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Abstract

Phylogenetic inference is an attractive means to reconstruct transmission histories and epi-

demics. However, there is not a perfect correspondence between transmission history and

virus phylogeny. Both node height and topological differences may occur, depending on the

interaction between within-host evolutionary dynamics and between-host transmission pat-

terns. To investigate these interactions, we added a within-host evolutionary model in epide-

miological simulations and examined if the resulting phylogeny could recover different types

of contact networks. To further improve realism, we also introduced patient-specific differ-

ences in infectivity across disease stages, and on the epidemic level we considered incom-

plete sampling and the age of the epidemic. Second, we implemented an inference method

based on approximate Bayesian computation (ABC) to discriminate among three well-stud-

ied network models and jointly estimate both network parameters and key epidemiological

quantities such as the infection rate. Our ABC framework used both topological and dis-

tance-based tree statistics for comparison between simulated and observed trees. Overall,

our simulations showed that a virus time-scaled phylogeny (genealogy) may be substantially

different from the between-host transmission tree. This has important implications for the

interpretation of what a phylogeny reveals about the underlying epidemic contact network.

In particular, we found that while the within-host evolutionary process obscures the trans-

mission tree, the diversification process and infectivity dynamics also add discriminatory

power to differentiate between different types of contact networks. We also found that the

possibility to differentiate contact networks depends on how far an epidemic has pro-

gressed, where distance-based tree statistics have more power early in an epidemic.

Finally, we applied our ABC inference on two different outbreaks from the Swedish HIV-1

epidemic.

Author Summary

Over the past few years, epidemiological models for infectious diseases have incorporated

network structure: each individual has a set of contacts to whom they can pass the
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infection. However, collecting data to develop a good representation of the network is

very challenging. The increasing availability of sequence data provide additional informa-

tion: previous work has shown that it is possible to recover social network features from

viral phylogenies. Until now, however, it was assumed that within-host evolution is negli-

gible in the reconstruction. Here, we propose an approach based on approximate Bayesian

computation to infer network structure from a virus phylogeny, explicitly including a

model for within-host evolution. In addition, we incorporate other important heterogene-

ity factors such as individual-based transmission rates and infectivity varying by disease-

stage. We show that in some situations the within-host virus diversity adds valuable signal

to identify network structure, but in other situations it muddles the underlying contact

structure.

Introduction

Infectious diseases that are directly transmitted spread over contact networks, where each indi-

vidual host can be represented by a node with a finite set of contacts (edges) via which they can

transmit the pathogen. The structure of these networks is a major determinant of the pathogen

transmission dynamics and possible control strategies [1]. For example, it has been suggested

that human sexual contact networks are characterized by a power-law-like degree distribution

[2–4] which, in a specific range of the scaling exponent, results in an infinite variance of the

network’s degree distribution. This implies the absence of an epidemic threshold, making pro-

phylactic strategies for sexually transmitted diseases very challenging.

The main issue with contact network-based epidemiology has been the difficulty of collect-

ing individual- and population-level data needed to develop an accurate representation of the

underlying host population’s contact structure. This has led to an interest in methods to infer

information about host contact networks from epidemiological data. Previously, Britton and

O’Neill [5] estimated the parameters of an Erdős-Rényi network and a stochastic epidemic

process on it using recovery times of infected hosts, and Groendyke et al. extended the

approach to exponential-family random graph models [6] using covariate information [7].

The use of other common epidemiological measures such as the basic reproduction number

(R0), epidemic peak size, duration and final size, has been shown to be effective in classifying

the degree of heterogeneity in a population’s unobserved contact structure [8].

During the course of an epidemic, the pathogen spreads over a subset of edges in the social

network forming a subgraph that is the realized transmission history. Keeping track of who

transmits to whom and assuming that every individual may be infected only once and by only

one other individual, such a transmission history can be represented as a rooted tree (transmis-

sion tree) [9]. However, full transmission histories are rarely observed and commonly available

epidemiological data such as diagnosis-recovery times of infected people may provide infor-

mation on who was infected, when, and for how long, but it provides limited information on

who acquired infection from whom [10].

Since pathogens evolve over a transmission history, the analysis of pathogen genetic

sequences taken from different hosts provides a way to infer the most likely donor and recipi-

ent [11] introducing constraints on the space of possible transmission trees, which are a trace

of the underlying contact network. Phylodynamics [12] focuses on linking methods of phylo-

genetic analysis with epidemiological models under the assumption that if the evolution of a

pathogen occurs sufficiently fast, transmission histories become “recorded” in the between-

host pathogen phylogeny (phylogenetic tree).

Inference of Transmission Network Structure from HIV Phylogenetic Trees
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Phylodynamic analyses of HIV-1 have shown that asymmetry in viral phylogenies may be

indicative of heterogeneity in transmissions [13]; networks with more heterogeneous degree

distributions yield transmission trees with smaller mean cluster sizes, shorter mean branch

lengths, and somewhat higher tree imbalance than networks with relatively homogeneous

degree distributions. However, it has been argued that these direct effects are relatively modest

for dynamic networks [14] or if only a small fraction of infected individuals are sampled [15].

Also, factors other than contact rate, such as high infectiousness during acute infection, may

have a more dramatic impact on asymmetry [15].

However, previous studies as well as more recent papers [16–18], assume that the unob-

served transmission tree is identical to the reconstructed time-scaled phylogeny (virus geneal-

ogy), i.e. the internal nodes of the genealogy correspond to transmission events between hosts

over time and within-host diversity is fundamentally ignorable. This is unrealistic since all coa-

lescent events in a pathogen phylogeny occur within hosts, pushing the genealogy node heights

further back in time than the nodes of the transmission tree, known as the pre-transmission

interval [19]. In addition, the order of coalescent events may not correspond to the order of

transmission events but rather reflect within-host dynamics [20–22].

The objective of this study was to include within-host evolution, disease stage, and individ-

ual specific transmission rates to improve the realism of social network reconstruction. We

simulated epidemic spread on three prototypic network types and investigated the behavior of

several tree statistics, including both topological imbalance measures and tree-based distance

measures. In addition, we investigated the effect of varying epidemic size, varying sampling

proportion, as well as heterochronous sampling on the tree statistics. Finally, we analyzed data

from two different epidemiological scenarios of spread among injecting drug users (IDU) in

the Swedish HIV-1 epidemic using approximate Bayesian computation (ABC) for network

model choice and parameter inference following the algorithm defined in [23]. We found that

virus geneaologies can differ from the underlying transmission tree in both topology and

branch length and, therefore, that meaningful inference of social networks needs to take

within-host evolution into account.

Materials and Methods

Simulation of transmission history

Networks. We considered three prototypic network models to represent population con-

tact structure: the Erdős-Rényi (ER) random graph [24], the Barabási-Albert (BA) graph [25]

and the Watts-Strogatz (WS) graph [26] with low rewiring probability (Fig 1). These three net-

works are characterized by different degree distributions and amount of clustering. The degree

of a node in a network is the number of connections to other nodes it has and the degree distri-

bution is the probability distribution of these degrees over the whole network.

The ER model generates networks with Poisson degree distributions (in the limit), i.e.

pðkÞ ¼ e�yy�k

k!
. The BAmodel is generated by using a linear preferential attachment algorithm

that produces scale-free networks with a power-law degree distribution p(k)/ k−α with α = 3.

The WS model has a Dirac degree distribution centered at K (all nodes have the same degree)

when the rewiring probability tends to 0. If the rewiring probability tends to 1, the degree dis-

tribution is Poisson. For intermediate values, the shape of the degree distribution has a pro-

nounced peak at k = K and decays exponentially for large |k − K|. AWS network is

characterized by a relatively homogeneous structure, as all nodes have more or less the same

degree, and by a high degree of local clustering as opposed to ER and BA networks. The net-

works were simulated using the igraph package in R [27].

Inference of Transmission Network Structure from HIV Phylogenetic Trees
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Epidemic model. We simulated outbreaks from a susceptible-infected-removed (SIR)

type dynamic [28] of HIV-1 spread in the susceptible population on each type of contact net-

work. We compared differences among the transmission trees obtained by simulating epi-

demic spread under four increasingly more realistic transmission (S1 Fig) and evolutionary

model specifications (S2 Fig):

The first model specification assumed that the rate of transmission per contact between a

susceptible and an infected individual, λ, is constant over time. The removal rate of infected

individuals γ is also constant over time and includes both diagnosis and death. We denoted

with p the probability of being sampled at the moment of diagnosis (DNA sequences obtained

from the virus of the diagnosed patient). We assumed that (i) diagnosis coincides with treat-

ment start, (ii) the rate of transmission after treatment start is negligible, and (iii) nobody goes

off treatment. We believe these assumptions to be reasonable for our analysis since Sweden has

already achieved the 90-90-90 target set by UNAIDS in 2014 [29] according to which (i) 90%

of all people leaving with HIV will know their HIV status, (ii) 90% of all people with diagnosed

HIV infection will receive sustained antiretroviral therapy, and (iii) 90% of all people receiving

antiretroviral therapy will have viral suppression [30].

In the second model specification we considered three stages of HIV infection (acute,

chronic, and pre-AIDS). Here, the transmission rates are dependent on the disease stage of the

infected individual and denoted λ1, λ2, and λ3 (S1 Fig). We assumed the removal rate to be

independent on the disease stage. The acute stage was assumed to last 30 days for each individ-

ual [31], the chronic stage had variable length described by an exponential random variable T2

with a mean of 8 years [32], and the pre-AIDS stage lasted until death or diagnosis. The three

transmission rates were calculated to preserve the individual total infectivity during their infec-

tious period in order to make results comparable with the first model specification. This deri-

vation is shown in S1 Text.

In the third model specification we modeled individual variability of transmission rates.

We did that by multiplying the constant transmission rate λ (as in the first model specification)

with a log-normal variable Zi for each i individual (node) with location parameter −σ2/2 and

scale σ in order to preserve the mean of λ (i.e. E(λi) = λ since E(Zi) = 1).

Finally, the fourth model specification combined stage-specific infectivity with individual

heterogeneity. The sampling process was modeled explicitly in each model specification.

Fig 1. Prototypic network structures. A. Erdős-Rényi network (ER), B. Barabási-Albert network (BA), C. Watts-Strogatz network (WS). To illustrate the
typical configurations, all networks have the same size (50 nodes) and they are characterized by the samemean degree (6). The rewiring probability is
0.01 in WS.

doi:10.1371/journal.pcbi.1005316.g001
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We used Gillespie’s next-reaction method [33, 34] to simulate disease spread according to

the above outlined model specifications until there were no more infectives or until a prede-

fined number of samples. Keeping track of who-infects-whom, each epidemic simulation

yields a transmission history.

Within-host evolution model

The phylogeny of pathogens such as HIV-1 collected from infected persons in an epidemic

reveals a considerable amount of information about the underlying transmission history since

mutations are typically accumulated faster than transmission occurs. The common assump-

tion that the internal nodes of a phylogeny correspond to transmission events between hosts

over time is, however, unrealistic because transmitted lineages must already exist in the donor

at the time of transmission. Thus, neglecting the time difference between the common ances-

tor and the transmission event (i.e. the pre-transmission interval, [19]) will bias the estimated

time of transmission backwards in time.

Furthermore, new infections may come from HIV-1 variants derived from a latent reser-

voir (lineages can persist for long time in the host [35, 36]), and the order of coalescent

events may not correspond to the order of transmission events but reflect instead within-

host dynamics [21].

To address these issues, we used a two-phase coalescent model described by a linear growth

from a single transmitted variant (transmission bottleneck) to a maximum population size fol-

lowed by either stabilization or decline of the effective population size [21].

Let N(t) denote the viral population size at time t since infection (expressed in days), such

that

NðtÞ ¼
a
1
þ b

1
t; t � tx

a
1
þ b

1
tx þ b

2
ðt � txÞ; t > tx

(

where α1 is the population size (i.e. the number of virus variants in a given host) at the moment

of infection, β1 is the rate of population size increase until tx (time at maximum diversity), and

β2 the rate of decline after the maximum. We assume α1 = 1, β1 = 3, tx uniformly distributed

between ta = 2 and tb = 8 (years) and β2* U(ϕ, 0) where ϕ = (Nmin − α1 − β1ta)/(tM − ta) with

Nmin being the minimum population size, (assumed to be 100) and tM the maximum sampling

time (20 years) (S2 Fig).

Virus genealogies conditional on a transmission history are simulated by generating ran-

dom coalescence times for each person in the tree. Random coalescence times are generated

from the inverse cumulative density function (derivation in [21])

F�1ðuÞ ¼ 1� ð1� uÞ
b
k
2ð Þðaþ btÞb�1

where u is a uniform random variate on (0, 1), t is the current time along the forward time

axis, b is the linear rate of change (β1 or β2 depending on the phase), a is the starting population

size (1 in the first phase and β1tx in the second phase) and k is the number of extant sampled

lineages in a given host. For each host we draw random values of tx and β2 from the prior dis-

tributions. Starting at the last transmission or sampling event, we first move to the next event

along the reverse time axis, which is either a transmission event, a rate change, or the time at

which the current host was infected. If the event is a transmission event, then k is incremented

and a random coalescence time is generated. If that time occurs before (along the reverse time

axis) the next event, then two random extant lineages in the sample are selected to coalesce; or

if not, then time is moved to the time of the next event. At tx, when the rate changes, the

Inference of Transmission Network Structure from HIV Phylogenetic Trees
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parameters of the inverse cumulative density function are changed to correspond to the first

model-phase and the process continues until the transmission time of the current host is

reached. In the rare instance where more than one sampled lineage exists at the time of infec-

tion, the existing lineages are randomly coalesced with zero length branches. Finally, each indi-

vidual sub-tree is joined into a single viral genealogy according to the transmission history.

The 4 model specifications introduced in the previous section were used for simulations

until the “end” of each outbreak, i.e. when there are no infectives left. We compared outbreaks

of similar final size and multiple realizations of virus genealogies for each transmission history.

All simulations were implemented using the statistical software R [37].

Tree statistics

Transmission trees and virus genealogies are complex objects. Therefore, in order to evaluate

and compare them we used a number of summary statistics (Table 1).

These tree statistics include topology measures, branch length summaries, and lineages

through time progression. The Sackin’s index can be normalized according to a reference

model (we used the Yule model) in order to obtain a statistic that does not depend on the tree

size. Both Sackin’s index and Colless index depend only on the topology of the tree, and they

are invariant under isomorphisms and relabeling of leaves. They reach their maximum value

at caterpillars (ladder-like trees), and their minimum on the maximally balanced trees. A

binary tree is considered to be perfectly balanced if each internal node in the tree divides the

leaves descending from it into two equally sized groups. The expected number of cherries in a

tree with n taxa under a Yule model is n/3. In an asymmetric tree (more ladder-like tree), tips

tend to coalesce with branches deeper in the tree, and there are fewer cherries than expected.

The number of cherries and Sackin’s index complement each other well, as the number of

cherries captures asymmetry in the recent evolutionary past, while Sackin’s index captures

asymmetry over the entire evolutionary history of the sample. These two measures are only

weakly correlated [15]. A high ratio of internal branch to external branch length occurs in

‘star-like’ trees. The tree height in a virus genealogy represents the time from the first infection

to the last sampling event. Since epidemics progress at different speed on different networks,

heterogeneities in tree heights are expected.

Table 1. Summary statistics computed on time scaled trees (transmission trees and virus
genealogies).

Tree statistics Definition

Sackin’s Index [38] The average number of splits or ancestors from a tip to the root of the tree.

Colless Index [39] At each internal node, partition the tips that descend into groups of sizes r (to
the right) and l (to the left), and compute the sum of absolute values |r − l| for
all nodes.

Cherries The number of clades with two taxa.

External/internal branch
length ratio

The ratio between the mean external branch length (branch that ends with a
sampling event) and the mean internal branch length (branches between
coalescence events).

Tree height The time from the first infection/coalescence (after the index case) to the last
sampling event.

Topological distance Twice the number of internal branches defining different bipartitions of the
tips.

Number of lineages through
time [40]

The number of lineages across the tree. If all infected individuals are
sampled, it corresponds to the prevalence curve.

Branch length growth rate
over time

The average branch length obtained at several time points, divided by the
tree height evaluated at the same.

doi:10.1371/journal.pcbi.1005316.t001
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The topological distance was obtained as twice the number of internal branches defining

different bipartitions of the tips. A topological distance that takes branch lengths into account

was also considered (the sum of the branch lengths that need be erased to have two similar

trees.) The number of lineages through time was normalized in time and by the maximum

number of lineages [40]. We used the R package ape (Analyses of Phylogenetics and Evolution)

[41] to create and plot the phylogenies and the package apTreeshape [42] for the evaluation of

some tree statistics.

Approximate Bayesian Computation for network model selection

To further investigate how well time-scaled phylogenies can estimate the epidemic process and

identify the underlying contact network, we applied an inference framework for model selec-

tion and parameter estimation based on approximate Bayesian computation (ABC). ABC is a

methodology to estimate model parameters replacing the likelihood function with a simula-

tion-based procedure and a distance function to measure the similarity between simulated and

observed data. Various ABC algorithms have been proposed, from the simple ABC-rejection

[43] to ABCMarkov chain Monte Carlo (MCMC) [44] and ABC based on sequential Monte

Carlo (SMC) methods [23, 45].

Here, we use ABC-SMC as proposed by Toni et al. [23] because it addresses some of the

potential drawbacks of previous ABC algorithms, such as slow convergence rate, by sampling

from a sequence of intermediate distributions. The SMC sampler introduces a number of

intermediate steps decreasing iteratively the tolerance threshold � for samples acceptance. At

the first iteration, N particles θ0 (representing the parameters of interest) are generated from

the prior distribution and data are simulated from the model based on θ0. The proposed

parameters are accepted if the difference between the summary statistics of the simulated data

D0 and the observed data D is below the threshold �1. At iteration t> 1, the particles are drawn

from the previous population of the accepted samples at the iteration t − 1 (with threshold �t−1)

with slight perturbations. In our work, data (observed virus genealogy) and simulated trees are

compared through the use of summary statistics which correspond to the above listed tree sta-

tistics (Table 1).

The three network modelsM = {WS, ER, BA} were used to simulate outbreaks using the

stage-varying infectivity profile with ratio 10:1 acute:chronic and patient infectivity variation

(σ = 3). We assumed that network model and one network parameter were unknown. For ER,

the network parameter of interest was the probability of drawing an edge between two arbi-

trary vertices; for BA it was the number of edges to add in each time step of the generating

algorithm, and for WS it was the neighborhood within which the vertices of the lattice are con-

nected. We also estimated the removal rate γ and the infection rate in the acute phase λ1 (infec-
tion rates in the chronic and immuno-compromised stage can be obtained deterministically

from the acute phase infection rate). Therefore, θ consists of 3 parameters for each type of net-

work and they are model specific. All remaining parameters characterizing both the network

structure and the epidemic process were considered known.

The output of the algorithm were the approximations of the modelMmarginal posterior

distributions P(M|D) which is the proportion of times that each model is selected inN samples,

and the marginal posterior distributions of parameters P(θ|D,M) for the candidate models.

We used a discrete uniform distribution from 1 to 3 as model prior π(M).

We chose to decrease the tolerance values following an exponential decay such that �t = �0

exp(−0.5t) where t is the current sequential step, as proposed in [46]. A pilot run of 100 simula-

tions for each model inM was used to define the initial thresholds. Convergence was assumed

when the acceptance rate of newly proposed particles had dropped below 1 in 100, and visual

Inference of Transmission Network Structure from HIV Phylogenetic Trees

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005316 January 13, 2017 7 / 22



inspection of the posterior distribution showed no change in the last iterations. We found that

convergence was achieved with T = 10 iterations and N = 1000 particles per iteration. The

prior distributions on the parameters λ1 and γ were Uniform (0.0001, 0.1) and (0.00025, 0.1),

respectively. The computation time of the algorithm depended on the tree size and sampling

fraction and it took between 1 and 2 hours in a parallel implementation on 8 processors. Fur-

ther details of the algorithm and its computational cost can be found in S2 Text.

Real epidemiological data and genealogical reconstruction

We applied the ABC inference method to the analysis of two HIV-1 DNA sequence sets sam-

pled from different IDU transmission epidemics in Sweden [47, 48]. To reconstruct the time-

scaled virus phylogenies from the DNA sequences we used a Bayesian Skyline coalescent

model in BEAST 1.8 [49]. The general time reversible nucleotide substitution model was used

with an uncorrelated log-normal relaxed clock and a discretized gamma distribution with four

categories was used to model rate heterogeneity across the sequence. For the log-normal

relaxed clock parameters, a uniform prior on the positive axis was assumed for the mean, and

an exponential with mean 1/3 for the standard deviation. A Uniform prior on (0, 1) was used

for the nucleotide frequencies. The MCMC was run for 10 million iterations, with a 10% burn-

in period and samples saved every 10000 iterations. We selected the maximum credibility tree

and the negative branches were set equal to zero.

Results

To compare our simulation results, we used networks with the same mean degree (8) and a

constant rewiring probability (ρ = 0.01) for the WS networks. The SIR-type models were char-

acterized by a transmission rate of 0.01 per contact, a removal rate γ = 2.8 year−1 and sampling

probability p = 1, unless specified otherwise.

Within-host evolution affects inference of contact networks

The within-host model generates virus genealogies that are consistent with a given transmis-

sion history, but not necessarily identical to it. An example of the impact of the within-host

evolutionary process in a small size network/epidemic is shown in Fig 2. This figure shows a

transmission history (A), its transmission tree representation (B), and four compatible virus

genealogies (C-F). The genealogies display branch elongation/compression as compared to the

transmission tree but also changes in topology. For instance, lineage 5, sampled in individual 5

infected by 2 soon after 2’s own infection, appears consistently on the top part of the simulated

virus genealogies and its branch can only be elongated by a small amount (because the pre-

transmission interval is small). On the other hand, lineage 10, infected later by 2, is located in

different parts of the possible genealogies, thus indicating changes in the virus genealogy topol-

ogy versus the underlying transmission tree. This happens because longer time implies an

increase in the virus diversity in 2, i.e. more lineages are available in the donor. Therefore, as

many virus trees are possible under any transmission history, it is important to evaluate the

additional variation within-host diversity inflicts on the epidemiological inference. An epi-

demic can spread faster on ER and BA networks, thus the resulting transmission tree from a

WS network includes longer times resulting in taller trees (Fig 3A). This is mainly because WS

has higher clustering than ER or BA. Both the unobservable transmission tree and the observ-

able virus genealogy show the same tree height information. Other tree statistics, however,

show different patterns of network discrimination based on transmission tree or virus geneal-

ogy. The proportion of cherries per taxa is slightly less informative on virus genealogies than

on transmission trees (Fig 3A). In particular, while there is a decrease for ER andWS (less

Inference of Transmission Network Structure from HIV Phylogenetic Trees
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balanced in virus genealogies than transmission trees), it increases for BA (more balanced in

virus genealogies than transmission trees). A similar pattern is seen using Sackin’s Index or

Colless’ Index (ER andWS less balanced in virus genealogy, BA more balanced (Fig 3D and

3E)). Overall, differences between BA andWS become more evident in virus genealogies.

Because Sackin’s Index and Colless’ Index are highly correlated we will only report Sackin’s

Index from now on.

An epidemic spreading on an ER network is similar to a population randommixing model.

Therefore, it is expected to generate a balanced transmission tree [13, 15]. The average number

of people infected by an individual in the ER network show little variance and therefore the

within host evolution model will add some heterogeneity producing small changes in the tree

topology leading to an increase in the unbalancedness in the resulting virus genealogy. In BA

models, instead, the presence of superspreaders generate transmission histories that are very

unbalanced [13]. When a donor infects two or more recipients within a short interval, the

order of transmissions along with infection times become impossible to accurately reconstruct;

Fig 2. Relationship among transmission history, transmission tree and virus genealogy. For a given
transmission history between hosts (A), we can construct a binary representation, i.e. the transmission history (B).
The lower panels (C) show 4 possible virus genealogies of this transmission history invoking our within-host
population model.

doi:10.1371/journal.pcbi.1005316.g002
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all splits are within the donor, describing within-host evolution in the donor (also shown in

[21]). Overall, the pretransmission interval associated with each and every transmission is a

random draw from the possible coalescence times in the donor’s viral population. Therefore,

in BA networks the virus genealogy will show larger changes in the tree topology with respect

to the underlying transmission trees and result in more balanced trees. The ratio of the mean

internal to external branch lengths is informative about the type of network (smallest for BA,

Fig 3. Box plots of tree statistics on transmission trees (red) and reconstructed virus genealogies (light blue). Tree height (A), number of cherries
per taxa (B), mean internal/external branch lengths ratio (C), Colless Index (D), Sackin’s Index (E), mean branch length (F). The boxes correspond to the
first and third quartiles. The upper/lower whisker extends from the third/first quartile to the highest/lowest value which is within 1.5 IQR from the box, where
IQR is the inter-quartile range.

doi:10.1371/journal.pcbi.1005316.g003
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higher for ER, highest for WS). While the trends were similar in transmission trees and virus

genealogies, the expected ranges overlapped for ER andWS in transmission trees, and virus

genealogies showed generally smaller ratios (Fig 3C). Branch lengths increase linearly as a

function of tree height during epidemic spread on both ER and BA networks. Deviations from

linearity are observed for epidemic spread onWS (S3 Fig). At the end of an epidemic, the

mean branch length is constant among networks but longer in virus genealogies rather than in

transmission trees (Fig 3F). Overall, trees from ER andWS networks are more imbalanced

based on virus genealogies. However, as an epidemic spreads much faster in a BA network, the

resulting virus genealogy will instead become more balanced because the virus does not have

time to evolve time-structure between transmission events.

Contact network heterogeneity becomes less evident under stage
varying infectivity

Infectivity is known to vary across HIV-1 pathogenesis [50, 51]. Thus, rather than assuming a

constant transmission rate throughout an infected person’s disease stages, we tested 7 different

infectivity profiles varying the ratio between the acute and chronic transmission rates and

measured how they affected network model discrimination. The transmission rate in the pre-

AIDS stage was held constant. Tree height becomes much less informative of network type the

bigger the difference is between acute and chronic stage infectivity (Fig 4A). This is because

higher acute stage infectivity causes more infections in the acute phase and consequently the

epidemic spread is faster. Since infection happens so rapidly, the external branches become

very long compared to the internal branches, as all internal nodes are pushed to the root the

higher the ratio between acute and chronic stage infectivity. Therefore, the total tree height is

Fig 4. Box plots of tree statistics on virus genealogies under varying infectivity profiles. Tree height (A), number of cherries per taxa (B), Sackin’s
index (C), mean internal/external branch lengths ratio (D). Box plots limits are as in Fig 3.

doi:10.1371/journal.pcbi.1005316.g004
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dominated by the external branch lengths (which are on average 1/γ). Similarly, mean internal

over external branch lengths, which was an important index when constant infectivity was

assumed, is less informative if we assume high acute/chronic stage infectivity ratios. Differ-

ences observed between ER and BA assuming a constant infectivity profile diminish (Fig 4D).

Hence, branch length and tree height measures are less informative of network type when dif-

ferences in acute-chronic infectivity are considered. Topological tree measures, i.e., cherries

per taxa, and Sackin’s Index, were less affected by differences in acute-chronic infectivities (Fig

4B and 4C). Both these measures, calculated on the possible virus genealogies, still informed

about the underlying contact network structure that HIV spread upon.

Variability in individual infectivity may affect network discrimination

The next stage of introducing realistic host evolutionary dynamics is to model patient specific

differences. We did that by introducing variability in the overall infectivity level while keeping

the acute-chronic ratio at 10:1 (σ = 0, 3, 10). While it was clear that introducing a non-constant

infectivity profile diminished genealogical differences between underlying contact network

structures, it was less obvious what effect introducing between-patient variation had (Fig 5).

While tree height remained with no power to discriminate between networks, internal to

external branch length ratios became more discriminative (BA had lowest ratio, ER intermedi-

ary, andWS high). Individual variability seems to affect tree symmetry near the root more

than towards the tips, since the Sackin’s Index shows much more variation than the number of

cherries per taxa. However, they both improved their power to discriminate between contact

network structures, and Sackin’s Index could differentiate WS from BA and ER networks.

Thus, these simulations showed that the complex interactions that affect the resulting tree

Fig 5. Box plots of tree statistics on virus genealogies for different assumptions on individual heterogeneity. Tree height (A), number of cherries
per taxa (B), Sackin’s index (C), mean internal/external branch lengths ratio (D). Box plots limits are as in Fig 3.

doi:10.1371/journal.pcbi.1005316.g005
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statistics when multiple levels of variability interact (within-host coalescence process, timing

of infections relative to disease- and epidemic-stage, disease-stage infectivity differences, and

patient individual variation), may induce non-trivial dynamic patterns.

Tree statistics change as epidemics develop

If no influx of susceptibles occurs, the mean branch length increases as trees grow taller

because it takes longer time to find uninfected hosts later in an epidemic (Fig 6A and 6B, see

also S4A Fig). At 100% sampling of infecteds at any time during an epidemic, the mean branch

length increases as a function of total number of sampled infecteds (number of taxa, Fig 6B).

BA typically produces shorter tree branches than ER andWS as more individuals are sampled.

Thus, if it were possible to sample everyone at time of infection, then the trend of adding lon-

ger tips towards the end of the epidemic becomes more pronounced (Fig 6A). The internal to

external branch length ratios typically decrease as the epidemic progresses (S4B Fig). This is

mainly explained by the depletion of susceptible neighbors for individuals infected late in an

epidemic, thus generating very long external branches. In addition, branches added later in the

epidemic, resulting from chronic donors, divide already existing branches into shorter seg-

ments. BA trees show lower ratios than ER andWS throughout the epidemic, but WS and ER

are less distinguishable during an epidemic. On the topological level, the Sackin’s Index typi-

cally decreases as an epidemic matures (Fig 6C). At the end of an epidemic (Fig 3), BA and ER

show more unbalanced trees throughout an epidemic and the most imbalanced trees come

fromWS networks (Fig 6C and 6D). Simulations on networks of size 5000 show similar

results: for comparison, see Fig 6 with S5 Fig and S4 Fig with S6 Fig. Thus, while these statistics

are indicative of the underlying contact network, they are confounded by epidemic stage and

the size of the susceptible population. Consequently, to be able to infer the underlying contact

Fig 6. Distance based and topological tree statistics on virus genealogies as epidemic progresses on
a network of size 1000.Mean branch length (MBL) as function of the number of infected individuals (A) and
as function of the number of taxa (sampled infected individuals) (B) for simulated outbreaks on networks of
size 1000 as epidemics progress. Note that there is a time interval between infections and diagnoses (which
correspond to removal/sampling times). Sackin’s index (C) and number of cherries per taxa (D) as function of
the number of taxa in networks of size 1000. The envelopes represent 95% confidence intervals around the
medians. The curves are obtained using local regression (LOESS). WS (red), ER (green), BA (blue).

doi:10.1371/journal.pcbi.1005316.g006
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network from genealogies we must also know what stage an epidemic has reached and the

number of susceptibles.

Sample fraction affects tree statistics

While a genealogical tree grows as an epidemic matures, the sampling fraction has no real

effect on mean branch length, albeit with smaller sample fractions the estimation becomes

somewhat more uncertain due to stochastic effects (S7 Fig). Interestingly, lower sampling frac-

tion increases mean branch lengths derived from any underlying contact network (S7 Fig).

This happens because the remaining branches in the genealogy represent increased numbers

of infected hosts. However, this effect does not cause additional confusion over that caused by

epidemic stage, as the differences between BA, ER, andWS networks are distinct at all epi-

demic stages and number of infected. On the other hand, we do not usually know at what

stage an epidemic is (i.e., number of actually infected) but only the number of sampled hosts.

The mean branch length as a function of number of taxa (Fig 7) could mislead the inference of

underlying contact network, especially for small sample fractions. In fact, any branch length or

tree height index would be affected by mistaking number of sampled hosts with stage of the

epidemic because the number of infected grows faster than the number of sampled early in an

epidemic.

The topological indices were also affected by sampling fraction. While general trends (Fig

3) remain constant through the cumulative number of samples over an epidemic, it is again

important to know at what stage an epidemic is at time of sampling. Similar to branch length

indices, topological indices can be misleading if sampling faction and stage of the epidemic are

unknown.

ABC inference of transmission network type

We illustrate the performance of the ABC inference on 100 simulated viral genealogies for

each network type of size 1000. The parameters were chosen so that the mean degree of each

Fig 7. Mean branch length as function of the number of taxa varying sampling fraction.Mean branch
length as function of sampled hosts, with varying sampling fraction (p = 1-0.25). The envelopes represent
95% confidence intervals around the medians. The curves are obtained using local regression (LOESS). Note
that for smaller sampling fractions the envelopes include fewer taxa. WS (red), ER (green), BA (blue).

doi:10.1371/journal.pcbi.1005316.g007
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network type was 8, the diagnosis rate was 2.8 years−1 (derived from the average time from

seroconversion to diagnosis in Sweden estimated in [52]), and infection rate in the acute phase

was λ1 = 0.005. The sampling probability p was set at 0.5 because the data from the general

HIV Swedish epidemic have coverage of around 50% [52–54].

To investigate model selection performance of the ABC algorithm, we record the number

of times that the true model has the highest posterior model probability P(M|D) among the

three models for the 100 simulated datasets. The algorithm was able to discriminate among the

network models quite well. For the first network model (ER), in 78 out of the 100 simulated

datasets, the true model had the highest posterior probability among the 3 different network

types. For the second model (BA), similar results were obtained; 76 out of the 100 simulated

datasets identified BA. Outbreaks on the WS network were misclassified only 1 time out of

100. The corresponding network parameters were estimated reasonably well in most cases

(Table 2). For illustration, we report the results of a randomly chosen experiment where the

observed data were obtained from an epidemic spread on an ER network (Table 2). The

parameters to estimate are the mean degree, diagnosis and infection rate for an outbreak on an

ER network. The estimation of the removal (i.e. diagnosis) rate was sometimes skewed towards

the upper bound, which probably is due to branch elongation induced by the within-host evo-

lution model.

We only estimate three parameters per network/epidemic model. In principle, it would be

possible to add the rewiring probability, ρ, of the WS network in the ABC inference and esti-

mate it. However, the rewiring probability of the WS networks turns out to be quite difficult to

identify in the model choice setting. This is because for large values of ρ a WS network

becomes indistinguishable from a ER network S1 Table. At ρ< 0.1 there was typically still a

good chance (P(M =m|D) = 0.70 − 0.95) to identify the correct network structurem.

Application to data from real epidemics

Inference of epidemic parameters as well as network type becomes more complex in real out-

breaks. We consider two genealogies from separate IDU-associated HIV-1 CRF01 and subtype

B epidemics in Sweden, respectively. The CRF01 tree was sampled from a rapid outbreak that

was imported from Finland [48] around 2003, which was quiescent until the outbreak started

in 2006. The subtype B tree was sampled from the more slowly, and typical, spreading IDU

epidemic in Sweden [47].

While tree indices were different between the trees from the Swedish HIV-epidemic (Fig 8),

and superficially in line with what one might expect comparing an outbreak scenario to a

more endemic situation, e.g., mean branch lengths were 279 and 913, and tree height 4176 and

10527, respectively, they cannot be directly compared because these trees represent different

stages in the respective epidemic. Furthermore, real data is rarely sampled at 100% of all

infected or even diagnosed, so comparisons to our simulated overall network differences are

difficult to evaluate. Thus, to evaluate genealogies from real epidemics we must consider epi-

demic stage and sampling fraction (Figs 6 and 7).

Table 2. Parameter estimation for one epidemic spread on an ER network.

Parameter Median 95%CI True value

Network parameter, Np 8.5 (7.8,8.7) 8

Removal rate, γ 0.25 (0.19,0.37) 0.35

Acute stage infection rate, λ1 0.008 (0.002,0.01) 0.005

doi:10.1371/journal.pcbi.1005316.t002
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In the ABC analysis of the two IDU HIV-1 transmission chains among IDU we have

assumed the same epidemiological model as in the simulations (stage-varying infectivity pro-

file with ratio 10:1 acute:chronic, patient infectivity variation (σ = 3)) and a sampling fraction

of 50%. For the CRF01 IDU outbreak, the susceptible population was assumed to be 200 and

in the Swedish subtype B ongoing epidemic it was set to 3000. Results are shown in Table 3.

Overall, convergence was more difficult to achieve in the analysis of the real data and the

tolerance levels � had to be set to higher values than in the simulation studies. However, the

posterior model probabilities seem to indicate that the two outbreaks display different associa-

tions to the three network models considered even though there is no single model (among

the three network models considered) that can be used to appropriately describe each

outbreak.

For the CRF01 outbreak, there is weak evidence (45%) in favor of the BA network type

although the ER was also supported with a posterior probability of 39%, with small differences

in the parameter estimates. The infection rate in the acute phase was λ1 = 0.018(0.009, 0.031)

vs λ1 = 0.023(0.0015, 0.036), γ = 0.001(0.0006, 0.002) vs γ = 0.001(0.0005, 0.002) and the mean

degree was 3.2(2.4, 3.6) vs 3.7(2.2, 4.1) in the BA and ER respectively. The HIV-1 subtype B

outbreak was mostly (57%) associated with an ER network type. However, there was consider-

able uncertainty in the parameter estimates: λ1 = 0.0025(0.001, 0.004), γ = 0.0003(0.0003,

0.001) and the mean degree 1.4(1.3, 2.1).

Discussion

In this study we addressed several outstanding factors that could affect HIV phylogenetic tree

shape in addition to the underlying contact network upon which HIV spreads. While previous

studies have evaluated how contact networks affect the resulting tree [13, 14, 16], they ignored

differences between transmission trees and virus phylogenies, varying infectivity over disease

progression, among patient infectivity variation, sampling fraction, and epidemic stage. Here,

we show that all these factors put further restrictions on what type of phylogeny one can

expect, but also that these additional factors may confound the inference of contact network.

Fig 8. Time-scaled HIV-1 phylogenies from the Swedish epidemic among IDU. A. The genealogy from a
rapid CRF01 outbreak, and B the genealogy from a slower spreading subtype B epidemics. Trees were
inferred by a Bayesian skyline coalescent model using BEAST 1.8 [49].

doi:10.1371/journal.pcbi.1005316.g008

Table 3. Network type posterior probability for the two Swedish outbreaks.

WS ER BA

CRF01 0.16 0.39 0.45

subtype B 0.34 0.57 0.09

doi:10.1371/journal.pcbi.1005316.t003
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Transmission histories are not perfectly reconstructed by virus phylogenies. In fact, it has

been previously shown that virus phylogenies have a time bias that elongates external

branches, shifts internal nodes backwards, and may cause lineage disordering relative to the

transmission history [19]. In this study we account for these factors by sampling (many) possi-

ble virus genealogies from a transmission history using a recently developed within-host coa-

lescent model [21]. Because many virus genealogies may be consistent with one single

transmission history, one would expect this factor to add uncertainty to the network inference.

However, there is also added signal about transmission times because the within-host diversity

changes over the time of infection. Thus, because the degree distributions are different for

each network type (Fig 1), transmissions happen after different lengths of infection time,

which affects the phylogenetic tree shape. Indeed, we show that the contact network inference

from virus genealogies can be quite different than that from transmission trees, and that tree

balance differences in fact may be more informative using virus phylogenies. Besides, trans-

mission histories or trees can never be observed, or only partially and then with great uncer-

tainty, which is the main reason for turning to phylogenetic reconstruction in the first place.

It is well known that infectivity is not constant over disease progression, albeit the literature

is uncertain about how big the difference is between acute and chronic stage infectivity [51,

55]. Indeed, we find that varying infectivity affects the expected phylogeny under different

contact networks. In fact, this factor alone seems to diminish phylogenetic differences between

contact networks. Somewhat surprisingly, patient variation in infectivity works in the opposite

direction, i.e., it seemed to amplify differences in the contact network structures. The result is

that virus genealogies do carry a signal of what type of contact network HIV spread upon, but

the expectations are different than what one would expect from a naïve model where no virus

diversity exists and all hosts are described by an identical constant infectivity over their

pathogenesis.

We do not investigate systematically if there is one factor that explains the expected geneal-

ogies simulated under the different network assumptions. Rather, the complex dynamic inter-

action of the heterogeneity factors included implies that a single cause for the differences

observed may not exist. However, we compare only epidemic spread on three network types

with the same mean degree and we used tree statistics to assess the differences. In certain set-

tings, ER and BA behaved similarly (and differently fromWS). In this case, it is likely that the

difference is due to clustering, since there is no large difference between the degree distribu-

tions in the ER andWS, whilst WS is the only network (among the three considered) allowing

clustering. In some other scenarios, WS and ER behaved more similarly (and differently from

BA). This is most likely due to the different degree distributions.

We show that any tree index that one would measure is affected by sampling fraction and

the stage of the epidemic. We show that phylogenies cannot be meaningfully interpreted with-

out this additional knowledge, as tree statistics otherwise may mislead the inference of contact

network. While our results relate to epidemic situations relevant to HIV epidemics, they may

also be relevant to other measurably evolving pathogens such as hepatitis C and influenza.

The developed ABC inference framework for network identification and parameter estima-

tion showed discriminatory power and ability to recover epidemiological parameters when

applied to simulated data. The model used for validating the ABC algorithm included stage

varying infectivity, individual, and within-host variability. For complex models such as epi-

demic spreads on networks the likelihood function is computationally costly to evaluate and

ABC offered a way to perform likelihood-free statistical inference. Furthermore, the use of

summary statistics allowed us to study the relationship between readily measurable tree statis-

tics and complex transmission dynamics. The analysis of the two outbreaks from the Swedish

HIV-1 epidemic showed that inference on real datasets is typically much harder. As is to be

Inference of Transmission Network Structure from HIV Phylogenetic Trees
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expected, real world networks do not match perfectly with the simplified models considered in

this study, that were chosen for comparability with previous studies [13, 14, 16]. In fact, in the

ABC algorithm, the proposed parameters values are accepted if the simulated data based on

them are close enough to the observed data. If the observed data were generated from a rather

different or more complex model, then the simulated data from the candidate model probably

will be far away from the observed data. Hence, very few proposed parameter values will be

accepted. More realistic models, such as dynamic networks, may be able to better capture the

features of the outbreaks, especially those occurring over a long period of time. Another class

of network models that could be suitable in modelling these outbreaks is the configuration

model which is flexible and has been studied extensively in the literature, or exponential ran-

dom graph models (although in general slower to fit to data) which include a broader spec-

trum of degree distributions and clustering levels rather than the three simple networks

considered here. The ABC inference scheme can also be extended to take into account uncer-

tainty in the phylogenetic reconstruction, as shown in [56]. Each summary statistics calculated

on the simulated trees would then be compared to the distribution of the same statistics calcu-

lated on the posterior distribution of virus genealogies. Romero et al. [56] apply this procedure

investigating transmission between a heterosexual couple. However, the outbreaks we are ana-

lyzing in this paper are bigger in size and the whole algorithm would be more computationally

expensive. Lastly, this work could be further extended to integrate other sources of network

data coming from social surveys and/or public health intervention studies, as recently outlined

in a review paper by [57] to improve network analysis in HIV epidemiology.

Supporting Information

S1 Text. Probability to escape infection.

(PDF)

S2 Text. Approximate Bayesian Computation for model choice.

(PDF)

S1 Fig. Infectivity profiles. The first two model specifications represented: (i) constant rate

(red line) and (ii) stage dependent infectivity (black lines). The length of the acute phase was

assumed constant, t1 = 30 days while β was assumed to be 1/8 year−1. We do not assume a

length for the AIDS phase a priori, but if an individual reaches the third stage, he will stay in

the third phase until he is diagnosed or until death occurs.

(TIF)

S2 Fig. Within-host evolution model. The effective viral population size is modelled as a two

piece linear function: first, it grows at rate β1 until a random peak time tx, allowed to vary

among individuals between ta and tb. After tx, the viral population size decreases or stabilizes at

a rate β2. The dashed line represents one possible realization. This figure is part of [21].

(TIF)

S3 Fig. Mean branch lengths evaluated as a function of tree height for an epidemic spread-

ing on networks of size 1000.Mean branch length is evaluated at each coalescence event

(originating internal branches) and each sampling event (external branches) until every indi-

vidual is sampled. WS (red), ER (green), BA (blue).

(TIF)

S4 Fig. Additional distance based tree statistics on virus genealogies as epidemic pro-

gresses on a network of size 1000.Mean branch length (MBL) as function of tree height (A)

and internal/external branch length ratio (B) as function of the number of taxa for simulated
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outbreaks on networks of size 1000. The envelopes represent 95% confidence intervals around

the medians. The curves are obtained using local regression (LOESS). WS (red), ER (green),

BA (blue).

(TIF)

S5 Fig. Distance based and topological tree statistics on virus genealogies as epidemic pro-

gresses on a network of size 5000.Mean branch length (MBL) as function of the number of

infected individuals (A) and as function of the number of taxa (sampled infected individuals)

(B) for simulated outbreaks on networks of size 5000 as epidemics progress. Note that there is

a time interval between infections and diagnoses (which correspond to removal/sampling

times). Sackin’s index (C) and number of cherries per taxa (D) as function of the number of

taxa in networks of size 1000. The envelopes represent 95% confidence intervals around the

medians. The curves are obtained using local regression (LOESS). WS (red), ER (green), BA

(blue).

(TIF)

S6 Fig. Additional distance based tree statistics on virus genealogies as epidemic pro-

gresses on a network of size 5000.Mean branch length (MBL) as function of tree height (A)

and internal/external branch length ratio (B) as function of the number of taxa for simulated

outbreaks on networks of size 5000. The envelopes represent 95% confidence intervals around

the medians. The curves are obtained using local regression (LOESS). WS (red), ER (green),

BA (blue).

(TIF)

S7 Fig. Mean branch length as epidemic progresses with varying sampling fraction. The

mean branch length as function of number of infecteds, with varying sampling fraction

(p = 1-0.25). The envelopes represent 95% confidence intervals around the medians. The

curves are obtained using local regression (LOESS). WS (red), ER (green), BA (blue).

(TIF)

S1 Table. Effect of increased rewiring probability (ρ) on network identification.

(PDF)
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24. Erdős P, Rényi A. On random graphs. PublicationesMathematicae Debrecen. 1959; 6:290–297.

Inference of Transmission Network Structure from HIV Phylogenetic Trees

PLOSComputational Biology | DOI:10.1371/journal.pcbi.1005316 January 13, 2017 20 / 22

http://dx.doi.org/10.1016/j.epidem.2012.04.002
http://www.ncbi.nlm.nih.gov/pubmed/22664069
http://dx.doi.org/10.1073/pnas.0501179102
http://www.ncbi.nlm.nih.gov/pubmed/15767579
http://dx.doi.org/10.1111/1467-9469.00296
http://dx.doi.org/10.1111/j.1541-0420.2012.01748.x
http://www.ncbi.nlm.nih.gov/pubmed/22364540
http://dx.doi.org/10.1098/rsif.2012.0578
http://www.ncbi.nlm.nih.gov/pubmed/23034353
http://dx.doi.org/10.3390/v3060659
http://dx.doi.org/10.3390/v3060659
http://www.ncbi.nlm.nih.gov/pubmed/21731813
http://dx.doi.org/10.1093/aje/kwh255
http://dx.doi.org/10.1093/aje/kwh255
http://www.ncbi.nlm.nih.gov/pubmed/15353409
http://dx.doi.org/10.1073/pnas.1522930113
http://www.ncbi.nlm.nih.gov/pubmed/26903617
http://dx.doi.org/10.1126/science.1090727
http://dx.doi.org/10.1126/science.1090727
http://www.ncbi.nlm.nih.gov/pubmed/14726583
http://dx.doi.org/10.1371/journal.pcbi.1002413
http://dx.doi.org/10.1371/journal.pcbi.1002413
http://www.ncbi.nlm.nih.gov/pubmed/22412361
http://dx.doi.org/10.1371/journal.pcbi.1003105
http://dx.doi.org/10.1371/journal.pcbi.1003105
http://www.ncbi.nlm.nih.gov/pubmed/23818840
http://dx.doi.org/10.1098/rstb.2012.0208
http://www.ncbi.nlm.nih.gov/pubmed/23382430
http://dx.doi.org/10.1093/emph/eou018
http://www.ncbi.nlm.nih.gov/pubmed/24916411
http://dx.doi.org/10.1371/journal.pcbi.1004312
http://www.ncbi.nlm.nih.gov/pubmed/26147205
http://dx.doi.org/10.1093/molbev/msv123
http://www.ncbi.nlm.nih.gov/pubmed/26006189
http://dx.doi.org/10.1073/pnas.96.19.10752
http://dx.doi.org/10.1073/pnas.96.19.10752
http://www.ncbi.nlm.nih.gov/pubmed/10485898
http://dx.doi.org/10.1534/genetics.113.154856
http://www.ncbi.nlm.nih.gov/pubmed/24037268
http://dx.doi.org/10.1093/molbev/msu179
http://www.ncbi.nlm.nih.gov/pubmed/24874208
http://dx.doi.org/10.1371/journal.pcbi.1005130
http://dx.doi.org/10.1371/journal.pcbi.1005130
http://www.ncbi.nlm.nih.gov/pubmed/27681228
http://dx.doi.org/10.1098/rsif.2008.0172
http://www.ncbi.nlm.nih.gov/pubmed/19205079


25. Albert R, Barabási AL. Statistical mechanics of complex networks. Reviews of modern physics. 2002;
74(1):47. doi: 10.1103/RevModPhys.74.47

26. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998; 393(6684):440–
442. doi: 10.1038/30918 PMID: 9623998

27. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;
Complex Systems:1695. Available from: http://igraph.org.

28. Anderson RM, May RM, Anderson B. Infectious diseases of humans: dynamics and control. vol. 28.
Wiley Online Library; 1992.

29. Gisslén M, Svedhem V, Lindborg L, Flamholc L, Norrgren H, Wendahl S, et al. Sweden, the first country
to achieve the Joint United Nations Programme on HIV/AIDS (UNAIDS)/World Health Organization
(WHO) 90-90-90 continuum of HIV care targets. HIV Medicine. 2016;p. n/a–n/a. Available from: http://
dx.doi.org/10.1111/hiv.12431. PMID: 27535540

30. UNAIDS. 90-90-90 An ambitious treatment target to help end the AIDS epidemic. JC2684. 2014;
Geneva(Switzerland). Available from: http://www.unaids.org/sites/default/files/media_asset/90-90-90_
en_0.pdf.

31. RobbML, Eller LA, Kibuuka H, Rono K, Maganga L, Nitayaphan S, et al. Prospective Study of Acute
HIV-1 Infection in Adults in East Africa and Thailand. New England Journal of Medicine. 2016; doi: 10.
1056/NEJMoa1508952 PMID: 27192360

32. Longini IM Jr, ClarkWS, Gardner LI, Brundage JF. The dynamics of CD4+ T-lymphocyte decline in
HIV-infected individuals: a Markov modeling approach. JAIDS Journal of Acquired Immune Deficiency
Syndromes. 1991; 4(11):1141–1147. PMID: 1684387

33. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemis-
try. 1977; 81(25):2340–2361. doi: 10.1021/j100540a008

34. Wilkinson DJ. Stochastic modelling for systems biology. CRC press; 2011.

35. Immonen TT, Leitner T. Reduced evolutionary rates in HIV-1 reveal extensive latency periods among
replicating lineages. Retrovirology. 2014; 11:81. doi: 10.1186/s12977-014-0081-0 PMID: 25318357

36. Immonen TT, Conway JM, Romero-Severson EO, Perelson AS, Leitner T. Recombination Enhances
HIV-1 Envelope Diversity by Facilitating the Survival of Latent Genomic Fragments in the Plasma Virus
Population. PLoS Comput Biol. 2015; 11(12):e1004625. doi: 10.1371/journal.pcbi.1004625 PMID:
26693708

37. RCore Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2014. Avail-
able from: http://www.R-project.org/.

38. Sackin M. “Good” and “bad” phenograms. Systematic Biology. 1972; 21(2):225–226. doi: 10.1093/
sysbio/21.2.225

39. Colless D. Congruence betweenmorphometric and allozyme data for Menidia species: a reappraisal.
Systematic Zoology. 1980; 29(3):288–299. doi: 10.2307/2412663
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