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Abstract

For many infectious disease processes such as emerging zoonoses and vaccine-preventable diseases, 0vR0v1 and
infections occur as self-limited stuttering transmission chains. A mechanistic understanding of transmission is essential for
characterizing the risk of emerging diseases and monitoring spatio-temporal dynamics. Thus methods for inferring R0 and
the degree of heterogeneity in transmission from stuttering chain data have important applications in disease surveillance
and management. Previous researchers have used chain size distributions to infer R0, but estimation of the degree of
individual-level variation in infectiousness (as quantified by the dispersion parameter, k) has typically required contact
tracing data. Utilizing branching process theory along with a negative binomial offspring distribution, we demonstrate how
maximum likelihood estimation can be applied to chain size data to infer both R0 and the dispersion parameter that
characterizes heterogeneity. While the maximum likelihood value for R0 is a simple function of the average chain size, the
associated confidence intervals are dependent on the inferred degree of transmission heterogeneity. As demonstrated for
monkeypox data from the Democratic Republic of Congo, this impacts when a statistically significant change in R0 is
detectable. In addition, by allowing for superspreading events, inference of k shifts the threshold above which a
transmission chain should be considered anomalously large for a given value of R0 (thus reducing the probability of false
alarms about pathogen adaptation). Our analysis of monkeypox also clarifies the various ways that imperfect observation
can impact inference of transmission parameters, and highlights the need to quantitatively evaluate whether observation is
likely to significantly bias results.
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Introduction

There are many circumstances in infectious disease epidemiol-

ogy where transmission among hosts occurs, but is too weak to

support endemic or epidemic spread. In these instances, disease is

introduced from an external source and subsequent secondary

transmission is characterized by ‘stuttering chains’ of transmission

which inevitably go extinct. This regime can be defined formally in

terms of the basic reproductive number, R0, which describes the

expected number of secondary cases caused by a typical infected

individual. Stuttering chains occur when R0 in the focal

population is non-zero but less than the threshold value of one

that enables sustained spread (i.e. 0vR0v1). Transmission is

therefore subcritical, and epidemics cannot occur. However there

are many settings where such transmission dynamics are

important. A major set of examples comes from stage III zoonoses,

such as monkeypox virus, Nipah virus, and H5N1 avian influenza

and H7N7 influenza [1–6]. Because most human diseases

originate as zoonoses, there is significant public health motivation

to monitor stage III zoonoses [7–10]. Subcritical transmission is

also associated with the emergence of drug-resistant bacterial

infections in some healthcare settings, such as hospital-acquired

MRSA [11]. In addition, stuttering chains characterize the

dynamics of infectious diseases that are on the brink of eradication,

such as smallpox in the 1960s and 1970s [12] and polio now

[13,14]. Furthermore, stuttering chains are seen with measles and

other vaccine preventable diseases when they are re-introduced to

a region after local elimination [15–17].

A top priority in all of these settings is to quantify transmission,

in order to determine the risk that the pathogen could emerge and

become established in the human population of concern. This

could occur due to demographic or biological changes that

increase transmission, such as declining vaccine coverage [15] or

pathogen adaptation [18–20]. Yet a recent review of transmission

models for zoonotic infection identified a marked shortage of

models that address the dynamics of zoonoses exhibiting stuttering

chain transmission [4]. One major cause of this gap is that high-

resolution data describing individual-level disease transmission are

rare. The introduction events that trigger the stuttering chains are

sporadic, and the transient nature of stuttering chains makes them

difficult to track closely. Furthermore, contact tracing is logistically

challenging because it requires rapid response surveillance teams

and techniques for differentiating specific routes of disease

transmission. In contrast, the total size of a transmission chain
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(i.e. the total number of cases infected) is much easier to obtain,

since it does not require detailed contact tracing and can be

assessed retrospectively based on case histories or serology.

Accordingly, the most common data sets for stuttering pathogens

are chain size distributions, which describe the number of cases

arising from each of many separate introductions. Such data can

be used to make estimates of R0 (or the ‘effective reproductive

number’ in the presence of vaccination; for simplicity we will use

the term R0 for all settings) [2,15,21–23]. This strategy has been

applied successfully, particularly in the context of vaccine-

preventable diseases, but one important simplification is that these

analyses typically have not allowed for an unknown degree of

heterogeneity in disease transmission among individual cases. This

is an important omission, because individual variation in

infectiousness is substantial for many infections [24] and can

cause significant skews in the chain size distribution [25]. Thus it

may be expected to affect conclusions about chain size distribu-

tions. For example, failure to account for superspreading events

caused by highly infectious individuals can trigger false alarms in

systems designed to detect anomalously large chains [2,19].

We use simulations and epidemiological data to explore the

influence of transmission heterogeneity on inference from chain

size data, and to show that the degree of heterogeneity can actually

be inferred from such data. Building upon prior studies we assume

that the offspring distribution, which describes the number of

secondary infections caused by each infected individual, can be

represented by a negative binomial distribution. This has been

shown to be an effective model for the transmission dynamics of

emerging pathogens [24], and it encompasses earlier models

(based on geometric or Poisson offspring distributions) as special

cases. The negative binomial model has two parameters: the mean

number of secondary infections, R0, and the dispersion parameter,

k, which varies inversely with the heterogeneity in infectiousness.

Knowledge of R0 and k has important applications for

stuttering chains, including quantifying the risk of endemic spread,

predicting the frequency of larger chains, identifying risk factors

for acquiring disease, and designing effective control measures.

Such information helps to predict how changes in environmental

or demographic factors might affect the risk of emergence.

Meanwhile, the dispersion parameter alone is a useful measure of

transmission heterogeneity, and serves as a stepping stone towards

understanding whether heterogeneity arises from variance in social

contacts, different intensities of pathogen shedding, variability in

the duration of infectious period or some other mechanism.

Until now, estimation of individual variation in infectiousness

(summarized by k) has depended on relatively complete contact

tracing data, or on independent estimates of R0 combined with the

proportion of chains that consist of isolated cases [24]. While this

approach has been successful, its application has been limited

severely by data availability. Also it has sometimes led to internal

inconsistencies within previous analyses, as for example when an

R0 estimate predicated on the assumption that k?? was used to

obtain estimates of kv1 [24]. We show that maximum likelihood

(ML) approaches can be used to estimate R0 and determine

reliable confidence intervals from stuttering chain data, while

allowing for an unknown amount of heterogeneity in transmission.

The relationship between R0, k and the chain size distribution has

been derived for varying degrees of heterogeneity [22,23], but

none of these studies has treated k as a free parameter and this

introduces a wildcard into the inference process. By providing a

unified framework for inference of R0 and k, we prevent such

difficulties.

We demonstrate the epidemiological significance of our ML

approach by analyzing chain size data obtained during monkey-

pox surveillance in the Democratic Republic of Congo from 1980–

1984 [26,27]. Monkeypox is an important case study for these

methods, because recent reports indicate that its incidence has

increased 20-fold since the eradication of smallpox in the late

1970s [28], raising the urgent question of whether the virus has

become more transmissible among humans. Meanwhile, challeng-

ing logistics make the collection of follow-up data difficult and

resource-intensive. Fortunately, surveillance data from the 1980s

data set is unique in its detail and it allows us to demonstrate how

chain size data yields results that are consistent with harder-to-

obtain contact tracing data. This suggests that future monitoring of

R0 can be achieved by monitoring chain size data by itself. We

demonstrate that accurate knowledge of the dispersion parameter

is important for reliably determining when an apparent change in

transmissibility is statistically significant. In addition, our focus on

chain size distributions permits us to determine quantitative

thresholds for chain sizes that can be used during surveillance to

decide if a particular transmission chain is unusually large and

likely to indicate an abrupt increase in R0. Such indications can

facilitate targeted, cost-effective implementation of control mea-

sures. Lastly, we consider the real-world difficulties that can arise

in obtaining transmission chain data, including the possibility that

cases remain unobserved and the complications of overlapping

transmission chains. We present a summary of when such

observation errors can interfere significantly with reliable inference

of transmission parameters.

Results/Discussion

We define a ‘stuttering transmission chain’ as a group of cases

connected by an unbroken series of transmission events. Trans-

mission chains always start with a ‘spillover’ event in which a

primary case (sometimes referred to as an index case) has been

infected from an infection reservoir outside the population of

interest. Mechanisms of spillover differ among pathogens and

circumstances, but include animal-to-human transmission, infec-

tion from environmental sources or geographical movement of

infected hosts. The primary case can then lead to a series of

Author Summary

This paper focuses on infectious diseases such as mon-
keypox, Nipah virus and avian influenza that transmit
weakly from human to human. These pathogens cannot
cause self-sustaining epidemics in the human population,
but instead cause limited transmission chains that stutter
to extinction. Such pathogens would go extinct if they
were confined to humans, but they persist because of
continual introduction from an external reservoir (such as
animals, for the zoonotic diseases mentioned above). They
are important to study because they pose a risk of
emerging if they become more transmissible, or converse-
ly to monitor the success of efforts to locally eliminate a
pathogen by vaccination. A crucial challenge for these
‘stuttering’ pathogens is to quantify their transmissibility,
in terms of the intensity and heterogeneity of disease
transmission by infected individuals. In this paper, we use
monkeypox as an example to show how these transmis-
sion properties can be estimated from commonly available
data describing the size of observed stuttering chains.
These results make it easier to monitor diseases that pose
a risk of emerging (or re-emerging) as self-sustaining
human pathogens, or to decide whether a seemingly large
chain may signal a worrisome change in transmissibility.

Characterizing Weakly-Transmitting Diseases
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secondary cases via human-to-human transmission within the focal

population. Sometimes no secondary transmission occurs, in

which case a transmission chain consists of a single primary case.

We define an infection cluster as a group of cases occurring in

close spatio-temporal proximity, which may include more than

one primary infection and thus be composed of more than one

transmission chain. Some authors use ‘outbreak’ or ‘infection

cluster’ for what we call a transmission chain.

Comparison of contact tracing and chain size analysis
To characterize the transmission of subcritical diseases,

epidemiologists might record data describing the total disease

incidence, the number of cases in each transmission chain, the

number of transmission generations in each transmission chain, or

complete contact tracing data. Because the collection of high-

resolution epidemiological data is resource and labor intensive,

there is great benefit to understanding the type and quantity of

data needed for a specific type of assessment. For instance, total

incidence data on its own is not sufficient to infer human-to-

human transmissibility for subcritical infections, because the

contribution of spillover cases is unspecified. However, chain size

and contact tracing data can be used to infer R0. In fact, for our

negative binomial model of disease transmission, the ML estimate

of R0 is identical when the likelihood is based on either chain size

data only, chain size data coupled with knowledge of the

transmission generation when the chain went extinct, or complete

contact tracing data (see methods). This shows that for the purpose

of estimating R0, chain size data can be equivalent to contact

tracing data. However these theoretical observations must be

placed in proper context as contact tracing is often valuable for

many other reasons, such as helping to ensure data quality and

minimizing unobserved cases.

The detailed and accurate data describing human transmission

of monkeypox virus in the 1980s [26,27] provide an opportunity to

compare the result obtained by inferring R0 and k from chain size

data to those obtained from contact tracing data. Inference results

show that the confidence region obtained from contact tracing

data is nested within that obtained from chain size analysis

(figure 1A and table 1). In fact, the ML value for R0 and the

associated univariate confidence intervals are identical for the two

methods. Meanwhile, the ML value for k is similar for the two

methods, but the confidence interval is broader for chain size

analysis than for contact tracing analysis. When compared to

previous inference results [24] our chain size and contact tracing

estimates for k tend to lower values (though confidence intervals

overlap). Since the previous results were based entirely on the first

generation of transmission, this indicates that transmission of

secondary cases may be more variable than transmission by

primary cases.

The chain size distribution predicted by models fitted under

various assumptions about transmission heterogeneity exhibit

subtle, but important differences (figure 1B). Overall, allowing a

flexible amount of transmission heterogeneity produces a model

that has a higher proportion of isolated cases and larger chains,

but a lower proportion of intermediate-sized chains. Meanwhile,

all of the models are compatible with a higher proportion of longer

chains (w6 cases) than were actually observed. This suggests that

household structure or some other factor may act to reduce

transmission after chains reach a moderate size (possibly because

the local pool of susceptibles is depleted), but the data do not

support a definitive conclusion.

Monitoring change in R0 can be accomplished with
chain size data

When incidence of an emerging disease increases, a frequent

goal of surveillance is to assess whether this is attributable to a rise

in transmissibility in the focal population, as manifested by an

increased R0. For instance, the observed 20-fold rise in incidence

of human monkeypox [28] might be explained by an increased R0

in the human population or by an increase in animal-to-human

transmission. Since a relatively low incidence limits the data

available for monkeypox (and many other subcritical diseases), it is

helpful to determine how the type and quantity of data impacts the

Figure 1. Contact tracing and chain size analysis of monkeypox data. A) Ninety percent confidence regions for R0 and k inference are
shown for monkeypox data gathered between 1980 and 1984 in the Democratic Republic of Congo [26,27]. The two confidence regions are based on
the same set of data. The chain size analysis is based on the number of cases in isolated outbreaks of monkeypox, whereas the contact tracing data
are based on the number of transmission events caused by each case. The black cross hairs indicate the previously reported 90% confidence intervals
for monkeypox transmission parameters based on the first generation of transmission in this data set [R0~0:32(0:22{0:40), k~0:58(0:32{3:57)]
[24]. B) Model predictions for the chain size distribution based on three different values of k, including the ML value of k that is based on contact
tracing data. A subset of the chain size data consisting of only those chains having exactly one identified primary infection is shown for comparison
to model predictions. When the two-parameter ML value for the contact tracing data is compared to the likelihoods of the k~1 and k?? models,
the DAIC scores for the latter models are 4.3 and 23.3 respectively.
doi:10.1371/journal.pcbi.1002993.g001

Table 1. Inference results for monkeypox data.

R0 k

ML value for chain size analysis 0.30 0.36

90% CI for chain size analysis 0.22–0.40 0.16–1.47

95% CI for chain size analysis 0.21–0.42 0.14–2.57

ML value for contact tracing analysis 0.30 0.33

90% CI for contact tracing analysis 0.22–0.40 0.19–0.64

95% CI for contact tracing analysis 0.21–0.42 0.17–0.75

doi:10.1371/journal.pcbi.1002993.t001
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ability to detect a specific change in R0. Utilizing the results of R0

and k inference for monkeypox in the 1980s, we can ascertain how

the power to detect a statistically significant change in R0 varies

with the size of the data set and the magnitude of the change in R0

(figure 2A). As expected, the more data that are available, the

more statistical power there is to detect a change in R0. The

sensitivity of chain size analysis for detecting a change in R0 is

almost identical to that of contact tracing analysis (when allowing

k to be a free parameter in both analyses). This suggests that when

faced with a trade-off, monitoring of R0 is enhanced more by

obtaining additional data on chain sizes (provided the sizes are

accurately assessed) than by obtaining detailed contact tracing on a

subset of available data.

Equally as important as detecting a change in R0 is knowing

when there may be an inaccurate report of a change. In the case of

monkeypox, we find that assuming an incorrect level of

transmission heterogeneity in a chain size analysis can lead to

over-confident detection of a change in R0 relative to the 1980s

data. This is because under-estimating the degree of transmission

heterogeneity leads to inappropriately narrow confidence intervals

for the estimated R0. Over-confident detection of a change in R0 is

most worrisome when two data sets simulated using identical

parameters give rise to distinct estimates of R0 more often than

expected (table 2). This over-confidence arising from incorrect

assumptions about k can also lead to a lack of specificity for

detecting a change in R0 in simulated data sets, when inference

based on letting k be a free parameter is used as the gold standard

(figure 2B). While it could initially appear preferable that incorrect

k values can lead to greater probabilities of detecting changes in

R0, this trades off against the higher rate of false positive detections

and a general loss of statistical integrity (e.g. the coverage of

confidence intervals will not match the nominal levels).

Chain size thresholds provide an alternative approach to
detecting change in R0

For many surveillance systems, large chains are more likely to

be detected than isolated cases. This could give rise to biases in the

chain size distribution data, which we address in a later section. In

these situations, an alternative approach to detecting a change in

R0 is to determine the size of the largest chain that would be

expected by chance (for some arbitrary threshold in the cumulative

probability distribution) [2]. The size cutoff for what is then

considered an anomalously large chain depends on the values of

both R0 and k (figure 3). As the assumed value of k decreases, the

chain size that is considered anomalously large will rise because

superspreading events become more frequent. If chain size

probabilities are calculated using traditional assumptions of k~1
or k??, then too many false alarms may be raised concerning

the number of chains that are perceived to be anomalously large,

particularly for pathogens that exhibit significant transmission

heterogeneity. The determination of a chain size cutoff also

depends on whether the detection of large chains is based on

individual reports versus the investigation of the largest chains in a

collection of surveillance data (compare figures 3A and 3B).

In some situations, a rapid response protocol might be instituted

to quickly investigate worrisomely large chains. In this case, an

anomalous size cutoff can be chosen based on there being real-

time reports of the size of single chains (as distinct from

considering the largest chain obtained from an entire surveillance

data set). However, assuming an incorrect value of k could trigger

many false alarms for chains that are actually consistent with

known transmission patterns (table 3). For instance if we assume

that monkeypox transmission follows the parameters estimated

with our ML model (blue line of figure 1B), then for a 99.9%

cumulative distribution threshold setting k?? will result in five-

fold more chain investigations than if k is set at the ML value of

k~0:33.

In other situations, chain sizes may be evaluated collectively

after a predefined period of surveillance. For the ML values of R0

and k estimated for monkeypox in the 1980s, the cumulative

distribution of chain sizes shows that there is a 95% chance that

the largest of 100 observed chains will be less than 17 cases and a

99.9% chance that the chains will all be less than 31 cases. These

results suggest cutoffs for chain sizes that deserve increased

investigation (17 cases) and provides a chain size cutoff for

determining when R0 has almost certainly increased (31 cases).

This contrasts with the 95% and 99.9% chain size cutoffs of 10

and 16 obtained when k?? is assumed.

Characterizing maximum likelihood inference of R0 and
k from chain size distributions

By demonstrating the concordance of results based on chain size

and contract tracing data when inferring R0 and k, our analysis of

monkeypox data provides motivation to further characterize the

performance of inference based on chain size data. To evaluate the

accuracy and precision of ML inference of R0 and k from chain

Figure 2. Chain size analysis clarifies surveillance needs. A) Applying maximum likelihood estimation to simulated data shows the sensitivity
of chain size analysis and contact tracing analysis for detecting a change in R0 . Results show the probability of detecting a significant change
between the monkeypox data from the 1980s and a simulated data set with k~0:33 (equal to the ML value for the 1980s data) and R0 specified
along the x-axis. Statistical significance was determined by setting a 95% confidence threshold on the likelihood ratio test (details provided in
methods section). Curves represent different values for the number of simulated chains, N . Results are depicted for inference from detailed contact
tracing data (dashed line) or more readily available chain size data (solid line). B) The specificity for detecting a statistically significant change in R0 (as
compared to 1980s monkeypox contact tracing data) is shown when various values of k are assumed during chain size analysis (as applied to the
same chain size data simulated for panel A). The specificity is defined as the probability that a change is not detected for an assumed value of k
conditioned on our gold standard for a lack of change (e.g. a change is not detected when k is allowed to be a free parameter during inference). The
solid line corresponds to N~500 chains and the dashed line to N~100.
doi:10.1371/journal.pcbi.1002993.g002
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size data, we ran simulations for various combinations of R0, k,

and number of observed transmission chains, N. For each

simulated dataset, we determined the ML R0 and k values

(equations 9, 11 and 12) and evaluated whether the realized

coverage probability of the 90% confidence intervals conformed to

expectations (equations 22).

Due to the challenges of illustrating the dependence of inference

error on three variables, this section considers two special cases of

parameter values. First we fix N~100 and consider how the

inference error depends on R0 and k (figure 4 - left column). This

provides an assessment of error bounds when a realistic amount of

data is available and when there is no prior information on R0 or

k. Next we fix k~0:5 and consider how the inference error

depends on R0 and N (figure 4 - right column). This scenario

highlights the relationship between inference accuracy and data set

size when a significant amount of transmission heterogeneity is

present. Qualitatively similar results are obtained when fixing

different values for N or k (data not shown).

We limit our simulation results to R0§0:1 because when R0 is

close to zero there are too few secondary infections for inference to

be meaningful. We also limit ourselves to R0ƒ0:9 because large

stuttering chain sizes become increasingly likely when R0

approaches one, and so our modeling assumption that transmis-

sion is independent of stuttering chain size becomes increasingly

dubious. Consistent with the range of inferred k from prior

analysis of a variety of infectious diseases, we restrict our analysis

to k§0:1 [24]. Meanwhile, we focus on kƒ10 since kw10 is

similar to the Poisson distribution limit of k?? [29]. Lastly, we

choose a range of 10 to 1000 for N since this reflects the size of

most empirical data sets.

Inference of R0 from chain size distributions exhibits
little bias. We summarized the error in R0 inference using the

root mean square of the relative and absolute errors, ar and aa

(equations 14 and 15). The relative error ar increases as R0

decreases, owing to the smaller denominator, and ar also increases

as k decreases because of increased variation arising from

stochasticity as the offspring distribution becomes more skewed

(figure 4A - left column). Meanwhile since ML inference is

asymptotically unbiased, ar decreases as the data set size increases

(figure 4A - right column).

As with relative error, the absolute error aa increases as k

decreases. In contrast to ar, the dependence of aa on R0 is

relatively weak for high values of k and N (figure 4B). However, if

significant heterogeneity is present or when the data set is small,

then aa grows as R0 increases. As with relative error, aa tends to

zero for large data sets.

To further our understanding of the error in R0 inference, we

computed the bias and standard deviation arising in ML inference

of R0. The former is a measure of accuracy and is potentially

correctable, while the latter is representative of imprecision

inherent in stochastic processes and is uncorrectable. The bias of

ML inference of R0 (figure 4C) is due to discrepancy between the

observed and predicted average chain size. The bias is always

negative due to the non-linearity of equation 12, which makes R0

inference more sensitive to underestimates of the average chain

size than to overestimates. The amplification of bias seen with

decreasing k arises because greater transmission heterogeneity

tends to produce chains that are either very small or very large,

thus accentuating the influence of Jensen’s inequality on equation

12. Similarly, the magnitude of the bias increases for small N

Table 2. Probability of falsely detecting a change in R0.

Number of chains simulated Percentage when k inferred Percentage when k~1 Percentage when k??

20 1.7 10.2 14.9

100 5.0 10.8 15.5

500 5.1 10.8 15.7

As detailed in the methods section, a statistical difference was determined by using the likelihood ratio test to compare two transmission models. The first model
assigns separate values of R0 to the 1980s monkeypox data and the simulated data, while the second model assigns a single R0 to both data sets. Both models assign a
single value of k to both data sets. Since the second model is nested in the first, statistical significance was determined by setting a 95% confidence threshold on the
likelihood ratio test. Probability values that exceed 5% indicate an over-abundance of false positive detections of change in R0 . Each result was based on 10,000
simulations.
doi:10.1371/journal.pcbi.1002993.t002

Figure 3. Size of anomalously large chains. A) Size of an observed chain that is anomalously large as a function of R0 and k. The cumulative
distribution threshold indicated in the legend denotes the chosen cutoff for the cumulative chain size distribution that determines when an observed
chain is anomalously large. B) Analogous to panel A, but results are based on the largest observed chain for a group of 100 observed chains.
doi:10.1371/journal.pcbi.1002993.g003
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because the stochastic nature of small data sets results in a larger

sampling variance of the observed average chain size.

In principle, bias-correction could be applied to R0 inference.

However, this would be hard to do in a self-consistent manner

because the bias depends on R0. To decide whether the extra

effort is worthwhile, it is instructive to know the fraction r by

which aa would decrease if bias were eliminated (equation 18).

This fraction increases as R0 increases, k decreases, or N decreases

(figure 4D). However r remains less than 0:1 for a large region of

parameter space. Therefore, given other uncertainties in data

acquisition and analysis, it seems that bias correction will rarely be

worthwhile.

Transmission heterogeneity can also be reliably inferred

from chain size distributions. Assessing inference of transmis-

sion heterogeneity is complicated by the inverse relationship

between k and the variance of the offspring distribution. Thus we

measure the error of k estimation in relation to
1

k
(equation 16). This

emulates earlier work on ML estimation of k, both as a general

biostatistical problem and from contact tracing data [29,30]. In

broad terms, the error of estimating k from chain size data (ak)

decreases as R0 and N increase (figures 5A and 5B). This is

explained by there being more observed transmission events that

provide information on transmission patterns. Meanwhile, the error

tends to increase with decreasing k. This is likely due to a need for

relatively large sample sizes to observe the rare superspreading

events that are characteristic of low k values [29]. Some caution is

needed in interpreting this trend because our error metric of
1

k
increases as heterogeneity increases. However it is unlikely that this

trend is an artifact of our chosen metric because it is also seen when

other error metrics are used, such as the difference between the

inferred and true coefficient of variation (data not shown).

Table 3. Frequency of anomalously large chains.

Cumulative distribution threshold k~0:33 assumed k~1 assumed k?? assumed

95% 4.9% (§3 cases) 4.9% (§3 cases) 4.9% (§3 cases)

99% 0.88% (§7 cases) 1.29% (§6 cases) 1.94% (§5 cases)

99.9% 0.09% (§14 cases) 0.22% (§11 cases) 0.43% (§9 cases)

The cutoff for a chain sizes that are considered anomalously large was determined by when the cumulative chain size probability exceed the cumulative distribution
threshold for R0~:30 (ML value for 1980s monkeypox data) and k as indicated in the table. The frequency of outlier detection was then determined according to the
probability that chain sizes would exceed the chain size cutoff as predicted by the ML values of R0~:30 and k~0:33 for monkeypox.
doi:10.1371/journal.pcbi.1002993.t003

Figure 4. Characterization of R0 inference as a function of R0 and k with N~100 (left column) and as a function of R0 and N with
k~0:5 (right column). The axes represent the true R0 , k and N inputs for the simulations. A) Root mean square relative error for ML inference of R0

(ar). B) Root mean square absolute error for ML inference of R0 (aa). C) Bias of R0 inference (d). D) Fraction of the R0 absolute error that is attributable
to bias (r). The contour plots were generated based on a lattice of simulation results for linearly spaced values of R0 and logarithmically spaced
values of k or N . The values for each lattice point were computed by averaging the results of 2,000 simulations. For visualization purposes, simulation
results were smoothed by a one-neighbor moving average.
doi:10.1371/journal.pcbi.1002993.g004
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Because of the non-intuitive relationship between ak and

confidence intervals for k, we have illustrated the performance

of k inference for four specific choices of R0 and N (figures 5C–

5F). These plots reinforce the trends seen in panels A and B. In

particular, narrower and more consistent confidence intervals for

large N and large R0 support the conclusion that this region of

parameter space allows the most precise and accurate inference of

k. The confidence intervals are also narrower for smaller k.

However, this does not accurately reflect the uncertainty in the

degree of transmission heterogeneity because small changes in

small values of k can significantly change the offspring distribu-

tion’s coefficient of variation. In contrast, the more rugged curves

for ML inference when kw1 should be interpreted with

consideration of the offspring distribution changing minimally

for higher values of k. Despite the inherent difficulties of inferring

low values of k, the ML approach appears robust because there is

no discernible bias of the ML estimate of k and the median

confidence intervals consistently include the true values of k.

Motivated by the observation that the ML estimator for R0 is a

simple function of the average chain size, we explored whether

accurate inference for k can be obtained by considering just the

first two moments of the chain size distribution (equation 7,

figures 5C–5F). Second moment inference improves as N
increases, but there is a clear bias towards over-estimation of k.

The non-negligible bias suggests that whenever possible it is

preferable to estimate k by ML inference from the full distribution

of chain sizes.

Confidence intervals show accurate coverage. Since

confidence interval calculations are independent of the particular

metric used for quantifying inference error (e.g. insensitive to our

use of
1

k
for our error metric), their coverage accuracy provides a

useful assessment of ML inference [31]. For most of the N~100
and k~0:5 parameter space slices, the 90% coverage probability

of R0 estimates varied from 88% to 93% and tended to increase

with increasing k (data not shown). This coverage probability is

consistent with the expected value of 90%. The one exception was

for k~0:5, Nv20 and R0v0:5 when the coverage probability

rose as high as 98%. This occurred because confidence intervals

got wider for these small data sets, and not because R0 inference

was more precise. The coverage probabilities for confidence

intervals of k estimates show similar concordance. As with the R0

estimates, when R0 and N are both low, the coverage probability

for k tended to be higher than the nominal level of 90%. It was

also too high when k approached higher values, but this is likely

due to the boundary effects when k??. The take-home message

is that for most of parameter space, the confidence intervals for R0

and k inference can be trusted when ML inference is applied to

high quality data.

Overall, our characterization of the inference of R0 and k from

the size distribution of stuttering chains shows that estimation

accuracy is more likely to be limited by data or shortcomings of

our modeling assumptions than by biased inference. For simulated

data over a wide range of parameter values, inference of R0 has an

error of less than 10%, negligible bias and reliable confidence

intervals. Inference of k also has reliable confidence intervals, but

unlike R0, the parameter itself is typically not the direct focus of

epidemiological interest. Thus caution is needed in interpreting

the absolute error in k estimates, due to the nonlinear relationship

between k and the coefficient of variation and other measures of

heterogeneity for the offspring distribution.

Data limitations have variable impact on inference results
The preceding analyses have shown the potential for accurate

inference of transmission parameters from chain size data, but we

have not yet considered how imperfect case detection impacts

inference results. We have also ignored complications arising when

multiple chains are mixed into a single cluster. This latter scenario

allows the possibility that some primary infections are falsely

classified as secondary cases. Here we consider whether and how

these types of data limitations impact inference results.

Figure 5. Characterization of k inference. A) Error of k inference as quantified by the root mean square of the absolute differences between the
reciprocals of the inferred and true value of k for simulated data (ak). The contour plot was generated based on the same simulations and inference
procedure that was used to produce the N~100 panels of figure 4. B) Same as panel A except that k~0:5 for all simulations and now the number of
simulated chains varies. C) Summary of how well k inference works when R0~0:3 and N~100. The dashed black line represents a perfect match
between the true and inferred k values. The magenta line shows the median value of ML inference of k. The dashed blue lines show the median
values of the upper and lower limits of the 90% confidence intervals for k. For visualization purposes and because kw10 is essentially a Poisson
distribution, the upper confidence intervals were bounded at k~10. The green line shows the median estimate for k inference based solely on the

first and second moments of the simulated data, k̂kh (equation 7). All curves were determined from the results of one thousand simulations for
logarithmically distributed values of the true k. D–F) Same as panel C, but for different R0 and N pairs.
doi:10.1371/journal.pcbi.1002993.g005
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The bias arising from imperfect observation depends on

which cases are unobserved. No surveillance system is perfect

and some cases will be missed. However the mechanisms

underlying imperfect observation can alter R0 estimation in

different ways [2]. For instance, if the observation of each case is

independent of all other cases, then the average observed size of a

chain will be smaller and the resulting R0 estimates will be smaller.

However, other processes such as retrospective investigation can

paradoxically increase the average observed chain size and thus

lead to higher estimates of R0.

By modeling observation as a two-step process, we can explore

the impact of a diverse range of scenarios. We define the passive

observation probability as the probability that any case will be

detected by routine surveillance measures. This probability applies

independently to all cases, so multiple cases in the same chain can

be detected by passive surveillance. In some settings, there is an

active surveillance program that investigates outbreaks that have

been detected by the passive system. We define the active

observation probability as the probability that a case will be

detected by active surveillance, conditional on that case not having

been detected by passive surveillance. Cases can be detected by

active surveillance only if they belong to a transmission chain

where at least one case is detected by passive surveillance. (When

the active observation probability is zero or one, respectively, our

observation model maps onto the ‘random ascertainment’ and

‘random ascertainment with retrospective identification’ scenarios

previously analyzed [2].).

When the passive observation probability approaches one,

essentially all cases are observed and so the inferred R0 and k are

close to their true value (figure 6). If the passive observation

probability is less than one and the active observation probability

is low, the average observed size of chains is smaller than the true

value, and the R0 tends to be under-estimated (figure 6A). When

the passive observation probability is low but the active

observation probability is high, there is a tendency to observe

most cases in most of the large chains but to miss many of the

small chains entirely. This leads to over-estimation of R0.

Imperfect observation tends to cause over-estimation of k,

particularly when the passive observation probability is low and

the active observation probability is high (figure 6B). This trend

arises because the observed fraction of chains that are isolated

cases is likely to be under-estimated. Since a high proportion of

isolated cases is a hallmark of transmission heterogeneity, inference

from data that under-represent isolated cases will be biased toward

homogeneity. This implies that when chain size analysis suggests

that kv1 (such as with the 1980s monkeypox data), the conclusion

is likely to be a true reflection of heterogeneous transmission

dynamics. In contrast, if initial data analysis suggests that

transmission is relatively homogeneous, then the possibility that

the analysis is impacted by imperfect observation of cases should

be considered.

Overall, our observation model suggests that inference of R0

and k is relatively robust when at least eighty percent of cases are

observed. Due to the extensive resources provided for monkeypox

surveillance in the 1980s [1], this is likely to have been true for the

monkeypox data set we have analyzed. However this level of case

detection is unlikely to be attainable for many surveillance

programs. An important direction for further work is to correct

for imperfect data by incorporating the observation process into

the inference framework.

Accurate assignment of primary infections is more

important than disentangling infection clusters. A key

challenge of analyzing chain size data for monkeypox and many

other zoonoses is that primary infections are typically clinically

indistinguishable from secondary infections. Yet each type of

infection represents a distinct transmission process and ignoring

this distinction can skew epidemiological assessments. In the

context of chain size distributions, this causes a problem because

multiple chains can be combined into one cluster. To improve our

understanding of how inference of R0 and k is impacted by how

these entangled transmission chains are handled, we compared our

initial analysis of monkeypox data to three alternative approaches.

The monkeypox dataset we analyze groups cases in terms of

infection clusters rather than transmission chains. Our primary

strategy to cope with this limitation was to consider all possible

ways that the ambiguous infection clusters could be divided into

chains (what we term the combinatorial approach). This effort was

greatly facilitated by knowing how many primary cases were

present in each infection cluster. We now consider the importance

for transmission parameter inference of identifying primary cases

correctly. We then consider the additional value of more detailed

contact tracing data that allows disentanglement of clusters into

individual chains.

To assess how clusters identified as having multiple primary

infections (equivalent to the presence of ‘co-primary infections’)

impact R0 and k inference, we performed ML inference when the

22 co-primary classifications were ignored and all 125 clusters

were treated as single transmission chains (see ‘simple cluster

analysis’ in figure 7). The inferred value of R0 (and its confidence

interval) was higher than our original estimate, because ignoring

primary infections leads to underestimation of the number of

chains, which in turn leads to an increase in the observed average

chain size. Further, in contrast to our initial results, the confidence

interval for k suggests that transmission is unlikely to be more

heterogeneous than a geometric distribution. This change arises

because treating clusters with co-primary cases as single chains will

deflate the apparent frequency of isolated cases, which is a key

indicator of transmission heterogeneity.

To determine the importance of disentangling transmission

chains fully before performing inference, we considered two

methods for dividing infection clusters with multiple primary

infections into individual transmission chains (figure 7). Our

heterogeneous assignment maximizes the number of isolated cases

and thus produces more chains of relatively large size, while the

homogeneous assignment minimizes the number of isolated cases

and thus produces a higher proportion of intermediate sized

chains. The average chain size and corresponding ML estimates of

R0 are identical (per equation 12), but the confidence intervals for

R0 differ slightly depending on the inferred k values. Not

surprisingly, when clusters are divided as evenly as possible into

chains, the ML estimate of k and confidence interval are higher

than when clusters are divided in a way that maximizes the

number of isolated cases. The ML value based on our initial

combinatorial approach (figure 1 and table 1) falls between the

ML values obtained using the two assignment procedures. This

supports the intuitive conclusion that the true chain assignment is

likely a mix of the two extreme assignment algorithms considered.

Only 5 of the 19 clusters containing multiple primary infections

had ambiguity with regard to the size of constituent chains. Thus

the noticeable difference between the ML estimates of k for the

homogeneous and heterogeneous chain assignments underscores

how the inference of k is sensitive to details of infection source

assignments. However, the relatively compact confidence region

for the combinatorial approach suggests that, in many circum-

stances, it may not be necessary to disentangle all overlapping

transmission chains. In fact, as the homogeneous chain assignment

shows, there is a risk that ad hoc disentanglement of chains may

introduce significant bias in the estimation of k. However, for the

Characterizing Weakly-Transmitting Diseases

PLOS Computational Biology | www.ploscompbiol.org 8 May 2013 | Volume 9 | Issue 5 | e1002993



combinatorial approach to be reliable, it is essential to identify how

many cases in each cluster are due to primary infection.

Overall, our analysis of monkeypox data highlights how

inference of transmission parameters from chain size data can be

complicated when infection clusters may contain multiple primary

infections. More generally, the challenge of properly differentiat-

ing primary from secondary infections is of fundamental impor-

tance for analysis of stuttering zoonoses. Even when well-trained

surveillance teams are on site to assess transmission pathways, it

may be impossible for them to decide between two equally likely

infection sources. For instance, it can be difficult to decide if a

mother contracted monkeypox because she cared for an infected

child or because she contacted infected meat (in the same contact

event as the child, or a later one). The theory presented here forms

a foundation for further research on infection source assignment

and its relationship to underlying transmission mechanisms.

Future investigations can leverage existing methods of source

assignment developed for supercritical diseases, which utilize

various epidemiological data such as symptom onset time, risk

factor identification and pathogen genetic sequence data [32–34].

These types of theoretical developments, combined with strong

collaborative ties between field epidemiologists and modelers,

would likely expand the use of existing epidemiological data and

improve resource allocation for future surveillance efforts.

Model limitations
Several of our modeling assumptions deserve further explora-

tion. In particular, the assumption that transmission can be

described by independent and identical draws from a negative

binomial offspring distribution is a simplification of some forms of

transmission heterogeneity. For example, if heterogeneity is driven

largely by population structure, such that susceptibility and

infectiousness are correlated, then the relation between R0 and

heterogeneity can differ from what is represented in our model

[35]. Specific scenarios that can give rise to such correlations

include the existence of clustered pockets of susceptible individuals,

impacts of coinfection or immunosuppressive conditions, or

transmission heterogeneity that arises chiefly from variation in

contact rates rather than variation in the amount of virus shed

[36–38]. This issue is especially relevant for preventable diseases

such as measles, because large outbreaks in developed countries

are often associated with particular communities in which vaccine

refusal is common [16,39]. Local depletion of susceptible

individuals, which can even occur within a household, can also

Figure 6. Influence of imperfect observation on R0 and k inference. A) The inferred value of R0 is plotted as a function of the two
probabilities we use to model surveillance. Results are based on a simulation of 10,000 chains for a lattice of R0 and k pairs. For visualization
purposes, simulation results were smoothed by a one-neighbor moving average. B) Analogous to panel A but for the dispersion parameter.
doi:10.1371/journal.pcbi.1002993.g006

Figure 7. Complications of entangled chains can affect inference. ML estimates of R0 and k and corresponding 90% confidence regions are
when all clusters are treated as chains, and for two approaches to assigning constituent chain sizes for clusters with more than one primary case
(details provided in the text). For visual comparison, the contour corresponding to the chain size analysis from figure 1 is replicated.
doi:10.1371/journal.pcbi.1002993.g007
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impact the estimation of R0 and k. By diminishing the possibility

of large outbreaks, the depletion of a susceptible population is

likely to decrease estimates of R0 and increase estimates of k. We

hope that our use of a likelihood function that combines R0 and

transmission heterogeneity will facilitate future work that addresses

these modeling challenges in a self-consistent manner.

Conclusion
Data acquisition is often the limiting factor for assessing the

transmission of subcritical diseases that pose a threat of

emergence. Our findings can assist future surveillance planning

by drawing attention to the utility of chain size data when contact

tracing data are too difficult to obtain. We have shown that both

R0 and the degree of transmission heterogeneity can be inferred

from chain size data, and have demonstrated that chain size data

can give equivalent power to contact tracing data when deciding

if R0 has changed over time. In fact, even knowledge of the

largest chain size alone can be helpful for monitoring change in

R0, provided that the degree of transmission heterogeneity has

been reliably measured. Conversely, we have demonstrated that

inaccurate assumptions about transmission heterogeneity can

lead to errors in R0 estimates and possible false alarms about

increased transmission. We have also found that inference can be

accomplished when transmission chains are entangled into

infection clusters, provided that the number of primary infections

in each cluster is known. For the particular case of human

monkeypox, our findings support previous analyses that have

identified substantial transmission heterogeneity, but conclude

that endemic spread would only be possible if there is significant

demographic change or viral adaptation to enable greater

human-to-human transmissibility. Since a mechanistic under-

standing of transmission dynamics is important for quantifying

the risk of emerging diseases and predicting the impact of control

interventions, we hope our findings will assist in providing robust

epidemiological assessments for relevant public health decision-

making.

Methods

Monkeypox data
We analyzed previously reported data describing monkeypox

cases identified between 1980–1984 in the Democratic Republic of

Congo (formerly Zaire) [1]. These data were collected in order to

assess the potential of monkeypox to emerge as an endemic human

pathogen in the wake of smallpox eradication. Contact tracing and

subsequent analysis by epidemiological teams classified each

identified cases as a primary case, arising from animal-to-human

transmission, or a secondary case, arising from human-to-human

transmission. The data set consists of 125 infection clusters

[26,27]. Most clusters contained just one primary case and thus

constituted a single transmission chain. However nineteen of the

clusters had overlapping transmission chains, because contact

tracing revealed they contained more than one primary case.

The raw cluster data for monkeypox was obtained from table 1

of [26]. Our baseline inference of transmission parameters is based

on considering all the possible ways this cluster data can be

separated into individual transmission chains. To explore the

specific impact of entangled transmission chains on the inference

of transmission parameters, we also investigated the impact of

three approaches of using the cluster size data to assign an explicit

chain size distribution (table 4). In the ‘simple cluster analysis’

approach, we treat all clusters as though they were a complete

stuttering chain and ignore the complications of multiple primary

infections. The other two approaches use different algorithms to

divide the clusters that have multiple primary infections into

constituent chains. In our ‘homogeneous assignment’ distribution,

clusters were divided as evenly as possible. For example, a cluster

of total size four with two co-primary cases is tabulated as two

chains of size two. Meanwhile, our ‘heterogeneous assignment’

distribution maximized the number of isolated case counts when

disentangling clusters. For this distribution, a cluster of size four

with two co-primaries is tabulated as a chain of size one and a

chain of size three.

Offspring distribution
We analyze the transmission dynamics of stuttering chains using

the theory of branching process [22,40,41]. The key component of

this theory is the probability generating function, Q(s)~
P?

i~0 qis
i

of the offspring distribution. This function describes the probabil-

ity distribution for the number of new infections that will be caused

by each infected case. The probability that an infected individual

directly causes i infections is qi, and hence the probability that an

individual is a dead-end for transmission is q0. Subject to the

standard assumption that transmission events are independent and

identically distributed, Q(s) contains all the information needed to

determine the size distribution of stuttering chains.

The choice of offspring distribution is important because it

defines the relationship between the intensity and heterogeneity of

transmission. We adopt a flexible framework by assuming

secondary transmission can be characterized by a negative

binomial distribution with mean R0 and dispersion parameter k.

The corresponding generating function, valid for all positive real

values of R0 and k, is [24]

Q(s)~ 1z
R0

k
(1{s)

� �{k

: ð1Þ

A key advantage of using a two-parameter distribution over a

one-parameter distribution (such as the geometric or Poisson

distribution) is that modulating k permits the variance to mean

ratio, 1z
R0

k
, to range from one to ? without any change in R0.

Further, the geometric and Poisson distributions are conveniently

nested cases of the negative binomial distribution when k~1 and

k?? respectively.

Simulations
All simulated chains start with a single primary infection. Then

the number of first generation cases is decided by choosing a

random number of secondary cases according to a negative

binomial distribution with mean R0 and dispersion parameter k.

For each case in the first generation (if any exist), a new random

number is chosen to determine how many consequent second

generation cases there are. This is repeated until the stuttering

chain goes extinct. Since our focus is on R0v1, all simulated

chains eventually go extinct. Simulated contact tracing data

consisted of the individual transmission events that produce

simulated chain size data.

To simulate imperfect observation, we first simulated a set of

true transmission chains, then simulated whether each case would

be observed according to the passive observation probability.

Finally, for chains where at least one case was detected passively,

we simulated which additional cases were observed according to

the active observation probability.

All calculations and simulations are performed with Matlab

7.9.0. Code is available in Text S2.
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Stuttering chain statistics
The next two subsections derive the average size and variance of

the distribution. As a by-product, we obtain a first order moment

estimator for R0 and a second order moment estimator for k. We

will see that the first order moment estimator of R0 exactly

matches the ML value of R0. This finding provides a simple

relationship between observed data and R0 inference.

Average size of stuttering chains. Since the average

number of cases per generation declines in a geometric series

when R0v1, the average stuttering chain size, m, is simply

[21,41,42]

m~
X?
i~0

Ri
0~

1

1{R0
: ð2Þ

This relationship can be inverted to obtain the first moment

estimator for R0 based on the observed mean chain size, �mm,

R̂R0~1{
1

�mm
: ð3Þ

An alternative expression for R̂R0 can be obtained for a data set

encompassing numerous chains by letting Np and Ns denote the

number of primary and secondary cases, respectively. Then since

Np is the total number of chains and NpzNs is the total number

of cases, �mm~
NpzNs

Np

. Therefore,

R̂R0~1{
Np

NpzNs

~
Ns

NpzNs

ð4Þ

which is the fraction of all observed cases due to secondary

transmission, as noted previously [21].

Coefficient of variance for the offspring and chain size

distributions. The coefficient of variation (COV) provides

quantitative perspective on the relationship between k and

observation of cases. The variance of the negative binomial

distribution is given by s2
nb~R0

:(1z
R0

k
). Therefore the COV for

the offspring distribution,
snb

R0
, is

hoff ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R0
z

1

k

s
: ð5Þ

Meanwhile, branching process theory shows that the variance of

the chain size distribution is
s2

nb

(1{R0)3
when R0v1 [41,42].

Therefore the COV for the chain size distribution is,

hcsd~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

nb

(1{R0)3
: 1

m2

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0
:(1z

R0
k

)

1{R0

s
: ð6Þ

The COV of the negative binomial offspring distribution

increases as k decreases (figure 8A), reflecting the rise in

transmission heterogeneity [24,43]. The COV of the chain size

distribution also increases as k decreases (equation 6, figure 8B). In

contrast to the COV of the offspring distribution, for a given value

of k, the COV of the chain size distribution increases as R0

increases. This is due to stochastic variation, which gets amplified

for longer chains as R0 rises.

Equation 6 can be inverted to obtain a second moment

estimator for k based on the observed coefficient of variation, �hhcsd ,

and the inferred R̂R0,

k̂kh~
R̂R2

0

�hh2
csd
:(1{R̂R0){R̂R0

: ð7Þ

The 2nd moment estimator of k does not always provide valid

inference of k because the denominator can be negative. Because

this circumstance arises when the chain size variance is

particularly small, we interpret it as corresponding to a Poisson

offspring distribution since this is the most homogeneous

distribution allowed by the negative binomial model.

Size distribution of stuttering chains
Beyond determining the relationship between R0, k, m and hcsd ,

our assumptions about the transmission process allow us to use

branching process theory to characterize the complete size

distribution of stuttering chains [23,40–42]. Let rj be the

probability of a transmission chain having overall size j. If one

Table 4. The number of transmission chains tabulated by size (i.e. total number of cases) for three different assignment
algorithms.

Chain size Simple cluster analysis homogeneous assignment heterogeneous assignment

1 84 114 120

2 19 16 7

3 11 11 12

4 5 2 3

5 2 2 3

6 4 2 2

doi:10.1371/journal.pcbi.1002993.t004
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defines Tj(s)~
1

j
Q(s)½ �j , then [44],

rj~
1

(j{1)!
T

(j{1)
j Ds~0 ð8Þ

where T
(j{1)
j is the (j{1)th derivative of Tj . See the supporting

text (Text S1) for a derivation of this formula that develops

intuition for the specific application to disease transmission. In

particular, the supporting text explains the validity of equation 8

for both R0v1 and R0w1, which extends recent findings of

Nishiura et al. [23].

Based on equation 1 the formulae for Tj(s) and T
(i)
j are,

Tj(s)~
1

j
: 1z

R0

k
(1{s)

� �{kj

T
(i)
j (s)~

Pi{1
z~0 (kjzz)

j

R0

k

� �i

1z
R0

k
(1{s)

� �{kj{i

where the latter formula was derived by induction. Substitution

into equation 8 gives,

rj~
Pj{2

z~0 (kjzz)

j!

R0

k

� �(j{1)

1z
R0

k

� �{kj{jz1

:

Noting that the Gamma function C(x) satisfies x~
C(xz1)

C(x)
and

that x!~C(xz1) for integer x, we can rewrite the last formula as

rj~
C(kjzj{1)

C(kj)C(jz1)

R0

k

� �j{1

1z
R0

k

� �kjzj{1
: ð9Þ

This equation matches the relation derived by Nishiura et al. for

the specific case of R0w1 [23]. This relationship was verified by

using a stochastic simulation model to simulate many stuttering

chains as described above (data not shown).

Equation 9 forms the basis of interpreting chain size distribution

data because it provides the probability that a randomly chosen

stuttering chain has a size j. However, from the perspective of

considering how chain size observations reflect overall disease

burden, it is also helpful to consider the probability, wj , that a

randomly chosen case is in a stuttering chain of size j. This

‘weighted’ probability density is obtained by scaling each rj by j

and then renormalizing. Accordingly,

wj~
1

m
:j:rj~(1{R0):j:rj : ð10Þ

For a given value of R0, decreasing k leads to both a higher

number of isolated cases and a higher number of large stuttering

chains (figure 9). Meanwhile, the homogeneous Poisson offspring

distribution maintains the highest probabilities for intermediate

sized stuttering chains (seen most clearly in figure 9D), Thus,

branching process theory provides an analytical foundation for

prior computational results showing that greater transmission

heterogeneity results in a higher frequency of relatively large

stuttering chains [24,25,29,43,45]. Of particular interest, the

fraction of stuttering chains that consist of a single isolated case is

substantial for all parameter sets considered. Meanwhile, the

weighted probability density shows that the probability of a case

occurring as an isolated case can be significantly less than the

probability of a randomly chosen stuttering chain having size one.

Maximum likelihood estimation of R0 and k
We employ maximum likelihood estimation for R0 and k

inference because it is asymptotically unbiased and maximally

efficient (i.e. there is minimum sampling variance). To implement

ML estimation for R0 and k using stuttering chain size distribution

data, we let N denote the total number of stuttering chains in a

given dataset, and nj represent the number of chains with size j.

Then the likelihood, L, of the data set is,

L~ P
?

j~1
r

nj
j : ð11Þ

The ML estimate of R0 and k is found by maximizing the log-

likelihood function with respect to both parameters. The

maximum occurs when
d(lnL)

dR0
~

d(lnL)

dk
~0. Focusing on finding

Figure 8. Coefficient of variation for offspring and chain size distribution. The COV for the offspring distribution (i.e. the distribution for the
number of transmission events caused by each case, panel A) and chain size distribution (panel B) are both a function of R0 and k.
doi:10.1371/journal.pcbi.1002993.g008
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the ML estimate for R0, one finds,

d(lnL)

dR0
~
X?
j~1

nj
: d(ln rj)

dR0

~
X?
j~1

nj
: j{1

R0
{

kjzj{1

kzR0

� �

~
k

R0
:(kzR0)

X?
j~1

nj
: j(1{R0){1½ �:

Then since the total number of chains is N~
P?

j~1 nj and the

observed average chain size is �mm~
1

N
:X?

j~1
nj
:j,

d(lnL)

dR0
~

kN

R0
:(kzR0)

�mm(1{R0){1½ �:

Solving for
d(lnL)

dR0
~0 gives,

R̂R0,MLE~1{
1

�mm
ð12Þ

which is identical to the first moment estimator R̂R0 given by

equation 2.

The ML calculation for the dispersion parameter, k̂k, is not

analytically tractable and k̂k depends on R̂R0. Thus, k̂k is obtained by

computational optimization of the log likelihood. Since the limits

k?? and k?0 lead to convergence difficulties, we set lower and

upper limits of 0.00001 and 1000 for k̂k. This lower bound for k is

well below the range needed to infer biologically relevant values of

k and the upper bound for k is essentially equivalent to a Poisson

distribution. We cannot attempt k inference when a simulated

data set has no secondary transmission (implying R̂R0~0).

Therefore these data sets, which occasionally occur when both

R0 and N are low, were discarded from our simulation-based

characterization of k inference.

Combinatorial method for maximum likelihood

estimation of R0 and k for monkeypox clusters. As

mentioned, some of the monkeypox infection clusters could not

be unambiguously divided into constituent chains. For our

baseline ML inference of R0 and k (figure 1 and table 1), we

approach this ambiguity by considering all possibilities of chains

that could give rise to clusters of the observed size. For instance,

the probability that an infection cluster having two primary

infections has an overall size of four is,

r1
:r3zr2

:r2zr3
:r1:

To conduct inference of R0 and k these combinatorial terms were

included in the product of equation 11.

Contact tracing method for maximum likelihood

estimation of R0 and k for monkeypox. Contact tracing

investigations yield direct information about how many infections

are caused by each infectious case. By analogy to equation 11, the

likelihood of contact tracing data can be written as,

L~ P
?

i~0
s

mi
i ð13Þ

where si is the probability that a case will directly cause i infections

and mi is the number of cases that directly cause i infections. For

our model, si is the probability density of a negative binomial

distribution,

Figure 9. The size distribution of stuttering chains varies as a function of R0 and k. A) The probability distribution for chain sizes for various
parameter choices, when transmission is described by a negative binomial offspring distribution. B) Same as panel A but with logarithmically scaled
axes, to highlight lower frequencies and larger chain sizes. C) The weighted probability density for the same R0 and k pairs given in panel A. D) Same
as C with logarithmically scaled axes. The legend in panel A applies to all panels.
doi:10.1371/journal.pcbi.1002993.g009
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si~
C(izk)

C(iz1)C(k)

k

R0zk

� �k
r

R0zk

� �i

:

Although full contact tracing data are unavailable for monkeypox

in the 1980s, much of it can be reconstructed from the tabulation

of monkeypox cases in which the number of cases is noted for each

generation of each cluster (table 1 of [26]). As in the case of

infection clusters with multiple primary infections, there is some

ambiguity in the contact tracing data for 11 of the 209 cases when

it is only known that a set of cases lead to one or more infections.

However, it is straightforward to consider the probability for each

of the possible combinations and incorporate their sum as a factor

in equation 13. This combinatorial approach was used to create

figure 1 and table 1.

Measuring the performance of R0 and k inference
To study the precision and accuracy of our ML approach, we

simulated many data sets for a range of values of R0, k and N . We

inferred the ML values of R0 and k from the simulated data, and

compared these values to the true values used in the simulation.

Error of R0 and k inference. We use two metrics to

summarize the error in inferred values of R0. The first metric is the

root mean square relative error, defined as

ar~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim

M??

1

M

XM
i~1

R̂R0i
{R0

R0

 !2
vuut ð14Þ

where R̂R0i
is the ML value of R0 for a simulated dataset i which

had true parameter values R0, k and N . In practice, the limit is

taken to a reasonable number of simulations, M, based on

convergence of ar (we typically set M~2000).

Another useful metric for characterizing R0 inference is the root

mean square absolute error defined as

aa~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim

M??

1

M

XM
i~1

(R̂R0i
{R0)2

vuut : ð15Þ

Since the relative error scales with R0 it can be particularly useful

in assessing the significance of small differences between R0 values

when secondary transmission is quite weak. Meanwhile, as

explained below, the absolute error is useful for decomposing

the source of R0 measurement uncertainty into bias and

unavoidable stochastic randomness.

Since the coefficient of variation of the negative binomial

distribution is a function of
1

k
, the effect of changing k by a fixed

amount is much greater when k is small than when k is large.

Therefore we choose to measure the error as the difference in the

reciprocals of the inferred and true k, because this leads to more

consistent interpretation of inference results. The convention of

using the reciprocal transform for inference on k is well established

in the biostatistics literature on negative binomial inference

[29,30]. We define the root mean square error of k as,

ak~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim

M??

1

M

XM
i~1

1

k̂ki

{
1

k

� �2

vuut ð16Þ

where k̂ki is the ML estimate of k for the ith dataset. Whenever

k̂kiv0:05, it is replaced by 0.05 in this calculation to avoid numerical

instabilities arising from small denominators. The threshold of 0.05

was chosen because it is close to, but below the observed range for k
in infectious disease transmission data [24].

Bias of R0 inference. The inference error for R0 contains

contributions from estimator bias and from the inherently random

nature of the processes generating the data. The bias of R0

inference is given by

d~ lim
M??

1

M

XM
i~1

R̂R0i
{R0 ð17Þ

for fixed R0, k and N. The contribution of randomness is

summarized by the standard deviation of the ML values of R0

associated with a set of simulation parameters, sR̂R0
. The two

sources of error add in quadrature to form the root mean square

absolute error,

a2
a~s2

R̂R0
zd2:

If the bias were eliminated from the R̂R0 estimator, then the error

would simply be sR̂R0
. Therefore, the fractional reduction of the

absolute error in R0 inference that would be possible with optimal

bias correction is

r~
aa{sR̂R0

aa

~1{
sR̂R0

aa

: ð18Þ

Confidence intervals. We use likelihood profiling to deter-

mine the confidence intervals for inferred values of R0. More

specifically, for a given dataset let L(R0,k) denote the likelihood

for particular values of the parameters R0 and k. Then define

L’(R0)~ maxk[(0??) L(R0,k). In addition, let L̂L denote the

likelihood for the ML estimates of R0 and k. Then the endpoints

of the confidence interval corresponding to a confidence level v are

obtained by finding the two values of R0 that solve,

ln
L̂L

L’(R0)
~

x2
1(v)

2
ð19Þ

where x2
1(v) denotes the inverse of the chi-square cumulative

distribution function for one degree of freedom [31].

Our approach does not put any explicit constraints on the value

of R0, but equation 12 will always produce a ML estimate

satisfying R̂R0v1, implying that subcritical transmission is likely

when all observed chains are self-limited. However, if R0 exceeds

one and the number of observations is small, all observed chains

may be self-limited due to stochastic extinction. Therefore, L’(R0)
is continuous across the critical value of R0~1 and the upper limit

of the R0 confidence interval can exceed one.

To determine the associated confidence interval for k inference,

we define L’(k)~ maxR0[(0??) L(R0,k). Then the confidence

interval endpoints are the two values of k that solve

ln
L̂L

L’(k)
~

x2
1(v)

2
: ð20Þ
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The two-dimensional confidence regions corresponding to a

confidence level of v are determined by finding the R0 and k pairs

that satisfy,

ln
L̂L

L(R0,k)
~

x2
2(v)

2
ð21Þ

where x2
2(v) is the inverse of the chi-square cumulative distribution

function for two degrees of freedom.

To test the accuracy of the ML confidence intervals, we use

simulated data to determine the coverage probabilities of the

univariate confidence intervals for R0 and k. The coverage

probability equals the proportion of simulated data sets for which

the ML confidence interval includes the true value of the relevant

transmission parameter. For example, the 90% coverage proba-

bility for R0 inference is determined by counting the fraction of

simulations for which

ln
L̂L

L’(R0)
v

x2
1(0:90)

2
: ð22Þ

Inference of R0 from different types of epidemiological
data

When combined with chain size data, additional data on

the generation of extinction do not change the ML value of

R0. Prior research has shown that the distribution of the number

of transmission generations before extinction for a set of stuttering

chains can be used to infer R0 [22]. Consistent with this prior

analysis, we find that R0 inference can be achieved using just the

generation-of-extinction distribution in a ML framework, but that

the chain size distribution produces a more precise R0 estimate for

a given number of chains in the data set (simulation-based results

not shown). Here we extend this result by showing that joint

knowledge of chain size and the number of generations before

extinction does not change the ML estimate of R0 from the value

obtained from the chain size distribution alone.

The joint likelihood of a chain having size j and lasting g

generations is

Lj,g~
X

c1,c2 . . . cj

for fixed g

P
j

i~1
sci

� �

where ci represents the number of offspring that individual i has,

sci
is the probability an individual has ci offspring, and the sum is

over all possible offspring combinations that form a transmission

chain of size j having g generations. For a negative binomial

offspring distribution,

Lj,g~
X

c1,c2 . . . cj

for fixed g

P
j

i~1

cizk{1

k{1

� � k

R0zk

� �k
R0

R0zk

� �ci
 !

~
k

R0zk

� �kj
R0

R0zk

� �j{1 X
c1,c2 . . . cj

for fixed g

P
j

i~1

cizk{1

k{1

� �� �

where we have utilized
Pj

i~1 ci~j{1 because every chain of size

j has one primary and (j{1) secondary infections. If we define nj,g

to be the observed number of chains of size j and having g

generations, then the overall likelihood of a dataset is,

L~ P
?

j~1
P
?

g~1
Lj,g

� �nj,g

� �
:

Setting
d(lnL)

dR0
~0,

0~
X?
j~1

X?
g~1

nj,g
: j{1

R0

{
kjzj{1

kzR0

� � !

~
X?
j~1

nj
: j{1

R0
{

kjzj{1

kzR0

� �
:

Since this now overlaps with the derivation of equation 12, we

find that the new ML value for R0 is identical to our initial

estimate, R̂R0. Thus when there is perfect case detection, knowledge

of the number of generations in a chain does not change the ML

value for R0. When case detection is imperfect it may be that

combined use of chain size and generation of extinction data could

yield more precise estimates than chain size data alone.

Compared to chain size data, contact tracing does not

change the ML value of R0. We now assume that we have

complete contact tracing data, meaning that for every infected

individual we know exactly how many individuals they subse-

quently infected. The likelihood is given by equation 13 and

solving
d(lnL)

dR0
~0 to determine the ML value yields,

0~
X?
i~0

i:mi

R0
{

k:mizi:mi

R0zk

� �

~
X?
i~0

k:i:mi{k:R0
:mi

R0
:(R0zk)

� �

~
k

R0
:(R0zk)

X?
i~0

i:mi{R0
:mið Þ:

This means the ML estimate of R0 based on contact tracing

data is:

R̂R0,contact~

P?
i~0 i:miP?
i~0 mi

~1{

P?
i~0 mi{

P?
i~0 i:miP?

i~0 mi

~1{
1

m
~R̂R0,MLE :

Thus, when estimating R0 for subcritical (i.e. R0v1) transmission

with perfect case detection, contact tracing data does not change

the ML value of R0 from that determined from the chain size

distribution.
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Monitoring changes in R0

To determine whether two data sets on chain size distribution

correspond to statistically distinct values of R0, we performed a

likelihood ratio test. First, we combined all data together and

calculated the likelihood, Lcombo(R0,k), for a single pair of R0

and k values. Then we computed a second likelihood,

Lseparate(R1
0,R2

0,k)~L1(R0,1,k):L2(R0,2,k) where L1 and L2 are

the likelihoods for each set of data and each of these likelihood

functions has its own R0 parameter. We kept k constant for both

sets of data in order to focus on whether there is a statistically

significant change in R0. Because Lcombo is nested within Lseparate

(equality occurring when R0,1~R0,2), we apply the likelihood ratio

test with a 95% confidence interval cutoff to determine whether a

second R0 parameter is justified [31].

For figure 2A, L1 was equal to the combinatorial likelihood

calculation for the 1980s contact tracing monkeypox data.

Meanwhile, L2 was calculated from simulation data in which k

was fixed at the ML value for the 1980s data. We conducted one

thousand simulations for each value of R0, and computed the

proportion of simulations for which a second R0 parameter was

supported by the likelihood ratio test. For figure 2B, a similar set of

calculations was performed, except that the ML values were

obtained by fixing k at either 1 or ? in the calculation of Lcombo

and Lseparate.

The results presented in table 2 concerning the probability that

a change in R0 is erroneously detected were determined by

simulating two sets of chain size data using the ML values for R0

and k from contact tracing data for human monkeypox the 1980s

(R0~0:30, k~0:33). Likelihood scores were calculated for the

stated values of k, and the likelihood ratio test was used to assess

whether R0 had changed significantly between the two data sets.

Because a 95% confidence level was used for this test, a statistical

difference is expected just 5% of the time. Higher frequencies of

falsely detecting a change in R0 correspond to artifacts of the

inaccurately narrow confidence intervals obtained when transmis-

sion heterogeneity is under-estimated.

Determining chain size cutoffs
The probability that a chain has a size less than m is the sum of

the individual chain size probabilities,
Pm{1

j~1 rj . The probability, i,

that N chains all have a size less than m is the product of the

individual probabilities for each chain to have a size less than m:

i~
Xm{1

j~1

rj

 !N

:

Figure 3 plots the first value of m for which i exceeds the indicated

probability threshold.

Supporting Information

Figure S1 Conceptualizing the combinatorics of stut-
tering transmission chains. A) Example of a stuttering

transmission chain. The unique offspring sequence for this

stuttering chain is ½3,2,0,1,0,1,0,0�. B) Representation of an

invalid transmission sequence. The black line shows the cumula-

tive reproduction number, ci, as defined in the text for

transmission sequence A~½1,1,0,0,1,2,2,0�. The blue line corre-

sponds to R0~1 for all cases and marks an extinction boundary.

Thus A is an invalid transmission chain because it crosses the blue

line after the third case. The green line graphically represents the

minimization of the number of extant infectors, di, and shows that

the corresponding valid transmission sequence should start with

the fifth individual. C) Representation of corresponding valid

transmission sequence. Analogous to panel B except that the fifth

cyclic permutation of A~½1,2,2,0,1,1,0,0� is plotted. Now the

green and blue lines overlap showing that the proper start point is

with case one and the stuttering chain goes extinct only after all

individual infections have been accounted for.

(TIF)

Text S1 The supporting text derives the relationship
between the offspring distribution and the size distri-
bution of transmission chains. The derivation holds for both

0vR0v1 and for R0§1.
(PDF)

Text S2 Matlab code for two key functions is provided.
One function shows how we simulate the transmission
and observation process models presented in this
manuscript. The other function shows how the proba-
bility density can be analytically calculated for a given
set of transmission parameters. This probability density can

then be used to calculate the likelihood function used in all of our

ML analyses.

(PDF)
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