.

A. Middelkoop, A. Dijkstra, and S. Doaitse Swierstra. Visitor-based Attribute Grammars

with Side Effect. ENTCS, 264:47–69, 2011a.

A. Middelkoop, A. Dijkstra, and S. Swierstra. A Lean Specification for GADTs: System F

with First-Class Equality Proofs. HOSC, pages 1–22, 2011b.

M. d. Mol, M. C. J. D. v. Eekelen, and M. J. Plasmeijer. Theorem proving for functional

programmers. In IFL ’02, pages 55–71, 2002.

F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag,

1999.

U. Norell. Dependently-Typed Programming in Agda. In TLDI ’09, pages 1–2, 2009.

C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

B. C. D. S. Oliveira, M. Wang, and J. Gibbons. The Visitor Pattern as a Reusable, Generic,

Type-safe Component. In OOPSLA ’08, pages 439–456, 2008.

B. O’Sullivan, J. Goerzen, and D. Stewart. Real World Haskell. O’Reilly Media, Inc., 2008.

J. Paakki. PROFIT: A System Integrating Logic Programming and Attribute Grammars. In

PLILP ’91, pages 243–254, 1991.

J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In COMPSAC ’98, pages 9–15,

1998.

R. Paterson. A New Notation for Arrows. In ICFP ’01, pages 229–240, 2001.

B. C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, USA, 2002.

K.-J. Räihä and M. Saarinen. Testing Attribute Grammars for Circularity. Acta Informatica,

17:185–192, 1982.

J. C. Reynolds. Definitional Interpreters for Higher-Order Programming Languages. HOSC,

11(4):363–397, 1998.

S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards. Artificial Intelligence:

a Modern Approach. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

J. Saraiva. Component-Based Programming for Higher-Order Attribute Grammars. In GPCE

’02, pages 268–282, 2002.

J. Saraiva and S. D. Swierstra. Purely Functional Implementation of Attribute Grammars.

Technical report, Universiteit Utrecht, 1999.

M. M. Schrage and J. T. Jeuring. Proxima - A Presentation-Oriented Editor for Structured

Documents, 2004.

272

Bibliography

C. Schürmann. The Twelf Proof Assistant. In TPHOLs ’09, pages 79–83, 2009.

P. Sewell, F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa. Ott:

Effective Tool Support for the Working Semanticist. In ICFP ’07, pages 1–12, 2007.

A. M. Sloane, L. C. L. Kats, and E. Visser. A Pure Object-Oriented Embedding of Attribute

Grammars. ENTCS, 253:205–219, 2010.

S. D. Swierstra. Combinator Parsing: A Short Tutorial. In Language Engineering and Rig-

orous Software Development, volume 5520, pages 252–300, 2009.

S. D. Swierstra and P. R. A. Alcocer. Attribute Grammars in the Functional Style. In Systems

Implementation 2000, pages 180–193, 1998.

U. Utrecht. Mini Projects Compiler Construction. http://www.cs.uu.nl/wiki/bin/

view/Cco/MiniProjects, 2010.

M. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation Filters for Scan-

nerless Generalized LR Parsers. In CC ’02, pages 143–158, 2002.

M. C. J. D. van Eekelen, S. Smetsers, and M. J. Plasmeijer. Graph Rewriting Semantics for

Functional Programming Languages. In CSL ’96, pages 106–128, 1996.

E. Van Wyk and L. Krishnan. Using Verified Data-Flow Analysis-based Optimizations in

Attribute Grammars. ENTCS, 176:109–122, 2007.

E. Van Wyk, O. D. Moor, K. Backhouse, and P. Kwiatkowski. Forwarding in Attribute Gram-

mars for Modular Language Design. In CC ’02, pages 128–142, 2002.

E. Van Wyk, D. Bodin, J. Gao, and L. Krishnan. Silver: an Extensible Attribute Grammar

System. ENTCS, 203(2):103–116, 2008.

M. Viera, S. D. Swierstra, and W. Swierstra. Attribute Grammars Fly First-Class: how to do

Aspect Oriented Programming in Haskell. In ICFP ’09, pages 245–256, 2009.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher-Order Attribute Grammars. In PLDI ’89,

pages 131–145, 1989.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. Efficient Incremental Evaluation of Higher order

Attribute Grammars. In PLILP, pages 231–242, 1991.

D. Vytiniotis, S. Weirich, and S. L. Peyton Jones. FPH: First-Class Polymorphism for

Haskell. In ICFP ’08, pages 295–306, 2008.

M. J. Walsteijn and M. F. Kuiper. Attribute Grammars in Prolog, 1986.

J. A. Walz. Extending Attribute Grammar and Type Inference Algorithms. PhD thesis, Cornell

University, 1989.

273

http://www.cs.uu.nl/wiki/bin/view/Cco/MiniProjects
http://www.cs.uu.nl/wiki/bin/view/Cco/MiniProjects

Bibliography

S. Wang and D. Ye. On Parallel Evaluation of Ordered Attribute Grammars. Journal of

Computer Science and Technology, 6:347–354, 1991.

S. K. Warren. The Coroutine Model of Attribute Grammar Evaluation. PhD thesis, Rice

University, Houston, TX, 1976.

J. B. Wells. Typability and Type Checking in System F are Equivalent and Undecidable.

Annals of Pure and Applied Logic, 98(1-3):111 – 156, 1999.

M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle Framework. In TPHOLs ’08, pages

33–38, 2008.

D. Yeh and U. Kastens. Improvements of an Incremental Evaluation Algorithm for Ordered

Attribute Grammars. SIGPLAN Notices, 23(12):45–50, 1988.

274

Samenvatting

Computers zijn niet meer uit onze maatschappij weg te denken. Computerprogramma’s wor-

den steeds omvangrijker. De keerzijde is dat deze programma’s meer tijd kosten om te maken

en te testen, en bovendien ook meer fouten bevatten. Helaas ervaren we regelmatig de con-

sequenties ervan. Autofabrikanten roepen bijvoorbeeld auto’s terug om een software-update

door te voeren, omdat door fouten in de programmering de auto’s op hol konden slaan. Ook

fouten in web-browsers worden door duistere figuren uitgebuit om zogenaamde keyloggers

op computers te installeren die toetsaanslagen afluisteren om uiteindelijk bankrekeningen te

plunderen. Oplossingen voor dergelijke problemen kunnen deels in programmeertalen ge-

zocht worden. Onderzoek naar programmeertalen helpt om zowel de onderhoudskosten en

de kwaliteit van software te verbeteren.

Met geavanceerde programmeertalen is het mogelijk om computerprogramma’s van hoge

kwaliteit te maken. Daarvoor is een belangrijk stuk gereedschap van belang: de compiler.

Een compiler zet een programma wat een programmeur geschreven heeft om in machine-

instructies die door de computer uitgevoerd kunnen worden. Hoe geavanceerder de program-

meertaal, hoe lastiger het is om een compiler te maken.

Met attributengrammatica’s kunnen compilers op een aantrekkelijke manier gemaakt wor-

den. Programmeertalen met ingewikkelde typesystemen zijn echter lastig met attributen-

grammatica’s te schrijven. In dit proefschrift beschouwen we uitbreidingen om attributen-

grammatica’s ook voor het ontwikkelen van compilers voor ingewikkelde programmeertalen

in te kunnen zetten.

Programmeertalen en compilers. Een computerprogramma verwerkt gegevens die zich

in het geheugen van de computer bevinden. In een programmeertaal wordt deze verwerking

beschreven. Voor dergelijke beschrijvingen stelt een programmeertaal elementaire verwer-

kingstaken ter beschikking. Tijdens de uitvoering van het programma krijgt zo’n taak gege-

vens uit het geheugen van de computer als invoer en laat het resultaten in het geheugen van

de computer achter. Bekeken vanaf een hoog niveau kunnen we zeggen dat programmeren

het samenstellen van verwerkingstaken is door de uitvoer en invoer van verwerkingstaken aan

elkaar te knopen.

Een programmeertaal biedt abstractiemechanismen aan om dergelijke samenstellingen te

beschrijven. Programmeren is het opstellen van zo’n beschrijving: de broncode. Een com-

piler vertaalt broncode naar instructies die door een computer uitgevoerd kunnen worden:

de machinecode. Een compiler handelt details af zoals hoe de invoer en uitvoer van taken

in het geheugen van de computer gerepresenteerd zijn. In de broncode is het niet nodig om

dergelijke details te specificeren, wat het gemak om verwerkingstaken samen te stellen ten

goede komt.

De mate waarin een programmeur een verwerkingstaak uit deeltaken kan samenstellen is

275

Samenvatting

van grote invloed op de kwaliteit van een programma, en de tijd die het kost om het pro-

gramma te ontwikkelen en te onderhouden. Wanneer de broncode overzichtelijk is, worden

er minder fouten gemaakt. Bovendien hoeft de broncode van een deeltaak maar een keer

geschreven te worden. De mate waarin een programmeertaal abstractie van details toestaat

speelt hierbij een belangrijke rol.

Programmeertalen bieden vaak voor specifieke domeinen speciale abstractiemechanismen

aan. De taal SQL voor het raadplegen van databases is hier een goed voorbeeld van. In SQL

beschrijft men het combineren van informatie uit tabellen, terwijl van de representatie van de

gegevens in de tabellen en van de volgorde van het combineren geabstraheerd wordt. Idealiter

richt de programmeur zich op het totaalplaatje, terwijl de compiler voor een correcte invulling

van de details zorgt, eventueel aan de hand van wat expliciete hints die door de programmeur

gegeven worden. Met behulp van een relatie tussen broncode en machine-instructies kan dit

gedrag gespecificeerd worden.

Een programmeertaal stelt bovendien eisen aan de broncode. Bijvoorbeeld, in een samen-

stelling van taken dient iedere taak een correct gestructureerde invoer te hebben. Een type

is een beschrijving van de structuur van een waarde. Ofwel, de invoer dient het juiste type

te hebben. De compiler controleert als onderdeel van het vertaalproces of de broncode in-

derdaad aan deze eisen voldoet, en vormt dus een implementatie van het typesysteem. Een

statische semantiek in de vorm van een type system specificeert deze eisen met een relatie

tussen broncode en typen. Het afdwingen van deze eisen voorkomt dat bepaalde (triviale)

fouten tijdens de uitvoering van het programma op kunnen treden.

Als onderdeel van het vertaalproces controleert de compiler of de broncode aan de eisen

voldoet door een bewijs af te leiden dat de broncode relateert aan een type. De machine-

instructies worden verkregen door een bewijs af te leiden dat een relatie legt met machine-

instructies. Als dit niet lukt, dan bevat het programma een statische fout en is het programma

ongeldig. Relaties in een semantiek worden doorgaans met afleidingsregels gedefinieerd.

Het afleiden van zo’n bewijs wordt inferentie of afleiden genoemd. De bewijzen hebben een

boomstructuur waarin de toepassing van afleidingsregels zichtbaar is.

Vrijheid in het bepalen van het bewijs geeft de compiler de mogelijkheid om details in te

vullen. Echter, er bestaan harde theoretische grenzen aan wat voor bewijzen er automatisch

afgeleid kunnen worden. Door de taal ingewikkelder te maken, kan er op een hoger niveau

geredeneerd worden. Dan is het mogelijk een programma duidelijker uit te drukken, zodat de

broncode meer structuur heeft, en er meer aannames zijn om het bewijs mee rond te krijgen.

Een direct gevolg is dat de compiler daardoor lastiger wordt om te maken.

Attributengrammatica’s. Als initiële stap ontleedt een compiler de broncode aan de hand

van de grammatica van de programmeertaal. Het resultaat is een boomstructuur, de abstracte

syntaxboom (AST), dat een expliciete representatie is van de compositionele structuur van de

broncode. Deze boomstructuur is geschikt voor syntax-gestuurde vertaling. In dit geval heeft

een semantiek een afleidingsregel voor ieder stukje syntax. De structuur van een bewijs komt

dan vrijwel overeen met de AST.

Een compiler is ook een computerprogramma, en worden in een programmeertaal geschre-

ven. Attributengrammatica’s (AG’s) zijn een domein-specifieke programmeertaal voor het

uitdrukken van eigenschappen van ASTs, en daarmee dus ook het afleiden van bewijzen voor

276

Samenvatting

relaties van een syntax-gestuurde semantiek. Een AG relateert attributen met elke knoop in de

AST, en specificeert functies die waarden van attributen berekenen aan de hand van waarden

van andere attributen van een knoop en kinderen van de knoop. De attributen stellen eigen-

schappen van de broncode voor, en zijn aspecten of getuigen van het bewijs, zoals typen,

lijsten van instructies en foutmeldingen.

De voordelen van AG’s ten opzichte van algemene programmeertalen zijn dat niet beschre-

ven wordt hoe de AST afgelopen wordt. Daardoor kunnen de berekeningen van attributen in

afzondering beschreven worden, wat vele voordelen biedt in termen van hergebruik, overzicht

en documentatie. De samenstelling van deze berekeningen wordt automatisch bepaald. Voor

dit aanzienlijke voordeel is vereist dat het bewijs als attributengrammatica uit te drukken is,

wat het geval is wanneer de semantiek syntax-gestuurd is.

Inferentie. Voor programmeertalen met een complexe (statische) semantiek is de structuur

van het bewijs niet gelijk aan de AST. Tenslotte, om vrijheid in de invulling van het bewijs

te hebben, dienen delen van het bewijs van de broncode afleidbaar te zijn, maar niet door de

structuur ervan te worden bepaald. Daarvoor bestaan een aantal gangbare algoritmen, zoals

het berekenen van een dekpunt van een stelsel van randvoorwaarden, en de gedeeltelijke ver-

kenning van een bos van kandidaat-deelbewijzen. Deze algoritmen hebben als eigenschap

dat de attributen wederzijds afhankelijk zijn van tussentoestanden van het bewijs. Om bij-

voorbeeld een kandidaat te selecteren is het nodig om eigenschappen ervan in te zien. In

een attributengrammatica zijn attributen gedefinieerd in termen van het uiteindelijke bewijs,

waardoor het lastig is om dergelijke algoritmen met een AG te beschrijven.

In dit proefschrift richten we ons op geordende attributtengrammatica’s, en breiden deze uit

met de mogelijkheid om tussentoestanden te inspecteren en te manipuleren. In een geordende

AG kan de berekening van de attributen als een eindige sequentie van toestandsveranderingen

beschreven worden. Deze beschrijving maakt het mogelijk om over deelbewijzen in een

gegeven toestand te redeneren, berekeningsstrategieën te specificeren, en attributen die in

deze toestand beschikbaar zijn te inspecteren. Daarvoor schrijven we geen AGs voor de

abstracte syntax van de taal, maar AGs voor de abstracte syntax van de bewijsregels van de

semantiek.

Uitbreidingen. In hoofdstuk 3 introduceren we notatie om een sequentie van visits voor

een nonterminal te specificeren. Een visit is een eenheid van evaluatie voor een knoop in de

(bewijs)boom. Ieder attribuut is gerelateerd aan een visit. De attributen van een vorige visit

zijn beschikbaar in een opvolgende visit. Bovendien kunnen berekeningen voor attributen aan

specifieke visits toegekend worden om af te dwingen dat berekeningen in een vaste volgorde

plaatsvinden. Deze uitbreiding maakt het mogelijk om monadische operaties met AGs te

combineren.

In hoofdstuk 5 laten we zien hoe we berekeningsstrategieën aan visits koppelen. Door

het voorwaardelijk herhalen van een visit aan een knoop kan een dekpunt berekend worden.

Met clauses kunnen voorwaardelijke berekeningen van attributen en kinderen van de knoop

gespecificeerd worden, zodat het mogelijk is om deelbewijzen te verkennen. Ook kunnen

knopen ontkoppeld worden en op een andere locatie in de boom weer aangekoppeld worden,

277

Samenvatting

waarbij we statische garanties geven over de toestand van dergelijke verplaatsbare knopen. Zo

kunnen berekeningen die afhangen van bewijzen die nog niet voltooid zijn uitgesteld worden

tot deze bewijzen beschikbaar komen. Hiermee kunnen we constraints representeren.

In hoofdstuk 6 gaan we een stapje verder dan visits. Tussenresultaten die tijdens de uitvoe-

ring van een visit beschikbaar komen kunnen met technieken uit dit hoofdstuk stapsgewijs

geı̈nspecteerd worden. Door om de beurt kandidaat-knopen een stap te laten zetten, kunnen

de bewijzen gelijktijdig verkend worden, zonder de bewijzen van te voren al helemaal op te

bouwen.

In hoodstuk 7 presenteren we AGs met afhankelijke typen. Dit zijn AGs waarin het type van

een attribuut mag verwijzen naar de waarden van andere attributen. Deze uitbreiding maakt

het mogelijk om invarianten op attributen te specificeren en bewijzen ervoor uit te drukken.

Voor deze uitbreiding maken we gretig gebruik van de mogelijkheden die door voorgaande

hoofdstukken besproken zijn.

De uitbreiding vormen een conservatieve uitbreiding van AGs. De mate van abstractie,

zoals deze door AGs aangeboden wordt, blijft behouden. De uitbreidingen maken het moge-

lijk om eigenschappen van de berekeningsvolgorde te specificeren en te inspecteren, zonder

daarbij het automatisch ordenen van attribuutberekeningen te breken. Met de uitbreidingen

heeft de programmeur een stel krachtige bouwstenen in handen om compilers mee te imple-

menteren.

278

Curriculum Vitae

Adriaan Middelkoop

Born 8 February 1983 in Gorinchem, the Netherlands

VWO diploma, 2001

Institution: Merewade College Wijdschildlaan, Gorinchem

Propedeuse Informatica, 2002
Honors: Cum laude

Institution: Universiteit Utrecht

Subject: General track

M. Sc. Software Technology, 2006
Honors: Cum laude

Institution: Universiteit Utrecht

Specialisation: Programming languages and compilers

Subject: Program analysis, uniqueness typing

Ph. D. Software Technology, 2011
Institution: Universiteit Utrecht

Subject: Attribute grammars, type inference

Scientific Programmer, 2010 - 2011
Institution: Universiteit Utrecht

Subject: Program instrumentation

Postdoc, 2011 - 2012
Institution: Laboratoire d’Informatique de Paris 6, Paris

Subject: Program transformation

279

Titles in the IPA Dissertation Series since 2005

E. Dolstra. The Purely Functional Soft-

ware Deployment Model. Faculty of Sci-

ence, UU. 2006-01

R.J. Corin. Analysis Models for Secu-

rity Protocols. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2006-02

P.R.A. Verbaan. The Computational Com-

plexity of Evolving Systems. Faculty of Sci-

ence, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal

Specification and Analysis of Hybrid Sys-

tems. Faculty of Mathematics and Com-

puter Science and Faculty of Mechanical

Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of

UML Models: Tool Support and Composi-

tionality. Faculty of Mathematics and Nat-

ural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Au-

tomata - Techniques and Applications. Fac-

ulty of Science, Mathematics and Computer

Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewriting.

Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-

assisted verification of JML programs. Fac-

ulty of Science, Mathematics and Computer

Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular

Simulations. Faculty of Biomedical Engi-

neering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.

Faculty of Mathematics and Natural Sci-

ences, UL. 2006-10

G. Russello. Separation and Adaptation of

Concerns in a Shared Data Space. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic

and Probabilistic Choices. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2006-12

B. Badban. Verification techniques for Ex-

tensions of Equality Logic. Faculty of Sci-

ences, Division of Mathematics and Com-

puter Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-

ods and protocol standardization. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy-

brid Systems. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2006-15

M.E. Warnier. Language Based Secu-

rity for Java and JML. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2006-16

V. Sundramoorthy. At Home In Ser-

vice Discovery. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2006-17

B. Gebremichael. Expressivity of Timed

Automata Models. Faculty of Science,

281

IPA Dissertation Series

Mathematics and Computer Science,

RU. 2006-18

L.C.M. van Gool. Formalising Interface

Specifications. Faculty of Mathematics and

Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and

Verification of Security Protocols. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for

Exogenous Coordination of Distributed Sys-

tems: Semantics, Implementation and Com-

position. Faculty of Mathematics and Natu-

ral Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous

Software Systems. Faculty of Natural Sci-

ences, Mathematics, and Computer Science,

UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-

urable Network-on-Chip for streaming DSP

applications. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2007-02

M. van Veelen. Considerations on Mod-

eling for Early Detection of Abnormalities

in Locally Autonomous Distributed Systems.

Faculty of Mathematics and Computing Sci-

ences, RUG. 2007-03

T.D. Vu. Semantics and Applications of

Process and Program Algebra. Faculty of

Natural Sciences, Mathematics, and Com-

puter Science, UvA. 2007-04

L. Brandán Briones. Theories for Model-

based Testing: Real-time and Coverage.

Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by

Presentation. Faculty of Science, Mathe-

matics and Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Ge-

ometric Data Structures. Faculty of

Mathematics and Computer Science,

TU/e. 2007-07

N. Trčka. Silent Steps in Transition Systems

and Markov Chains. Faculty of Mathemat-

ics and Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.

Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.

Faculty of Science, Mathematics and Com-

puter Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in

Software Development Processes. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2007-11

R. Boumen. Integration and Test plans for

Complex Manufacturing Systems. Faculty

of Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and

Optimising System Behaviour in Time. Fac-

ulty of Sciences, Division of Mathematics

and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-

ing the Quality of Modeling: A Series

of Empirical Studies about the UML. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2007-14

T. van der Storm. Component-based Con-

figuration, Integration and Delivery. Fac-

ulty of Natural Sciences, Mathematics, and

Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of

Software Architectures. Faculty of Electri-

cal Engineering, Mathematics, and Com-

puter Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi

for Reasoning with Binding. Faculty

282

IPA Dissertation Series

of Mathematics and Computer Science,

TU/e. 2007-17

D. Jarnikov. QoS framework for Video

Streaming in Home Networks. Faculty

of Mathematics and Computer Science,

TU/e. 2007-18

M. A. Abam. New Data Structures

and Algorithms for Mobile Data. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2007-19

W. Pieters. La Volonté Machinale: Under-

standing the Electronic Voting Controversy.

Faculty of Science, Mathematics and Com-

puter Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs

in PVS. Faculty of Science, Mathematics

and Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic

Crosscutting Concerns in Embedded Sys-

tems. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2008-03

A.M. Marin. An Integrated System to

Manage Crosscutting Concerns in Source

Code. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-

tegration and Testing of High-tech Multi-

disciplinary Systems. Faculty of Mechani-

cal Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:

Syntax Definition, Parsing, and Assimila-

tion of Language Conglomerates. Faculty

of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:

Design and Formal Verification of Opti-

mistic Fair Exchange Protocols. Faculty

of Sciences, Division of Mathematics and

Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test

Strategies for Complex Manufacturing Ma-

chines. Faculty of Mechanical Engineering,

TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalge-

bras. Faculty of Science, Mathematics and

Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:

Two Taxonomies and a Toolkit. Faculty

of Mathematics and Computer Science,

TU/e. 2008-10

I.S. Zapreev. Model Checking Markov

Chains: Techniques and Tools. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-

tal Study of Geometric Networks. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi-

cations Using Context-Sensitive Wildcards.

Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational

Cryptography: Protocols, Hashes and

Commitments. Faculty of Science, Mathe-

matics and Computer Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verification

for Robust Composition of Aspects. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Support

of SMC Design. Faculty of Mechanical En-

gineering, TU/e. 2008-16

R.H. Mak. Design and Performance Analy-

sis of Data-Independent Stream Processing

Systems. Faculty of Mathematics and Com-

puter Science, TU/e. 2008-17

283

IPA Dissertation Series

M. van der Horst. Scalable Block Process-

ing Algorithms. Faculty of Mathematics and

Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:

Decompositions and Applications. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems

with Data - Enumerative Methods and Con-

straint Solving. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2008-20

E. Mumford. Drawing Graphs for Carto-

graphic Applications. Faculty of Mathemat-

ics and Computer Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured

Data, Theoretical and Experimental As-

pects of Pattern Evaluation. Faculty

of Mathematics and Natural Sciences,

UL. 2008-22

R. Brijder. Models of Natural Computa-

tion: Gene Assembly and Membrane Sys-

tems. Faculty of Mathematics and Natural

Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting

and Its Certification. Faculty of Mathemat-

ics and Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid

Systems: Comparison and Development.

Faculty of Mathematics and Computer Sci-

ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time in

Process Algebras for Performance Evalua-

tion. Faculty of Mathematics and Computer

Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software

Specification and Verification. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from

Noisy Data Theory and Applications. Fac-

ulty of Electrical Engineering, Mathematics

& Computer Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Net-

works in Motion: Clustering Algorithms for

Service Discovery and Provisioning. Fac-

ulty of Electrical Engineering, Mathematics

& Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validat-

ing Distributed Embedded Real-Time Con-

trol Systems. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional

Programs: Sparkle, a proof assistant for

Clean. Faculty of Science, Mathematics and

Computer Science, RU. 2009-02

M. Lormans. Managing Requirements

Evolution. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2009-03

M.P.W.J. van Osch. Automated Model-

based Testing of Hybrid Systems. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-

ware Systems. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit-

ing Techniques. Faculty of Mathematics and

Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-

plications in Automata Theory and Modal

Logic. Faculty of Sciences, Division

of Mathematics and Computer Science,

VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-

based Single-page Web Applications. Fac-

ulty of Electrical Engineering, Mathemat-

ics, and Computer Science, TUD. 2009-08

284

IPA Dissertation Series

A.L. Rodriguez Yakushev. Towards Get-

ting Generic Programming Ready for Prime

Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context

Sensitive Program Transformation. Faculty

of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about

Java programs in PVS using JML. Faculty

of Science, Mathematics and Computer Sci-

ence, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-

vices. Integration in Energy-Constrained

Mobile Systems. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic

Analysis Techniques for Program Compre-

hension. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-

work Intrusion Detection Systems. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy in

Voting and Fairness in Digital Exchange.

Faculty of Mathematics and Computer Sci-

ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust

Management. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-

ulty of Sciences, Division of Mathematics

and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-

ity: Building Computer Algebra on top of

Proof Assistants and making Proof Assis-

tants available over the Web. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-

pleteness: Formalizing Logic and Analysis

in Type Theory. Faculty of Science, Mathe-

matics and Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Meth-

ods for Concurrent Systems. Faculty

of Mathematics and Computer Science,

TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis

of Probabilistic Models. Faculty of Electri-

cal Engineering, Mathematics & Computer

Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies

for Parameter Optimization and Their Ap-

plications to Medical Image Analysis. Fac-

ulty of Mathematics and Natural Sciences,

UL. 2009-22

J.H.P. Kwisthout. The Computational

Complexity of Probabilistic Networks. Fac-

ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-

Oriented Law Enforcement. Faculty

of Mathematics and Natural Sciences,

UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty

of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control

for Dynamic Collaborative Environments.

Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation

for Crime Analysis and Genomics. Fac-

ulty of Mathematics and Natural Sciences,

UL. 2009-27

C.J. Boogerd. Focusing Automatic Code

Inspections. Faculty of Electrical Engineer-

ing, Mathematics, and Computer Science,

TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-

deterministic and Randomly Timed Systems.

285

IPA Dissertation Series

Faculty of Electrical Engineering, Mathe-

matics & Computer Science, UT. 2010-02

J. Endrullis. Termination and Productivity.

Faculty of Sciences, Division of Mathemat-

ics and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification

and Verification for Aspect-Oriented Lan-

guages. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-

tocol Dynamics. Faculty of Science,

UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and

Probability in Model Checking Timed Au-

tomata. Faculty of Science, Mathematics

and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Modeling

on the Quality of Software. Faculty of Math-

ematics and Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery

of Knowledge - Foundations, Implementa-

tions and Applications. Faculty of Mathe-

matics and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Component

Connectors. Faculty of Sciences, Divi-

sion of Mathematics and Computer Science,

VUA. 2010-10

M.M. Jaghoori. Time at Your Service:

Schedulability Analysis of Real-Time and

Distributed Services. Faculty of Mathemat-

ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal

Analysis of Epidemic Protocols. Faculty of

Sciences, Department of Computer Science,

VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-

plate Enigma: Software Code Generation

with Templates. Faculty of Mathematics and

Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil-

ity Planning: Methods and Tools. Faculty

of Electrical Engineering, Mathematics &

Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory

of Multi-Agent Systems Refinement. Fac-

ulty of Mathematics and Natural Sciences,

UL. 2011-04

J. Proença. Synchronous coordination of

distributed components. Faculty of Math-

ematics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confi-

dentiality Risk Assessment in Networks of

Organizations. Faculty of Electrical Engi-

neering, Mathematics & Computer Science,

UT. 2011-06

M. van der Bijl. On changing models in

Model-Based Testing. Faculty of Electrical

Engineering, Mathematics & Computer Sci-

ence, UT. 2011-07

C. Krause. Reconfigurable Component

Connectors. Faculty of Mathematics and

Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of

Information Leakage in Probabilistic and

Nondeterministic Systems. Faculty of Sci-

ence, Mathematics and Computer Science,

RU. 2011-09

M. Atif. Formal Modeling and Verifica-

tion of Distributed Failure Detectors. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2011-10

P.J.A. van Tilburg. From Computability to

Executability – A process-theoretic view on

automata theory. Faculty of Mathematics

and Computer Science, TU/e. 2011-11

286

IPA Dissertation Series

Z. Protic. Configuration management for

models: Generic methods for model com-

parison and model co-evolution. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2011-12

S. Georgievska. Probability and Hid-

ing in Concurrent Processes. Faculty

of Mathematics and Computer Science,

TU/e. 2011-13

S. Malakuti. Event Composition Model:

Achieving Naturalness in Runtime Enforce-

ment. Faculty of Electrical Engineer-

ing, Mathematics & Computer Science,

UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifi-

cation. Faculty of Mathematics and Com-

puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and

Visibility on Triangulated Terrains. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality

of Service of Component Connectors. Fac-

ulty of Mathematics and Natural Sciences,

UL. 2011-17

R. Middelkoop. Capturing and Exploiting

Abstract Views of States in OO Verification.

Faculty of Mathematics and Computer Sci-

ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving

the Quality of Model Transformations. Fac-

ulty of Mathematics and Computer Science,

TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs

in Practice. Faculty of Science, Mathemat-

ics and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for

Programming Language Grammars. Fac-

ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component

Connectors. Faculty of Mathematics and

Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language

Workbenches. Faculty of Electrical Engi-

neering, Mathematics, and Computer Sci-

ence, TUD. 2011-23

S. Kemper. Modelling and Analysis of

Real-Time Coordination Patterns. Fac-

ulty of Mathematics and Natural Sciences,

UL. 2011-24

A. Khosravi. Optimal Geometric Data

Structures. Faculty of Mathematics and

Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program

Properties with Attribute Grammars, Revis-

ited. Faculty of Science, UU. 2012-02

287

	Preface
	1 Introduction
	1.1 Overview
	1.2 Background on Type Systems
	1.2.1 Specification of Programming Languages
	1.2.2 The Lambda Calculus
	1.2.3 Type Rules
	1.2.4 Type Inference
	1.2.5 Parametric Polymorphism
	1.2.6 Damas-Hindley-Milner Inference
	1.2.7 Polymorphic Lambda Calculus
	1.2.8 Discussion

	1.3 Background on Attribute Grammars
	1.3.1 Syntax of Context-Free Grammars and Attribute Grammars
	1.3.2 Dependency Graphs
	1.3.3 Tree-Walking Automata
	1.3.4 Demand-driven Attribute Evaluation
	1.3.5 Statically Ordered Attribute Evaluation
	1.3.6 Incremental Descriptions
	1.3.7 Higher-Order Children and Attributes
	1.3.8 Circular Reference Attributes
	1.3.9 Correspondences between AGs, HOAGs, Monads, and Arrows
	1.3.10 Specification of Typing Relations
	1.3.11 Damas-Hindley-Milner Inference
	1.3.12 Copy Rules and Collection Attributes
	1.3.13 Advantages and Disadvantages

	1.4 Background on Ruler
	1.4.1 Ruler Features
	1.4.2 Ruler Concepts
	1.4.3 Damas-Hindley-Milner Inference
	1.4.4 Discussion

	1.5 Thesis Overview
	1.5.1 Inference Algorithms as an Attribute Grammar
	1.5.2 Attribute Grammar Extensions
	1.5.3 Contextual Chapters

	1.6 The Context of this Thesis
	1.6.1 Challenges
	1.6.2 Additional Challenges
	1.6.3 Solutions

	1.7 Related Work
	1.7.1 Circular AGs and Exposure of Intermediate States
	1.7.2 Inference Rules
	1.7.3 Proof Assistants
	1.7.4 Ott
	1.7.5 TinkerType
	1.7.6 Overview of Recent Attribute Grammar Systems

	1.8 Conclusion

	2 Outline of the RulerCore Concepts
	2.1 Attribute Grammars with Side Effects
	2.2 Attribute Grammars with Commuting Rules
	2.3 AGs with Tree Construction
	2.4 Case Study with GADTs
	2.5 Attribute Grammars with Stepwise Evaluation
	2.6 Attribute Grammars with Dependent Types
	2.7 Attribute Grammars on DAGs
	2.8 Conclusion

	3 AGs with Side Effects
	3.1 Introduction
	3.2 Example
	3.2.1 Visitor Design Pattern
	3.2.2 Attribute Grammars
	3.2.3 RulerCore
	3.2.4 Desugared RulerCore

	3.3 Static Semantics of RulerBack
	3.4 Translation of RulerBack to JavaScript
	3.5 Translation of RulerCore to RulerBack
	3.5.1 Implicit Invocations
	3.5.2 Rule Ordering

	3.6 Discussion
	3.7 Related Work
	3.8 Conclusion

	4 AGs with Commuting Rules
	4.1 Introduction
	4.2 Example with Barriers
	4.3 Core Representation of AGs with Barriers
	4.4 Static Dependency Graphs
	4.5 Visits Graphs
	4.6 Optimizations
	4.7 Execution Plans and Generated Code
	4.8 Generalization to Phases
	4.9 Commuting Rules
	4.10 Related Work
	4.11 Conclusion

	5 Derivation Tree Construction
	5.1 Introduction
	5.2 Motivation
	5.2.1 Example: the Shadow-language
	5.2.2 Relation to Attribute Grammars
	5.2.3 Typing Expressions
	5.2.4 Unification
	5.2.5 Lookups in the Environment
	5.2.6 Translation to the Target Expression
	5.2.7 Discussion

	5.3 Semantics
	5.3.1 Syntax
	5.3.2 Example
	5.3.3 Translation

	5.4 Related Work
	5.5 Conclusion

	6 AGs with Stepwise Evaluation
	6.1 Introduction
	6.2 Example of a Stepwise AG for a Predicate Language
	6.2.1 Syntax of the Predicate Language
	6.2.2 Deterministic Operational Semantics
	6.2.3 Declarative Operational Semantics
	6.2.4 Stepwise Operational Semantics
	6.2.5 Hybrid On-demand and Stepwise Evaluation

	6.3 SAG Translation
	6.4 Lazy Coroutines and the Stepwise Monad
	6.5 Imperative Implementation
	6.6 Remarks
	6.6.1 Extensions
	6.6.2 Benchmarks

	6.7 Related Work
	6.8 Conclusion
	6.A Progress Reports and their Emission
	6.B Translation Scheme
	6.C Semantic Lookahead
	6.D Watchers

	7 AGs with Dependent Types
	7.1 Introduction
	7.2 Preliminaries
	7.3 Dependently Typed Example
	7.3.1 Support Code Dealing With Environments
	7.3.2 Grammar of the Source and Target Language
	7.3.3 Dependent Attributes
	7.3.4 Semantics of Attributes

	7.4 AG Descriptions and their Core Representation
	7.5 Translation to Agda
	7.6 Partially Defined Attributes
	7.7 Related Work
	7.8 Conclusion
	7.A Implementation of the Support Code
	7.A.1 Absurd Rules

	7.B Dependent Nonterminal Attribution
	7.C Ideas Transferrable to AG Systems for Haskell

	8 Conclusion
	8.1 Addressed Challenges
	8.2 Solutions
	8.3 Remarks
	8.4 Implementations
	8.5 Future Work

	Bibliography
	Samenvatting

