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Summary. We consider statistical inference of trends in mean non-stationary models. A test
statistic is proposed for the existence of structural breaks in trends. On the basis of a strong
invariance principle of stationary processes, we construct simultaneous confidence bands with
asymptotically correct nominal coverage probabilities. The results are applied to global warm-
ing temperature data and Nile river flow data. Our confidence band of the trend of the global
warming temperature series supports the claim that the trend is increasing over the last 150
years.
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1. Introduction

An important problem in time series analysis is the estimation of trends. Assume that the data
X1, . . . , Xn are observed from the model

Xk =μ.k=n/+ ek, k =1, . . . , n, .1/

where μ is an unknown regression function defined on [0, 1] and ek is a mean 0 stationary pro-
cess. The process Xk is mean non-stationary and can be interpreted as a signal μ plus noise ek

model. The paper has two primary goals. The first is to develop statistical procedures to test
whether the trend μ in model (1) has structural breaks or jumps. If the curve μ is smooth, our
second goal is to construct simultaneous confidence bands (SCBs) for μ. Throughout the paper
we consider a posteriori or off-line inference, namely the data have already been collected before
the analysis.

For model (1), the classical changepoint analysis concerns testing the null hypothesis
μ1 = . . . =μn against the alternative of one or multiple changepoints,

μ1 = . . . =μk1 �=μk1+1 = . . . =μk2 �=μk2+1 = . . . �=μkJ +1 = . . . =μn, .2/

where μk =μ.k=n/ and k1, . . . , kJ are called changepoints. The alternative hypothesis says that μ
is piecewise constant. Here we shall generalize the classical setting of piecewise constant func-
tions to piecewise Lipschitz continuous functions. The latter setting seems more reasonable in
practical situations in which trends are expected to change smoothly instead of staying at the
same level between successive abrupt events. Let μ.t/, t ∈ [0, 1], be a piecewise Lipschitz contin-
uous function. Discontinuous points of μ are called structural breaks. In practice, structural
breaks may be caused by sudden events, abrupt policy changes and catastrophes among others.

Address for correspondence: Wei Biao Wu, Department of Statistics, University of Chicago, 5734 South Univer-
sity Avenue, Chicago, IL 60637, USA.
E-mail: wbwu@galton.uchicago.edu



392 W. B. Wu and Z. Zhao

Non-parametric inference of regression functions with jumps has been an active area of re-
search. It would be impossible to have a complete list here and we mention only some represen-
tatives: Müller (1992), Wu and Chu (1993), Qiu and Yandell (1998), Spokoiny (1998), Müller
and Stadtmüller (1999), Grégoire and Hamrouni (2002), Qiu (2003) and Gijbels and Goderniaux
(2004). See also references therein for further information. In the majority of the above-
mentioned results, the errors ek are assumed to be independent. The independence assumption is
a serious restriction and it excludes many important applications. The restriction is particularly
problematic in time series analysis in which dependence is the rule rather than the exception and
is actually one of the main objectives of interest. Tang and MacNeill (1993) argued that serial
correlation can seriously affect the distributions of changepoint statistics.

For our second goal of constructing SCBs for μ, we assume that μ is smooth. SCBs can be
used to find parametric forms of μ. For example, in the study of global temperature series, an
interesting problem is to test whether the trend is linear, quadratic or of other patterns. Under
the assumption of independent errors, the construction of SCBs has been discussed by Johnston
(1982), Härdle (1989), Knafl et al. (1985), Hall and Titterington (1988), Härdle and Marron
(1991), Eubank and Speckman (1993), Sun and Loader (1994), Xia (1998), Cummins et al.
(2001) and Dümbgen (2003) among others. Eubank and Speckman (1993) applied the strong
invariance principle of Komlós et al. (1975) and constructed SCBs for μ with asymptotically
correct nominal values. In the context of kernel density estimation, Bickel and Rosenblatt (1973)
obtained SCBs for density functions. The construction of SCBs has been a difficult problem if
the errors ek are dependent. Partial answers are given in Bühlmann (1998). In this paper, by
applying the strong invariance principle of stationary processes in Wu (2006), we shall provide
a solution to the problem and construct SCBs with asymptotically correct nominal coverage
probabilities.

We now introduce some notation. Let I be an interval of R. A function f is said to be Lipschitz
continuous on I, denoted by f ∈L.I/, if

sup
x �=x′

|f.x/−f.x′/|=|x−x′|<∞:

Let Cm[0, 1], m=0, 1, . . . , denote the collection of functions having up to mth-order derivatives.
For a function g we say that g has bounded variation if

V.g/ := sup
{∑

i

|g.ti/−g.ti−1/|}<∞,

where the supremum is taken over all . . . < ti−1 < ti < . . .: Denote by ‘⇒’ convergence in dis-
tribution and by N.m,σ2/ the normal distribution with mean m and variance σ2. For a ran-
dom variable X write ‖X‖p =E.|X|p/1=p, p > 0, and ‖X‖=‖X‖2. Write Sn =Σn

i=1ei and S−n =
Σn

i=1e−i, n � 0. For two real sequences .an/ and .bn/ write an ∼ bn if limn→∞.an=bn/ = 1 and
an 
bn if 0 < lim infn→∞ |an=bn|� lim supn→∞ |an=bn|<∞.

The rest of the paper is organized as follows. Structural assumptions on the error sequence ei

are made in Section 2. Section 3 concerns testing the existence of structural breaks inμ. Section 4
discusses the construction of SCBs of μ in the presence of dependent errors ei. To apply the
results in Sections 3 and 4, we need to choose smoothing parameters and to estimate the long
run variance of ei. This problem is discussed in Section 5. A simulation study is carried out in
Section 6. Section 7 contains applications in the global warming temperature data and the Nile
river data. Proofs are given in Appendix A.

The data and programs that were used to analyse them can be obtained from

http://www.blackwellpublishing.com/rss
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2. The error structure

We assume that the error process ei in model (1) is stationary and causal. Let "i, i ∈ Z, be
independent and identically distributed (IID) random variables and G a measurable function
such that

ei =G.. . . , "i−1, "i/ .3/

is a proper random variable with mean 0 and finite variance. Let "′
j be an IID copy of "j and

eÅ
i =G.. . . , "−1, "′

0, "1, . . . , "i−1, "i/. Assume that E.|ei|p/<∞, p> 2, and

∞∑
i=1

i‖ei − eÅ
i ‖p <∞: .4/

Wu (2006) established the following strong approximation or strong invariance principle. Under
inequality (4), there is a standard Brownian motion B such that, on a richer probability space,
Si can be uniformly approximated by σ B.i/:

max
i�n

|Si −σ B.i/|=oAS{n1=p′
log.n/}, p′ =min.4, p/, .5/

where σ2 = Σk∈ZE.e0ek/ is the long run variance. The celebrated strong invariance principle
of Komlós et al. (1975) asserts that, if ei are IID, then condition (5) holds with the optimal
error bound oAS.n1=p/ and σ=‖ei‖. In our problem the results by Komlós et al. (1975) are not
applicable owing to the dependence between the ei.

The strong invariance principle is a very useful tool to access asymptotic properties of Sn

and it plays an important role in the related asymptotic inference since Brownian motions have
many nice analytical and probabilistic properties. Wu (2005) defined ‖ei − eÅ

i ‖p as the physical
dependence measure which quantifies the degree of dependence of outputs on inputs. Wu and
Shao (2004) showed that, for a variety of non-linear time series models, ‖en − eÅ

n‖p = O.rn/

for some r ∈ .0, 1/ and hence inequality (4) trivially holds. Consider the autoregressive moving
average ARMA process

en −
l∑

i=1
ψien−i =

q∑
j=0

θj"n−j,

where ψ1, . . . ,ψl and θ0, . . . , θq are real parameters. If the roots of the equation

λl −
l∑

i=1
ψiλ

l−i =0

are all inside the unit disc, then en =Σ∞
i=0 ai"n−i with |ai| = O.ri/ for some r ∈ .0, 1/ and thus

inequality (4) also holds.
With the help of the strong invariance principle (5), we can conduct a systematic study of the

asymptotic properties of estimates of μ. In the rest of the paper it is always implicitly assumed
that condition (4), and consequently condition (5), holds with p=4 and σ> 0.

Non-parametric inference of μ in model (1) typically involves the quantity

Yn.t/=
n∑

i=1
wn.t, i/ei, .6/

where wn.t, i/ are suitable weights. To see how to apply condition (5) to equation (6), we
introduce
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Ωn.t/=|wn.t, 1/|+
n∑

i=2
|wn.t, i/−wn.t, i−1/|, Ωn = max

0�t�1
{Ωn.t/}, .7/

and the Gaussian process

Y�
n .t/=

n∑
i=1

wn.t, i/ σ{B.i/−B.i−1/}: .8/

Since condition (5) holds with p=4, using the summation by parts formula, we have

|Yn.t/−Y�
n .t/|�Ωn.t/ max

i�n
|Si −σ B.i/|=oAS{Ωn.t/n1=4 log.n/} .9/

and the uniform approximation

max
0�t�1

|Yn.t/−Y�
n .t/|=oAS{Ωnn1=4 log.n/}: .10/

If wn.t, i/ is sufficiently smooth in i, then Ωn.t/ and Ωn have tractable bounds. For example, for
the Priestley–Chao estimate (see equation (18) in Section 4), we have

wn.t, i/= K{.t − i=n/=bn}
nbn

and hence Ωn = O{.nbn/−1} if K has bounded variation. For local linear estimates (see Sec-
tion 4.1 or Fan and Gijbels (1996)), if K is Lipschitz continuous and has bounded support,
elementary calculations show that Ωn =O{.nbn/−1} also holds. Thus, with properly chosen bn,
the asymptotic properties of Yn.t/ follow from those of Y�

n .t/. In other words, model (1) can be
reduced to the conventional model

X�
k =μ.k=n/+σZk, k =1, . . . , n, .11/

where Zk are IID standard normal distributions and σ and μ are unknown. This idea is imple-
mented in Sections 3 and 4.

3. Inference of structural breaks

Let PL[0, 1] be the set of piecewise Lipschitz continuous functions on [0, 1] with a finite number
of jumps. For a formal definition, f ∈ PL[0, 1] if there are 0 = t0 < t1 < . . . < tk < tk+1 = 1 with
k <∞ such that f is Lipschitz continuous on the interval [tj, tj+1/, j =0, . . . , k, and the jumps
f.tl/ − f.tl−/ �= 0, 1 � l � k. Here the left-hand limit f.t−/ = limu↑t{f.u/}. We generically call
jumps structural breaks. Assume that μ∈PL[0, 1].

Important problems in the inference of structural breaks include

(a) testing the hypothesis of no structural change H0 :μ∈L[0, 1] and
(b) estimating the locations and sizes of structural breaks.

Various aspects of the second problem have been studied; see Pettitt (1980), Csörgő and Horváth
(1997), Lavielle (1999) and Davis et al. (2006) among others. In this paper we focus on the first
problem. The null hypothesis implies a smooth change in the trend: for some constant c > 0,
|μk+1 −μk|� c=n holds for all n�2 and 1� k < n. In comparison, in the classical changepoint
inference, μk does not change.

The formulation μ ∈ PL[0, 1] is more general than that in the classical setting. However,
without the piecewise constancy assumption, we can only use local information since a Lip-
schitz continuous function can be locally approximated by a constant. For example, to test
whether a given t ∈ .0, 1/ is a discontinuous point, we can compare the local averages of Xj over
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nt < j < nt + kn and over nt − kn < j < nt, where kn is the block length satisfying kn →∞ and
kn=n→0. If the two averages are close, then t is unlikely to be a discontinuous point. A global
measure of the discrepancy is

DÅ
n = 1

kn
max

kn�i�n−kn

∣∣∣∣∣
kn+i∑

j=i+1
Xj −

i∑
j=i−kn+1

Xj

∣∣∣∣∣ : .12/

A non-overlapping version of DÅ
n is given by

Dn = max
1�i�m−1

|Ai −Ai−1|, Ai =Ai,n = 1
kn

kn∑
j=1

Xj+ikn : .13/

Here m=
n=kn� is the largest integer not exceeding n=kn. Let ωi = E.Ai/. For 1 � i�m let the
interval Ii = .ikn=n, .i+1/kn=n]. If there is a discontinuous point of μ in Ii, then we expect that
either |Ai −Ai−1| or |Ai+1 −Ai| would take large values. So Dn can also be used to test whether
μ has discontinuous points. There are certainly other ways to detect discontinuities; see the
references that were cited in Section 1.

Theorem 1 concerns the asymptotic distributions of Dn and DÅ
n under the null hypothesis of

no structural changes H0 :μ∈L[0, 1]. Using condition (5), we show that after proper centering
and scaling both Dn and DÅ

n have asymptotic extreme value distributions.

Theorem 1. Assume that μ∈L[0, 1] and

k−1
n n1=2 log.n/3 +n−2=3 log.n/1=3kn →0: .14/

Let γm = [4 log.m/−2 log{log.m/}]1=2. Then we have
√

log.m/.k1=2
n σ−1Dn −γm/⇒V .15/

and
√

log.m/k1=2
n σ−1DÅ

n − [2 log.m/+ 1
2 log{log.m/}]− log.3/⇒V , .16/

where V has the extreme value distribution P.V �x/= exp{−π−1=2 exp.−x/}.

In condition (14), the first part n1=2 log.n/3 =o.kn/ suggests that the block length kn should
not be too small, thus ensuring the validity of the strong approximation by Brownian motions. In
contrast, the second part kn =o{n2=3 log.n/−1=3} suggests that kn should not be too large so that
the maximum difference max1�i�m−1 |ωi −ωi−1| can be controlled. If kn 
 nβ with β ∈ . 1

2 , 2
3 /,

then expression (14) holds.
Theorem 1 is not yet directly applicable since the long run variance σ2 is typically unknown

and it needs to be estimated. In Section 5 several estimates of σ are proposed satisfying σ̂−σ=
OP.n−γ/ for some γ>0 (see theorem 3 in Section 5). By Slutsky’s theorem, theorem 1 still holds
if σ therein is replaced by σ̂.

For a given level α∈ .0, 1/, let

cα=− log{− log.1−α/}− 1
2 log.π/

be the .1 −α/th quantile of V in expression (15). By theorem 1, we reject the null hypothesis
μ∈L[0, 1] if

Dn >k−1=2
n σn{cα log.m/−1=2 +γm}: .17/

Now we consider the power of the test. Consider the local alternative in which there is a jump
at θ∈ .0, 1/ with jump size δn =μ.θ/−μ.θ−/ �=0. If log.n/=o.knδ

2
n/ and expression (14) holds,

since μ∈PL[0, 1],
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max
1�i�m−1

|ωi −ωi−1|� 1
2 |δn|+O.kn=n/:

By theorem 1 it is easily seen that the power goes to 1. A simulation study is carried out in
Section 6.1.

Remark 1. Let τ be a positive integer and assume that f ∈Cτ [0, 1] and that f .τ / ∈PL[0, 1] has
discontinuous points 0 < t1 < . . . < tJ < 1. We say that t1, . . . , tJ are structural breaks of order
τ . Theorem 1 can be generalized to test the existence of higher order structural breaks. Let
μ∈Cτ [0, 1]. As in expression (13), define ΔAi =Ai −Ai−1 and D.τ /

n =maxτ+1�i�m−1 |Δτ+1Ai|.
Assume that kn 
nb, 1

2 < b < .2τ +2/=.2τ +3/. Using the argument in the proof of theorem 1,
we can show that, under H0 :μ.τ / ∈L[0, 1], properly normalized D.τ /

n has the same asymptotic
distribution V as in expressions (15) and (16). The details are omitted.

3.1. The convergence issue
It is well known that the convergence to the extreme value distributions in expressions (15), (16)
and (22) below is extremely slow and very large values of n are needed for the approximation to
be reasonably accurate. To overcome this disadvantage, with the help of the strong invariance
principle (5), we resort to the following simulation method:

(a) generate n IID standard normal random variables Z1, . . . , Zn;
(b) use formula (12) and obtain DÅ

n,Z (say).

By condition (9), we can approximate the distribution of DÅ
n =σ by DÅ

n,Z if the block length kn

is sufficiently large. (This idea is also implemented in the proof of theorem 1; see Appendix A).
Clearly the distribution of DÅ

n,Z can be obtained by repeating steps (a) and (b) for many times.
The distribution of Dn=σ can be similarly dealt with.

4. Simultaneous confidence bands

Consider the Priestley–Chao estimate (Priestley and Chao, 1972):

μbn.t/=
n∑

i=1
wn.t, i/Xi, wn.t, i/= K{.t − i=n/=bn}

nbn
: .18/

Here the bandwidth bn satisfies bn → 0 and nbn → ∞ and K is a kernel with
∫

K.s/ ds = 1.
Other methods include the Gasser–Müller estimate (Gasser and Müller, 1979), local linear esti-
mate, splines and wavelets. Proposition 1 below can be used to construct pointwise confidence
intervals. It is a simple consequence of expressions (6)–(10) and the details are omitted.

Proposition 1. Assume that K has bounded variation, bn →0 and log.n/2 =o{√
.nbn/}. Then

for fixed 0 < t1 < . . . < tJ < 1,
√

.nbn/[μbn.tj/ − E{μbn.tj/}], 1 � j � J , are asymptotically IID
normals N{0,σ2

∫
R K2.u/ du}.

In practical situations, however, it is often not very useful to provide only pointwise confidence
intervals and an SCB is more desirable. At a given level α∈ .0, 1/, to construct a 100.1 −α/%
asymptotic SCB for μ, we need to find two functions l and u depending on the data .Xk/n

k=1
such that

lim
n→∞[P{l.t/�μ.t/�u.t/ for all t ∈ .0, 1/}]=1−α: .19/

If the trend is of certain parametric forms, then methods such as least squares can be applied
to estimate μ and SCBs can be constructed by Scheffé’s (1959) procedure in conjunction with
asymptotic normal theory. However, in many cases such parametric forms are unknown and we



Trends in Time Series 397

need to resort to non-parametric techniques since they make very few structural assumptions.
However, non-parametric estimates may suggest appropriate parametric models. With SCB (19),
it is possible to test the validity of parametric models. We now state some regularity conditions.

Definition 1. Let H.α/, 1 �α� 2, be the set of bounded functions H with bounded support
satisfying

(a)
∫

R ΨH.u; δ/ du=O.δ/ as δ→0, where ΨH.u; δ/=sup{|H.y/−H.y′/| :y, y′ ∈ [u−δ, u+δ]},
and

(b) the limit DH ,α= limδ→0[|δ|−α ∫R{H.x+ δ/−H.x/}2 dx] exists and DH ,α �=0.

Let κ2
H =∫R H2.s/ ds. For m�3 define

BH ,α.m/=√{2 log.m/}+ 1√{2 log.m/}

[
2−α

2α
log{log.m/}+ log

(
C

1=α
H ,αhα21=α

2
√
π

)]
, .20/

where CH ,α = DH ,α=2κ2
H and hα is the Pickands constant (see theorem A1 in Bickel and

Rosenblatt (1973)). Two values of hα are known: h1 =1 and h2 =π−1=2.

Theorem 2. Assume that K ∈ H.α/ is a symmetric kernel with support [−ω,ω]. Let β =∫
K.u/u2 du=2. Further assume that μ∈C3[0, 1] and

log.n/3

bn
√

n
+nb7

n log.n/→0: .21/

Let m=1=bn and the interval T = [ωbn, 1−ωbn]. Then for every u∈R, as n→∞,

P

[√
.nbn/

σκK
sup
t∈T

|μbn.t/−μ.t/−b2
n βμ

′′.t/|−BK,α.m/� u√{2 log.m/}

]
→ exp{−2 exp.−u/}:

.22/

Condition (b) in definition 1 is useful in the extremal value theory of Gaussian processes
(see theorem A1 in Bickel and Rosenblatt (1973)). Elementary calculations show that we have
K ∈H.α/ with α= 2 for the triangle, quartic, Epanechnikov and Parzen kernels and α= 1 for
the rectangle kernel. For a kernel with unbounded support, under suitable conditions on its tail,
theorem 2 is still applicable; see remark 3 in Appendix A.

As in condition (14), the first part in condition (21) ensures the validity of the strong approx-
imation and the second part controls the bias (see lemmas 2 and 3 in Appendix A). Condi-
tion (21) is mild and it is satisfied if bn 
 n−γ , 1=7 < γ < 1=2. In particular, it holds if γ =
1=5, which corresponds to the optimal bandwidth under the mean-squared error (MSE)
criterion.

Remark 2. In the literature strong invariance principles obtained for dependent random vari-
ables typically have rates of the form oAS.n1=2−δ/ for some arbitrarily small δ> 0 (Philipp and
Stout, 1975; Eberlein, 1986). As can be seen from condition (9) and the proof of lemma 2,
in our problem such error bounds are too crude to be useful. It requires bn → 0 and n2δbn →
∞. The latter condition is prohibitively restrictive if δ is close to 0. Recall that in the inde-
pendence case Eubank and Speckman (1993) have applied the strong invariance principle of
Komlós et al. (1975), which has the optimal rate. In comparison with the result of Komlós
et al. (1975), our bound in condition (5) is optimal up to a multiplicative logarithmic fac-
tor if 2 < p � 4 and it is sufficiently sharp for asymptotic inference of non-parametric
estimates.
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4.1. Implementation
Let σ̂ and μ̂′′ be estimates of σ and μ′′ respectively. On the basis of theorem 2, an asymptotic
100.1−α/% confidence band for μ can be constructed as

μbn.t/−b2
nβ μ̂

′′.t/± luα , lu = σ̂κK√
.nbn/

[
BK,α.b−1

n /+ u√{2 log.b−1
n /}

]
.23/

and uα=− log[log{.1 −α/−1=2}]. Eubank and Speckman (1993) proposed expression (23) for
the independent error case. The estimation of μ′′ is not easy when data points are not abundant.

To circumvent the difficulty, we adopt a jackknife-type bias correction scheme. Assume that
the bias

E{μbn.t/}−μ.t/=b2
nβ μ

′′.t/+O.χn/

(see lemma 3 in Appendix A), where χn =b3
n +n−1b−1

n . Consider the simple estimate of the form

μ̃b.t/=2μb.t/−μb
√

2.t/: .24/

Then E{μ̃bn.t/} =μ.t/ + O.χn/. So we do not need to estimate the unpleasant term μ′′. For
similar forms see Härdle (1986). As pointed out by a referee, using equation (24) is equivalent
to using the higher order kernel

KÅ.s/=2K.s/− K.s=
√

2/√
2

:

For this KÅ theorem 2 is still applicable if the conditions therein are satisfied. We do not recom-
mend using kernels with too high orders when data points are not abundant since the goal of
bias reduction is achieved at the cost of a significant increase in variance. For related discussions
see Fan and Gijbels (1996), section 3.3, and Fan and Zhang (2003). For our KÅ, the increase in
variance is not severe. For example, for the Epanechnikov kernel, κKÅ=κK ≈1:53.

Because of the dependence, the optimal MSE bandwidth bn is different from the bandwidth
under independence (Herrmann et al., 1992). By the variance estimates in Herrmann et al.
(1992) and Ruppert et al. (1995), a simple choice is b̃n =ρ1=5bÅ

n , where bÅ
n is the optimal band-

width calculated as if the data were independent, and ρ=σ2=‖e0‖2 is the variance correction
factor. The Priestley–Chao estimate (18) suffers the boundary problem. We shall use the local
linear estimate (Fan and Gijbels, 1996) with

wn.t, i/=K

(
t − i=n

bn

)
S2.t/− .t − i=n/ S1.t/

S2.t/ S0.t/−S2
1.t/

,

where

Sj.t/=
n∑

i=1
.t − i=n/jK

(
t − i=n

bn

)
,

and the automatic bandwidth selector of Ruppert et al. (1995). Then b̃n ∼ cn−1=5 for some
constant c. The bias correction (24) allows larger b′

n such that b′
n

3 + .nb′
n/−1 ∼ .nb′

n/−1=2, or
b′

n ∼cn−1=7. However, it is non-trivial to find an optimal c that has good practical performance.
On the basis of b̃n, in our applications we let b′

n =φρ1=5bÅ
n , 1�φ�4.

Theorem 3 shows that, to estimate σ2, the MSE optimal block length kn ∼cn1=3. It is unclear
how to choose the optimal c. In practice we choose kn ∈ .n1=3, n1=2/.
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Since the convergence in expression (22) is slow, we shall, as in Section 3.1, apply a similar
simulation-based approach. For ease of application, we combine procedures mentioned above
and list the details below.

(a) Choose an appropriate kn ∈ .n1=3, n1=2/ and obtain an estimate σ̂ of σ.
(b) Let b = 2ρ̂1=5bÅ, where bÅ is calculated from Ruppert et al. (1995), and ρ̂= σ̂2=ν̂, ν̂ =

n−1 Σn
i=1 ê2

i , êi =Xi −{2μbÅ.i=n/−μ√
2bÅ.i=n/}.

(c) Generate IID standard normals Z1, . . . , Zn and calculate sup0�t�1 |μ̃�
b.t/|, where μ̃�

b.t/=
2μ�

b.t/−μ�
b
√

2.t/ and μ�
b.t/=Σn

i=1wn.t, i/Zi.
(d) Repeat step (c) and obtain the estimated quantile q̂0:95 of sup0�t�1 |μ̃�

b.t/|.
(e) The 95% SCB is μ̃b ± σ̂q̂0:95, where μ̃b.t/=2μb.t/−μb

√
2.t/.

5. Estimating σ

To apply theorems 1 and 2, we should deal with the crucial issue of estimating the long run vari-
ance σ2. If μ is a constant, since σ2=2π is the spectral density function of the process ei at 0, there
is a variety of ways to estimate σ2, such as lag window estimates and smoothed periodogram
estimates. See Bühlmann (2002) and Politis et al. (1999) among others. The situation is slightly
more complicated owing to the presence of a non-constant mean trend, which could possibly
be discontinuous. Assuming that .ei/ are IID and μ is continuous, Hall et al. (1990) considered
difference-based estimation of variance. See also Herrmann et al. (1992), which assumed very
strong moment conditions.

Recall expression (13) for the definition of Ai. For a real sequence a1, . . . , ak, denote its median
by median.a1, . . . , an/. Here we consider three asymptotically consistent estimates:

σ̂1 =
√

.πkn/

2.m−1/

m−1∑
i=1

|Ai −Ai−1|,

σ̂2 =
√

kn√
.2u1=4/

median.|Ai −Ai−1|, 1� i�m−1/,

σ̂3 =
√

kn√{2.m−1/}

(
m−1∑
i=1

|Ai −Ai−1|2
)1=2

: .25/

In σ̂2, u1=4 =0:674. . . is the third quartile of the standard normal distribution. Carlstein (1986)
considered strong mixing processes by using non-overlapping blocks. Our σ̂3 is closely related
to Carlstein’s subseries variance estimate.

Theorem 3. Assume that μ∈L[0, 1].

(a) Let kn 
n5=8. Then σ̂1, σ̂2 =σ+OP{n−1=16 log.n/}.
(b) Let kn 
n1=3. Then E.|σ̂2

3 −σ2|2/=O.n−2=3/.

We conjecture that, like σ̂3, the other two estimates also satisfy σ̂1, σ̂2 = σ+ OP.n−1=3/ if
kn 
n1=3. Our simulation study (which is not reported here) shows that σ̂2 is more robust whereas
σ̂1 and σ̂3 are vulnerable to large jumps in μ. For autoregressive AR(1) models with IID normal
innovations, Carlstein (1986) argued that his subseries variance estimate has the optimal MSE
O.n−2=3/ if the block length is of the order n1=3. A result of similar vein based on the block-
wise bootstrap is given in Künsch (1989). It is interesting to note that our underlying con-
dition (4) plays two important roles at the same time: one is to ensure the strong invariance
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principle (5) whereas the other is to achieve the MSE optimal variance estimate as in theorem
3, part (b).

6. A simulation study

In this section we shall present a simulation study for the performance of our test for structural
breaks in Section 3 and the nominal levels (coverage probabilities) of our SCB in Section 4. Let
"i be IID standard normals and |θ|< 1. Consider the process

ei =θ|ei−1|+√
.1−θ2/"i: .26/

If θ= 0, then ei = "i are IID. Otherwise ei forms a non-linear autoregressive process. Since
|θ| < 1, by theorem 2 in Wu and Shao (2004), equation (26) has a stationary distribution and
‖en − eÅ

n‖4 =O.|θ|n/. Hence condition (4) holds with p= 4. Interestingly, F.u/= P.ei �u/ has
a skew normal density of the form f.u/=2 φ.u/ Φ.δu/, where φ and Φ are respectively the stan-
dard normal density and normal distribution function (Andel et al., 1984). The extra parameter
δ=θ=

√
.1−θ2/ regulates the skewness. Skew normal time series have been widely used to model

processes with asymmetric and/or non-normal distributions. Simple calculations show that

E.ei/=
∫

R
uf.u/ du=θ

√
.2=π/

and

var.ei/=1−2θ2=π:

Let σ2.θ/ be the long run variance of ei in equation (26). For each level of θ=0:0, 0:1, . . . , 0:9,
we apply σ̂3 of equation (25) with length 105 and kn =47. The 10 values of σ̂.θ/ are reported in
Table 1. The other two estimates σ̂1 and σ̂2 yield very similar results.

6.1. Power curves for the test of structural breaks
We choose the mean function μδ.t/= δ cos.2πt/ 1t>0:5 with a jump of size δ at location t = 0:5
and consider the model Xk =μδ.k=n/+ e′

k, where

e′
k = ek −θ

√
.2=π/

σ̂.θ/

and ek is defined by equation (26). Fig. 1(a) shows the plot of μδ.t/ with δ= 1. Let the sample
size n= 200 and kn =
n0:6�= 24. We use the simulation procedure that is listed in Section 3.1
with 4 × 105 repetitions to obtain the 0:95-quantile of DÅ

n,Z. Then we simulate 4 × 104 sets of
samples and the power is calculated by the proportion of samples for which the null hypothesis
H0 :μδ ∈L[0, 1] is rejected when μδ has a jump of size δ. Power curves are plotted in Fig. 1(b).
For θ=0, 0:3, 0:6, the p-values at δ=0 are 0:049, 0:047 and 0:048 respectively. They are close to
the nominal level 0:05. However, for θ=0:9, the test performs poorly. It has less power and the

Table 1. Estimated long run standard deviations σ̂.θ/

θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
σ̂.θ/ 1.00 1.01 1.02 1.04 1.07 1.11 1.17 1.28 1.46 1.87
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p-value is 0:032. See Section 6.2 for more discussion on the relationship between bandwidths
and dependence in the context of SCBs.

6.2. Coverage probabilities of simultaneous confidence bands
Consider the model Xk =μ.k=n/+ e′

k, where

e′
i := ei −θ

√
.2=π/

σ̂.θ/

and the mean function μ.t/ = cos.2πt/, 0 � t � 1. Let n = 200. To study how bandwidths and
dependence affect the coverage probabilities, we choose 10 levels of θ .θ= 0:0, 0:1, . . . , 0:9/

and 15 levels of b .b = 0:01, 0:02, . . . , 0:15/. For each level of b, following steps (c) and (d) in
Section 4, we use local linear regression program locpoly in the R package KernSmooth
and estimate q0:95 =q0:95.b/ with N =104 repetitions. The estimated quantiles are shown in the
second column of Table 2. For each of the 10 × 15 = 150 combinations of θ and b, we gener-
ate 104 realizations of μ̃b.t/=2μb.t/−μ√

2b.t/. The SCB is constructed as μ̃b ± σ̂q0:95. If μ lies
within this band, namely sup0�t�1 |μ.t/ − μ̃b.t/|� σ̂q0:95, then we say that the SCB covers μ.
The fourth to 13th columns show the simulated coverage probabilities with the error process e′

i

for θ=0:0, 0:1, . . . , 0:9. The third column shows the bias max0�t�1 |E{μ̃b.t/}−μ.t/|.
Table 2 shows that the coverage probabilities of our SCB are reasonably close to the set nom-

inal level 95%, especially when the bandwidth b � 0:11 and θ is not very large. For the model
Xk =cos.2πk=n/+"k, 1�k�n, where n=200 and "k are IID standard normal random variables,
the automatic bandwidth selection procedure of Ruppert et al. (1995) shows that the optimal
bandwidth b for the local linear regression is around 0:07. In this case, for θ=0:0, 0:1, . . . , 0:8,
the coverage probabilities range from 0.950 to 0.958. They are quite close to the nominal level
95%. However, if θ is close to 1, then the dependence is strong and we need to choose a relatively
large bandwidth to ensure the validity of the strong approximation. The last column of Table 2
supports this claim. However, too large b increases the bias; hence the coverage probabilities
decrease.

Table 2. Coverage probabilities of simultaneous confidence bands

b q0:95 bias Coverage probabilities for the following values of θ:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.01 2.020 0.001 0.951 0.953 0.953 0.955 0.966 0.969 0.976 0.985 0.995 1.00
0.02 1.611 0.004 0.954 0.954 0.954 0.954 0.962 0.969 0.970 0.975 0.986 0.999
0.03 1.366 0.009 0.954 0.954 0.954 0.952 0.957 0.959 0.963 0.967 0.978 0.993
0.04 1.210 0.015 0.955 0.951 0.951 0.955 0.955 0.959 0.960 0.964 0.970 0.989
0.05 1.101 0.022 0.957 0.956 0.954 0.952 0.954 0.955 0.958 0.962 0.966 0.980
0.06 1.003 0.030 0.948 0.951 0.950 0.952 0.952 0.955 0.950 0.954 0.959 0.973
0.07 0.940 0.039 0.950 0.952 0.952 0.953 0.953 0.957 0.954 0.957 0.958 0.971
0.08 0.878 0.046 0.954 0.949 0.953 0.950 0.950 0.956 0.949 0.952 0.952 0.963
0.09 0.838 0.053 0.948 0.951 0.952 0.951 0.952 0.949 0.955 0.955 0.948 0.958
0.10 0.790 0.059 0.946 0.948 0.947 0.944 0.948 0.945 0.947 0.948 0.942 0.949
0.11 0.769 0.071 0.947 0.950 0.948 0.945 0.950 0.944 0.943 0.943 0.941 0.950
0.12 0.721 0.095 0.936 0.935 0.933 0.934 0.935 0.937 0.933 0.935 0.932 0.940
0.13 0.692 0.123 0.925 0.922 0.923 0.921 0.917 0.917 0.915 0.920 0.913 0.910
0.14 0.680 0.154 0.918 0.911 0.908 0.907 0.907 0.907 0.911 0.914 0.906 0.904
0.15 0.655 0.187 0.896 0.886 0.886 0.886 0.882 0.892 0.893 0.895 0.893 0.893
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7. Applications

7.1. Nile river data
The data Xi, 1� i�100, consist of measurements of the annual flow of the River Nile at Aswan
from 1871 to 1970. Since Cobb (1978), the Nile river data have been extensively studied. It is
believed that there is a jump (decrease) in year 1899 which may be due to the construction of a
new dam at Aswan. However, it seems that in the literature most analyses of these data assume
that the observations are independent. Here we shall apply theorem 1 and test the existence of
jumps without assuming independence.

Since the convergence in expression (16) is very slow, we shall use the simulation method
in Section 3.1 to obtain cut-off values. Let n = 100, k = 15 and m = 1 + 
n=k� = 7. We repeat
the following process for 104 times: generate n IID normals N.0, 1/ and calculate expression
(12). The 95% and 99% simulated quantiles are 1:07 and 1:24 respectively. For the Nile river
data, with k =
n0:6� we obtain DÅ

n = 254:06, which needs to be rescaled by the long run stan-
dard deviation σ̂. Assuming that the observations are independent, Cobb (1978) suggested
σ̂= 125. Here we shall calculate it by expression (25). Examining the plot of the three esti-
mates, we choose lag 9 and obtain σ̂1 = 176, σ̂2 = 162 and σ̂3 = 194. As mentioned in Sec-
tion 5, σ̂2 = 162 is preferred for robustness. Therefore the value of the test statistic DÅ

n =σ̂2 =
254:06=162 = 1:57. Since this value is larger than the 99%-quantile 1:24, we conclude that
the jump does exist at the 1% level (it is significant even if σ̂3 is used: DÅ

n =σ̂3 = 254:06=194 =
1:31).

The evidence would be more substantial if Cobb’s estimate σ̂=125 were used, in which case the
test statistic DÅ

n =σ̂=254:06=125=2:03. The variance correction factor ρ=1622=1252 =1:68. A
simple way to relax his independence assumption is to use autoregressive moving average mod-
elling. The mean levels before and after year 1899 are 1097.75 and 849.97 respectively. Then
the estimated noise processes are êi =Xi −1097:75 if i�28 and êi =Xi −849:97 if i> 28. Using
the Akaike information criterion, the estimate noise processes êi can be modelled as an AR(1)
process: êi =0:16êi−1 +"i, where "i are IID with mean 0 and standard deviation 158591=2 ≈126.
The AR(1) model implies that the long run standard deviation for ei is 126=.1 − 0:16/ ≈ 150,
which in a certain sense justifies our estimate σ̂2 =162.

7.2. Global warming data
Global temperature series have been extensively studied in the statistics community; see for
example Bloomfield and Nychka (1992), Vogelsang (1998) and Wu et al. (2001) among others.
Here we consider the series that was compiled by Jones et al. (2006) (see http://cdiac.esd.
ornl.gov/ftp/trends/temp/jonescru/.) It contains global monthly temperature
anomalies from 1856 to 2000 (Fig. 2(a)). Assuming that the trend is non-decreasing, Wu et al.
(2001) fitted an isotonic regression for the annual temperature sequence. However, Wu et al.
(2001) did not address the key issue of how to test the monotonicity assumption.

We first test whether jumps exist. There are 145 years and the length of the series is n =
12 × 145 = 1740. In the three estimates in expression (25), we choose k = 36. Then σ̂1 = 0:45,
σ̂2 =0:45 and σ̂3 =0:44. They are consistent and we choose σ̂=0:44. To calculate DÅ

n of expres-
sion (12), as in Section 7.1, let k =
n0:6� such that condition (14) holds. Then DÅ

n = 0:218 and
DÅ

n =σ̂=0:495. On the basis of the simulation method that was outlined in Section 3.1, we obtain
the simulated p-value 22%. Therefore we are pleased to conclude that there is no evidence for
jumps in the mean trend. In an interesting paper, Müller and Stadtmüller (1999) analysed infant
growth data and argued that the growth of children occurs in jumps in the sense that there is
a short period of fast growth, since it is unlikely that a mathematical jump discontinuity exists



404 W. B. Wu and Z. Zhao

0 500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

S
im

ul
ta

ne
ou

s 
co

nf
id

en
ce

 b
an

ds

0 500 1000 1500

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

tr
en

d

(a)

(b)

Fig. 2. SCBs for the global temperature data: (a) global monthly temperature anomalies from 1856 to 2000,
local linear estimate of the trend curve and its 0.95 and 0.99 SCBs; (b) fitted linear (— —), quadratic ( )
and isotonic (� - � - � - �) trends, local linear estimate of the trend ( ) and its 0:95 SCB (-- - - - - -, upper band;
. . . . . . ., lower band)

in reality. There is no jump in the derivative since the p-value is 0.414.
The automatic bandwidth selection of Ruppert et al. (1995) gives bÅ

n =0:0124. The variance
correction factor ρ̂= σ̃2=ν̂= 0:229=0:0208 ≈ 11. For the 95% SCB (Fig. 2(b)), we choose the
bandwidth bn =2×0:0124×110:2 ≈0:04. We are testing three null hypotheses separately: non-
decreasing trend Hisotonic, linear trend Hlinear and quadratic trend Hquadratic. The approximate
p-values for them are 0:55, 0:008 and 0:15 respectively. Therefore we reject Hlinear at the 1% level.
Woodward and Gray (1993) fitted a linear trend model. The 95% SCB suggests that we accept
Hisotonic and, surprisingly, Hquadratic. The regression equation is yi = −0:316 − 0:255.i=n/ +
0:879.i=n/2. Rust (2003) fitted a quadratic trend and argued that a linear trend is inadequate.
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Appendix A: Proofs

In the proofs below, the symbol C denotes a generic constant which may vary from place to place. Let Φ
and φ=Φ′ be the standard normal distribution and density functions. To prove theorem 1, the following
lemma is needed. Recall expression (15) for V .

Lemma 1. Let Zi, i ∈ Z, be IID standard normal distributions, Yi = |Zi+1 − Zi| and γn = [4 log.n/ −
2 log{log.n/}]1=2. Then, as n→∞,

√
log.n/{max1�i�n−1.Yi/−γn}⇒V .

Proof. For t �0 let Ψ.t/=P.|Z1|� t/=2 Φ.−t/. Then Ψ.t/={2+o.1/} φ.t/=t as t →∞. Since Yi=
√

2=D

|Z1|, for fixed x, n P{Yi �γn + log.n/−1=2x}→ exp.−x/=
√
π as n→∞. Let 0 <λ< 1−2−1=2. Then P.Y1 �

t, |Z1|<λt/�P{|Z2|� .1−λ/t}=o{Ψ.t=
√

2/}. Since Y2 and Z1 are independent, as t →∞, we have

P.Y1 � t, Y2 � t/�P.Y2 � t, |Z1|�λt/+P.Y1 � t, |Z1|<λt/=o{P.Y1 � t/}:

By theorem 3.7.1 in Galambos (1987), the lemma follows.

Lemma 2. Assume that H ∈H.α/,α∈ [1, 2],
∫

R H2.u/ du=1 and H has finite support [−ω,ω]. Let bn →0
satisfy

√
.nbn/= log.n/3 →∞. For 0� t �1 define

Un.t/= 1√
.nbn/

n∑
j=1

H

{
m

(
t − j

n

)}
ej

σ
,

where m=1=bn. Let BH .m/=BH ,α.m/ be defined as in equation (20). Then, for u∈R,

lim
n→∞

(
P

[
max

t∈[ωbn ,1−ωbn ]
|Un.t/|−BH .m/� u√{2 log.m/}

])
= exp{−2 exp.−u/}: .27/

Proof. Let B be the Brownian motion in condition (5), Y.s/ = ∫
R H.s − u/ dB.u/, Ỹ .s/ = ∫ m

0 H.s −

1+knv�=kn/ dB.v/, where kn = nbn, and Zj = B.j/ − B.j − 1/. Then Y is a stationary Gaussian process.
Since H ∈H.α/, α∈ [1, 2], and

∫
R H2.u/ du=1, then

γ.δ/ :=
∫

R

H.u/ H.u+ δ/ du=1−|δ|αDH ,α=2+o.|δ|α/:

Note that E{Y.s/ Y.s+ δ/}=γ.δ/. By corollary A1 of Bickel and Rosenblatt (1973), for u∈R,

lim
m→∞

(
P

[
max
s∈I

|Y.s/|−BH .m′/�{2 log.m′/}−1=2u

])
= exp{−2 exp.−u/}, .28/

where I = [ω, m − ω] and m′ = m − 2ω. Since BH .m′/ = BH .m/ + o.m−1/ and log.m′/−1=2 = log.m/−1=2

+ o.m−1/, by Slutsky’s theorem, condition (28) also holds with m′ therein replaced by m. Let Rn =
max1�j�n |Sj −σ B.j/|=σ√

.nbn/ and

Wn.t/=
n∑

j=1

H{m.t − j=n/}√
.nbn/

Zj

=
∫ n

0

H.mt −m
1+u�=n/√
.nbn/

dB.u/:
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By condition (5) with p=4, since
√

.nbn/= log.n/3 →∞, we have Rn =oAS{log.n/−1=2}. Using the summa-
tion by parts formula, since

∫
R ΨH .u; δ/ du=O.δ/, we have

|Un.t/−Wn.t/|=O.Rn/

[
1+

∫ n

0

∣∣∣∣H
{

m

(
t − 
1+u�

n

)}
−H

{
m

(
t − 
u�

n

)}∣∣∣∣du

]

=O.Rn/

[
1+

∫
R

ΨH

{
m

(
t − u

n

)
;
m

n

}
du

]

=oAS{log.n/−1=2} .29/

uniformly over t ∈ [0, 1]. By the scaling property of Brownian motion,

.Wn.s=m/, s∈I/
D=.Ỹ .s/, s∈I/:

So equation (27) follows from equations (28) and (29) if Θ = OP.rn/, where Θ = maxs∈I |Δ.s/|, Δ.s/ =
Y.s/− Ỹ .s/ and rn =√

log.n/=
√

kn =o{log.n/−1=2}.
We now show that Θ= OP.rn/. Note that ‖Δ.s/‖2 �

∫
R Ψ2

H .s − v; k−1
n / dv � Ck−1

n holds for some con-
stant C. Similarly, if |s − s′| � 1

2 , we have ‖Y.s/ − Y.s′/‖2 � C|s − s′| and ‖Ỹ .s/ − Ỹ .s′/‖2 � C|s − s′|. So
‖Δ.s/−Δ.s′/‖2 �4C|s− s′|. Let "=2−1, "j = .j +3/−2, δj = .2jn2/−1 and Xj ={kδj , k ∈Z}∩I, j �0. Then
the cardinality |Xj|� m=δj and " +Σ∞

j=0 "j < 1. Let λ= 8
√

C. By the chaining lemma (see lemma 4.1 in
Cranston et al. (2000)), we have

P.Θ>λrn/�P{|Δ.w/|>λrn"}+
∞∑

j=0
|Xj| sup

|s−s′ |�δj

P[{|Δ.s/−Δ.s′/|>λrn"j}]

�2
[

1−Φ
{

λrn"√
.Ck−1

n /

}]
+

∞∑
j=0

2
m

δj

[
1−Φ

{
λrn"j√
.Cδj/

}]
: .30/

Since 1−Φ.t/∼φ.t/=t as t →∞, elementary calculations show that P.Θ>λrn/=O.n−2/. Then Θ=OAS.rn/
and the lemma follows.

Lemma 3. Let K ∈H.α/ be a symmetric kernel with support [−ω,ω] and μ∈C3[0, 1]. Then E{μbn.t/}−
μ.t/=b2

n μ
′′.t/β+O.b3

n +n−1b−1
n / uniformly over t ∈T = [ωbn, 1−ωbn].

Proof. Let kn = nbn and Kj.v/ = K.v/vj . Since K ∈H.α/, by property (a) in definition 1, elementary
calculations show that, for j =0, 1, 2, we have

sup
t∈T

{∫ n

0

∣∣∣∣Kj

(
1+v�−nt

kn

)
−Kj

(
v−nt

kn

)∣∣∣∣ dv

}
=O.1/:

Since k−1
n

∫ n

0 Kj{.v−nt/=kn} dv=∫
R Kj.u/ du when t ∈T , by Taylor’s expansion μ.t +δ/=μ.t/+δ μ′.t/+

δ2μ′′.t/=2+O.δ3/ as δ→0, the lemma follows.

Remark 3. In lemmas 2 and 3, the kernel K is assumed to have bounded support. Assume that bn log.n/→
0. Similar but lengthy calculations show that, if K is the normal density φ, then these two lemmas are still
valid with the interval T = [ωbn, 1 −ωbn] therein replaced by [bn log.n/, 1 − bn log.n/]. The details of the
derivation are omitted.

A.1. Proof of theorem 1
We shall first prove expression (15). Let B be the Brownian motion in the strong invariance principle
(5). Then Zi,n = k−1=2

n [B{.i+ 1/kn}− B.ikn/], i= 0, . . . , m− 1, are IID standard normal distributions. Let
Ri,n =S.i+1/kn −σ B{.i+1/kn}−Sikn +σB.ikn/ and write

Ai =σk−1=2
n Zi,n +k−1

n

kn∑
j=1
μ

(
j + ikn

n

)
+k−1

n Ri,n, .31/
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By condition (5), maxi<m |Ri,n|=oAS{n1=4 log.n/}. Sinceμ∈L[0, 1],μ{j=n+ ikn=n}−μ{j=n+.i−1/kn=n/}
=O.kn=n/ uniformly over i and j. Recall that m=
n=kn�. By expression (14),

k1=2
n σ−1.Ai −Ai−1/=Zi,n −Zi−1,n +OAS{k3=2

n =n+k−1=2
n n1=4 log.n/}

=Zi,n −Zi−1,n +oAS{log.m/−1=2}: .32/

So expression (15) follows from equation (32) and lemma 1.
The relation (16) can be similarly proved. The function H.u/= .10�u<1 −1−1<u<0/=

√
2 satisfies the con-

ditions in lemma 2 with α=1 and DH ,1 =3. Like equation (32),

k1=2
n DÅ

n

σ
√

2
= 1√

.2kn/
max

kn�i�n−kn

|B.i+kn/−2 B.i/+B.i−kn/|+ oAS.1/√
log.m/

= 1√
kn

sup
s∈[kn ,n−kn ]

∣∣∣∣
∫

R
H

(
s−u

kn

)
dB.u/

∣∣∣∣+ O.Ωn/√
kn

+ oAS.1/√
log.m/

,

where Ωn = sup{|B.u/−B.u′/| : u, u′ ∈ [0, n], |u−u′|�1}=OP{√
log.n/}. By equation (14) and lemma 2,

expression (16) follows.

A.2. Proof of theorem 2
Let χn = b3

n + n−1b−1
n . By expression (21), χn

√
.nbn/ = o{log.n/−1=2}. So expression (22) follows from

lemmas 2 and 3, which concern the stochastic part μbn .t/ − E{μbn .t/} and the bias E{μbn .t/} − μ.t/ =
b2

nβ μ
′′.t/+O.χn/ respectively.

A.3. Proof of theorem 3
For the proof of part (a) of theorem 3, recall the proof of theorem 1 for the definition of Zi. Let Yi =
|Zi −Zi−1| and Mn =median.Yi, 1� i�m−1/. Then Yi is stationary and m dependent with m=2 and the
median of Yi is ξ0 =√

.2u1=4/=0:954. . .: Let F.x/ and f.x/ be the distribution and density functions of Yi,

Fm.x/= .m−1/−1
m−1∑
i=1

1Yi�x:

By considering odd and even indices i respectively, we have by the law of iterated logarithms that Fm.ξ0/
− 1

2 =OAS.m−1=2[log{log.m/}]1=2/. By Sen (1968), .Mn − ξ0/f.ξ0/ = 1
2 − Fm.ξ0/ + OAS{m−3=4 log.m/}. By

equation (32),

median1�i�m−1|Ai −Ai−1|= σ√
kn

Mn +OAS{k−1
n n1=4 log.n/+n−1kn}: .33/

So σ̂2 =σ+OAS{n−1=16 log.n/}. The other case σ̂1 can be similarly proved.
The proof of part (b) is more complicated. Let

Wl =
l∑

i=l−k+1
ei −

l−k∑
i=l−2k+1

ei

and

rl =
l∑

i=l−k+1
μi −

l−k∑
i=l−2k+1

μi:

Since μ∈ L[0, 1], we have rl = O.k2=n/ uniformly over l = 2k, . . . , n. Let 2 � i � m. By lemma 4, ‖Wik‖=
O.

√
k/. So

‖.Wik + rik/
2 −W2

ik‖=O.k4=n2/+O.k=n/O.
√

k/=O.n−1=2/

since kn 
n1=3. Hence ∥∥∥ m∑
i=2

{.Wik + rik/
2 −W2

ik}
∥∥∥=mO.n−1=2/=O.n1=6/,

which by lemma 5 below entails part (b).
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Lemma 4. Assume that condition (4) holds with p=2. Then ‖S2n −2Sn‖2 =2nσ2 +O.1/.

Proof. Recall that eÅ
i = G.. . . , "−1, "′

0, "1, . . . , "i−1, "i/ and γ.k/ = E.e0ek/. Let δp.i/ = ‖ei − eÅ
i ‖p and

Fk = .. . . , "k−1, "k/. For ξ ∈ L1 define the projection operator Pkξ= E.ξ|Fk/ − E.ξ|Fk−1/. By theorem 1
in Wu (2005), ‖P0el‖� δ2.l/, l�0. Since ek =Σj∈Z Pjek and γ.l/=E.e0el/, by the orthogonality,

γ.l/= ∑
j∈Z

E.Pje0 Pjel/:

By Schwarz’s inequality,

|γ.l/|�
0∑

j=−∞
‖Pje0‖‖Pjel‖:

So Σ∞
l=1 l|γ.l/|<∞ since condition (4) implies that Σ∞

l=1 l δ2.l/<∞. Since σ2 =Σi∈Z γ.i/,

‖Sn‖2 =
n−1∑

k=1−n

.n−|k|/ γ.k/

and

|E{.S2n −Sn/Sn}|�
2n∑

i=n+1

n∑
j=1

|γ.i− j/|�
∞∑
l=1

l|γ.l/|<∞,

we have ‖Sn‖2 =nσ2 +O.1/ and the lemma follows.

Lemma 5. Let

Wl =
l∑

i=l−k+1
ei −

l−k∑
i=l−2k+1

ei

and

Tm =
m∑

j=1
W2

jk:

Assume that Σ∞
i=1 ‖ei − eÅ

i ‖4 <∞. Then, as m, k →∞, ‖Tm −m E.W2
2k/‖=O.k

√
m/.

Proof. By theorem 1 in Wu (2005), under Σ∞
i=1 ‖ei − eÅ

i ‖4 <∞, we have ‖Sn‖4 =O.
√

n/. Hence ‖Wl‖4 =
O.

√
k/. Let l�2k and

W ′
l =

l∑
i=l−k+1

eÅ
i −

l−k∑
i=l−2k+1

eÅ
i :

By the Jensen inequality,

‖P0W
2
l ‖=‖E.W 2

l −W ′
l

2|F0/‖�‖W2
l −W ′

l

2‖:

By the Schwarz inequality,

‖W 2
l −W ′

l

2‖�‖Wl −W ′
l ‖4‖Wl +W ′

l ‖4 =O.
√

k/
l∑

i=l−2k+1
δ4.i/:

Thus, for j �2, by the orthogonality of projection operators,

ιj :=‖E.W2
jk|F0/−E.W2

jk|F−k/‖2

=
0∑

t=1−k

‖PtW
2
jk‖2

=
0∑

t=1−k

‖P0W
2
jk−t‖2
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=O.k/
0∑

t=1−k

{
jk−t∑

i=jk−t−2k+1
δ4.i/

}2

=O.k2/

{
jk−1+k∑

i=jk−2k+1
δ4.i/

}2

: .34/

By theorem 1 in Wu (2006),

‖Tm −m E.W2
2k/‖�√

m
∞∑

j=0

√
ιj:

Elementary calculations show that equation (34) implies that ‖Tm −m E.W2
2k/‖=O.k

√
m/.
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