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ABSTRACT
Motivation: To resolve the high-dimensionality of the genetic network
inference problem in the S-system model, a problem decomposition
strategy has been proposed. While this strategy certainly shows prom-
ise, it cannot provide a model readily applicable to the computational
simulation of the genetic network when the given time-series data
contain measurement noise. This is a significant limitation of the prob-
lem decomposition, given that our analysis and understanding of the
genetic network depend on the computational simulation.
Results: We propose a new method for inferring S-system models
of large-scale genetic networks. The proposed method is based on
the problem decomposition strategy and a cooperative coevolutionary
algorithm. As the subproblems divided by the problem decomposition
strategy are solved simultaneously using the cooperative coevolution-
ary algorithm, the proposed method can be used to infer any S-system
model ready for computational simulation. To verify the effectiveness
of the proposed method, we apply it to two artificial genetic network
inference problems. Finally, the proposed method is used to analyze
the actual DNA microarray data.
Contact: skimura@gsc.riken.jp
Supplementary information: See Bioinformatics Online.

INTRODUCTION
Advancement in technologies such as DNA microarrays allows us to
measure gene expression patterns on a genomic scale, but to exploit
these technologies we must find ways to extract useful information
from the massive amount of data (Kwon et al., 2003). Among the
possible solutions for extracting information, many researchers have
taken an interest in the inference of genetic networks. The inference
of genetic networks is a problem in which mutual interactions among
genes are estimated using time-series data of gene expression pat-
terns. The inferred model of the genetic network is conceived as an

∗To whom correspondence should be addressed.

ideal tool to help biologists generate hypotheses and facilitate the
design of their experiments. On another level, it may also shed light
on the biological functions of genes.

The numerous models proposed to describe biochemical networks
have ranged from simple Boolean networks to detailed sets of dif-
ferential equations of an arbitrary form (Akutsu et al., 2000; Chen
et al., 1999; D’haeseleer et al., 2000; Maki et al., 2001; Sakamoto and
Iba, 2001; Vance et al., 2002; Weaver et al., 1999). One of the well-
studied models among them, the S-system, possesses a rich structure
capable of capturing various dynamics, and can be analyzed by sev-
eral available methods (Savageau, 1976; Voit and Radivoyevitch,
2000). These advantages have led to the successful application of
the S-system model to the analysis of biochemical networks (e.g.
Shiraishi and Savageau, 1992; Voit and Radivoyevitch, 2000). The
model is a set of non-linear differential equations of the form

dXi

dt
= αi

N∏
j=1

X
gi,j

j − βi

N∏
j=1

X
hi,j

j (i = 1, . . . , N), (1)

where Xi is the state variable and N is the number of components in
the network. In a genetic network, Xi is the expression level of the
i-th gene and N is the number of genes in the network. αi and βi are
multiplicative parameters called rate constants, and gi,j and hi,j are
exponential parameters called kinetic orders.

The genetic network inference problem based on the S-system
model is defined as an estimation problem of the S-system para-
meters. Several algorithms for the inference of S-system models of
genetic networks have been proposed (Kikuchi et al., 2003; Morishita
et al., 2003; Tominaga et al., 2000; Ueda et al., 2002). These
algorithms estimate the S-system parameters (αi , βi , gi,j and hi,j )
using observed time-series data of gene expression patterns. Because
the number of S-system parameters is proportional to the square of
the number of network components, the algorithms must simultan-
eously estimate a large number of S-system parameters if they are
to be used to infer large-scale network systems containing many
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network components. This is why inference algorithms based on the
S-system model have only been applied to small-scale networks of
less than five genes.

To resolve the high-dimensionality of the genetic network infer-
ence problem in the S-system model, a problem decomposition
strategy, that divides the original problem into several subproblems,
has been proposed (Maki et al., 2002; Kimura et al., 2003). This
approach enables us to infer S-system models of large-scale genetic
networks. However, when the given time-series data contain meas-
urement noise, the inferred model cannot be used to computationally
simulate a genetic network. Given that we depend on computational
simulation for our analysis and understanding of the genetic net-
work, this is viewed as an important disadvantage of the problem
decomposition approach. To overcome the high-dimensionality of
the genetic network inference problem, Voit and Almeida (2004)
have proposed another approach that transforms the problem into a
set of algebraic equations. However, the same disadvantage as the
problem decomposition strategy still remains in their approach.

In this paper, we propose a new method to overcome this disad-
vantage. The proposed method solves the decomposed subproblems
simultaneously using a cooperative coevolutionary algorithm (Potter
and De Jong, 2000). All of the subproblems in this coevolution-
ary algorithm interact with each other through time-courses of gene
expression levels. With this interaction, the proposed method can be
used to infer any S-system model ready for computational simula-
tion. To verify the effectiveness of this method, we apply it to two
artificial genetic network inference problems containing 5 and 30
genes, respectively. Finally, the proposed method is used to analyze
the actual DNA microarray data.

GENETIC NETWORK INFERENCE PROBLEM

Canonical problem definition
In general, the genetic network inference problem is formulated as
a function optimization problem to minimize the following sum of
the squared relative error (e.g. see Tominaga et al., 2000).

f =
N∑

i=1

T∑
t=1

(
Xi,cal,t − Xi,exp,t

Xi,exp,t

)2

, (2)

where Xi,exp,t is an experimentally observed gene expression level
at time t of the i-th gene, Xi,cal,t is a numerically computed gene
expression level acquired by solving a system of differential equa-
tions (1), N is the number of components in the network and T is
the number of sampling points of observed data.

Since 2N(N+1) S-system parameters must be determined in order
to solve the set of differential equations (1), this function optim-
ization problem is 2N(N + 1)-dimensional. This problem is too
high-dimensional for non-linear function optimizers in cases where
we try to infer S-system models of large-scale genetic networks
containing many network components (Maki et al., 2001).

Decomposition of the problem
Because of the high-dimensionality, function optimizers have dif-
ficulty inferring S-system models of large-scale genetic networks.
To resolve the high-dimensionality, Maki et al. (2002) proposed the
strategy of dividing the genetic network inference problem into sev-
eral subproblems. In this strategy, each subproblem corresponds to

each gene. The objective function of the subproblem corresponding
to the i-th gene is

fi =
T∑

t=1

(
Xi,cal,t − Xi,exp,t

Xi,exp,t

)2

, (3)

where Xi,cal,t is a numerically computed gene expression level at
time t of the i-th gene, as described in the previous subsection. In
contrast to the previous subsection, however, Xi,cal,t is obtained by
solving the following differential equation:

dXi

dt
= αi

N∏
j=1

Y
gi,j

j − βi

N∏
j=1

Y
hi,j

j , (4)

where

Yj =
{

Xj , if j = i,

X̂j , otherwise.
(5)

X̂j is an estimated time-course of the j -th gene expression level
acquired not by solving a differential equation, but by making a
direct estimation from the observed time-series data. We can obtain
X̂j s using an interpolation technique such as a spline interpolation
(Press et al., 1995) or a local linear regression (Cleveland, 1979).

Equation (4) is solvable when 2(N + 1) S-system paramet-
ers (i.e. αi , βi , gi,1, . . . , gi,N , hi,1, . . ., hi,N ) are given. Thus, the
problem decomposition strategy divides a 2N(N + 1)-dimensional
network inference problem into N subproblems that are 2(N + 1)-
dimensional.

Use of a priori knowledge
The genetic network inference problem based on the S-system model
may have multiple optima because the degree-of-freedom of the
model is high and the observed time-series data are usually polluted
by the measurement error. To increase the probability of infer-
ring a correct S-system model, we introduced a priori knowledge
of the genetic network into the objective function (Kimura et al.,
2003).

Genetic networks are known to be sparsely connected (Thieffry
et al., 1998). When an interaction between two genes is clearly
absent, the S-system parameter values corresponding to the interac-
tion (i.e. kinetic orders; gi,j and hi,j ) are zero. Kikuchi et al. (2003)
incorporated this knowledge into the objective function using a pen-
alty term named the pruning term. This turns out to be an imperfect
solution, however, since the pruning term pushes all of the kinetic
orders down to zero, a condition that may make prevent the model
from finding the existing interactions. To avoid this, we incorpor-
ated the knowledge into the objective function (3) by using another
penalty term, as shown below (Kimura et al., 2003).

Fi =
T∑

t=1

(
Xi,cal,t − Xi,exp,t

Xi,exp,t

)2

+ c

N−I∑
j=1

(|Gi,j | + |Hi,j |), (6)

where Gi,j and Hi,j are given by rearranging gi,j and hi,j , respect-
ively, in descending order of their absolute values (i.e. |Gi,1| ≤
|Gi,2| ≤ · · · ≤ |Gi,N | and |Hi,1| ≤ |Hi,2| ≤ · · · ≤ |Hi,N |). The
variable c is a penalty coefficient and I is a maximum indegree. The
maximum indegree determines the maximum number of genes that
directly affect the i-th gene.
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The penalty term is the second term on the right-hand side of
Equation (6). This term forces most of the kinetic orders down to
zero. In other words, when the penalty term is applied, most of the
genes are disconnected from each other. However, when the number
of genes that directly affect the i-th gene is smaller than the maximum
indegree I , the term does not penalize. Thus, the optimum solutions
to the objective functions (3) and (6) are identical when the number
of interactions that affect the focused (i-th) gene is lower than the
maximum indegree. In this paper, we use Equation (6) as an objective
function that should be minimized.

PROPOSED METHOD

Concept
The problem decomposition strategy proposed by Maki et al. (2002)
enables us to infer large-scale genetic networks. To solve the sub-
problems decomposed by this strategy, as mentioned above, the
estimated time-courses of the gene expression levels, X̂j s, must be
given. In the problem decomposition strategy, X̂j s are estimated dir-
ectly from the observed time-series data using some interpolation
method, and are not updated through the search. If X̂j s are correctly
estimated, optimum solutions obtained from the problem decom-
position approach and the canonical (non-decomposed) approach
completely coincide with each other. However, when the given time-
series data contain measurement noise, it is often difficult for us to
estimate X̂j s correctly. When incorrect X̂j s are used, the optimum
solutions of the decomposed subproblems do not always coincide
with that of the non-decomposed problem. This means that the para-
meters obtained by solving the subproblems do not always provide us
with a model [i.e. a set of differential equations (1)] that fits into the
observed data. As such, in the problem decomposition approach, the
inferred model is not yet suitable for the computational simulation
of genetic networks.

In the subproblem corresponding to the i-th gene, the time-course
of the i-th gene expression level is calculated by solving the differen-
tial equation (4). When optimizing the i-th subproblem, the function
optimizer searches for the S-system parameters which make the cal-
culated expression time-course of the i-th gene fits into the observed
data. Therefore, the calculated time-courses obtained by solving the
subproblems are the most suitable for X̂j s. If we can always use
the calculated time-courses of the gene expression levels as X̂j s,
optimizing the subproblems should give the model that fits into the
observed data.

In order to use the time-courses of the gene expression levels
obtained by solving the subproblems as X̂j s, we can use the cooper-
ative coevolutionary approach (Liu et al., 2001; Potter and De Jong,
2000), an extension of the evolutionary algorithm (Holland, 1975). It
consists of several subpopulations, each of which contains competing
individuals (candidate solutions) for each subproblem. The subpop-
ulations are genetically isolated, i.e. individuals mate only with other
members of their subpopulation. These subpopulations interact with
each other only when the fitness values (objective values) are cal-
culated. In this paper, the subpopulations interact with each other
only through the gene expression time-courses, i.e. when the pro-
posed method solves the i-th subproblem, the calculated expression
time-courses of the other genes, which are obtained from the best
individuals of the other subproblems at the previous generation, are
used as X̂j s (Fig. 1).

Subpopulation 4

Subproblem 4

Subpopulation N

Subproblem N

Subpopulation 1

Subproblem 1

Subpopulation 3

Subproblem 3

Subpopulation 2

Subproblem 2

Estimated time-courses
of Gene Expression Levels

Fig. 1. The cooperative evolutionary model in this paper.

Algorithm
On the basis of the concept described above, we propose a new
cooperative coevolutionary algorithm for inferring genetic networks.
The following is an algorithm of the proposed method.

(1) Initialize. Generate N subpopulations, where N is the number
of components in the genetic network. As an initial guess,
estimate the gene expression time-courses from the observed
time-series data. Set Generation = 0.

(2) Execution of function optimization. Execute one cycle of a
function optimization algorithm on each subpopulation. In
this paper, we use GLSDC (Kimura and Konagaya, 2003) as
the function optimizer.

(3) Update of estimated gene expression time-courses. Update
all of the estimated gene expression time-courses using the
best individuals of the subpopulations. The updated gene
expression time-courses are used as X̂j s in the next generation.

(4) Stop if halting criteria are satisfied. Otherwise, Generation ←
Generation +1 and go to Step 2.

Each of these steps is described below in greater detail.

Initialize N subpopulations, each of which corresponds to one sub-
problem, are generated. Each subpopulation contains np individuals
which are randomly created. At the same time, initial estimations
of time-courses of gene expression levels, X̂j s, are made directly
from the observed time-series data. In this paper, the local linear
regression (Cleveland, 1979) is used to estimate the time-courses.

Execution of function optimization Any type of function optim-
izer can be applied to the decomposed subproblem. In this study,
we decided to adopt GLSDC, an evolutionary algorithm success-
fully applied to the genetic network inference problem as a function
optimizer by Kimura et al. (2003, 2004).

In this step, one cycle (generation) of GLSDC is performed on
each subpopulation. When the algorithm calculates the fitness value
of each individual in each subpopulation, the differential equation (4)
is solved using the estimated time-courses of the gene expression
levels, X̂j s . An initial gene expression level (an initial state value
for the differential equation) is required together with the S-system
parameters at this time. In this study, the initial gene expression level
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Table 1. S-system parameters of the small-scale target model

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

1 5.0 0.0 0.0 1.0 0.0 −1.0 10.0 2.0 0.0 0.0 0.0 0.0
2 10.0 2.0 0.0 0.0 0.0 0.0 10.0 0.0 2.0 0.0 0.0 0.0
3 10.0 0.0 −1.0 0.0 0.0 0.0 10.0 0.0 −1.0 2.0 0.0 0.0
4 8.0 0.0 0.0 2.0 0.0 −1.0 10.0 0.0 0.0 0.0 2.0 0.0
5 10.0 0.0 0.0 0.0 2.0 0.0 10.0 0.0 0.0 0.0 0.0 2.0

of the i-th gene was obtained from its estimated gene expression
time-course, i.e. the value of X̂i(0) was used for Xi,cal,0.

Update of estimated gene expression time-courses Next, we cal-
culate the time-courses of the gene expression levels obtained from
the best individuals of the subpopulations, each of which is given as
a solution of the differential equation (4). The old gene expression
time-courses are then updated to these calculated time-courses. The
updated gene expression time-courses are used as X̂j s in the next
generation.

When we calculate the time-courses of the gene expression levels,
the initial levels of the gene expression are required. Since the noise
in the actual time-series data corrupts the values of the initial gene
expression levels, we should estimate these values together with the
S-system parameters. However, the simultaneous estimation of the
initial gene expression levels and S-system parameters increases the
dimensionality of the function optimization problem, creating a con-
dition inconvenient for function optimizers. To avoid this problem,
we use an alternate method for estimation (Kimura et al., 2004).

In this step, the initial levels of the gene expression are adjus-
ted to fit the new calculated gene expression time-courses into the
observed time-series data, before the gene expression time-courses
are updated. The adjustment of the initial gene expression level of
the i-th gene is formulated as a one-dimensional function minimiza-
tion problem. This is because the initial gene expression level of the
i-th gene is a unique variable and all of the S-system parameters are
fixed to the values of the best individual. The objective function of
this adjustment problem is

F
adj
i =

T∑
t=1

γ t−1
(

Xi,cal,t − Xi,exp,t

Xi,exp,t

)2

, (7)

where Xi,cal,t is acquired by solving the differential equation (4) and
γ (0 ≤ γ ≤ 1) is a discount parameter. Since the fixed model para-
meters obtained from the best individual are not always optimal, the
calculated gene expression time-course may differ greatly from the
actual time-course. When the estimated time-course is incorrect, the
algorithm should not fit the time-course, especially the latter half of
it, into the observed data. Therefore, in this study, we introduce a
discount parameter γ .

A golden section search (Press et al., 1995) is used to solve the
one-dimensional function minimization problem described above.
When multiple sets of time-series data are given as the observed
data, the one-dimensional search is applied to all of the sets. After
the adjustment, the new calculated gene expression time-courses are
substituted for the old ones, and they are used as X̂j s in the next
generation.

NUMERICAL EXPERIMENTS
To show the effectiveness of the proposed method, we applied it to
two artificial genetic network inference problems. Then, it was used
to analyze the actual DNA microarray data.

Experiment 1: noise-free environment
In this experiment, we confirm that the proposed method has an
ability to infer a correct S-system model of the genetic network when
a sufficient amount of noise-free data is given.

Experimental setup As a target genetic network, we used a small-
scale S-system model with the parameters listed in Table 1 (Kikuchi
et al., 2003). This model consists of five network components
(N = 5).

If an insufficient amount of time-series data is given as observed
gene expression patterns, the high degree-of-freedom of S-system
models ensures that many candidate solutions will be found. In this
experiment, however, we used a sufficient amount of time-series data
to enhance our chances of finding the correct solution. Specifically,
we used 15 sets of noise-free time-series data, each covering all five
genes. The sets of time-series data were obtained by solving the set
of differential equations (1) on the target model. The initial values of
these sets were generated randomly (listed in Table 2). In a practical
application, these sets of time-series data could be obtained by actual
biological experiments under different experimental conditions. A
total of 11 sampling points for the time-series data were assigned on
each gene in each set. Thus, the observed time-series data for each
gene consisted of 15×11 = 165 sampling points. In this experiment,
2 × 5 × (5 + 1) = 60 S-system parameters and 15 × 5 = 75 levels
of initial gene expression should be estimated.

As the proposed method is based on the stochastic search
algorithm, we should perform multiple runs by changing the seed for
pseudo random number in order to confirm its performance. There-
fore, five runs were carried out. In each run, the proposed method
produces one candidate solution. Each run was continued until the
number of generations reached 75. The search regions of the para-
meters were [0.0, 20.0] for αi and βi , and [−3.0, 3.0] for gi,j and hi,j .
As the observed initial gene expression levels should be close to true
ones even when they are polluted by measurement error, the search
regions of the initial gene expression levels were set to ±30% of the
observed ones (i.e. [0.7Xi,exp,0, 1.3Xi,exp,0]). The maximum indegree
I was 5, the penalty coefficient c was 1.0, and the discount parameter
γ was 0.75. In this paper, we used the following GLSDC paramet-
ers; the population size np is 3n, where n is the dimension of the
search space of each subproblem; the number of children generated
by the crossover per selection nc is 10; and the number of applied
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Table 2. Fifteen sets of the initial gene expression levels used in the experiment with the small-scale target model

Set X1 X2 X3 X4 X5

1 1.655967E+00 1.868416E+00 1.032173E−01 2.730268E−01 1.562687E+00
2 7.862766E−01 5.474855E−01 9.287958E−01 3.894443E−01 9.344040E−01
3 3.468547E−01 1.994981E+00 1.532913E+00 1.761393E+00 1.264981E+00
4 8.020131E−01 8.949262E−01 3.135082E−01 7.610533E−02 1.269706E+00
5 9.590725E−01 2.805737E−01 5.507401E−01 1.694232E+00 5.744767E−01
6 3.992936E−01 1.849408E+00 2.912736E−01 1.144217E+00 9.988814E−01
7 1.055713E−02 5.114093E−02 8.495855E−01 1.740444E+00 1.969969E−01
8 1.489803E+00 9.168820E−01 1.707836E+00 1.827741E+00 2.824051E−01
9 1.842769E−01 1.589055E+00 6.668454E−01 4.727903E−01 1.265678E+00

10 1.285646E+00 8.995862E−01 1.994967E−01 8.811659E−01 1.723054E+00
11 1.336863E−01 4.233753E−01 4.168260E−01 4.823942E−01 5.539923E−01
12 1.652500E+00 1.744966E+00 3.904404E−01 1.584671E+00 4.339247E−01
13 1.562800E+00 1.164151E+00 1.391469E+00 6.808265E−01 1.090292E+00
14 3.271505E−01 1.147837E+00 1.576167E−01 8.645541E−01 2.591408E−01
15 5.522177E−01 4.220327E−01 1.084436E+00 1.994388E+00 1.050098E+00

Table 3. A sample of estimated S-system parameters in the experiment with the small-scale target model

i αi gi,1 gi,2 gi,3 gi,4 gi,5 βi hi,1 hi,2 hi,3 hi,4 hi,5

1 4.917 −0.009 −0.003 1.019 −0.017 −1.014 9.922 2.021 −0.009 0.002 −0.009 −0.009
2 10.030 1.995 0.002 −0.002 0.006 −0.001 10.026 0.002 1.995 −0.002 0.002 0.000
3 9.851 −0.005 −0.991 −0.004 −0.003 0.002 9.835 −0.004 −0.993 2.036 −0.010 0.002
4 8.020 −0.007 0.006 2.000 −0.002 −0.998 10.054 0.001 0.003 0.008 1.988 0.007
5 9.875 −0.002 0.003 0.018 2.015 −0.020 9.892 0.004 0.002 0.008 −0.010 2.017

Table 4. A sample of estimated initial gene expression levels in the experiment with the small-scale target model

Set X1 X2 X3 X4 X5

1 1.656888E+00 1.868827E+00 1.031426E−01 2.727441E−01 1.563031E+00
2 7.863679E−01 5.474571E−01 9.291561E−01 3.898476E−01 9.349235E−01
3 3.468950E−01 1.995085E+00 1.532417E+00 1.760597E+00 1.264096E+00
4 8.021380E−01 8.953308E−01 3.134594E−01 7.608557E−02 1.270594E+00
5 9.604875E−01 2.802652E−01 5.510681E−01 1.693792E+00 5.739783E−01
6 3.992472E−01 1.850007E+00 2.912282E−01 1.143535E+00 9.994764E−01
7 1.055016E−02 5.123888E−02 8.495751E−01 1.740938E+00 1.969536E−01
8 1.489976E+00 9.178903E−01 1.709318E+00 1.825659E+00 2.825914E−01
9 1.841744E−01 1.588337E+00 6.678721E−01 4.723989E−01 1.265056E+00

10 1.284448E+00 8.998418E−01 1.996619E−01 8.810286E−01 1.723033E+00
11 1.336120E−01 4.231231E−01 4.167611E−01 4.827125E−01 5.529668E−01
12 1.651859E+00 1.743927E+00 3.905919E−01 1.582865E+00 4.336105E−01
13 1.563669E+00 1.163820E+00 1.392009E+00 6.809762E−01 1.090532E+00
14 3.271675E−01 1.148089E+00 1.576677E−01 8.633683E−01 2.593822E−01
15 5.524893E−01 4.221964E−01 1.083833E+00 1.992993E+00 1.049187E+00

the converging operations N0 is np . The experiments were executed
in parallel on a PC cluster (Pentium III 933 MHz × 8 CPUs).

In order to reduce the computational cost, we applied a struc-
ture skeletalizing technique (Tominaga et al., 2000). This technique
assigns a value of zero to the kinetic orders (gi,j and hi,j ), whose
absolute values are less than the given threshold δs . Structure

skeletalizing reduces the computational cost because the exponential
calculation of Equation (4) can be omitted when the kinetic orders
are zero. In this paper, the given threshold δs was 1.0 × 10−3.

Result Tables 3 and 4 show the samples of the S-system paramet-
ers and the initial gene expression levels, respectively, estimated by

1158

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/7/1154/268773 by U
.S. D

epartm
ent of Justice user on 16 August 2022



Inference of S-system models of genetic networks

2

30

1 43

5 6 7 8

9 11

12

13

14 15 16 17

18 19 20 21

22

23

24 25 26

27 28 29

10

Fig. 2. The target genetic network used in Experiment 2.

the proposed method. As the tables show, our method was unable
to estimate the parameter values with perfect precision. Notwith-
standing, the values were precise enough to biologically interpret
the network. The sum of the squared relative error between the
time-courses produced by the inferred model and the given time-
series data, i.e. the value of the function (2), averaged about
2.08 × 10−3 ± 0.77 × 10−3.

In this experiment, we confirmed the effectiveness of the pro-
posed method by estimating both the initial gene expression levels
and the S-system parameters. In practice, however, there is no need
to estimate the initial levels of the gene expression when the observed
data seem to contain no measurement error. When the initial gene
expression levels do not need to be estimated, the estimated paramet-
ers will be more precise since the problem contains fewer unknown
parameters.

Our method running on the PC cluster (Pentium III 933 MHz ×
8 CPUs) required ∼89.0 min to solve this problem. This is far
less computing time than that required by Predictor by Evolution-
ary Algorithms and Canonical Equations 1 (PEACE1) proposed by
Kikuchi et al. (2003). PEACE1 running on a PC cluster (Pentium III
933 MHz × 1040 CPUs) reportedly took more than 10 h to estimate
the S-system parameters.

Experiment 2: noisy environment
Next, we test the performance of our method in a real-world setting
by conducting the experiment with the sets of noisy time-series data.

Experimental setup A large-scale S-system model containing 30
genes (N = 30) was used as a target model. The network struc-
ture and the S-system parameters of the model are given in Figure 2
and Table 5, respectively (Maki et al., 2001). The observed gene
expression data included 20 sets of time-series data, each cover-
ing all 30 genes. The sets of time-series data began from randomly

Table 5. S-system parameters of the large-scale target model

αi 1.0

βi 1.0

gi,j g1,14 = −0.1, g5,1 = 1.0, g6,1 = 1.0, g7,2 = 0.5, g7,3 = 0.4, g8,4 = 0.2,
g8,17 = −0.2, g9,5 = 1.0, g9,6 = −0.1, g10,7 = 0.3, g11,4 = 0.4,
g11,7 = −0.2, g11,22 = 0.4, g12,23 = 0.1, g13,8 = 0.6, g14,9 = 1.0,
g15,10 = 0.2, g16,11 = 0.5, g16,12 = −0.2, g17,13 = 0.5, g19,14 = 0.1,
g20,15 = 0.7, g20,26 = 0.3, g21,16 = 0.6, g22,16 = 0.5, g23,17 = 0.2,
g24,15 = −0.2, g24,18 = −0.1, g24,19 = 0.3, g25,20 = 0.4, g26,21 = −0.2,
g26,28 = 0.1, g27,24 = 0.6, g27,25 = 0.3, g27,30 = −0.2, g28,25 = 0.5,
g29,26 = 0.4, g30,27 = 0.6, other gi,j = 0.0

hi,j 1.0 if i = j , 0.0 otherwise

generated initial values in [0.0, 2.0] and were obtained by solving
the set of differential equations (1) on the target model. We added
10% Gaussian noise to the time-series data in order to simulate the
measurement noise that often corrupts the observed data obtained
from actual measurements of gene expression patterns. A total of 11
sampling points for the time-series data were assigned on each gene
in each set. In this experiment, 2 × 30 × (30 + 1)+ 30 × 20 = 2460
parameters should be estimated.

Five runs were carried out. As the performance of the algorithm
seems to depend on the given data, different sets of time-series data,
generated randomly, were used in each run. The search regions
were [0.0, 3.0] for αi and βi , [−3.0, 3.0] for gi,j and hi,j , and
[0.7Xi,exp,0, 1.3Xi,exp,0] for the initial levels of the gene expression.
The experiments were executed in parallel on a PC cluster (Pentium
III 933 MHz × 32 CPUs). All of the other experimental conditions
were the same as those used in the experiment conducted in the
noise-free environment described above.

To confirm the effectiveness of the coevolutionary approach, we
compared the results to those of a non-coevolutionary method that
did not consider the interactions between decomposed subproblems
(Kimura et al., 2004). This paper refers to this non-coevolutionary
method as the problem decomposition approach.

Result Figure 3 shows the calculated gene expression time-courses
obtained from the methods with and without the coevolution. The
calculated time-courses obtained by solving the set of Equations (1)
and (4), respectively, are shown in the figure. As shown in Figure 3A,
when the proposed coevolutionary approach was applied, the time-
course obtained by solving the set of equations (1) was almost
identical to that obtained by solving Equation (4). On the contrary,
the calculated time-courses of the problem decomposition approach
differed greatly (Fig. 3B).

When inferring S-system models of genetic networks, both
approaches use the differential equation (4) to calculate time-courses
of gene expression levels. In Equation (4), however, the perturbation
in the i-th gene does not affect the expression levels of the other genes.
Therefore, Equation (4) is not a suitable model to help biologists gen-
erate hypotheses and facilitate the design of their experiments, while
it is a useful model for inferring genetic networks. When we analyze
the inferred genetic network, the set of equations (1) must be used as
the model for computational simulation. From this point of view, the
problem decomposition approach does not produce a suitable model
for computational simulation, since the model does not always fit into
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Fig. 3. Samples of calculated time-courses obtained from (A) the proposed
coevolutionary approach and (B) the problem decomposition approach. Solid
line: the solution of the set of differential equations (1) where the estimated
values are used as the model parameters. Dotted line: time-course obtained
at the end of the search, i.e. the solution of the differential equation (4). Plus
symbol: noisy time-series data given as the observed data.

the observed data. As the time-courses obtained from Equation (1)
are almost identical to those obtained from Equation (4), the pro-
posed approach provides us with a suitable model. The sum of the
squared relative error between the given data and the calculated time-
courses of the model inferred by the proposed method was always
smaller than that obtained from the problem decomposition approach
in this experiment. The sums of squared relative error obtained from
the methods with and without the coevolution averaged about 27.72
± 0.68 and 28.18 ± 0.76, respectively.

Typical results obtained from the methods with and without the
coevolution are shown in Figures 4 and 5, respectively. Inferred
interactions for the 8th, 16th and 24th subproblems are shown. As
the results show, both methods failed to infer some of the interactions
present in the target model, and they inferred many erroneous interac-
tions that had absolute parameter values too large to ignore. Weakly
interactions were, especially, difficult to be correctly inferred, e.g.
both methods often failed to infer interactions corresponding to g1,14,
g24,18 and g26,28. In addition, an interaction represented as gi,j was

sometimes inferred as that of hi,j . The failure to infer the correct
interactions, however, does not seriously hinder our investigation, as
the inferred model is intended mainly for use by biologists as a tool
for generating hypotheses and facilitating the design of experiments.
The necessary interactions that were not correctly inferred should be
added, and the erroneous interactions should be removed in either
of two ways, i.e. by using more sets of time-series data obtained
from additional biological experiments or by using further a priori
knowledge about the genetic network.

The model inferred by the proposed method contained 58.4 ± 2.1
true-positive interactions and 241.6 ± 2.1 false-positive interactions
on average. The number of the inferred interactions corresponded
to the maximum indegree I . Our method failed to infer an aver-
age of 9.6 ± 2.1 interactions that were present in the target model
(i.e. the number of false-negative interactions was 9.6 ± 2.1). On
the contrary, in the experiment using the problem decomposition
approach, the numbers of true-positive false-positive and false-
negative interactions averaged 57.6±2.3, 242.4±2.3 and 10.4±2.3,
respectively. To solve this problem, the proposed coevolutionary
method required ∼57.8 h on the PC cluster (Pentium III 933 MHz
× 32 CPUs). The computational time that the problem decompos-
ition approach required for optimizing each subproblem averaged
∼57.5 h on a single-CPU personal computer (Pentium III 933 MHz),
and the subproblems were optimized simultaneously on the PC
cluster.

The experimental results suggest that our coevolutionary approach
slightly improves the probability of inferring the correct interactions.
In order to confirm the improvement, we performed a number of other
experiments using different amount of time-series data. Figure 6
shows the number of false-negative interactions in each. In all of the
experiments, the proposed method slightly reduced the number of
false-negative interactions, i.e. it enhanced the probability of finding
the correct interactions. This may be because the proposed method
updates the estimated gene expression time-courses, X̂j s. In this
study, the algorithm uses X̂j s to solve the decomposed subproblems.
Therefore, X̂j s must be precise if the probability of finding the correct
interactions is to be improved. Because the proposed coevolutionary
approach updates X̂j s, their precision may be improved through
searches.

In the proposed coevolutionary method, the improvement in a
performance of finding correct interactions was slight. However, it
should be noted that the same time-series data were given to both
methods as the observed ones. As the proposed method extracts
correcter information from the data, the inferred model is more
reasonable to analyze genetic networks.

Experiment 3: analysis of actual data
The proposed method enables us to infer large-scale genetic net-
works containing dozens of genes. However, when attempting to
analyze actual DNA microarray data, many hundreds or thousands
of genes must be handled. This task lies far beyond the powers
of the proposed coevolutionary method. One possible strategy to
improve its inference capability is to use any clustering technique
to identify genes with similar expression patterns and group them
together (D’haeseleer et al., 2000; Eisen et al., 1998). By treating
groups of similar genes as single-network components, the proposed
coevolutionary method is capable of analyzing systems containing
many hundreds of genes. In this study, we combined the proposed
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Fig. 4. Samples of the interactions inferred by the proposed method. The figure shows the results for (A) the 8th subproblem, (B) the 16th subproblem and (C)
the 24th subproblem.
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Fig. 5. Samples of the interactions inferred by the problem decomposition approach.

method with the clustering technique proposed by Kano et al. (2003).
The combined method was then used to analyze cDNA microarray
data of Thermus thermophilus HB8 strains.

Two sets of cDNA microarray time-series data, i.e. wild-type and
UvrA gene disruptant, were observed. Each sets of the data were
measured at 14 time points. The clustering technique used in this
study grouped 612 putative open reading frames (ORFs) included in
the data into 24 clusters. As we treated the disrupted gene, UvrA, as
single-network component, the target system consisted of 24 + 1 =
25 network components. The time-series data of each cluster was
given by averaging the expression patterns of ORFs included in the
cluster. A total of 10 runs were carried out. The maximum indegree
I was 3. The search regions were [0.0, 5.0] for αi and βi , [−3.0, 3.0]
for gi,j and hi,j , and [0.7Xi,exp,0, 1.3Xi,exp,0] for the initial levels
of the gene expression. The experiments were executed in parallel
on a PC cluster (Pentium III 933 MHz × 32 CPUs). All of the
other experimental conditions were the same as those in previous
experiments.

Figure 7 shows the core network structure where the interactions
were inferred by the proposed method more than nine times within
10 runs. As the amount of observed data was insufficient, the inferred
network model seems to contain many erroneous interactions. How-
ever, some reasonable interactions were also inferred. Many ORFs
contained in the clusters 6, 7, 10, 15, 16, 19 and 22 are annotated
to be concerned with ‘Energy metabolism’, and these clusters were
relatively located near from each other in the inferred model. The
figure shows the clusters 12 and 23 were also located near from
the clusters of ‘Energy metabolism’. However, a few ORFs con-
tained in the clusters 12 and 23 are annotated to be concerned with
‘Energy metabolism’. This fact suggests that some of hypothetical
and unknown ORFs included in the clusters 12 and 23 may work for
‘Energy metabolism’ or related functions.

In this experiment, as the amount of the measured time-series
data was insufficient, it is hard to extract many suggestions from the
inferred network. To obtain more meaningful results, we are now
planning additional biological experiments.
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CONCLUSION
In this paper, we proposed a new method for inferring the S-
system models of large-scale genetic networks. The proposed method
uses the problem decomposition strategy to divide the genetic net-
work inference problem into several subproblems. The decomposed
subproblems are then solved simultaneously using the cooperative
coevolutionary algorithm. Because the decomposed subproblems
interact with each other through their calculated gene expression
time-courses, the inferred model can be used in the computational
simulation. This feature is important because the computational sim-
ulation provides us with a better understanding of genetic networks.
Through numerical experiments, we showed that the proposed
method slightly enhanced the probability of finding the correct inter-
actions of a network. Updating the gene expression time-courses also
seems to enhance the probability of inferring a correct network struc-
ture. Finally, to analyze actual DNA microarray data, we combined
the proposed coevolutionary method with the clustering technique.
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