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Abstract—Acoustic scene reconstruction is a process that aims
to infer characteristics of the environment from acoustic measure-
ments. We investigate the problem of locating planar reflectors in
rooms, such as walls and furniture, from signals obtained using
distributed microphones. Specifically, localization of multiple two-
dimensional (2-D) reflectors is achieved by estimation of the time of
arrival (TOA) of reflected signals by analysis of acoustic impulse
responses (AIRs). The estimated TOAs are converted into elliptical
constraints about the location of the line reflector, which is then lo-
calized by combiningmultiple constraints.Whenmultiple walls are
present in the acoustic scene, an ambiguity problem arises, which
we showcanbeaddressedusing theHough transform.Additionally,
the Hough transform significantly improves the robustness of the
estimation for noisymeasurements. The proposed approach is eval-
uated using simulated rooms under a variety of different controlled
conditions where the floor and ceiling are perfectly absorbing.
Results using AIRs measured in a real environment are also given.
Additionally, results showing the robustness to additive noise in the
TOA information are presented, with particular reference to the
improvement achieved through the use of the Hough transform.

Index Terms—Inference, room geometry, acoustic impulse re-

sponses.

I. INTRODUCTION

A COUSTIC scene reconstruction is a process that aims to

establish an understanding of the acoustic environment

in which space-time processing algorithms operate. Reflec-

tive boundaries and surfaces can be estimated from acoustic

measurements, allowing the geometry of the room to be recon-
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structed. Inferring room geometries can be advantageous for

applications such as acoustic source localization [4], [5] and

wavefield rendering [6]. In [7] the authors show that an accu-

rate modelling of the acoustic propagation enables localization

algorithms to improve their accuracy of range and elevation

discrimination. In order to model the acoustic propagation,

the authors infer the geometry of the environment through the

methodology described in [8]. In [6] the authors compensate for

the effect of reverberation in wavefield rendering by modelling

the room transfer function in the rendering process. Addition-

ally, it has been shown in [9] that the attenuation of interfering

signals can be increased when the direction of arrival of the

interfering signal and its dominant reflections are available.

One way of locating reflective boundaries employs an inverse

mapping of the acoustic multi-path propagation problem in a

2-D geometry representing the reflective surface location [10].

The interesting aspect of this work is that the estimation is ac-

complished starting from continuous signals. However, typical

for a system that uses cross-correlation as the primary source of

information, the localization fails at low signal-to-noise ratios.

A different approach is adopted by the authors in [11] where

a solution for the localization of 2-D reflectors is envisioned

by using a single room impulse response (RIR), and proving

the uniqueness of the solution. This methodology, however,

assumes that all the first-order and second-order reflections

generate unique impulsive features in the impulse response,

which is not always the case for environments different from

the shoe-box shaped room. Moreover, the algorithm must first

identify first and second-order reflections. Though it solves the

problem of inference of the room geometry in an elegant way,

this approach is not always a viable solution in real scenarios,

due to the strong assumptions. In [8] a modeling algorithm is

proposed that uses a constrained room model and -regular-

ized least-squares method to infer the room geometry. This

algorithm is evaluated with a compact microphone array that

also houses a speaker emitting a test signal. However, due

to the limitations on the position of the sound emitter this

approach only correctly classifies a limited number of reflectors

in real acoustic environments. Recently, in [12] the authors

have extended the methodology to 3D environments and to real

world signals.

A geometric approach to localize reflectors in a roomwas first

proposed in [1]. In this work, one microphone and one moving

sound source were used to obtain the time of arrivals (TOAs) of

the reflections assuming that the source and receiver were syn-

chronized. The TOA information was used to form a set of el-

liptical constraints on the possible locations of the reflector. The

1558-7916/$31.00 © 2012 IEEE
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common tangent of these constraints was shown to correspond

to the reflector location that can be found by minimizing a spe-

cific cost function in the least-squares sense. In [2] the authors

considered the case when measurements were unsynchronized.

In this case, the TOAs cannot be found directly, and an addi-

tional step was proposed that estimates TOAs from the TDOA

estimates. A technique for the estimation of multiple reflectors

from a single set of measurements was also proposed, which it-

eratively minimizes a global solution space. More recently, the

authors proposed a robust inference method [3] which utilizes

a closed-form solution to minimize the cost function. In addi-

tion, a parametrization based on the Hough transform was in-

troduced which could increase the robustness to errors in the

TOA estimation.

In this paper, we present a general geometric approach for

localizing reflectors that is practical in multipath environments

and robust to measurement errors. Three different scenarios are

considered: i) the source and receiver signals are synchronized

and the source signal is known, ii) the source and receiver

signals are unsynchronized and the source signal is known and

iii) the source and receiver signals are unsynchronized and the

source signal consists of an unknown impulse-like sound like

finger-snaps or hand-claps. When impulse-like signals are used

(scenario iii), the estimation of TOAs and TDOAs could be af-

fected by errors, due to the non-impulsive nature of the probing

signal. TOAs or TDOAs could be affected by errors even in

scenario i) and ii), due to non-ideal emission and acquisition

systems, thus degrading the accuracy of the localization. In

this work we reduce the impact of such errors using a template

matching filter technique, which partially compensates for

the non-impulsive nature of the probing signal. The iterative

localization method proposed in [2] works well on simulated

room impulse responses (RIRs). However, since it considers

only a single stationary source, it is often impossible to obtain

a complete set of TOAs, i.e., a set that will contain TOAs of all

reflectors, in real acoustic environments. An alternate approach,

proposed in this paper, considers a space parametrization based

on the Hough transform that is practical for real environments

in which higher-order reflections can arrive at the microphones

before the first-order reflections (e.g., corridor-style rooms) or

when first-order reflections coming from different walls are

hardly distinguishable in the impulse response (e.g., square

rooms). By considering acquisitions from multiple source

positions, the benefit of this method is studied in detail in terms

of improved localization accuracy for a single reflector and is

then extended to the case of multiple reflectors. Finally, exper-

imental results using simulated and measured data, obtained

using different microphone arrangements, are presented.

The main achievements of this article with respect to the state

of the art are:

� the use of the Hough transform (not adopted in [1], [2])

for a refined localization of the reflectors even in adverse

environments;

� the removal of the need of distinguishing among first- and

second-order reflections, which is a necessary condition

in [11];

� with respect to [13], [3], the use of template matching,

which allows to estimate TOAs of reflective paths in

a more accurate way, thus enabling the use of imper-

fect impulsive signals, such as hand clapping or finger

snapping.

The remainder of the paper is organized as follows: Section II

describes the theory to formulate the problem of reflector lo-

calization and provides an overview of the proposed method.

Section III discusses the measurement and estimation of TOAs

from AIRs. Section IV considers the localization of a single

reflector. We present an extension to the single reflector case

in Section V that aims to improve the robustness to noise.

Section V.E generalizes the reflector estimation to the case of

multiple reflectors. Section VI presents experimental results to

demonstrate the feasibility of the technique. Finally, Section VII

summarizes the paper and suggests directions for future work.

II. PROBLEM FORMULATION ANDMETHOD OVERVIEW

A. Notation and Problem Formulation

With reference to Fig. 1(a), a sound source located at

emits the signal . The signals are observed by

microphones at positions

(1)

The observed signals are given by the convolution of the source

with the corresponding acoustic room impulse responses

:

(2)

where is additive environmental noise. Under the hypoth-

esis of ideal reflections AIRs are given by

(3)

where is the total number of reflections of all orders, is an

attenuation term and is defined as the TOA associated with

the th microphone and the th reflection. Note that the TOA of

the direct-path is defined with respect to the null reflector, i.e.,

. When sampling AIRs and for subsequent discrete-time

processing, delays corresponding to fractions of the sampling

period can be taken into account using, for example, [14]. Let

represent sampled versions of the source,

channel and observation at microphone .

For the remainder of this paper, we will consider only TOAs

that are related to direct-paths and first-order reflections.

With reference to Fig. 1(b) we can obtain estimates of the TOAs

related to the direct path and first-order reflections by analyzing

. For this we note that the first peak in is related to

the time of propagation of the direct-path from to given

by . Any subsequent peak in is related to the com-

posite time of propagation of the sound due to reflection. By

defining as the reflection point on any reflector, we obtain

as the sum of the propagation times from

to , and then from to for any reflectors present in
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Fig. 1. Problem geometry and associated AIRs. (a) Geometry of the problem: A single reflector in an anechoic space. Three microphones pick up the direct-path
(solid line) along with the reflection (dashed line). (b) AIR of three microphone estimates. The solid line TOA DP refers to the time of flight of the direct-path, the
dashed line TOA R refers to the composite time of flight from source to reflector and then from reflector to microphone. TDOA DP refers to the time difference of
arrival between the TOAs of the direct-path between microphone 1 and the other two.

Fig. 2. System diagram. An acoustic impulse response is generated, containing peaks corresponding to sound from reflected boundaries. Peak picking from either
the true or estimated system yields TOAs if the measurements are synchronized, else TOAs are estimated with the aid of source localization. TOAs, combined
with an estimate of the source and knowledge of the geometry of the receiver array, are used to parameterize a set of ellipses. Geometric inference is performed
with the ellipses by finding lines of common tangency that correspond to the reflector locations.

our environment. Additionally we define as the TDOA of

the direct-path between the th and th microphone:

(4)

The geometric inference problem can be summarized as fol-

lows: locate the reflective boundaries of an acoustic environ-

ment based upon TOAs estimated from acoustic measurements.

B. Method Overview

The proposed approach is outlined in Fig. 2. A microphone

array of microphones, whose relative geometry is assumed

known, is placed in a reverberant environment. The AIRs ,

from a single source to the array of receivers

, are estimated using either supervised or unsupervised tech-

niques. Peaks within the AIR correspond to the direct-path from

source to receiver and the summed reflective paths from source

to reflector and reflector to receiver. The temporal location of

these peaks is found in discrete time as . In the case where

source and receiver are synchronized, these time instants corre-

spond to the TOAs. However, in many practical cases the syn-

chronization cannot be achieved; therefore the TDOAs, which

are preserved, are used to localize the source relative to the mi-

crophone array from which TOAs are estimated. If any one of

the TOAs, TDOAs or source location are unavailable then it can

always be estimated from the remaining two.

The TOAs and the location of the source relative to the mi-

crophone array are used to form a set of elliptical constraints on

the possible locations of the reflector, where the common tan-

gent of the ellipses corresponds to the location of the reflector.

III. MEASUREMENT AND ESTIMATION OF TOAS

In this Section we illustrate the steps that, starting from the

AIRs, lead to the estimation of TOAs. In particular, we consider

both the cases of synchronized and unsynchronized AIRs. In the

former case the TOAs are directly extracted from the impulse

response. In the latter situation (Section III.B), instead, TOAs

can be estimated once the source has been localized. In order to

make the peak detection algorithm robust against non-ideal ac-

quisition and emission systems, we propose a templatematching

procedure in Section III.A to improve the relevant temporal

characteristics of the received source signal.

A. Peak Detection From Acoustic Impulse Responses

Fractional delays result from path lengths that are not mul-

tiples of the distance propagated by sound in one sample pe-
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Fig. 3. Direct-path and three first-order reflections for (a) measured impulse
response, (b) modified impulse response according to (7). Red ‘ ’ mark the
estimated peak locations.

riod. Detection of impulsive events can be achieved to within

one sample by considering local centres of energy with algo-

rithms such as the sliding group delay function [15] and the find-

peaks function [16]. In this work we detect the most rele-

vant peaks in the AIRs. More specifically, the Hough transform-

based localization technique initially requires only the knowl-

edge of the propagation time of the direct path and the echo re-

lated to the closest reflector for the prescribed source location.

In a later stage, the remaining impulses are used.

AIRs measured in real acoustic environments present another

challenging problem as the source impulse-like emission

is convolved with the AIR . Assuming supervised identifi-

cation with which estimation error can be ignored, the measured

AIR is

(5)

An example impulse response for a measured system is seen in

Fig. 3(a), showing respectively the direct-path and three first-

order reflections for a single channel. The centres of each event

are marked by , each of which are surrounded by nearby rip-

ples caused by . The ripples cause ambiguity in deter-

mining the exact time corresponding to the peak and therefore

a matched filter is proposed to alleviate this problem.

The length of is usually sufficiently short that it has

decayed before the arrival of the first-order reflections [17], as

in the example. Therefore, can be observed from the first

few nonzero taps in . Let be the propagation time of

the direct-path signal from the source to microphone and

be the approximate length of the loudspeaker impulse response.

The impulsive source emission can be estimated by

, where

.
(6)

The filter is equalized through the sliding correlation or

matched filter [18],

(7)

that equalizes to a single peak as demonstrated in Fig. 3 for

a measured AIR. In (b) the mean group delay of has been

compensated. The detected peaks are denoted by where

and are the microphone and reflector index respectively. In

the case of synchronized measurements, .

B. Estimation of TOAs From Unsynchronized Airs

In order to estimate TOAs from unsynchronized AIRs, the

TDOAs of the direct-paths are used to localize the acoustic

source and consequently estimate the propagation time of the

direct sound from the source to a reference microphone. Sub-

sequently, the propagation times of all the other arrivals can be

inferred.

The reference microphone is placed at the origin of

the coordinate system . The distances from the origin

to the th microphone and the source are denoted by and ,

respectively, where

The difference in the distances of microphones and from the

source is the range difference, , and is proportional to the

TDOA of the direct-path between the th and th microphone,

. If the speed of sound is , then

(8)

and the propagation time of the direct path from to is

given by

(9)

Recall that the subscript 0 denotes the null reflector. In order

to estimate we employ the passive source localization al-

gorithm [4] that is based on a least squares (LS) estimator em-

ploying a spherical least squares error criterion defined in 3D

space. For our purposes this algorithm ismodified for a 2D space

so that the spherical LS error function is modified to a circular

LS error criterion. From [4] we establish the distance from

the th microphone to the source

(10)

The error function is then defined as the difference between the

measured and true values,

(11)

where

...
...

...
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and indicates that and are stacked side-by-side with

. The corresponding LS criterion

is then given by

(12)

The solution for is given by [4]

(13)

where defines the pseudo-inverse. We can now use the es-

timate of the distance from the th microphone to the source in

order to estimate the TOAs of the direct-path for each of these

microphones (note that ),

(14)

The TOAs of the reflective paths are straightforwardly obtained

since both and the TDOAs between the direct-paths and the

reflective paths are known from inspection of , even if the

source and microphone signals are not synchronized. In the next

section the localization of a single reflector based on knowledge

of the TOAs is formulated.

IV. LOCALIZATION OF A SINGLE REFLECTOR FROM TOAS

With reference to the system diagram in Fig. 2, our aim is

to use the TOAs and positions of multiple microphones and

a single source to obtain a geometrical interpretation of the

boundaries of the acoustic enclosure. We consider initially an

acoustic scene in which a single planar reflector is present. We

then introduce a cost function whose minimum in an error-free

scenario corresponds to the line parameters of the reflector. The

same cost function will be extended in Section V.E to the case

of a more complex acoustic scene in which multiple reflectors

are present.

A. Geometric Constraint

We make the fundamental assumption that source and re-

ceivers lie on the same plane and the lying plane of the reflector

is orthogonal to this plane. In this scenario, the geometry of the

acoustic scene is described by the plane in which sources and

receivers lie. In a two-dimensional geometry a line is the col-

lection of points such that

(15)

which after setting the line parameter can be

written as

(16)

With reference to the notation introduced in Section II and to

Fig. 4, we observe that is the sum of two terms: the propa-

gation time from the source to the unknown reflection point

on the reflector and the propagation time to the mi-

crophone position . The knowledge of and , there-

fore, bounds the reflection point to lie on an ellipse with

foci in and and whose major diameter is

being the sound speed. We assume, moreover, that the reflec-

tion undergoes Snell’s law, therefore the line perpendicular to

Fig. 4. The TOA of the reflective path is constituted by the time of propagation
from to and from to . Possible reflection points lie on an ellipse.

is also the bisector of the angle . According to the prop-

erties of ellipses, this means that is tangential to the ellipse. We

notice that the reflection point depends on the positions

and , therefore if we consider another microphone in the set

, the reflection point on the ellipse changes.

However, what remains unchanged for all the ellipses is that

they are all tangential to the reflector. The common tangent es-

timation takes inspiration from the observation: the reflector line

is found as the line that is tangential to all ellipses. In order

to accomplish this task, however, we need to parameterize the

above tangential constraint in such a way that the tangent lines

directly appear in the ellipse equation. This is where the projec-

tive geometry provides a convenient formulation.

B. Parametrization of the Ellipse

The aim of this section is to find the parameters of the ellipse

given the foci and and the major

axis . Using the parameters the conic can

be expressed as [19]

(17)

A parametrization that is convenient for our purposes is based

on the representation of points using homogeneous coor-

dinates. The homogeneous coordinates for the point

are being a scalar different from zero. In such

a representation the point in the Euclidean space is

mapped into a three-dimensional space and all points aligned

on the direction correspond to the same point in the

Euclidean space, thus defining an equivalence class between

homogeneous and Euclidean coordinates.

In homogeneous coordinates, the conic in (17) becomes

(18)

where and is the conic matrix, given by

(19)
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This defines an ellipse after constraining

(20)

The implicit equation of an ellipse with foci in and

and with major diameter is

(21)

By expanding (21) and comparing it term by term with a conic

with parameters we obtain

In the remainder of this section we consider a scenario in which

we only have a single reflector, therefore reduces to .

More meaningful for our purposes in the definition of the line

conic associated with the point conic defined in (18) and (19).

The line passes through the point iff

and is tangential to the point ellipse iff

(22)

where is the adjoint of the conic matrix .

C. Common Tangent Estimation Algorithm

As mentioned previously, if we acquire multiple impulse re-

sponses from to , the line is tangent

to all the ellipses at points

. Fig. 5 shows an example where . Com-

bining the constraints in (22), the reflector line is the simulta-

neous solution of [1]

(23)

Since we have three unknowns (the parameters ) we

need at least .

Fig. 5. The reflector line is the common tangent to the ellipses traced for
and .

From a geometrical standpoint, solving (23) corresponds to

finding the line , in the line parameter space, that lies on all the

manifolds representing constraints in (23).

The solution of a nonlinear system as in (23) is non-trivial

when the measures of are affected by measurement errors

and the positions and are known up to some uncertainty.

We shall combine the individual equations in (23) into the cost

function [1]

(24)

which is a multivariate fourth-order polynomial in . We

notice that the cost function admits the trivial solution .

In order to find the global minimum we resort to an analytical

minimization technique [3] by slicing the homogeneous coordi-

nates space with the two planes and .

On these two planes the cost function is not homogeneous

and the set of local minima can be found in an analytical way.

By merging the minima found on the two planes we obtain the

global solution.

If we consider the case in which we iteratively estimate the

line reflectors one at a time then we can denote the coefficients

of the adjoint conic associated to the th ellipse with the matrix

Using this notation the cost function can be expanded as

(25)

Slicing with the planes and means com-

puting and , respectively.
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Fig. 6. Example of cost functions and for a specific con-
figuration of microphones and sources.

We proceed by finding the zeros of the gradient of

and , so that we obtain the sets

(26)

(27)

Notice that the partial derivatives of the slices and

are polynomials of order 3, and therefore and

contain 9 solutions each. Some of them are in the complex do-

main and do not admit a solution. We denote with and

the subsets of purely real solutions of and , respectively.

We then define

(28)

which contains candidate solutions. The global min-

imum of is selected as

(29)

Notice that the trivial solution is inherently avoided by

cutting the line parameter space with the planes and

. Note also that and are no longer

homogeneous.

Finally, Fig. 6 shows an example of slices and

(right-hand side), for the configuration of mi-

crophones and sources on the left-hand side. The correct

line parameters for the configuration under analysis are

. We also notice that the min-

imum of has an asymmetric shape, and in particular

is sharper along the radius of the circumference centered in

. As a consequence, the distance of the reflector

will be identified better than its orientation. This fact depends

on the mutual configuration of the source and the microphones

and cannot be attributed to the proposed methodology.

V. LOCALIZATION USING THE HOUGH TRANSFORM

In a noise-free scenario, and neglecting the effects of machine

precision, the global minimum of (29) is also the true solution,

so that all ellipses are perfectly aligned and yield a single solu-

tion that is the common tangent to all ellipses considered. How-

ever, due to errors in the TOA information, the ellipses are prone

to mismatch and (29) is not guaranteed to correspond to the true

reflector. In this Section we present an ad-hoc method to ro-

bustly estimate the line parameters of a reflector. TOA infor-

mation, along with their geometrical representation as ellipses,

can be parameterized to points in the Hough parameter space.

Peaks in the parameter space correspond to reflectors. By con-

sideringmultiple TOA estimates, achieved bymoving the sound

source in the acoustic scene, the accuracy and robustness of the

reflector localization can be improved. The same approach is

also used in the following section to handle the case of multiple

reflectors present in the acoustic scene.

A. Geometrical Relation Between Line Estimates and Ellipses

There are different ways to convert TOA information to

points in the Hough space. Rather than establishing a direct

parametrization of the TOAs we adhere to the geometric

framework of the previous Section. In order to initialize the

localization algorithm based on the Hough transform, we need

an initial estimate of the reflector line using the minimization

in (29). This is accomplished by placing the source close to

the reflector of interest, so that the first echo after the direct

path in the impulse response comes from the reflector under

analysis. In this way, we obtain a set of ellipses coming

from the same reflector that are used for the initial estimate

. In the following stage we use the information coming from

the remaining source positions. Given microphones

and source positions, the aim is to define a set of candidate

points to be used for the refinement of the first estimate. These

points are defined as

(30)

where . The elements in

are either points of intersection, points of tan-

gency, or closest coordinate points of an ellipse and the initial

reflector line estimate . Consequently, for every ellipse and

reflector line the following hold:

� If goes through then we obtain two points of intersec-

tion.

� If touches at one point, or in other words if is tangent

to , then we obtain one point of tangency.

� If does not go through then we need to calculate the

closest point on the line with respect to the conic.

B. Analytical Framework

In homogenous coordinates, any line cutting through the

ellipse intersects the ellipse at the two points of intersection

and . Furthermore, there exist

two lines parallel to , i.e., with slope , that

touch the ellipse at the tangential points and

. Calculating these points is outlined in detail
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in [3]. Any line can be classified in three ways based upon its

intersection with an ellipse:

1) If cuts through the ellipse, then one of its parallel lines,

touching the ellipse at point , will be either to the left

or right, above or below . Substitution into (16) yields

. If and passes through the ellipse,

then by definition . Consequently if

then .

2) If is tangential to the ellipse, then is either equal

to zero, or not equal to zero. Therefore if , then

. A similar argument holds for the case when

.

3) If neither intersects or is tangential to the ellipse, then the

two parallel lines touching the ellipse at points and

are either both below, above, left or right of . Therefore if

then . If then .

Consequently, in order to determine the relationship between

and the ellipse, it is sufficient to compute

(31)

where is defined as

.

If , then goes through the ellipse. If , then

is tangential to the ellipse. Finally, if , then does not

intersect the ellipse.

C. Obtaining Candidate Points

New candidate points are appended to in the following

way. First (31) is used to classify the line into one of the three

classes. In the first case it is sufficient to calculate the two points

of intersection and add the resulting points to . In the second

case the single point of intersection is calculated to obtain one

point of tangency and the result stored in . In the final case

the two tangential points and are used since one of them

will be the closest point on the line to the ellipse and the other

the furthest. Since we are only interested in the closest point, it

is sufficient to compute the distance of points and and

the line, by projecting them both onto the line and selecting the

shortest distance from

(32)

and adding the corresponding coordinate point to .

D. Reflector Localization Using the Hough Transform

In this paragraph we process the set of candidate points

through the Hough transform in order to refine

the initial estimate of the reflector. TheHough transform can be

used for estimating the parameters of a shape from its boundary

points [20]. It considers the following normal parametrization

(33)

which specifies a straight line by the angle of its normal and

its algebraic distance from the origin. A point in the cartesian

space maps to a sinusoid in the Hough parameter space that cor-

responds to all the lines passing through it. Conversely, points

in the parameter space are transformed into lines in the Carte-

sian coordinate space. Given two points lying on a line with

parameters , in the Hough parameter space the sinusoids

corresponding to these two points intersect at . Therefore,

given the points in the coordinate space, the parameters of a

line corresponding to the best-fit of can be found. Let

and . For each point we calculate

(34)

The results are stored in an accumulator , initially set to zero,

which is incremented at every step such that:

(35)

The position of the largest maximum of the accumulator given

by

(36)

is then picked, which finally leads to the line parameters of the

best-fit:

(37)

By taking repeated measurements of TOAs, using a source that

is placed at different locations in the acoustic scene, it is possible

to append additional data points to for a single reflector. True

solutions will cluster around the same point in the Hough space,

while outliers will receive fewer votes in the accumulator space.

There are many robust evaluators available that dynamically re-

move contributions of backgrounds and analyze voting patterns

around peaks in the accumulator space [21]. However, when

considering a single reflector in the Hough space, it is often suf-

ficient in practice to estimate the single most voted bin to obtain

. By computing local centers of energy and discarding out-

liers in the Hough space, more accurate reflector results can be

obtained even when TOA measurements are affected by noise.

E. Extension to Multiple Reflectors

There are many additional challenges when considering mul-

tiple reflectors. One of the challenges is accurately obtaining

TOA estimates for all reflectors present in the acoustic envi-

ronment. Another challenge is matching the TOAs to the cor-

rect reflectors. The latter problem is known in the literature

as measurement disambiguation. One of the biggest challenges

when analyzing RIRs is distinguishing between direct-path and

echo-path peaks and between peaks related to different reflec-

tors (virtual sources). Furthermore, it is necessary to find the set

of corresponding TOAs for different sensor groups. Recently,

[22] presented an approach for disambiguation of TDOA es-

timates for multiple sources. This approach is based on graph

theory, making use of an efficient algorithm suitable for real-

time implementation. The authors observed that by exploiting

two TDOA constraints they could match peaks correctly to dif-

ferent sources. Although not mentioned in the paper, this also

holds for reflections, which can be seen as virtual sources.
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In contrast to [22], where disambiguation of TOA informa-

tion is performed directly after capturing the TDOA estimates,

we propose an alternative approaches in this article based on

the Hough transform. In a multiple source scenario, we assume

that for each position of the source, the first dominant peak after

the direct one is related for all the RIRs captured at the mi-

crophones to the same reflector (i.e., the dominant one for the

prescribed source position). Therefore, by combining measure-

ments related to the same reflector, we obtain the initial esti-

mate to be used for the initialization of the Hough transform.

By using the Hough transform, the initial estimate is refined to

provide the estimate . In particular, we consider the case in

which repeated acquisitions of TOA information is performed

using varying source positions. Closely following the method-

ology presented in Section V, given microphones and

source positions, we first populate . If enough measurements

are made at varying source positions, then data points in the

Hough space related to all reflectors in the acoustic environ-

ment should exist. Correctly identifying maxima in the accu-

mulator space and matching them to real reflectors is a chal-

lenging problem, if prior information about their number is un-

available. There are many clustering algorithms that iteratively

partition the space into clusters without a priori information

[23]. Addressing this issue is, however, beyond the scope of this

paper and for the sake of simplicity we only consider a rect-

angular room in the experimental verification using real-world

data. Consequently the four greatest bins in the Hough space are

identified. Using (37), the reflectors are found in the line param-

eter space yielding

(38)

An additional problem lies in the quantization of the Hough

space [23]. These effects can be reduced, but not completely

eliminated through dynamic quantization [24]. For our purposes

it has been found that the empirical parameters mm

and , with a range from 0 to 6 meters, provide good

results. Finally, we notice that finite-length reflectors can be lo-

calized with the proposed methodology, under the assumption

that, for prescribed source locations, first-order echoes coming

from these reflectors are observed in the impulse responses.

VI. EXPERIMENTAL RESULTS

The performance of the proposed inference algorithm is eval-

uated with three experiments:

1) Multiple source positions are employed to obtain simulated

AIRs and perform geometric inference.

2) The localization robustness is examined by adding tem-

poral error (noise) to the TOA estimates and comparing the

averaged individual results of the COTA method at mul-

tiple source positions with the results of the source posi-

tions combined using the Hough transform correction.

3) Geometric inference is performed using measurements

made in a real conference room.

A. Evaluation Criteria

Given reference source location and estimated source lo-

cation , the source localization error is given by the Euclidian

distance . Let and be the true and estimated

Fig. 7. Example inference result for a rectangular room measuring 3 4 m.
Reflectors and their corresponding ellipses are drawn in the same color.

reflector lines, respectively. From these we can evaluate the dis-

tance from to a point on each line and the orientation . The

distance can be evaluated by projecting onto the line such that

(39)

and the orientation from

(40)

The accuracy of the reflector localization is measured using:

� distance error ;

� angular error ;

B. Simulated Experiment

Simulated AIRs were obtained with the source-imagemethod

[25], [14], taking fractional delays into account, for random

source and receiver placement in a rectangular room of random

dimensions of width and height , with m

and m. The floors and ceilings were perfectly ab-

sorbing. An example simulation is depicted in Fig. 7, showing

the source, microphones, ellipses and estimated reflectors.

The performancewas assessed by averaging the results of 100

Monte Carlo runs. The mean and variance of and were

calculated considering all located reflectors and individual re-

flectors ranked in order of error. In some cases not all reflec-

tors are identified with the same degree of accuracy; ranking the

error in this way provides insight into the distribution of errors

as a function of the number of identified reflectors.

For each run the sound source was placed at four posi-

tions inside the room, close to one of the reflectors each time.

The microphone positions were picked from a uniform dis-

tribution inside the room, constraining the positions to be at a

distance of at least 0.5 m from each wall and with each mi-

crophone being kept at a minimum distance of 0.5 m from the

source positions. We exclude those cases in which the inference
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TABLE I
DISTANCE AND ANGULAR ERROR RESULTS FOR SIMULATED DATA

algorithm fails due either to the inseparability of neighboring

peaks in the AIR, if a source position does not uniquely iden-

tify one of the four reflectors or if the matrices involved in the

source localization, particularly in (13), are rank deficient. In the

latter case when the microphones are arranged as a linear array

it might not be possible to estimate the source location, because

of the front-back ambiguity [26]. Additionally the simulation

was limited to include only first-order reflections since for each

reflector only a single source position is used. When TOAs from

higher-order reflections arrive before the first-order reflections

of the dominant reflector then their corresponding points in the

Hough space do not cluster around the true peaks and are there-

fore considered as outliers. The sampling frequency is 44.1 kHz

using microphones. We consider unsynchronized AIRs.

Source localization was applied as described in Section III.B

to estimate TOAs from the TDOAs. Inference was performed

using the approach outlined in Section V.E.

The results of the source localization are cm

and cm. The line parameters of the four reflectors

were obtained from (38). The distance and angular error for the

reflector inference are given in Table I. Averaged across all walls

our approach achieves a and of around one cm and

less than half degree respectively.

C. Robustness Analysis

In order to study the robustness of our method with respect to

noise, additional white noise was added to the TOA estimates

of a single reflector:

(41)

where is zero-mean gaussian noise with standard deviation

variable between 0 and 5 samples.

Two arrangements of source positions were considered: a

linear and circular arrangement. In the first case the source was

placed 0.5 meters behind the centre of the microphone array

(with respect to the wall) and moved at five equidistant inter-

vals between cm along the length of the room. In the

second case the source was moved on a half circle of diameter

1 m from the centre of the array at five equiangle positions be-

tween .

The performance was assessed by averaging the results of 50

Monte Carlo runs. In each run five source positions were used.

For each source position the line parameters of the reflector were

calculated using the initial estimate (29) and the Hough data

points. At the end of each run the average error of the COTA

method was computed along with the best fit, obtained from the

analysis of the Hough parameter space, of the five repetitions

combined.

Fig. 8. Average distance, shown as the left -axis, and angular reflector local-
ization error, shown as the right -axis, for a single reflector using five linearly
(a) and circularly (b) arranged source positions, as a function of additive noise
to the TOA estimates for the estimate without the Hough transform (without
correction) and with the Hough transform (with correction). (a) Linear source
arrangement. (b) Circular source arrangement.

The results for both arrangements are shown in Figs. 8(a)–(b)

respectively. In both cases it is observed that the robustness to

errors in the TOAs is improved by clustering multiple measure-

ments. When the source positions are close to each other, i.e.,

yielding a low spatial variation, such as in Fig. 8(a), we see that

the angular error (and also to some extent the distance error) in-

creases rapidly with added errors to the TOA information. Con-

sequently, enough spatial variation should be introduced in the

positioning of the source if high accuracy is desired, especially

in adverse conditions, i.e., when TOA estimates are noisy.

D. Real Experiment

The simulated experiments represent idealized environments

in which the transfer function of the measurement apparatus is

negligible and the floor and ceiling are perfectly absorbing. In

the case of real-world measurements, geometric inference is a

much more challenging problem. An experiment was devised in
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TABLE II
REFLECTOR LOCALIZATION RESULTS WITH REAL-WORLD DATA

a small conference a roommeasuring 3.31 3.58 3.00m,with

concretewalls and twoflush-mountedwooden doors in the south

and east walls. A microphone array consisting of four micro-

phones spaced by 0.5 m in a ‘+’ configuration and a fifth placed

in the centre was positioned at (1.75,1.5) m from the south-west

corner.AGenelec 8030A loudspeakerwas positioned around the

array in 16 equiangle positions at a range of 1 m from the array

centre, ensuring that the loudspeaker was always faced towards

the array. The loudspeaker positions used in this experiment are

similar to those used in a 2-D wavefield synthesis array. The mi-

crophone signals were sampled at 96 kHz. At each position, the

acoustic impulse response between the source and microphone

array was estimated using theMLSmethod [27], followed by lo-

calization of the source and a single dominant reflector using the

techniques described in Sections IV and V. No effort was made

to synchronize the recorded signals with the input stimulus. The

line estimates were combined using the Hough transform and

the parameters corresponding to the top four bins were used to

estimate the bounding line reflectors.

We proceeded to evaluate the improvement in localization

accuracy when an increasing number of source positions is em-

ployed. First, the sound source was arranged in a ‘+’ configura-

tion, i.e., displaced on the north, west, south and east directions

with respect to the array. As a next step, four further source po-

sitions are considered at a rotation of 45 , i.e., including mea-

surements coming from the north-west, south-west, south-east,

north-east. Finally, two further rotations of and

yield results for 12 and 16 source positions. Table II shows the

localization accuracy for each of the walls along with the av-

erage accuracy for all the four configurations described above.

Notice that the accuracy improves as the number of sources in-

creases. Even for the case of 4 source positions an error of only

a few centimeters is observed, which is suitable for many appli-

cation scenarios. Using 16 source positions, effectively mim-

icking a wavefield synthesis array, the localization accuracy ap-

proaches the limits of the hand-measured ground truths. Local-

ization results for the 16 sources case are shown in Fig. 9. The

error between the intended and estimated positions is due, in

part, to the manual positioning of the loudspeaker. This is not

problematic as the systemmakes no prior assumptions about the

source location. The Hough data points, marked as , lie very

close to the room boundaries and are well-fitted by the estimated

line reflectors. Some erroneous data points are due to the source

positions near multiples of 45 in which no single reflector is

dominant; they are however treated as outliers by the algorithm

and do not affect the estimated reflectors. Reflections from the

walls were always dominant over those arising from the floor

and ceiling as they are less reflective than the walls.

Fig. 9. Room inference results using a microphone array, placed centrally in a
small conference room, capturing a MLS sequence from 16 source positions in
turn.

VII. CONCLUSION

Inference of the geometry of an acoustic environment in 2-D

from AIR estimates has been considered in this paper. Peaks

in the AIRs correspond to the TDOAs related to the dominant

reflections in a room, from which the location of the source rel-

ative to the receivers can be estimated. The TOA corresponding

to each peak can then be used in conjunction with the relative

source and receiver locations to parameterize an ellipse that de-

scribes the locus of possible reflector locations. The common

tangent between multiple ellipses corresponds to the location of

a particular reflector. An algorithm has been proposed that auto-

matically locates multiple line reflectors in a 2-D plane from es-

timates of the AIR. Monte Carlo simulations reveal that the pro-

posed method works reliably even when the source location is

unknown and the AIRs are unsynchronized. Further simulations

show that, by using the Hough transform and taking repeated

measurements at different source positions, the robustness to

noise in the TOA information can be improved. Real-world

measurements show that the proposed technique provides re-

liable results in a practical setting.
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