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1. Introduction and Motivation

Parameters of interest in econometric models can be defined as those parameter vectors that

minimize a population objective or criterion function. If this criterion function is minimized uniquely

at a particular parameter vector, then one can obtain valid confidence regions (or intervals) for this

parameter using a sample analog of this function. Likelihood and method of moments procedures are

two commonly used and well studied methods in this setting. This paper extends this criterion-based

inference to econometric models that are set identified, i.e., models where the objective function is

minimized on a set of parameters, the identified set. Our goal is to make inferences directly on the

identified set and to provide a method of obtaining confidence regions with good properties (such as

consistency and equivariance) that cover the identified set with a prespecified probability.

Our point of departure is a nonnegative population criterion function Q(θ) and its finite sample

analog Qn(θ) where θ ∈ Θ ⊂ R
d. The identified set can be defined as ΘI = {θ ∈ Θ : Q(θ) = 0}

where every θ in ΘI indexes an economic model that is consistent with the data. The objective of

this paper is to construct confidence sets Cn for ΘI from the level sets of Qn(θ) such that

lim
n→∞

P (ΘI ⊆ Cn) = α,(1.1)

for a prespecified confidence level α ∈ (0, 1). A level set Cn(c) of the finite sample criterion function

Qn is defined as

Cn(c) :=
{

θ : Qn(θ) − qn ≤ c/an

}
, where qn := inf

θ∈Θ
Qn(θ) or qn := 0,

for some appropriate normalization an. In order to obtain the correct coverage (1.1), we choose

Cn = Cn(c) with the cut-off level c = cα, where cα equals the asymptotic α-quantile of the coverage

statistic:

Cn := sup
θ∈ΘI

an(Qn(θ) − qn),

which is a quasi-likelihood-ratio type quantity. The constructed confidence sets possess important

properties, such as consistency and equivariance to reparameterization. Our approach covers general

situations, where the identified set is defined as the minimand of an objective function. In addition,

our confidence regions are sets that are robust to the failure of point-identifying assumptions in that

they cover the unknown identified set – whether it is a set or a point – with a prespecified probability.

These confidence sets collapse to the usual confidence intervals based on the likelihood ratio in cases

where the identified set ΘI is a singleton.

We show that the above level set Cn(cα) has correct asymptotic coverage, where cα is the ap-

propriate quantile of a well defined coverage statistic C, the nondegenerate large sample limit of

Cn. Then, we provide general resampling methods to consistently estimate the percentile cα. The
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coverage and resampling results hold under general (high level) conditions. Focusing on a class of

econometric models, we then show that these conditions are satisfied. In the process, we provide char-

acterizations of the stochastic properties of the criterion functions process, an(Qn(·)−qn), exploiting

the fact that the population criterion Q is minimized on a set rather than a point. Furthermore, we

obtain the asymptotics of the coverage statistic Cn and of the level sets Cn(c), focusing on coverage

and speed of convergence of Cn(c) to ΘI . The paper then considers two important applications:

regression with interval censored outcomes and set-identified generalized method-of-moments. We

finally illustrate our methods in a Monte Carlo study based on data from the Current Population

Survey.

In the last decade, a growing body of literature has considered the problem of inference in

partially identified models, i.e., models where parameters of interest are set identified, cf. Manski

(2003). While most of the work, e.g. Horowitz and Manski (1998) and Imbens and Manski (2004),

exclusively focuses on the case where there is a scalar parameter of interest that lies in an interval,

this paper is concerned with inference on vector parameters in problems where the identified set

is defined via a general optimization problem, as in the economic problems described below. This

multivariate set is usually not an interval (or cube) and can be a set of isolated points or manifolds.

Moreover, the methods used in the interval case are based on estimating the two end-points of

the interval. Hence they are not applicable in the general set-identified case, for which a different

approach is needed.

The main motivation for posing the identified set as the object of inference is motivated by many

examples. In Hansen, Heaton, and Luttmer (1995), the identified set is a subset of asset-pricing

models that obey the pricing-error and volatility constraints implicit in asset market returns. In

models with multiple equilibria, the identified set is the set of parameters that describe different

equilibria supported across markets or industries. There is no single “true” equilibrium that is

played, since particular equilibria may vary across observational units; see Ciliberto and Tamer

(2003). Another example is the structural instrumental variable estimation of returns to schooling.

Suppose that we are interested in the following example where potential income Y is related to

education E through a flexible, quadratic functional form, Y = α0 + α1E + α2E
2 + ǫ. Although

parsimonious, this simple model is not point-identified in the presence of the standard quarter-

of-birth instrument Z suggested in Angrist and Krueger (1992) (indicator of the first quarter of

birth).1 In the absence of point identification, all of the parameter values (α0, α1, α2) consistent with

the instrumental orthogonality restriction E(Y − α0 + α1E + α2E
2)(1, Z)′ = 0 are of interest for

1In some cases the indicators of other quarters of birth are used as instruments. However, these instruments are not

correlated with education (correlation is extremely small) and thus bring no additional identification information.
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purposes of economic analysis. Similar partial identification problems arise in nonlinear moment and

instrumental variables problems, see e.g. Demidenko (2000) and Chernozhukov and Hansen (2001).

Literature. To our knowledge, the earliest work in econometrics on parametric set identified

models can be found in the paper of Marschak and Andrews (1944). There, the identified set is

the collection of parameters representing different production functions that are consistent with

the data and functional restrictions the authors consider.2 Gisltein and Leamer (1983) provide set

consistent estimation in a class of likelihood models where ΘI as the set of parameters that are

robust to misspecification. Klepper and Leamer (1984) generalize the Frish bounds to multivariate

regression models with measurement errors. On the other hand, Hansen, Heaton, and Luttmer (1995)

provide consistent set estimates of means and standard deviations in a class of asset pricing methods.

Manski and Tamer (2002) provided conditions under which an appropriately defined set consistently

estimates the identified set. However, these consistency results do not contain a method for inference

about the identified set. To the best of our knowledge, there are no results in the literature that deal

with the general problem of obtaining confidence regions for parameter sets.3

The remainder of the paper is organized as follows. Section 2 provides a general theory of

inference on the identified sets based on general criterion functions. Section 3 focuses on a class of

regular parametric models, provides verification of the regularity conditions posed in Section 2, and

provides additional results that pertain to regular cases. Section 4 provides a Monte Carlo evaluation

of the methods, and Section 5 concludes.

2. General Set Inference in Large Samples

2.1. Generic Inference on Identified Sets. In this section we present our main result which

forms the basis for the rest of the analysis. We first define the identified set ΘI and formalize some

definitions that will be used throughout.

For given data, the inference about the parameter set ΘI is based on a criterion function Qn(θ) =

Qn(θ, W1, ..., Wn), where data {W1, ..., Wn} are defined on some common probability space (Ω, F, P ).

The criterion function Qn(θ) converges to a continuous criterion function Q(θ), that is minimized at

ΘI , the identified set.

Assumption A.1 (Basic Setup). Criterions Qn : R
d → R

+ and Q : R
d → R

+ and Θ satisfy

2For a good description of Marschak and Andrews (1944), see Chapter III of Nerlove (1965).
3The only other paper known to us is Imbens and Manski (2004). Their paper considers a different problem of

inference about the a real parameter θ∗ that is interval-identified (i.e. contained between some upper and lower bounds

that can be estimated.) The problem of inference about θ∗ is fundamentally different from inference about ΘI , as

shown in Imbens and Manski (2004) and in Appendix G.
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i. Θ is a compact and convex subset of R
d [CONVEXITY to BE RELAXED],

ii. Q(θ) is continuous and Qn(θ) is lower-semicontinuous,

iii. ΘI = arg minθ∈Θ[Q(θ)] is a finite union of connected compact subsets of Θ,

iv. Q(θI) = 0 for each θI ∈ ΘI ,

v. Qn(θ) − Q(θ) = op(1) for each θ ∈ Θ.

Assumption A.1 states a standard compactness and convexity assumption, which are important

to the subsequent analysis. It also defines ΘI as the minimizer of the limit criterion function Q.

The region ΘI is a finite union of compact connected sets, an assumption that serves to organize

the presentation. This covers both the case when ΘI is a finite union of isolated points and the

case when ΘI is a finite union of compact sets with boundaries defined by manifolds (nonlinear

hyperplanes).4 The assumption that Q(θI) = 0 serves as a convenient normalization. The pointwise

convergence condition serves to relate Q as the limit of the finite sample objective function. The

pointwise convergence will be strengthened later on.

Lemma 2.1 shows how to construct a level set of the sample objective function that will eventually

provide the proper inferential statement (1.1) about ΘI in a generic setting. The c-level set of

objective function Qn is given by

Cn(c) :=
{

θ : an (Qn(θ) − qn) ≤ c
}

, where qn := inf
θ∈Θ

Qn(θ) or qn := 0,

where an is defined in Assumption A.2 below. Typically an equals n in the regular cases studied

later. Note that choosing qn = infθ∈Θ Qn(θ) guarantees that the confidence region Cn(c) is always

non-empty, though in some cases one has infθ∈Θ Qn(θ) = 0 with probability converging to one, see

e.g. Example 1 in Section 3.

Consider the following coverage index

ρ (c) = c − sup
θ∈ΘI

an (Qn(θ) − qn) .(2.1)

The sign of the index ρ(c) indicates whether ΘI ⊆ Cn(c) or not. For example, if there is θ ∈ ΘI

such that θ /∈ Cn(c), we have an (Qn(θ) − qn) > c which implies that ρ(c) < 0, and vice versa. The

index is also linear in c, which will allow us to have data-dependent cut-off levels c. Another desirable

property is invariance of the index ρ to parameter transformations which implies equivariance of Cn(c)

to parameter transformations. For instance, a one-to-one transformation of parameters θ → τ(θ)

changes the level set in the equivariant way
{

τ(θ) : an

(
Qn(τ−1(τ(θ))) − qn

)
≤ c

}
= τ (Cn(c)) .

The following lemma summarizes the discussion.

4For definition of manifold, see e.g. Milnor (1964) .
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Lemma 2.1. Let Assumptions A.1-(ii) and A.1-(iii) hold. Then, I. the coverage property holds:

ρ (c) < 0 ⇔ ΘI 6⊆ Cn(c) and ρ (c) ≥ 0 ⇔ ΘI ⊆ Cn(c); II. the coverage index is linear in the

cut-off level; III. the coverage index is invariant to re-parameterization; and IV. the level sets are

equivariant to bijective parameter transformations.

Next we state the main condition that enables large sample inference on ΘI .

Assumption A.2 (Coverage Statistic). Suppose that there exist a sequence of constants an → ∞
such that

Cn = sup
θI∈ΘI

an (Qn(θI) − qn) →d C,

where C is a nondegenerate random variable.

In the sequel we explain how this main assumption is attained in sufficiently regular models of

interest, where an = n. We also provide methods for verification of this assumption and for finding

the limit variable C. Verification of Assumption A.2 is a difficult matter and requires developing a

set of new asymptotic methods of dealing with criterion functions under set identification.

Assumption A.2 leads us to the following main theorem, which provides a generic result on

inference in set-identified models.

Theorem 2.1 (Generic Inference on Sets). Suppose Assumptions A.1 and A.2 hold and that cα is a

continuity point of distribution function of C such that P{C ≤ cα} = α. Then for any ĉα →p cα,

I. ρ (Cn(ĉα)) →d cα − C and II. lim
n→∞

P
{

ΘI ⊆ Cn(ĉα)
}

= α.

The result follows immediately from Lemma 2.1 and A.2. First, ρ(Cn(c)) = Cn − ĉα = Cn − cα +

op(1) →d C − cα. Second,

P
{

ΘI ⊆ Cn(ĉα)
}

= P
{

ρ(Cn(ĉα)) ≥ 0
}

= P
{

ĉα − Cn ≥ 0
}

= P
{
Cn ≤ cα + op(1)

}
= P

{
C ≤ cα

}
+ o(1),

provided cα a continuity point of distribution function of C.

It is clear from Theorem 2.1 that our method of constructing valid confidence sets builds on the

classical principle of inverting some criterion function. Indeed, in point identified cases ΘI reduces

to a singleton {θI} so that the coverage statistic becomes a standard likelihood ratio type quantity

Cn = an (Qn(θI) − qn) , which follows well known limit laws. In the general case, the statistic is a more

involved quantity, being the supremum over the elements of ΘI : Cn = supθI∈ΘI
an (Qn(θI) − qn) .

In practice, our procedure for constructing the confidence regions critically depends on being

able to consistently estimate cα, the α-quantile of the limit variable C. In all examples that we study,
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C is non-standard and its distribution depends on ΘI . Despite this problem, we will show how to

obtain a consistent estimate of cα by the following method.

2.2. Feasible Inference. We first need to obtain an approximation to the sampling distribution of

Cn = supθ∈ΘI
an (Qn(θ) − qn) . Since we do not observe ΘI , we will replace it by an initial estimate5

Θ̂I = Cn(k̂), where k̂ ∈ [c1, c2] · lnn wp → 1,(2.2)

where k̂ is a possibly data-dependent starting value of the cut-off. (In the first class of our examples,

we can use th starting cut-off k̂ = 0.) The result proven below suggests that the asymptotic validity

of the procedure will not depend on the starting value. In finite samples, the choice of the starting

value may be important, and we discuss it in Section 4.

Consider the following subsampling algorithm:

1. For cases when data {Wi} are iid, construct all (Bn) subsets of size b ≪ n of the data. For

cases when {Wt} form a stationary time series, construct Bn = n − b + 1 subsets of size b

of the form {Wi, ...,Wi+b−1}. (In practice, one can use a smaller number Bn of randomly

chosen subsets under the condition that Bn → ∞ as n → ∞.)

2. For each j = 1, ..., Bn, compute

Ĉj,b,n = sup
θ∈Cn(ĉ)

ab (Qj,b(θ) − qj,b) ,

where qj,b := 0 if qn := 0 and qj,b := infθ∈Θ Qj,b(θ) otherwise; Qj,b(θ) denotes the criterion

function defined using the j-th subset of the data only.

3. Let ĉα be the α-th quantile of the sample {Ĉj,b,n, j = 1, ..., Bn}.
4. (Optional) As commented in Section 4.3, one could repeat steps 2 and 3 finite number of

times using ĉ = ĉα lnn.6 (Any finite number of repetitions produces the consistent estimate

of cα.)7

We require that as n → ∞,

(2.3) b/n → 0, Bn → ∞, b → ∞ at polynomial rates.

The choice of b and other practical aspects of the procedure are discussed in Section 4.

To guarantee asymptotic validity of the above procedure, the following assumption is needed.

5The adjustment factor ln n can be replaced by ln ln n or any other m(n) such that m(n) → ∞ and m(n)/na → 0

as n → ∞ for all a > 0.
6The adjustment by ln n is not needed in the first class of our examples.
7In fact, we found in Monte-Carlo experiments described in Section 4 that just two repetitions worked the best in

terms of coverage and computational expense. This was also confirmed by Bajari, Benkard, Levin (2003).
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Assumption A.3 (Sandwich Property). Suppose that b/n → 0 and b → ∞ at polynomial rates as

n → ∞. For k̂ ∈ [c0, c1] · lnn, wp → 1

ΘI ⊂ Cn(k̂) ⊂ Θǫn
I , such that ab( sup

θ∈Θǫn
I

Qb(θ) − sup
θ∈ΘI

Qb(θ)) = op(1),

Θǫn
I := {θI + t : ‖t‖ ≤ ǫn, θI ∈ ΘI} and ǫn → 0 is a sequence of positive constants.

Assumption A.3 guarantees inferential validity but also allows us to establish consistency and to

characterize the rate of convergence of the level sets Cn(k̂) to the identified set ΘI , as shown below

in Theorem 2.2. The intuition behind A.3 is as follows. In the subsampling bootstrap, we do not

know ΘI , hence we replace it by an estimate Cn(ĉ). The replacement should have only a negligible

impact on the distribution of the coverage statistic in subsamples. A.3 is similar in nature to the

polynomial rate of convergence assumption used by Politis, Romano, and Wolf (1999), p 44, in the

case of Wald inference in point identified cases. There, one does not know the true θI and replaces

it with an estimate θ̂I , hence requiring that this replacement has negligible effect on the distribution

of the Wald statistic in subsamples. We show how to verify A.3 for parametric models in Section

3 (Theorem 3.2). The next theorem summarizes our results for general inference in set identified

models.

Theorem 2.2 (Consistency and Validity of Inference). Suppose that the estimation data {Wi, i ≤ n}
are iid or form a stationary strongly-mixing sequence and that A.2 and A.3 hold.

I. Then for the subsampling algorithm defined above, provided P{C ≤ c} is continuous at c = cα,

ĉα → cα, and

P (ΘI ∈ Cn(ĉα)) → α.
II. The set Cn(k̂) for k̂ = ĉα lnn is consistent under the Hausdorff metric: wp → 1

dH(Cn(k̂),ΘI) ≤ ǫn → 0.

Recall that the Hausdorff metric between two sets is defined as:

dH(A, B) := max[h(A, B), h(B, A)], where h(A,B) := sup
a∈A

inf
b∈B

‖a − b‖.

Thus, under general conditions our inference method is asymptotically valid and delivers level sets

Cn(k̂) that converge to the identified set at the rate ǫn with respect to the Hausdorff distance (the

rate ǫn will be shown to be essentially 1/
√

n for parametric models).

Under the given level of generality, subsampling appears to be the only valid resampling method.

The conventional (n-out-of-n) bootstrap will not be generically consistent in the present settings.

One counterexample is as follows: In Section 3, one of the leading examples, the partially identified
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linear IV regression, necessarily involves a parameter on the boundary problem. It is known that the

bootstrap fails in parameter-on-the boundary problems, cf. Andrews (2000).

3. Regular Parametric Case and Applications

In this section we establish the methods for verifying the main conditions required for implement-

ing the approach, namely that existence of the limit distribution for the coverage statistic (A.2) and

the sandwich condition (A.3). We develop these methods to cover a variety of parametric examples,

and illustrate the the approach with applications to regression models with missing outcome data

and generalized method of moments under partial identification. For parametric models, we establish

further properties of the confidence regions, such as the speed of convergence of the level sets to the

identified set, and the stochastic properties of objective functions in partially identified cases.

3.1. Examples of Parametric Problems with Set Identification. Example I. Regression

with Interval-Censored Outcomes.

Consider the linear conditional expectation models

EPθ
[Y |X] = X ′θ, where θ ∈ Θ, X ∈ R

d.

The models are not assumed to be correctly specified, in the sense that there may be no θ such that

EPθ
[Y |X] agrees with EP [Y |X] under the actual law P of the data.

Observed data consists of i.i.d. observations (Y1i, Y2i, Xi) where Y1i and Y2i represents the interval

observation on Yi:

Yi ∈ [Y1i, Y2i] given Xi, a.s.(3.1)

In the absence of further information, the set

ΘI ≡ {θ ∈ R
d : E[Y1|X] ≤ X ′θ ≤ E[Y2|X] a.s. }(3.2)

is the object of interest, as it represents the set of linear conditional expectation models that are

consistent with data. We assume that ΘI ⊂ Θ, where Θ is a compact subset of R
d. Observe that ΘI

minimizes the objective function

Q(θ) =

∫ {(
E[Y1|x] − x′θ

)2

+
+

(
E[Y2|x] − x′θ

)2

−

}
dP (x),(3.3)

where (u)2+ = (u)2 × 1[u > 0] and (u)2− = (u)2 × 1[u < 0]. Notice also that ΘI = {θ ∈ Θ : Q(θ) = 0} .

Using a sample analog of (3.3),

Qn(θ) =
1

n

∑

i≤n

(
Ê[Y1i|Xi] − X ′

iθ
)2

+
+

(
Ê[Y2i|Xi] − X ′

iθ
)2

−
,(3.4)
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Manski and Tamer (2002) characterize consistent estimates of ΘI .
8 However, no method for infer-

ence about ΘI in the sense of providing the inferential statements was given. We provide below a

confidence approach to inference about ΘI in this and similar examples.

Example II. Structural Moment Equations. In method of moments settings, we are in-

terested in deducing the set of all economic models indexed by a parameter θ ∈ R
d that satisfy the

moment equation computed with respect to the probability sampling distribution of the economic

data. The data (Xi, i ≤ n) are stationary and strongly mixing, defined on the probability space

(Ω,F , P ). The economic models θI of interest are assumed to satisfy

E[mi(θI)] = 0,(3.5)

where mi(θ) = m(θ,Xi) is a lower-semi-continuous function in θ a.s. The entire set of models ΘI ⊂ Θ

that solve (3.5) also minimize the criterion function

Q(θ) = E[mi(θ)]
′W (θ)E[mi(θ)],(3.6)

where Q(θ) is continuous for each θ ∈ Θ, a compact subset of R
d, and W (θ) is a continuous and

positive definite matrix for each θ ∈ Θ. In nonlinear models, the existence of multiple solutions

to nonlinear equations (3.5) is more of a rule rather than an exception, except in special cases, see

e.g. Demidenko (2000). In linear models there may be multiple solutions as well if the usual rank

conditions fail to hold, as mentioned in the introduction. Thus, the GMM function (3.6) will in

general be minimized on a set. The inference on ΘI may be based on the usual GMM function

Qn(θ) = n[gn(θ)]′Wn(θ)[gn(θ)], gn(θ) =
1

n

n∑

i=1

mi(θ),(3.7)

where Wn(θ) is a lower-semi-continuous, uniformly positive definite matrix.9 To the best of our

knowledge, no methods for inference about ΘI in the sense of providing Neyman-Pearson confidence

statements has been yet given in such settings.

3.2. General Asymptotics of Criterion Functions in Parametric Models. The prime goal

of this section is to provide primitive conditions and tools that help verify conditions A.2 and A.3 in

a wide variety of parametric models. The tools will be illustrated using the examples stated in the

next section.

8Specifically, they show that the set Θn = {θ ∈ Θ : Qn(θ) ≤ minθ Qn(θ) + ǫn} converges almost surely to the set ΘI

if ǫn ≥ 0 converges to zero at a rate strictly slower than the rate at which Qn(·) converges uniformly to Q(·). They use

a Hausdorff metric as a distance function between sets.
9For example, it is convenient to use the continuous updating type weight matrix Wn(θ), i.e. to let Wn(θ) equal a

consistent estimate of asymptotic variance of n−1/2∑n
i=1 mi(θ).
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Since Qn(θ) approaches Q(θ), we should be able to tell that θ 6∈ ΘI if θ is outside some neigh-

borhood of ΘI . The size of this neighborhood depends on the rate at which the boundary of ΘI can

be learned. In the remainder of the paper, the rate we consider is the parametric rate and hence the

points of uncertainty are those θI that are within a 1/
√

n neighborhood of the true set ΘI . Such

points are of the form

θI + λ/
√

n, for θI ∈ ΘI , λ ∈ R
d.

In order to keep track of such points it will suffice to record all pairs of the form (θI , λ). Hence of

central interest is the local empirical process

(θI , λ) 7→ ℓn(θI , λ) := n
(
Qn(θI + λ/

√
n) − Q(θI)

)
,

over a suitable domain. The pertinent domain for θI will be shown to be the boundary of identified

set ∂ΘI . Given θI ∈ ∂ΘI , the pertinent domain for λ is

Vn(θI) := {λ ∈ R
d : θI + λ/

√
n′ ∈ Θ, for all n′ ∈ [n,∞)}.

In addition, the following limit version of Vn(θI) will play an important role:

V∞(θI) := {λ ∈ R
d : θI + λ/

√
n ∈ Θ for all sufficiently large n},

where when θI ∈ int(Θ), V∞(θI) = R
d.

(3.8)

Thus, V∞(θI) plays the role of the limit local parameter space relative to θI . When θI is in the

interior of the parameter space, i.e. θI ∈ int(Θ), V∞(θI) = R
d. When θI is on the boundary of the

parameter space, i.e. θI ∈ ∂Θ, the local deviations λ should be constrained to the local parameter

space V∞(θI) of the specified form. This situation is similar to the one arising in the point-identified

case, as characterized in Andrews (1999). Unlike in the point-identified case, the boundary problem

in the partially identified models is more of a rule rather than an exception. It arises even in the

simplest leading cases, as will be seen in Section 3.3.

Another important set is the subset of the local parameter space Vn(θI) where the local deviations

λ are constrained to be towards the interior of the identified set:

Λn(θI) := {0} ∪ {λ ∈ R
d : θI + λ/

√
n′ ∈ int(ΘI) for all n′ ∈ [n,∞)}.

In addition, the following limit version of Λn(θI) will play an important role:

Λ∞(θI) := {0} ∪ {λ ∈ R
d : θI + λ/

√
n ∈ int(ΘI) for all sufficiently large n}.

Note that since int(ΘI) ⊂ Θ, Λn(θI) is a subset of Vn(θI), which is a subset of V∞(θI), and Λ∞(θI)

is also a subset of V∞(θI).
11



Given above definitions, we shall obtain the following representations of the coverage statistic

Cn := sup
θI∈ΘI

n (Qn(θI) − qn)

=

{
supθI∈ΘI

ℓn(θI , 0) if qn := 0,

supθI∈ΘI
ℓn(θI , 0) − infθI+λ/

√
n∈Θ ℓn(θI , λ) if qn := infθ∈Θ Qn(θ),

=

{
supθI∈∂ΘI ,λ∈Λn(θI) ℓn(θI , λ) + op(1) if nqn →p 0,

supθI∈∂ΘI ,λ∈Λn(θI) ℓn(θI , λ) − infθI∈ΘI ,λ∈Vn(θI) ℓn(θI , λ) + op(1) if nqn 6→p 0.

In this representation, the first equality follows by definition of the local empirical process ℓn(θ, λ),

while the second equality emerges from the analysis given in the appendix. To guarantee non-

degenerate asymptotics for this statistic, we will require that ℓn(θI , λ) converges to a sufficiently

well-behaved random element ℓ∞(θI , λ), in the finite-dimensional sense coupled with some uniformity,

which we will call the quasi-uniform convergence. This form of convergence will be sufficient to

establish that

Cn →d C :=

{
supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ), if nqn →p 0,

supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ) − infθI∈ΘI ,λ∈V∞(θI) ℓ∞(θI , λ) if nqn 6→p 0.

The following conditions ensure that this convergence takes place.

Assumption C.1 (Degenerate Asymptotics on the Interior). When int(ΘI) is not empty, so that

ΘI 6= ∂ΘI , for any ǫ > 0 there exists large enough δ > 0 and large enough n such that for In(δ) :=

{θI ∈ int(ΘI) : infθ′I∈∂ΘI
‖θI − θ′I‖ > δ/

√
n}, supθI∈In(δ) |ℓn(θI , 0)| = 0 with probability no less than

1 − ǫ. Since ℓn(θI , λ) ≥ 0, this implies that

nqn = inf
θI∈ΘI ,λ∈Vn(θI)

ℓn(θI , λ) = 0 wp → 1.

Condition C.1 is motivated by the fact that in interval regression examples for large n

ℓn(θI , λ) = 0 wp → 1 for any fixed θI ∈ int(ΘI) and λ ∈ R
d.

We provide examples and further discussion of this interesting phenomenon in Section 3.3.

Condition C.2 puts further convergence conditions by appropriately matching the large sample

behavior of function ℓn(θ, λ) with that of some function ℓ∞(θ, λ), which we call the quasi-uniform

limit of ℓn(θI , λ). In order to state the condition, define the following key functionals

un(λ) := sup
θI∈∂ΘI

ℓn(θI , λ) and ln(λ) := inf
θI∈∂ΘI

ℓn(θI , λ) for n < ∞ and n = ∞.

Assumption C.2 (Quasi-Uniform Convergence Near Boundary). Let θI ∈ ∂ΘI and λ ∈ K, where

K is any compact subset of R
d. Then

12



i. ℓn(θI , λ) ≥ 0 converges weakly in finite-dimensional sense to some function ℓ∞(θI , λ) ≥ 0,

which is continuous in λ for each θI .

ii. (a) if ΘI 6= ∂ΘI , un(λ) converges weakly to u∞(λ) in finite-dimensional sense, and (b) un(λ)

is stochastically equi-continuous; if ΘI = ∂ΘI , then (a) (un(λ), ln(λ)) jointly converge weakly

to (u∞(λ), l∞(λ)) in finite-dimensional sense, and (b) (un(λ) and ln(λ) are stochastically

equi-continuous.

iii. supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞ (θI , λ) < ∞ a.s.

Condition C.2 extends the standard conditions used to derive the asymptotics of criterion func-

tions in the point-identified case, where ΘI is a single point θI , see e.g. Newey and McFadden

(1994). Although asymptotics in the interior is degenerate, as condition C.1 states, the asymptotics

near the boundary is assumed to be non-degenerate. C.2-(i.-ii.) imposes the conditions required

for obtaining the limit distribution of coverage statistics and for verifying A.3. C.2-(i) requires that

ℓn(θ, λ) converges in finite-dimensional sense to some limit ℓ∞(θ, λ). C.2-(ii) requires that sup and

inf transformations of ℓn(θI , λ) over ∂ΘI , denoted un(λ) and ln(λ), converge in finite-dimensional

sense to respective sup and inf transformations of ℓ∞(θI , λ), denoted as u∞(λ) and l∞(λ). It also

requires that un(λ) and ln(λ) are stochastically equicontinuous. C.2-(iii) insures tightness of the

limit coverage statistic C, since supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞ (θI , λ) will be one of the components of C.

Note that in C.2-(ii), it is possible to require that

(θI , λ) 7→ ℓn(θI , λ) is stochastically equicontinuous over ∂ΘI × K,

where K is any compact subsets of R
d. This stronger and simpler condition certainly implies C.2-(ii).

However, this stronger condition fails to hold in some cases of interest (the regression model with

interval-censored outcome), while it holds in others (the generalized method of moments).

Assumption C.3 (Local Quadratic Bound). For any ǫ > 0, there is a sufficiently large positive K

such that with probability at least as large as 1 − ǫ for large enough n

ℓn(θI , λ) ≥ C1 · n · min[ν(θI , λ), δ]2

uniformly in (θI , λ) such that ν(θI , λ) ≥ K/
√

n, where ν(θI , λ) = infθ′I∈ΘI
‖θI + λ/

√
n − θ′I‖, for

some positive constants C1 and δ that do not depend on ǫ.

Condition C.3 is needed to obtain rate of convergence for set estimates, and along with C.1 and

C.2 allows us to verify the main previous high-level conditions A.2 and A.3. C.3 extends, to the

set-identified case, the standard conditions needed to obtain the rate of convergence of extremum es-

timators in point-identified case; see conditions in Theorem 5.52 in Van der Vaart (1998) and Newey
13



and McFadden (1994), p. 2185.

Theorem 3.1 (Limits of Cn). Suppose A.1 and C.1-C.3 hold. Then A.2 holds, in particular,

Cn →d C :=

{
supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ), if nqn →p 0

supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ) − infθI∈ΘI ,λ∈V∞(θI) ℓ∞(θI , λ), if nqn 6→p 0

where nqn →p 0 necessarily occurs if qn := 0 or if int(ΘI) is non-empty in Θ.

Theorem 3.1 verifies Assumption A.2. The theorem states that under a set of conditions, which

may be easily checked in examples of interest, the coverage statistic attains a limit distribution, which

is determined by the appropriate inf and sup transformations of the quasi-uniform limit ℓ∞(θI , λ)

over ∂ΘI and the local parameter spaces Λ∞(θI) and V∞(θI).

In addition to this basic result, we would like to know certain properties of the level sets.

Theorem 3.2 (Rate of Convergence and Sandwich Property). Suppose A.1 and C.1 - C.3 hold.

Then, for some positive constants C and C ′,

I. For any k̂ →p ∞ such that k̂ = op(n),

ΘI ⊂ Cn(k̂) ⊂ Θǫn
I wp → 1, where ǫn = C ·

√
k̂/n,

so that

dH(Cn(k̂),ΘI) ≤ C ·
√

k̂/n wp → 1;

II. For any k̂ ∈ [c0, c1] lnn, the sandwich condition A.3 takes place,

ΘI ⊂ Cn(k̂) ⊂ Θǫn
I wp → 1, where ǫn = C ′ · lnn/

√
n,

and, provided b → ∞ and b/n → 0 at polynomial rate,

b( sup
θ∈Θǫn

I

Qb(θ) − sup
θ∈ΘI

Qb(θ)) = op(1).

Theorem 3.2 verifies Assumption A.3 for parametric models and characterizes the rate of con-

vergence of the level sets to the identified set. The rate of convergence, as measured by Hausdorff

metric, is essentially 1/
√

n.
14



3.3. Analysis of Regression with Interval-Censored Outcomes. First consider the case when

Xi = 1 and suppose E[Y1] < E[Y2]. Then ΘI = {θ : E[Y1] ≤ θ ≤ E[Y2]}, that is ΘI = [E[Y1], E[Y2]] .

Then

Qn(θ) =
(
Ȳ1 − θ

)2

+
+

(
Ȳ2 − θ

)2

− ,

and

ℓn(θI , λ) = n
(
(Ȳ1 − θI − λ/

√
n)2+ + (Ȳ2 − θI − λ/

√
n)2−

)
.

Suppose that

√
n(Ȳ1 − EY1, Ȳ2 − EY2)

′ →d (W1,W2)
′ ∼ N (0,Ω).

Then

ℓn(θI , λ) = 0 wp → 1 if θI ∈ (EY1, EY2),

and the finite-dimensional limit of

(ℓn(EY1, λ), ℓn(EY2, λ))′ is ((W1 − λ)2+, (W2 − λ)2−)′.

Therefore the finite-dimensional limit of ℓn(θ, λ) is given by

ℓ∞(θI , λ) = (W1 − λ)2+1(θI = EY1) + (W2 − λ)2−1(θI = EY2).

Theorem 3.3 verifies C.1-C.3 for this example so that ℓ∞(θI , λ) is also the quasi-uniform limit of

ℓn(θI , λ) . This implies by Theorem 3.1 that

Cn →d C = sup
θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞(θI , λ) = max
[
(W1)

2
+ , (W2)

2
−
]
.

One can use the above distribution to obtain the critical values and corresponding level set with the

required coverage property.

Before proceeding to a more general case, notice that the inferential strategy developed in this

simple example can be used in other problems where ΘI is defined as the set of all θ ∈ Θ such that

F1 ≤ θ ≤ F2 where F1 and F2 are functionals of the distribution of the observed data. This is a set of

models that provide interval bounds on the parameters of interest. All one needs to do in this class

of models is to derive the joint asymptotic distribution of the sample analogs of the endpoints of

the interval of interest and obtain via simulation the critical values for the maximum of two random

variables, as outlined above for the case when F1 = EY1 and F2 = EY2.

Getting back to more general settings, suppose that

X ∈ {x1, ..., xJ} P -a.s.,(3.9)
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where the first component of X is 1. Condition (3.9) assumes that X is discrete. The identified set

ΘI is determined by the set of inequalities:

(3.10) ΘI := {θ ∈ R
d : x′

jθ ≥ τ1 (xj) and x′
jθ ≤ τ2 (xj) for all j ≤ J}.

It is assumed that ΘI ⊂ Θ, where Θ is a compact subset of R
d, and that the d × J matrix

(3.11) X := (xj , j ≤ J) has rank d,

which rules out redundant parameterization. Then the boundary of the identified set ∂ΘI is

(3.12) ∂ΘI = {θI ∈ ΘI : x′
jθI = τ1 (xj) or x′

jθI = τ2 (xj) , for some j ≤ J},

and int(ΘI) is empty in R
d, so that ΘI = ∂ΘI if and only if τ1(xj) = τ2(xj) for some j.

Define τ1(x) = E(Y1|x) and τ2(x) = E(Y2|x) and consider the objective function

Qn(θ) :=
1

n

n∑

i=1

(
τ̂1(Xi) − X ′

iθ
)2

+
+

(
X ′

iθ − τ̂2(Xi)
)2

− ,

τk(xj) :=
∑

i:Xi=xj

Yi, k = 1, 2, j = 1, ..., J.
(3.13)

In this case for nj := 1
n

∑n
i=1 1[Xi = xj ],

ℓn(θI , λ) = n
J∑

j=1

nj

n

(
(τ̂1(xj) − x′

jθI − x′
jλ/

√
n)2+ + (τ̂2(xj) − x′

jθI − x′
jλ/

√
n)2−

)
.

Define Ŵ1j :=
√

n(τ̂1(xj)− τ1(xj)) and Ŵ2j :=
√

n(τ̂2(xj)− τ2(xj)) for j = 1, ..., J . Assume also that

a central limit theorem and a law of large numbers apply so that
(
(Ŵ11, Ŵ21), ..., (Ŵ1J , Ŵ2J)

)′
→d

(
(W11,W21), ..., (W1J ,W2J)

)′
∼ N (0, Ω), and

nj/n →p pj for each j = 1, ..., J.
(3.14)

Theorem 3.3 (Interval Regression). Let the basic conditions specified in Section 3.2 hold and also

(3.9)- (3.14) hold. Then C.1-C.3 and A.1-A.3 are satisfied. Moreover,

ℓ∞(θI , λ) =

J∑

j=1

pj

[
(W1j − x′

jλ)2+1(x′
jθI = τ1(xj)) + (W2j − x′

jλ)2−1(x′
jθI = τ2(xj))

]
,

C =

{
supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ) if nqn →p 0

supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ) − infθI∈ΘI ,λ∈V∞(θI) ℓ∞(θI , λ) if nqn 6→p 0
,

where nqn = 0 wp → 1 occurs when int(ΘI) is non-empty or if qn := 0.

This theorem verifies Assumptions C.1-C.3 and A.1-A.3, which implies that the results of The-

orems 2.1, 2.2, 3.1, and 3.2 apply to the interval regression case. Therefore the inference procedure
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proposed in Section 2 is valid in this case. Further, the confidence regions have the stochastic

properties given in Theorems 3.1 and 3.2.

The distribution of the limit variable C is not pivotal, and has no known closed analytical form,

but this does not create a problem for the inferential method proposed in Section 2. C can not

simplified much further, unlike in the trivial case with Xi = 1. One can simplify the leading term as

sup
θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞(θI , λ) = sup
θI∈∂ΘI

J∑

j=1

pj

[
(W1j)

2
+1(x′

jθI = τ1(xj)) + (W2j)
2
−1(x′

jθI = τ2(xj))
]
,

but other terms do not appear to simplify in the above expressions.

3.4. Analysis of the Structural Moment Equations Model. We first work out a simple exam-

ple, and then generalize it. Consider the usual two-stage-least-squares model

Yi ≡ X ′
iθI + ǫi(θI), Eǫi(θI)Zi = 0,

which leads to the following objective function

Qn(θ) =
( 1

n

n∑

i=1

(Yi − X ′
iθ)Z

′
i

) ( 1

n

n∑

i=1

ZiZ
′
i

)−1 ( 1

n

n∑

i=1

(Yi − X ′
iθ)Zi

)
.

Assume that 0 < r = rank EXZ ′ < dim(θ), so that the identified set ΘI consists of an r-dimensional

linear subspace of R
d intersected with Θ. ΘI is defined as follows: for any θ0 such that Eǫ(θ0)Z = 0,

ΘI = {θ = θ0 + δ ∈ Θ such that δ′EXZ ′ = 0}.

Note that ΘI has empty interior relative to R
d. Under the usual circumstances, even in the case

when there is weak identification, Qn(θ) is pivotal and can be inverted for confidence intervals. In

the partially identified case, the statistic most relevant to making inference on ΘI is the empirical

process (Qn(θI), θI ∈ ΘI) which is no longer pivotal.

Suppose for simplicity that qn := 0 (which is also true when qn := infθ∈Θ Qn(θ) but dim(Z) ≤
dim(X)), so that

ℓn(θI , λ) =
(
∆n(θI) + λ′ 1

n

n∑

i=1

XiZ
′
i

)′( 1

n

n∑

i=1

ZiZ
′
i

)−1(
∆n(θI) + λ′ 1

n

n∑

i=1

XiZ
′
i

)
,

∆n(θI) =
1√
n

n∑

i=1

(Yi − X ′
iθI)Xi =

1√
n

n∑

i=1

ǫi(θI)Zi.

Under standard sampling conditions

1

n

n∑

i=1

ZiZ
′
i →p EZZ ′,

1

n

n∑

i=1

ZiX
′
i →p EZX ′, and {ǫ(θI)Z, θI ∈ ΘI} is Donsker.
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Hence the finite-dimensional and quasi-uniform limit of ℓn(θI , λ) is given by

ℓ∞(θI , λ) =
(
∆(θI) + λ′EXZ

)′(
EZZ ′

)−1(
∆(θI) + λ′EXZ ′

)
,

where (∆(θI), θI ∈ ΘI) is the weak limit of the empirical process (∆n(θI), θI ∈ ΘI). For instance,

under iid sampling, provided that {ǫ(θI)Z, θI ∈ ΘI} has a square-integrable envelope, the limit ∆(·)
is a zero mean Gaussian process with covariance kernel given by E∆(θI)∆(θ′I)

′ = Eǫ(θI)ǫ(θ
′
I)ZZ ′.

We therefore conclude that C.1-C.3 are satisfied and thus

Cn = ∆n(θI)
′
( 1

n

n∑

i=1

ZiZ
′
i

)−1
∆n(θI) →d C = sup

θI∈ΘI

∆(θI)
′[EZZ]−1∆(θI).

Notice that the limit is not pivotal and depends on knowing ΘI .
10 Also, compactness of ΘI is the

necessary condition for the limit variable C to be finite.

Next, we generalize our method to the general nonlinear method of moments. Let the following

partial identification condition hold: There are positive constants C and δ such that

‖Emi(θ)‖2 ≥ C · min[ inf
θ′I∈ΘI

‖θ − θ′I‖, δ]2, uniformly for θ ∈ Θ.(3.15)

This is both a partial identification condition and a smoothness assumption. This condition implies

that Emi(θ) = 0 if an only if θ ∈ ΘI , and also imposes smoothness on the behavior of Emi(θ) for

points θ near ΘI .

In the point-identified case, global identification and the full rank and continuity of the Jacobian

∇θEmi(θ) near θI ordinarily imply (3.15); see e.g. Theorem 3.3 in Pakes and Pollard (1998). In the

set identified case, the Jacobian may be degenerate, which necessitates a statement of a more careful

condition (3.15). For example, in the previous linear IV model we have that Emi(θ) = EZ ′X(θ−θ∗I ),

where θ∗I is the closest point to θ in ΘI . Provided that ‖θ∗I − θ‖ > 0, the vector (θ− θ∗I ) is orthogonal

to the hyperplane {v : EZ ′Xv = 0}. Hence if rank EZ ′X is non-zero, for C0 denoting the minimal

positive eigenvalue of (EX ′Z)(EZ ′X), we have ‖EZ ′X(θ − θ∗I )‖2 ≥ C0 · ‖θ − θ∗I‖2.

Theorem 3.4 (Generalized Method-of Moments). Let the basic conditions specified in Section 3.1

hold and let i. ΘI = ∂ΘI , ii. {mi(θ), θ ∈ Θ} be a Donsker class, iii. Emi(θ) satisfy (3.15) and have

continuous Jacobian G(θ) = ∇θEmi(θ), v. Wn(θ) = W (θ) + op(1) uniformly in θ, where W (θ) is

10In the case dim(z) > dim(x), and qn = infθ∈Θ Qn(θ), then ℓ∞(θI , λ) =

(∆(θI)
′ + λ′EXZ′) [EZZ′]−1 (∆(θI) + λ′EXZ ′) , and

Cn →d C = sup
θI∈ΘI

ℓ∞(θI , 0) − inf
θI∈ΘI ,λ∈V∞(θI )

ℓ∞(θI , λ).
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positive definite and continuous for all θ. Then, C.1-C.3 and A.1-A.3 hold, and

ℓ∞(θI , λ) =
(
∆(θI) + λ′G(θI)

)′
W (θI)

(
∆(θI) + λ′G(θI)

)
,

C =

{
supθI∈ΘI

ℓ∞(θI , 0) if nqn →p 0

supθI∈ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ) − infθI∈ΘI ,λ∈V∞(θI) ℓ∞(θI , λ) if nqn 6→p 0
;

where θI 7→ ∆(θI) is the weak limit of the process θI 7→ ∆n(θI), a zero-mean Gaussian process

with the covariance function E[∆(θI)∆(θ̃I)
′] = limn→∞ E[n−1

∑n
i=1 mi(θI)

∑n
i=1 mi(θ̃I)

′]. Above,

nqn →p 0 necessarily occurs if qn := 0 or if qn := infθ∈θ Qn(θ) but dim(mi(θ)) ≤ dim(θ).

The theorem verifies the conditions C.1-C.3 and A.1-A.3, which implies that the results of The-

orems 2.1, 2.2, 3.1, and 3.2 apply to the GMM case. Therefore the inference procedure proposed in

Section 2 is valid in this case. Further, the confidence regions have the stochastic properties given

in Theorems 3.1 and 3.2. Similarly to the interval regression case, C depends on ΘI . Hence the

distribution of the limit variable C is not pivotal, and has no known closed analytical form, but this

does not create a problem for the inferential method proposed in Section 2.

4. Computation and Empirical Monte Carlo

We illustrate our methods above with an empirical Monte Carlo that uses data from the CPS.

We also provide details on the computational method that can be used to construct the confidence

sets.

4.1. Computation. An issue in the subsampling method is being able to use an efficient numerical

algorithm to construct level sets of an objective function. Ideally, one would like to use a rich set

of grid points and evaluate the function on those points. However, as the dimension of θ increases,

constructing a simple uniform grid becomes computationally infeasible. The Metropolis-Hastings

algorithm provides a computationally attractive method for generating adaptive grid sets. The

details of the numerical approach we use is summarized in the following algorithm:

1. Generate a grid of points Θ̃ = (θ1, ..., θk) using the Metropolis-Hastings algorithm.11

2. Given a starting critical value c0 and k = c0 ln n, we can compute the level set of the

objective function as: Cn(k) = {θg ∈ Θ̃ : n(Qn(θg) − minθg∈Cn(k) Qn(θg)) ≤ k}.
3. At each subsampling stage j where j = 1, ..., Bn, compute Qb(θg) for all θg ∈ Cn(k), and the

subsample coverage statistic, e.g. Cj,b,n = b
(
maxθg∈Cn(k) Qb(θg) − minθg∈Cn(k) Qb(θg)

)
.

4. Compute the α-quantile ĉ(α) of {Cj,b,n, j = 1, ..., Bn}.

5. Then compute Cn(ĉ(α)) = {θg ∈ Θ̃ : n
(
Qn(θg) − minθg∈Cn(k) Qb(θg)

)
≤ ĉ(α)}.

11This algorithm is a valuable method of generating grid points adaptively, so that they are placed in relevant

regions only. See Robert and Casella (1998) for a detailed description; and Chernozhukov and Hong (2003) for related

examples in non-likelihood settings.
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An important practical issue is the choice of the initial point c0. Theorem 2.2 suggests the

consistency of estimate cα is not affected by the choice of c0 as long as c0 is bounded in the sense of

(2.2). Hence a reasonable procedure for selecting c0 can be based on pointwise testing procedures.

For example, in GMM a pointwise critical value for testing Q(θ) = 0 at θ is given by the α-quantile

of a chi-squared variable with degrees of freedom equal to the number of equations. See the next

section for how to choose c0 in the interval regression case. More generally, one can use the α-quantile

of the asymptotic distribution of the coverage statistic computed under the assumption that θI is a

singleton.

4.2. Empirical Monte Carlo: Returns to Schooling in the CPS. We examine the actual finite-

sample performance of the inferential procedures proposed in this paper using data from Current

Population Survey. Our “population” is a sample of white men ages 20 to 50 from the March 2000

wave of the CPS. The wages and salaries series are not top coded or censored and so we are able

to use this population to construct

1. confidence regions for the returns to schooling parameters in the point identified case, and

2. confidence regions covering the identified set when we artificially bracket the data.

Our Monte Carlo is based on random sampling from the original data set. Table 1 below provides

summary statistics for our data (population). The “true” returns to schooling coefficient is .0533

Table 1. Population Summary Statistics

Variable Obs Mean Std Dev Min Max

Wages and Salaries 13290 66667.6 51968.41 1 513472

Education 13290 11.77 1.89 1 16

with a constant term of 3.91 obtained from a least squares regression of log of wages on education

in the “population”. We start first by describing the details of the computational procedure.

4.3. Starting values and Implementation Details: The algorithm used to obtain estimates of

ΘI is the same as the one described on page 20 above. The steps of the procedure are as follows:

1. We draw a sample of size n from the above population (this population will be artificially

bracketed below).

2. We build an initial estimate Cn(c0) at the starting cutoff level c0 (choosing c0 is described

next).

3. In the subsampling step, we obtain the consistent estimate, ĉα of the cutoff level by subsam-

pling the coverage statistic.
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At this point one can go back to step 2 above and set c0 = ĉα lnn and then repeat step 3.12

One may iterate several times, but we find that the cutoff levels that we get are very close

after no or at most two iterations.

4. In all of the above steps we use the numerical procedures as described in Section 4.1.

The starting value c0 that is used to construct the initial level set of the objective is problem specific.

For example, in the method of moments case, the critical value from a χ2 with an appropriate degrees

of freedom can be used as the starting value. In the interval regression example, we choose an initial

value c0 is the following way. Let Y a
i = 1

2(Y1i + Y2i) and Ỹ1i = Ỹ2i = Y a
i , then we use the objective

function Qn(θ) applied to the data (Ỹ1i, Ỹ2i, Xi, i ≤ n). This generates an auxiliary model, which is

point-identified at some value θa
0 , and for which we can compute the limit distribution of

n(Qn(θa
0) − Qn(θ̂a

0)),

and take its quantiles as the starting value c0. In what follows, we used subsampling to estimate c0,

which is a consistent method of estimating c0 by Theorem 2.6.1 in Politis, Romano, and Wolf (1999).

4.4. Properties of the Set Inference Procedure in the Point-identified model. Here, the

data on wages is not interval measured (the model is point identified), but we nonetheless apply

our procedure to obtain the confidence region. The objective function that we use is the minimum

distance objective function

Qn(θ) =
J=16∑

j=1

nj

n
(τ̂1(xj) − x′

jθ)
2
− + (τ̂2(xj) − x′

jθ)
2
+.(4.1)

Since wages are not interval-measured, we have that τ̂1(xj) = τ̂2(xj), j = 1, ..., J . The results

obtained are compared to the the joint confidence ellipse obtained using the usual Wald inference

approach. In Figure 1, we provide graphs for n = 400 and n = 2000 observations and see that the

subsampling procedure is close to the ellipse obtained using the usual chi-squared approximation.

In Table 2, we examine the coverage of our inferential procedure . We provide the coverage for two

sample sizes: n = 1000 and n = 2000, using R = 600 simulations. We report the coverage for a

sequence of subsample sizes. As we can see, coverage seems monotonic initially in the subsample size

and for the case where n = 1000, it peaks at b = 200 while for the case where n = 2000, it peaks at

b = 500 and comes close to 95%.

4.5. Properties of the Set Inference Procedure in the Set-Identified Model. To examine

the identified set of parameters in the case of censoring of the dependent variable, we bracket the

income data into 15 different categories. These brackets are (in thousands)

12In the interval regression example and similar situations, ln n may be dropped.
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Figure 1. Point Identified Case: Subsampling vs χ2 Ellipses
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Table 2. Finite-Sample Coverage Property in the Point Identified Model

Subsample Size

n=1000 b=50 b=80 b=120 b=200 b=300

Coverage (95%) 85.1 88 87.2 93.1 91.2

n=2000 b=200 b=300 b=400 b=500 b=600

Coverage (95%) 86.1 88.2 90.5 95.01 93.3

[0,5],[5,7.5],[7.5,10],[10,12,5],[12.5,15],[15,20],[20,25],[25,30]

[30,35],[35,40],[40,50],[50,60],[60,75],[75,100],[100,150],[150,100000]

Notice here that the topcoding is artificially set at $100 million. To give a flavor of the data, we

obtain 718 observations in the first bracket, 1211 belong to [50, 60], 1598 belong to [100, 150] while

734 are making above 150. The objective function is the same as the one used earlier. In Figure 2

through our 95% confidence region Cn(ĉ.95) for sample sizes n = 600, 2000, 4000, and 10000 drawn

at random without replacement from the original “population”.

Using the artificially bracketed population, we can obtain the identified set by collecting the

parameters that satisfy the following set of J inequalities corresponding to the set of J values that

the level of education takes:

E[y1|xj ] ≤ b0 + b1xj ≤ E[y2|xj ], j = 1, ..., J.
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We then graph the identified set ΘI along with the 95% confidence region Cn(ĉ.95). Notice that

as the sample size increases, the set estimates shrink towards the identified set. For example, at

n = 600, our set estimate of the intercept is [3.2, 4.71] while the true range is [3.6, 4.4].

Figure 2. ΘI vs

Cn(ĉ.95): n=600, b=60.
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Figure 3. ΘI vs

Cn(ĉ.95). n=2000, b=200.
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Figure 4. ΘI vs

Cn(ĉ.95). n=4000, b=400.
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Figure 5. ΘI vs

Cn(ĉ.95). n=10000,

b=2000.
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To calculate coverage probabilities, we draw R = 600 random samples from the population and

record whether our set estimates using these samples cover the identified set. For every sample, we

construct the set estimate, and calculate coverage in the following manner. Numerically, we store the
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Table 3. Finite-Sample Coverage Property in the Set Identified Model

Subsample Size

N=1000 b=100 b=150 b=200 b=250 b=300

Coverage (95%) 84.1 90.2 91.3 88.5 82.8

N=2000 b=200 b=300 b=400 b=500 b=600

Coverage (95%) 86.34 90.1 92.2 94.3 91.2

identified set ΘI and Cn(ĉα) as arrays, and then check whether all the points in ΘI are contained in

Cn(ĉα). As Table 3 and Figures 2-5 show, the coverage is similar to the point identified case and the

set estimates converge to the identified set as the samples size increases. The numerical performance

of our inferential methods supports the large sample theory developed in Theorems 3.1-3.3.

5. Conclusion

This paper provided confidence regions for identified sets in models with partial identification.

The proposed inference procedures are criterion function based, and our confidence regions are certain

level sets of the criterion function in finite samples. In the case when the model is point-identified,

our confidence sets reduce to the conventional confidence regions based on inverting the likelihood

or other criterion functions. The proposed procedure was shown to be valid under general yet

simple conditions. Along with inferential procedures, we have developed methods of analyzing the

asymptotic behavior of econometric criterion functions under set identification and also characterized

the rates of convergence of the confidence regions to the identified set. We applied our methods to

regressions with interval data and set identified method of moments problems. We also assessed the

performance of the methods in Monte Carlo experiments based on the Current Population Survey

data. We found that the methods perform well and in accordance with the asymptotic theory

developed.
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Appendix A. Appendix

We use the following notation for empirical processes in the sequel: for W ≡ (Y, X)

Enf(W ) ≡ 1

n

n∑

i=1

f(Wi), Gnf(W ) ≡ 1√
n

n∑

i=1

(f(Wi) − Ef(Wi)) .

E denotes expectation and E denotes expectation evaluated at estimated functions f̂ :

Ef̂(Wi) ≡ (Ef(Wi))f=f̂ .

Outer and inner probabilities, P ∗ and P∗ and corresponding notions of weak converegence are defined as in

van der Vaart and Wellner (1996). →p denotes convergence in outer probability, and →d means convergence

in distribution under P ∗, wp → 1 means “with the inner probability approaching 1,” and “wp & 1− ǫ” means

“with the inner probability no smaller than 1 − ǫ for sufficiently large n”. A table of notation is given at the

end of the Appendix.

Appendix B. Proofs of Lemma 2.1, Theorem 2.1, and Theorem 2.2.

B.1. Proof of Lemma 2.1. Proof is given in the main text. ¤

B.2. Proof of Theorem 2.1. Proof is given in the main text. ¤

B.3. Proof of Theorem 2.2. Step I. We have that

(B.1) Ĉj,b,n = sup
θ∈Cn(ĉ)

ab (Qj,b(θ) − qj,b) ,

where qj,b := 0 if qn := 0 and qj,b := infθ∈Θ Qj,b(θ) otherwise; Qj,b(θ) denotes the criterion function defined

using the j-th subset of the data only. Define

Ĝb,n(x) := B−1
n

Bn∑

j=1

1{Ĉj,b,n ≤ x} = B−1
n

Bn∑

j=1

1{Cj,b,n ≤ x − (Ĉj,b,n − Cj,b,n)},(B.2)

where

(B.3) Cj,b,n = sup
θ∈ΘI

ab (Qj,b(θ) − qj,b) .

In what follows, the main step is to show that Ĉj,b,n can be replaced by Cj,b,n. This will be possible due to

the sandwich assumption, and despite that the constant k̂ used in construction of the preliminary set estimate

Cn(k̂) is data-dependent.

By A.3 wp → 1, for some deterministic set Θǫn

I we have

(B.4) ΘI ⊆ Cn(k̂) ⊆ Θǫn

I ,

where Θǫn

I := {θI + t : ‖t‖ ≤ ǫn, θI ∈ ΘI}. Hence wp → 1 for all i ≤ Bn

(B.5) sup
θ∈ΘI

ab (Qj,b(θ) − qj,b)

︸ ︷︷ ︸
Cj,b,n

≤ sup
θ∈Cn(ĉ)

ab (Qj,b(θ) − qj,b)

︸ ︷︷ ︸
Ĉj,b,n

≤ sup
θ∈Θǫn

I

ab (Qj,b(θ) − qj,b)

︸ ︷︷ ︸
Cj,b,n

.
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Hence wp → 1

(B.6) Gb,n(x) ≡ B−1
n

Bn∑

j=1

1{Cj,b,n ≤ x} ≤ Ĝb,n(x) ≤ Gb,n(x) ≡ B−1
n

Bn∑

j=1

1{Cj,b,n ≤ x}.

By A.2 Cb →d C and by A.3

(B.7) Cb = Cb + op(1) →d C,

so that by Step II

Gb,n(x) →p G(x) := P{C ≤ x}, Gb,n(x) →p G(x) = P{C ≤ x},(B.8)

if x is a continuity point of G(x), which proves that:

(B.9) Ĝb,n(x) →p G(x)

at the continuity points x of G(x). Furthermore, if G is continuous at cα = G−1(α),

(B.10) ĉα = Ĝ−1
n,b(α) →p cα = G−1(α),

since convergence of distribution function at continuity points implies the convergence of quantile functions

at continuity points. Finally the claim I, that

(B.11) P (ΘI ∈ Cn(ĉα)) → α,

follows by Theorem 2.1.

Step II. This part shows (B.8). Write

Gb,n(x) = B−1
n

Bn∑

j=1

1{Cj,b,n ≤ x}

(a)
= P{Cb ≤ x} + op(1)

(b)
= P{C ≤ x} + op(1)

(B.12)

at the continuity points x of G(x) ≡ P{C ≤ x}, as long as

(B.13)
b

n
→ 0, b → ∞, n → ∞;

where (a) follows from

(B.14) Var


 1

Bn

Bn∑

j=1

1{Cj,b,n ≤ x}


 = o (1)

by the variance bound for bounded U -statistics for i.i.d. series and α-mixing series given on pages 45 and 72

in Politis, Romano, and Wolf (1999); and (b) follows by

(B.15) Cb →d C, as b → ∞,

and the definition of convergence in distribution on R.
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Likewise, conclude

Gb,n(x) = B−1
n

Bn∑

j=1

1{Cj,b,n ≤ x}

= P{Cb ≤ x} + op(1)

= P{C ≤ x} + op(1)

(B.16)

at the continuity points x of G(x) = P{C ≤ x}.
Step III. Wp → 1,

(B.17) ΘI ⊂ Cn(k̂) =⇒ h(ΘI , Cn(k̂)) = 0.

Then, wp → 1

(B.18) Cn(k̂) ⊂ Θǫn =⇒ h(Cn(k̂),ΘI) ≤ h(Θǫn , ΘI) ≤ ǫn.

Hence wp → 1

(B.19) dH(ΘI , Cn(k̂)) ≤ ǫn.

Thus Claim II is proven. ¤

Appendix C. Proof of Theorem 3.1

First recall that

Cn := sup
θI∈ΘI

n (Qn(θI) − qn)

=

{
supθI∈ΘI

ℓn(θI , 0) if qn := 0,

supθI∈ΘI
ℓn(θI , 0) − infθI+λ/

√
n∈Θ ℓn(θI , λ) if qn := infθ∈Θ Qn(θ).

(C.1)

We seek to establish that Cn →d C, where

C :=

{
supθI∈∂ΘI ,λ∈Λ∞(θI) ℓ∞(θI , λ), if nqn →p 0

supθI∈∂ΘI ,λ∈Λ∞(θI), ℓ∞(θI , λ) − infθI∈ΘI ,λ∈V∞(θI) ℓ∞(θI , λ) if nqn 6→p 0,
(C.2)

(C.3) Λ
∞

(θI) := {0} ∪ {λ ∈ R
d : θI + λ/

√
n ∈ int(ΘI) for all sufficiently large n},

V
∞

(θI) := {λ ∈ R
d : θI + λ/

√
n ∈ Θ for all sufficiently large n}.(C.4)

Step I: Case when nqn →p 0. Since nqn →p 0, we have that

(C.5) Cn = sup
θI∈ΘI

ℓn (θI , 0) + op(1).

Hence in what follows we ignore the op(1) term.

Then we would like to show the following simple, but important representation:

(C.6) Cn = sup
θI∈ΘI

ℓn (θI , 0) = sup
θI∈∂ΘI ,λ∈Λn(θI)

ℓn(θI , λ)

where

(C.7) Λn(θI) := {0} ∪ {λ ∈ R
d : θI + λ/

√
n′ ∈ int(ΘI) for all n′ ∈ [n,∞)}.

To prove (C.6), we need to show that for each θ ∈ ΘI , there exists θ∗I ∈ ∂ΘI and λ∗ ∈ Λn(θ∗I ) such that

θ∗I + λ∗/
√

n = θI . If θI ∈ ∂ΘI , then simply take θ∗I = θI and λ∗ = 0. If θI ∈ int(ΘI) take a sufficiently small
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ball centered at θI of radius δ > 0 , denoted Bδ(θI), such that Bδ(θI) ⊆ int(ΘI). Then start expanding the

radius of the ball δ so that to find the minimal value of δ such that the boundary of the ball includes a point

θ∗I ∈ ∂ΘI . Such radius exists by compactness of ΘI . Then the points on the line segment between θ∗I and

θI all belong to int(ΘI) and can be parameterized as θ∗I + λ∗/
√

n′, n′ ∈ [n,∞), where λ∗ = (θI − θ∗I )
√

n. By

construction θ∗I ∈ ∂ΘI and λ∗ ∈ Λn(θ∗I ). Hence (C.6) is true.

In what follows, we distinguish two cases:

Case 1. ΘI has an empty interior relative to Θ, so that ΘI = ∂ΘI ,

Case 2. ΘI has a nonempty interior relative to Θ, so that ΘI 6= ∂ΘI .

Case 1. By C.2-(i)

(C.8) Cn = sup
θI∈ΘI

ℓn (θI , 0) = sup
θI∈∂ΘI

ℓn (θI , 0) →d C = sup
θI∈∂ΘI

ℓ∞ (θI , 0) .

Since int(ΘI) is empty,

(C.9) Λn(θI) = Λ∞(θI) = {0},

so that we can also rewrite (C.8) using general notation

(C.10) Cn = sup
θI∈ΘI

ℓn (θI , 0) = sup
θI∈∂ΘI ,λ∈Λn(θI)

ℓn (θI , λ) →d C = sup
θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞ (θI , λ) .

Case 2. For any δ > 0 decompose

(C.11) Cn = max[C∗
n(δ), Cn(δ)],

where

C∗
n(δ) := sup

θI∈In(δ)

ℓn (θI , 0) and Cn(δ) := sup
θI∈ΘI\In(δ)

ℓn(θI , 0),(C.12)

and In(δ) = {θI ∈ int(ΘI) : infθ′

I∈∂ΘI
‖θI − θ′I‖ > δ/

√
n}, as defined in Assumption C.1.

By Assumption C.1 for any ǫ > 0 there exists δ sufficiently large such that

lim inf
n→∞

P∗
{
C∗

n (δ) = 0
}
≥ 1 − ǫ.(C.13)

Observe also that Cn(δ) ≥ 0 by construction. Hence for any ǫ > 0 there exists δ sufficiently large such that

lim inf
n→∞

P∗
{
Cn = Cn(δ)

}
≥ 1 − ǫ.(C.14)

Observe that

Cn(δ) = sup
θI∈∂ΘI ,λ∈Λn(θI)∩{‖λ‖≤δ}

ℓn (θI , λ) .(C.15)

By Assumption C.2 (i.-ii.) for any compact set K

sup
θI∈∂ΘI

ℓn(θI , ·) ⇒ sup
θI∈∂ΘI

ℓ∞(θI , ·) in L∞(K),(C.16)

where λ 7→ supθI∈∂ΘI
ℓ∞(θI , λ) has uniformly continuous paths. The next claim is that (C.16) implies by

Continuous Mapping Theorem that

Cn(δ) →d C(δ) := sup
θI∈∂ΘI ,λ∈Λ∞(θI)∩{‖λ‖≤δ}

ℓ∞ (θI , λ) .(C.17)

The proof of this claim is given below. Hence for any closed set F

(C.18) lim sup
n→∞

P ∗{Cn(δ) ∈ F
}
≤ P

{
C(δ) ∈ F

}
.
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Hence by (C.13) and (C.14) for any ǫ > 0 there exists δǫ large enough such that

lim sup
n→∞

P ∗{Cn ∈ F
}
≤ P

{
C(δǫ) ∈ F

}
+ ǫ.(C.19)

Therefore, taking ǫ → 0 and δǫ → ∞ accordingly, it follows that

lim sup
n→∞

P ∗{Cn ∈ F
}
≤ P

{
C ∈ F

}
,(C.20)

where

C := lim
δ↑∞

C (δ) = sup
θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞ (θI , λ) a.s.(C.21)

The limit C exists in R̄ by the Monotone Convergence Theorem. By construction C ≥ 0 a.s., and by Assumption

C.3(iii) C < ∞ a.s. Conclude that by the Portmanteau lemma (van der Vaart and Wellner (1996), p.20) and

(C.20) that

(C.22) Cn →d C.

Proof of Cn(δ) →d C(δ). Observe that

(C.23) Λn0
(θI) ⊆ Λn(θI) ⊆ Λ

∞
(θI), for all n ≥ n0, all n0 ≥ 1

and Λn(θI) ր Λ
∞

(θI), in the sense that Λn(θI) is a nested sequence and Λn(θI) → Λ
∞

(θI), i.e.

(C.24) ∪∞
n0=1 ∩∞

n=n0
Λn(θI) = ∩∞

n0=1 ∪∞
n=n0

Λn(θI) = Λ
∞

(θI),

since by definitions given earlier for all n0 ≥ 1

(C.25) ∪∞
n=n0

Λn(θI) = Λ
∞

(θI) and ∩∞
n=n0

Λn(θI) = Λn0
(θI).

Therefore,

Cn(δ) := sup
θI∈∂ΘI ,λ∈Λn0

(θI)∩{‖λ‖≤δ}
ℓn (θI , λ)

≤ Cn(δ) = sup
θI∈∂ΘI ,λ∈Λn(θI)∩{‖λ‖≤δ}

ℓn (θI , λ)

≤ Cn(δ) := sup
θI∈∂ΘI ,λ∈Λ∞(θI)∩{‖λ‖≤δ}

ℓn (θI , λ) .

(C.26)

and

C(δ) := sup
θI∈∂ΘI ,λ∈Λn0

(θI)∩{‖λ‖≤δ}
ℓ∞ (θI , λ)

≤ C(δ) := sup
θI∈∂ΘI ,λ∈Λ∞(θI)∩{‖λ‖≤δ}

ℓ∞ (θI , λ) .
(C.27)

By (C.16) and the Continuous Mapping Theorem

(C.28) Cn(δ) →d C(δ)

and for any fixed n0

(C.29) Cn(δ) →d C(δ)

Let the underlying probability space be denoted as (Ω,F , P ). Observe that for every ω ∈ Ω,

(C.30) sup
θI∈∂ΘI ,λ∈Λ∞(θI)∩{‖λ‖≤δ}

ℓ∞ (θI , λ)
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is necessarily attained at some θ∗I (ω) ∈ ∂ΘI and λ∗(ω) ∈ Λ
∞

(θ∗I (ω)) ∩ {‖λ‖ ≤ δ}, because the set ∂ΘI is

compact and Λ
∞

(θ∗I (ω)) ∩ {‖λ‖ ≤ δ} is also compact. That is

(C.31) C(δ) = ℓ∞(θ∗(ω), λ∗(ω)) a.s.

Moreover as n0 → ∞,

(C.32) Λn0
(θI) ∩ {‖λ‖ ≤ δ} ր Λ

∞
(θI) ∩ {‖λ‖ ≤ δ} for each θI ∈ ∂ΘI

hence

(C.33) Λn0
(θ∗I (ω)) ∩ {‖λ‖ ≤ δ} ր Λ

∞
(θ∗I (ω)) ∩ {‖λ‖ ≤ δ} a.s.

so that by continuity of λ 7→ ℓ∞(θI , λ), we have that

(C.34) C(δ) ր lim
n0→∞

C(δ) = C(δ) a.s.

Note that to obtain (C.34) we use that C(δ) is monotonicity increasing in n0 due to (C.32), so that limn0→∞ C(δ)

exists a.s. and by (C.27)

(C.35) lim
n0→∞

C(δ) ≤ C(δ) a.s.

Moreover, for θ∗I (ω) defined above there exists a sequence λ∗
n0

(ω) in Λn0
(θ∗I (ω))∩{‖λ‖ ≤ δ} such that λ∗

n0
(ω) →

λ∗(ω) a.s. Hence by continuity of λ 7→ ℓ∞(θI , λ) at each θI ∈ ∂ΘI ,

(C.36) lim
n0→∞

C(δ) ≥ lim
n0→∞

ℓ∞(θ∗I (ω), λn0
(ω)) = ℓ∞(θ∗I (ω), λ∗(ω)) = C(δ) a.s.

Now we are ready to close the argument. Let F be any real number such that P{C(δ) = F} = 0, then

P{C(δ) ≤ F} (1)
= lim

n→∞
P ∗{Cn(δ) ≤ F}

(2)

≤ lim inf
n→∞

P∗{Cn(δ) ≤ F}
(3)

≤ lim sup
n→∞

P ∗{Cn(δ) ≤ F}

(4)

≤ lim sup
n→∞

P ∗{Cn(δ) ≤ F}

(5)

≤ P{C(δ) ≤ F} for any n0 ≥ 1

(6)→
n0→∞

P{C(δ) ≤ F},

(C.37)

where (1) is by (C.28) and the Portmanteau lemma (van der Vaart and Wellner (1996), p.20), (2)-(4) by

(C.26), (5) by the Portmanteau lemma, and (6) is by (C.34) and the Portmanteau lemma. Thus for any F

such that P{C(δ) = F} = 0,

(C.38) lim inf
n→∞

P∗{Cn(δ) ≤ F} = lim sup
n→∞

P ∗{Cn(δ) ≤ F} = P{C(δ) ≤ F}.

Thus, by the Portmanteau lemma

Cn(δ) →d C(δ).(C.39)

Step II.Case when ΘI = ∂ΘI and nqn 6→p 0: Consider two cases:

Case 1. ΘI has a nonempty interior relative to Θ, so that ΘI 6= ∂ΘI ,
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Case 2. ΘI has an empty interior relative to Θ, so that ΘI = ∂ΘI .

Case 1. In this case by Assumption C.1

(C.40) nqn →p 0,

which Step I has taken care of.

Case 2. We have by definition of ℓn(θI , λ) and Cn,

Cn = sup
θI∈ΘI

ℓn (θI , 0) − inf
θI+λ/

√
n∈Θ

ℓn (θI , λ) .(C.41)

We need to show that
(

sup
θI∈ΘI

ℓn (θI , 0) , inf
θI+λ/

√
n∈Θ

ℓn (θI , λ)

)
→d

(
sup

θI∈∂Θ,λ∈Λ∞(θI)

ℓ∞ (θI , λ) , inf
θI∈∂ΘI ,λ∈V∞(θI)

ℓ∞ (θI , λ)

)
.(C.42)

Define

(C.43) Mn := inf
θI+λ/

√
n∈Θ

ℓn (θI , λ) and M := inf
θI∈∂ΘI ,λ∈V∞(θI)

ℓ∞ (θI , λ) .

Below we show only the marginal convergence Mn →d M. The joint convergence (C.42) follows by combining

the arguments of the proofs of Step I and Step II and applying the Cramer-Wold Device.

Write

(C.44) Mn = min[M̂n (K) ,Mn(K)],

where

M̂n (K) := inf
θI+λ/

√
n∈Θ, v(θI ,λ)≥K/

√
n

ℓn (θI , λ) ,

Mn(K) := inf
θI+λ/

√
n∈Θ, v(θI ,λ)≤K/

√
n

ℓn (θI , λ) ,
(C.45)

where

(C.46) ν(θI , λ) := inf
θ′

I∈ΘI

‖θI + λ/
√

n − θ′I‖.

By Assumption C.3, for any ǫ > 0, there is K large enough so that

lim inf
n→∞

P∗
{
M̂n (K) > C1 min[K2, nδ2]

}
≥ 1 − ǫ,(C.47)

for some constants C1 > 0 and δ > 0 that do not depend on ǫ.

First observe that

Mn (K) = inf
θI+λ/

√
n∈Θ, v(θI ,λ)≤K/

√
n

ℓn (θI , λ)

(1)
= inf

θI+λ/
√

n∈Θ, ‖λ‖≤K
ℓn (θI , λ)

(2)
= inf

θI∈∂ΘI ,λ∈Vn(θI)∩{‖λ‖≤K}
ℓn (θI , λ) ,

(C.48)

where

(C.49) Vn(θI) := {λ ∈ R
d : θI + λ/

√
n′ ∈ Θ, for all n′ ∈ [n,∞)}

Equality (1) in (C.48) is trivial. First, by compactness of ΘI every θI + λ/
√

n such that ν(θI , λ) ≤ K/
√

n

can be represented as θ∗I + λ∗/
√

n where λ∗ =
√

nν(θI , λ) ≤ K. Second, every θI + λ/
√

n with ‖λ‖ ≤ K

trivially satisfies
√

nν(θI , λ) ≤ K.
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Equality (2) in (C.48) is more subtle. To show (2) note that {θI + λ/
√

n, |λ| ≤ K, θI ∈ ΘI} ∩ Θ =

{(θI + BK/
√

n(0)) ∩ Θ, θI ∈ ΘI}. Note that (θI + BK/
√

n(0)) ∩ Θ is convex and necessarily contains θI , since

it is the intersection of two convex sets (by Assumption A.1 Θ is convex) that contain θI . Hence for every

θ′ = θI + λ/
√

n ∈ (θI + BK/
√

n(0)) ∩ Θ, points on the linear segment between θ′ and θI are also contained in

(θI + BK/
√

n(0)) ∩ Θ. Therefore λ =
√

n(θ′ − θI) ∈ Vn(θI) ∩ {‖λ‖ ≤ K}, and representation (2) follows.

By Assumption C.2 (i.-ii.)

inf
θI∈ΘI

ℓn(θI , ·) ⇒ inf
θI∈ΘI

ℓ∞(θI , ·) in L∞(K).(C.50)

Equipped with (C.48) and (C.50), we can show through the use of the Continuous Mapping Theorem that

Mn (K) →d M (K) := inf
θI∈∂ΘI ,λ∈V∞(θI),|λ|≤K

ℓ∞ (θI , λ) .(C.51)

The proof of this claim is stated below.

Hence by (C.47)-(C.51), for any ǫ > 0 there is a sufficiently large K(ǫ) such that

lim inf
n→∞

P∗
{
Mn = Mn (K (ǫ))

}
≥ 1 − ǫ.(C.52)

Note that

M = inf
θI∈∂ΘI ,λ∈V∞(θI)

ℓ∞ (θI , λ) = lim
K↑∞

M (K) .(C.53)

M exists a.s. in R̄ by the Monotone Convergence Theorem. Since ℓ∞ (θI , λ) ≥ 0 and finite at least for λ = 0

by C.2, 0 ≤ M < ∞ a.s., i.e M is tight.

By (C.51)-(C.52), for any ǫ > 0 and each closed set F ,

lim sup
n→∞

P ∗{Mn ∈ F
}
≤ lim sup

n→∞
P ∗{Mn (K (ǫ)) ∈ F

}
+ ǫ

≤ P
{
M (K (ǫ)) ∈ F

}
+ ǫ.

(C.54)

Letting ǫ → 0 and K(ǫ) → ∞ accordingly, it follows that

(C.55) lim sup
n→∞

P ∗{Mn ∈ F
}
≤ P

{
M ∈ F

}
.

By the Portmanteau Lemma conclude that

(C.56) Mn →d M.

Proof of Mn(K) →d M(K). Observe that

(C.57) Vn0
(θI) ⊆ Vn(θI) ⊆ V

∞
(θI), for all n ≥ n0

so that

Mn(K) := inf
θI∈∂ΘI ,λ∈V∞(θI)∩{‖λ‖≤K}

ℓn (θI , λ)

≤ Mn(K) = inf
θI∈∂ΘI ,λ∈Vn(θI)∩{‖λ‖≤K}

ℓn (θI , λ)

≤ Mn(K) := inf
θI∈∂ΘI ,λ∈Vn0

(θI)∩{‖λ‖≤K}
ℓn (θI , λ) .

(C.58)

By (C.50) and the Continuous Mapping Theorem for any fixed n0

(C.59) Mn(K) →d M(K) := inf
θI∈∂ΘI ,λ∈Vn0

(θI)∩{‖λ‖≤K}
ℓ∞ (θI , λ) ,
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and

(C.60) Mn(K) →d M(K) := inf
θI∈∂ΘI ,λ∈V∞(θI)∩{‖λ‖≤K}

ℓ∞ (θI , λ) .

Moreover, as n0 → ∞

(C.61) Vn0
(θI) ∩ {‖λ‖ ≤ K} ր V

∞
(θI) ∩ {‖λ‖ ≤ K} for each θI ∈ ∂ΘI ,

so that by continuity of λ 7→ ℓ∞(θI , λ) at each θI ∈ ∂ΘI

(C.62) M(K) ց M a.s.

The details of proving (C.62) are nearly identical to those given in (C.31)-(C.36), so are not repeated.

Let F be any real number such that P{M(K) = F} = 0, then

P{M(K) < F} (1)
= lim

n→∞
P∗{Mn(K) < F}

(2)

≥ lim sup
n→∞

P ∗{Mn(K) < F}

(3)

≥ lim inf
n→∞

P∗{Mn(K) < F}
(4)

≥ lim inf
n→∞

P∗{Mn(K) < F}
(5)

≥ P{M(K) < F} for any n0 ≥ 1

(6)→
n0→∞

P{M(K) < F},

(C.63)

where (1) is by the Portmanteau lemma and (C.60), (2)-(4) by (C.58), (5) by the Portmanteau lemma, and

(6) is by (C.62) and the Portmanteau lemma. Therefore, for any real F such that P{M(K) = F} = 0

(C.64) lim sup
n→∞

P ∗{Mn(K) < F} = lim inf
n→∞

P∗{Mn(K) < F} = P{M(K) < F}.

Hence by the Portmanteau lemma

Mn(K) →d M(K).(C.65)

¤

Appendix D. Proof of Theorem 3.2

Steps I and II prove Claim I and Step III proves Claim II.

Step I: Case when nqn →p 0. Recall that Q(θI) = 0 and

(D.1) ℓn(θI , λ) := n(Qn(θI + λ/
√

n) − Q(θI)).

Since nqn →p 0, we have that

(D.2) Cn = sup
θI∈ΘI

ℓn (θI , 0) + op(1).

From the Proof of Theorem 3.1 we have that

(D.3) sup
θI∈ΘI

ℓn(θI , 0) = Op∗(1).
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Hence since k̂ →p ∞

(D.4) Cn < k̂ wp → 1 =⇒ ΘI ⊂ Cn(k̂) wp → 1 =⇒ h(ΘI , Cn(k̂)) = 0 wp → 1.

Condition C.3 implies that for any K → ∞ with K/k̂ → 0 there are positive constants C1 and δ such that

wp → 1

(D.5) C1 · n · min[ν(θI , λ)2, δ2] ≤ ℓn(θI , λ)

uniformly in (θI , λ) such that ν(θI , λ) ≥ K/
√

n, where ν(θI , λ) = infθ′

I∈ΘI
‖θI + λ/

√
n − θ′I‖.

By definition of Cn(k̂) and since Q(θI) = 0

(D.6) sup
θ∈Cn(k̂)

nQn(θ) + op(1) = sup
θI+λ/

√
n∈Cn(k̂)

ℓn(θI , λ) + op(1) ≤ k̂.

Hence

(D.7) θI + λ/
√

n ∈ Cn(k̂) implies ℓn(θI , λ) ≤ k̂ + op(1).

Then the claim is that wp → 1

(D.8) Cn(k̂) ⊂ Θ
2(k̂/C1)

1/2/
√

n
I ,

where Θc
I := {θI + t : ‖t‖ ≤ c, θI ∈ ΘI}. Suppose otherwise, then for some θI + λ/

√
n ∈ Cn(k̂),

(D.9) ν(θI , λ) = inf
θ′

I∈ΘI

|θI + λ/
√

n − θ′I | > 2(k̂/C1)
1/2/

√
n.

Then for this pair (θI , λ), wp → 1

(D.10) 4k̂
(a)
< C1 · n · min[ν(θI , λ)2, δ2]

(b)

≤ ℓn(θI , λ)
(c)

≤ k̂ + op(1),

where (a) is by (D.9) and by k̂ → ∞ and k̂/n → 0 so that C1 ·n·min[ν(θI , λ)2, δ2] ≥ C1 ·n·min[4(k̂/C1)/n, δ2] ≥
4k̂ wp → 1, (b) is by (D.5), (c) is by (D.7). This yields a contradiction. Thus, (D.8) is true.

Combining (D.4) and (D.8) it follows that wp → 1

(D.11) dH(ΘI , Cn(k̂)) ≤ h(Cn(k̂), ΘI) ≤ h(Θ
2(k̂/C1)

1/2/
√

n
I , ΘI) ≤ 2(k̂/C1)

1/2/
√

n.

Step II: Case when nqn 6→p 0. Observe the relationship between the “centered” and “un-centered” confi-

dence regions. Let the un-centered region be denoted as before:

(D.12) Cn(c) :=
{

θ : n (Qn(θ)) ≤ c
}

,

and the centered version be denoted as (in this proof only):

C̃n(c) :=
{

θ : n (Qn(θ) − qn) ≤ c
}

, where qn := inf
θ∈Θ

Qn(θ).(D.13)

Observe that the following key relationship between the two sets

(D.14) C̃n(k) = Cn(k + nqn) for all k > 0.

Let k̂ → ∞ but k̂ = op(n). From the proof of Theorem 2.1 we know that

(D.15) Mn = nqn = Op(1) since Mn →d M.

Hence

(D.16) k̃ := (k̂ + nqn) = k̂ · (1 + op(1)).
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By (D.14)

(D.17) C̃n(k̂) = Cn(k̃), so dH(C̃n(k̂),ΘI) = dH(Cn(k̃), ΘI).

Hence by (D.11) and (D.16) it follows that wp → 1

(D.18) dH(C̃n(k̂), ΘI) ≤ dH(Cn(k̃), ΘI) ≤ 2(k̃/C1)
1/2/

√
n ≤

(
2(k̂/C1)

1/2/
√

n
)

(1 + op(1)),

and the claim now follows.

Step III proves Claim II, that for k̂ ∈ [c0, c1] · lnn, wp → 1

(D.19) ΘI ⊂ Cn(k̂) ⊂ Θǫn

I , where b( sup
θ∈Θǫn

I

Qb(θ) − sup
θ∈ΘI

Qb(θ)) = op(1),

Θǫn

I = {θI + t : ‖t‖ ≤ ǫn, θI ∈ ΘI}, and ǫn → 0 is a sequence of positive constants.

We have that k̂ ∈ [c0, c1] · lnn wp → 1. Hence, by Claim I

(D.20) ΘI ⊂ Cn(k̂) ⊂ Θǫn

I wp → 1, where ǫn = C · lnn/
√

n

for some C > 0. Then, using Q(θI) = 0,

0 ≤ b( sup
θ∈Θǫn

I

Qb(θ) − sup
θI∈ΘI

Qb(θI))

= sup
θI+λ/

√
b∈Θǫn

I

b(Qb(θI + λ/
√

b − Q(θI)) − sup
θI∈ΘI

b(Qb(θI)) − Q(θI))

≤ sup
θI∈ΘI ,|λ|≤

√
bǫn

ℓb(θI , λ) − sup
θI∈ΘI

ℓb(θI , 0)

= max[ sup
θI∈∂ΘI ,|λ|≤

√
bǫn

ℓb(θI , λ), sup
θI∈ΘI

ℓb(θI , 0)] − sup
θI∈ΘI

ℓb(θI , 0)

(a)
= max[ sup

θI∈∂ΘI

ℓb(θI , 0) + op(1), sup
θI∈ΘI

ℓb(θI , 0)] − sup
θI∈ΘI

ℓb(θI , 0)

(b)
= max[ sup

θI∈∂ΘI

ℓb(θI , 0), sup
θI∈ΘI

ℓb(θI , 0)] + op(1) − sup
θI∈ΘI

ℓb(θI , 0)

= sup
θI∈ΘI

ℓb(θI , 0) + op(1) − sup
θI∈ΘI

ℓb(θI , 0)

= op(1),

(D.21)

where (a) follows from the uniform stochastic equicontinuity of the process λ 7→ supθI∈∂ΘI
ℓb(θI , λ) over K

assumed in C.2 and from

(D.22)
√

bǫn → 0,

which follows from the assumption that

(D.23) b/n → 0 at polynomial rate, so that
√

bǫn ∝
√

b/n lnn → 0;

(b) follows by the Continuous Mapping Theorem and proof of Theorem 3.1 which implies that as b → ∞
(

sup
θI∈ΘI

ℓb(θI , 0), sup
θI∈∂ΘI

ℓb(θI , 0)
)
→d

(
sup

θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞ (θI , λ) , sup
θI∈∂ΘI

ℓ∞(θI , 0)
)
.(D.24)

¤
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Appendix E. Proof of Theorem 3.3

Verification of A.1 is immediate from the stated assumptions. Therefore we will focus on verifying C.1 to

C.3.

Step I. Verification of C.1: The identified set ΘI is determined by a set of inequalities: ΘI := {θ ∈ R
d :

x′
jθ ≥ τ1 (xj) and x′

jθ ≤ τ2 (xj) for all j ≤ J}. It is assumed that the d×J matrix X := (xj , j ≤ J) is of rank

d = dim(θ). Denote Tk := (τk(xj), j ≤ J) for k = 1, 2. Thus

ΘI = {θ ∈ R
d : X ′θ = t for some t : T1 ≤ t ≤ T2}.(E.1)

Since T = {t ∈ R
J : T1 ≤ t ≤ T2} is compact and X has full rank, ΘI is compact. It is assumed that ΘI ⊂ Θ.

∂ΘI is determined as

(E.2) ∂ΘI = {θ ∈ ΘI : x′
jθ = τ1 (xj) or x′

jθ = τ2 (xj) , for some j}.

That θI ∈ In(δ) = {θI ∈ int(ΘI) : infθ′

I∈∂ΘI
‖θI − θ′I‖ ≥ δ/

√
n} implies that x′

jθI must be bounded away

from any τk (xj) by the distance proportional to ‖xj‖δ/
√

n. Indeed, observe that there exists κ > 0 such that

(E.3)
‖x′

jθ
′
I − x′

jθI‖
‖xj‖‖θ′I − θI‖

≥ κ > 0 ∀θI 6∈ ∂ΘI ,∀θ′I ∈ ∂ΘI : x′
jθ

′
I = τk(xj), ∀(j, k).

Suppose otherwise that κ = 0. This implies x′
jθI = x′

jθ
′
I = τk(xj) for some j and k and some θ′I ∈ ∂ΘI . This

poses a contradiction to θI 6∈ ∂ΘI . Hence κ > 0. Hence

(E.4)
‖τk(xj) − x′

jθI‖
‖xj‖

≥ κ‖θ′I − θI‖ ∀θI 6∈ ∂ΘI ,∀θ′I ∈ ∂ΘI : x′
jθ

′
I = τk(xj), ∀(j, k).

Recall that ‖xj‖ ≥ 1 for all j since the first component of xj is 1. Hence

(E.5) ‖τk(xj) − x′
jθI‖ ≥ κ inf

θ′

I∈∂ΘI

‖θ′I − θI‖‖xj‖ ∀θI 6∈ ∂ΘI , ∀(j, k).

Thus,

(E.6) θI ∈ In(δ) ⇒ τ1 (xj) − x′
jθI ≤ − κδ√

n
‖xj‖ or τ2 (xj) − x′

jθI ≥ κδ√
n
‖xj‖, ∀j.

Recall

(E.7) ℓn (θI , λ) =

J∑

j=1

nj

n

[√
n

(
τ̂1 (xj) − x′

jθI

)
− x′

jλ
]2

+
+

J∑

j=1

nj

n

[√
n

(
τ̂2 (xj) − x′

jθI

)
− x′

jλ
]2

−
.

Hence

(E.8) ℓn (θI , 0) =

J∑

j=1

nj

n

[
Ŵ1j −

√
n

(
x′

jθI − τ1 (xj)
) ]2

+
+

J∑

j=1

nj

n

[
Ŵ2j −

√
n

(
x′

jθI − τ2 (xj)
) ]2

−
.

Hence

(E.9) sup
θI∈In(δ)

|ℓn (θI , 0) | ≤
J∑

j=1

nj

n

[
Ŵ1j − κδ‖xj‖

]2

+
+

J∑

j=1

nj

n

[
Ŵ2j + κδ‖xj‖

]2

−
.

Choose any ǫ > 0. Since ‖xj‖ ≥ 1, W1j = Op (1) and W2j = Op (1) for each j ≤ J , for δ sufficiently large,

(E.10) lim sup
n→∞

max
j≤J

P (W1j ≥ κδ‖xj‖) ≤ ǫ and max
j≤J

lim sup
n→∞

P (W2j ≤ −κδ‖xj‖) ≤ ǫ.
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C.1 is now verified, since it follows that for any ǫ > 0, there exists δ sufficiently large such that

(E.11) sup
θI∈In(δ)

|ℓn (θI , 0) | = 0 wp & 1 − ǫ.

Step II. Verification of part i of C.2: Write ℓn (θI , λ) = ℓ
(1)
n (θI , λ) + ℓ

(2)
n (θI , λ) , where

ℓ(1)n (θI , λ) =

J∑

j=1

nj

n

[
Ŵ1j − x′

jλ
]2

+
1

(
x′

jθI = τ1 (xj)
)

+

J∑

j=1

nj

n

[
Ŵ2j − x′

jλ
]2

−
1

(
x′

jθI = τ1 (xj)
)

ℓ(2)n (θI , λ) =

J∑

j=1

nj

n

[
Ŵ1j − x′

jλ −√
n

(
x′

jθI − τ1 (xj)
) ]2

+
1

(
x′

jθI > τ1 (xj)
)

+

J∑

j=1

nj

n

[
Ŵ2j − x′

jλ −√
n

(
x′

jθI − τ2 (xj)
) ]2

−
1

(
x′

jθI < τ2 (xj)
)
.

(E.12)

Note first that for fixed θI ∈ ∂ΘI and fixed λ, by an argument similar to that in Step I,

(E.13) ℓ(2)n (θI , λ) = 0 wp → 1.

Therefore, by the Continuous Mapping Theorem the finite-dimensional limit of ℓn (θI , λ) is given by

(E.14) ℓ∞ (θI , λ) ≡
J∑

j=1

pj

[
W1j − x′

jλ
]2

+
1

(
x′

jθI = τ1 (xj)
)

+

J∑

j=1

pj

[
W2j − x′

jλ
]2

−
1

(
x′

jθI = τ2 (xj)
)
.

Step III. Verification of part ii(a) of C.2: First, suppose that ΘI 6= ∂ΘI , that is the interior of ΘI is nonempty

relative to R
d. C.2-ii(a) requires us to examine the finite-dimensional limit theory of supθI∈∂ΘI

ℓn (θI , ·). The

problem of finding supθI∈∂ΘI
ℓn (θI , λ) for n ≤ ∞ amounts to choosing θI among the finite subset of points

VI ⊂ ΘI that are defined as a collection of solutions to all systems of d-equations of the form:

(E.15) x′
jl

θI = τkl
(xjl

), l = 1, ..., d,

such that (xjl
, l = 1, ..., d) has rank d and (kl, jl) ∈ {1, 2} × {1, 2, ..., J} for each l. There is only a finite set of

such systems of equations. Then,

(E.16) sup
θI∈∂ΘI

ℓn (θI , λ) = max
θI∈VI

ℓn (θI , λ) , for n ≤ ∞.

Hence by the Continuous Mapping Theorem the finite-dimensional weak limit of maxθI∈VI
ℓn (θI , ·) is given

by maxθI∈VI ℓ∞ (θI , ·), and therefore the finite-dimensional weak limit of supθI∈∂ΘI
ℓn (θI , ·) is given by

supθI∈∂ΘI
ℓ∞ (θI , ·).

Second, suppose that ΘI = ∂ΘI , that is the interior of ΘI empty relative to R
d. Then wp → 1

inf
θI∈ΘI

ℓn (θI , λ) =
∑

j≤J

1 (τ1 (xj) = τ2 (xj))
nj

n

(
Ŵ1j − x′

jλ
)2

inf
θI∈ΘI

ℓ∞ (θI , λ) =
∑

j≤J

1 (τ1 (xj) = τ2 (xj)) pj

(
W1j − x′

jλ
)2

.
(E.17)

Therefore, by Continuous Mapping Theorem the finite-dimensional limit of infθI∈ΘI
ℓn (θI , ·) is given by

infθI∈ΘI
ℓ∞ (θI , ·). The joint finite-dimensional convergence of (infθI∈ΘI

ℓn (θI , ·) , supθI∈ΘI
ℓn (θI , ·)) follows
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by the Continuous Mapping Theorem.

Step III. Verification of part ii(b) of C.2: Let K be any compact subset of R
d. To verify the stochastic equicon-

tinuity for maxθI∈VI ℓn (θI , λ) over λ ∈ K, where VI is a finite subset of ∂ΘI , it suffices to show that for any

fixed θI ∈ ∂ΘI , ℓn (θI , λ) is stochastically equicontinuous in λ ∈ K. This immediately follows from convexity of

ℓn (θI , ·) in λ and finite-dimensional convergence of ℓn (θI , ·) to a convex continuous function ℓ∞ (θI , ·) over R
d,

proven in Step I. Likewise, stochastic equicontinuity of infθI∈ΘI
ℓn (θI , λ) in λ ∈ K also follows from convexity

and finite-dimensional convergence of infθI∈ΘI ℓn (θI , ·) to a convex continuous function infθI∈ΘI ℓ∞ (θI , ·), cf.

(E.17).

Step IV. Verification of part iii of C.2: Any λ ∈ Λ
∞

(θI) for θI ∈ ∂ΘI satisfies the property that x′
jλ ≥ 0

whenever τ1 (xj) = x′
jθI , and x′

jλ ≤ 0 whenever τ2 (xj) = x′
jθI . Hence

(E.18) sup
θI∈∂ΘI ,λ∈Λ∞(θI)

ℓ∞ (θI , λ) ≤
J∑

j=1

pj

(
[W1j ]

2
+ + [W2j ]

2
−

)
< ∞ a.s.

Step V. Verification of C.3: For each θn (θI , λ) such that ν(θI , λ) = infθ′

I∈ΘI
‖θI + λ/

√
n − θ′I‖ ≥ K/

√
n,

decompose

(E.19) θI + λ/
√

n = θ∗I + λ∗/
√

n, where θ∗I = arg inf
θ∈∂ΘI

‖θI + λ/
√

n − θ‖ and ‖λ∗‖ =
√

nv (θI , λ) ≥ K.

Any solution θ∗I is subject to 1 ≤ p ≤ dim(θ) binding constraints of the form:

(E.20) x′
jl

θ∗I = τkl
(xjl

), l = 1, ..., p,

where X ∗ := (xjl
, l = 1, ..., p) has rank p and (kl, jl) ∈ {1, 2} × {1, ..., J} for each l. Matrix X ∗′X ∗ (which

depends on (θI , λ)) is necessarily one of the finitely many p × p sub-matrices of X ∗′X ∗ that have full rank p,

and whose eigenvalues are bounded above away from zero. Let also

T ∗ = (τkl
(xjl

) , l = 1, ..., p) and JK∗ = ((jl, kl), l = 1, ..., p).(E.21)

Since the eigenvalues of
(
X ∗′X ∗)−1

are bounded away from zero,

(E.22) c1‖λ∗‖ ≤ ‖X ∗′λ∗‖∞.

Moreover, given any index set JK∗, for all (jl, kl) ∈ JK∗:

(E.23) x′
jl

λ∗ ≤ 0 if kl = 1 or x′
jl

λ∗ ≥ 0 if kl = 2.

By (E.22) at least for one (j∗, k∗) ∈ JK∗:

(E.24) c1‖λ∗‖ ≤ |x′
j∗λ∗| so that x′

j∗λ
∗ ≤ −c1‖λ∗‖ if k∗ = 1 or x′

j∗λ∗ ≥ c1‖λ∗‖ if k∗ = 2.
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Decompose ℓn (θI , λ) = ℓ
(1)
n (θI , λ) + ℓ

(2)
n (θI , λ) , where

ℓ(1)n (θI , λ) =

J∑

j=1

nj

n

[
Ŵ1j −

√
n

(
x′

jλ
∗) ]2

+
1

(
x′

jθ
∗
I = τ1 (xj)

)
+

nj

n

[
Ŵ2j −

√
n

(
x′

jλ
∗) ]2

−
1

(
x′

jθ
∗
I = τ2 (xj)

)

≥nj∗

n

[
Ŵ1j∗ −√

n
(
x′

j∗λ∗) ]2

+
1 (k∗ = 1) +

[√
n

(
x′

j∗λ∗) − Ŵ2j∗

]2

+
1 (k∗ = 2)

≥pj∗(1 + op(1))
[
Ŵ1j∗ + c1‖λ∗‖

]2

+
1 (k∗ = 1) +

[
c1‖λ∗‖ − Ŵ2j∗

]2

+
1 (k∗ = 2)

≥pj∗(1 + op(1))
[
min[Ŵ1j∗ ,−Ŵ2j∗ ] + c1‖λ∗‖

]2

+

≥min
j≤J

pj(1 + op(1))
[
min[Ŵ1j ,−Ŵ2j , j ≤ J ] + c1‖λ∗‖

]2

+
,

(E.25)

and

ℓ2n(θI , λ) =

J∑

j=1

nj

n

[
Ŵ1j −

√
n(x′

jθ
∗ − τ1(xj)) − x′

jλ
∗)

]2

+
1(x′

jθ
∗
I > τ1(xj))

+

J∑

j=1

nj

n

[
Ŵ2j −

√
n(x′

jθ
∗ − τ2(xj)) − x′

jλ
∗
]2

−
1(x′

jθ
∗
I < τ2(xj)) ≥ 0.

(E.26)

Hence, recalling that ‖λ∗‖ =
√

nν(θI , λ), one has that ℓ
(1)
n (θI , λ) ≥ c (W + c′‖λ∗‖)2+, for some positive

constants c > 0 and c′ > 0, where W := min
[
Ŵ1j ,−Ŵ2j , j ≤ J

]
. Let

√
nv(θI , λ) = ‖λ∗‖ ≥ K. Since

|W | = Op(1), for any ǫ > 0, we can select K large enough so that W > −c′
√

nv(θI , λ)/2 wp & 1 − ǫ. Then

wp & 1 − ǫ,

(E.27) ℓ(1)n (θI , λ) ≥ 1

2
cc′v (θI , λ)

2
.

Since ℓn(θI , λ) ≥ ℓ
(1)
n (θI , λ), C.3 is verified. ¤

Appendix F. Proof of Theorem 3.4

Step I. Verification of A.1 is immediate from the stated assumptions and from {mi(θ), θ ∈ Θ} being

Donsker (hence Glivenko-Cantelli).

Step II. Verification of C.1 is not needed because ΘI = ∂ΘI in Θ.

Step III. Verification of C.2 Write

ℓn(θI , λ) ≡ √
nEnmi(θI + λ/

√
n)′Wn(θI + λ/

√
n)
√

nEnmi(θI + λ/
√

n)

≡
(
Gnmi(θI + λ/

√
n) +

√
nEmi(θI + λ/

√
n)

)′

× Wn(θI + λ/
√

n)
(
Gnmi(θI + λ/

√
n) +

√
nEmi(θI + λ/

√
n)

)
.

(F.1)

By condition ii. that {mi(θ), θ ∈ Θ} forms a Donsker class for any compact set K,

(F.2) Gnmi(θI + λ/
√

n) = Gnmi(θI) + op(1) ⇒ ∆(θI), in L∞(ΘI × K)

where ∆(θI) is the Gaussian process with the covariance functions given in the statement of Theorem 2.4. By

condition iv.,

(F.3) Wn(θI + λ/
√

n) = W (θI) + op(1), in L∞(ΘI × K).
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By condition iii.,

(F.4)
√

nEmi(θI + λ/
√

n) = G(θI)
′λ + o(1), in L∞(ΘI × K).

Hence

ℓn(θI , λ) ⇒ ℓ∞(θI , λ) ≡ (∆(θI) + G(θI)
′λ)

′ × W (θI) × (∆(θI) + G(θI)
′λ) , in L∞(ΘI × K).(F.5)

Hence C.2-i. is verified, since finite-dimensional convergence is implied by weak convergence in L∞(ΘI × K).

C.2-ii.(a) is verified by the Continuous Mapping Theorem since the functionals ln(λ) = infθI∈ΘI
ℓn(θI , λ)

and un(λ) = supθI∈ΘI
ℓn(θI , λ) are continuous transformations of ℓn(θ, λ). C.2-ii.(b) follows as well, since

stochastic equicontinuity of ln(λ) and un(λ) is implied by stochastic equicontinuity of ℓn(θI , λ) over ΘI × K,

which is implied by weak convergence of ℓn(θI , λ) in L∞(ΘI ×K) to the quadratic form of a Gaussian process,

ℓ∞(θI , λ).

Step IV. Verification of C.3. By condition ii. mi(θ) forms a Donsker class. Hence

(F.6) Gnmi(θ) ⇒ ∆(θ) in L∞(Θ),

where ∆(θ) is the Gaussian process with the covariance functions given in the statement of Theorem 2.4.

Hence

(F.7) sup
θ∈Θ

‖Gnmi(θ)‖ = Op(1).

By condition iv., uniformly in θ ∈ Θ Wn(θ) = W (θ)+op(1). Define ξn ≡ infθ∈Θ mineig (Wn(θ)). By condition

iv. ξn →p ξ > 0. Hence wp → 1

inf
v(θI ,λ)>K/

√
n

(
ℓn(θI , λ)

n(v(θI , λ)2 ∧ δ2)

)
≥ inf

v(θI ,λ)>K/
√

n
ξn

(
‖√nEmi(θI + λ/

√
n) + Gnmi(θI + λ/

√
n)‖2

)

n(v(θI , λ)2 ∧ δ2)

≥ inf
v(θI ,λ)>K/

√
n
ξ/2

∥∥∥
√

nEmi(θI + λ/
√

n)√
n(v(θI , λ)2 ∧ δ2)

+
Op(1)√

n(v(θI , λ)2 ∧ δ2)

∥∥∥
2

≥ inf
v(θI ,λ)>K/

√
n
ξ/2

∥∥∥
√

nEmi(θI + λ/
√

n)√
n(v(θI , λ)2 ∧ δ2)

+
Op(1)√

n(v(θI , λ)2 ∧ δ2)

∥∥∥
2

∞

(F.8)

Note the line is different from the preceding one, as it uses the sup norm instead of the Euclidean norm.

By the partial identification condition (3.15)

(F.9)
∥∥∥
√

nEmi(θI + λ/
√

n)√
n(v(θI , λ)2 ∧ δ2)

∥∥∥
∞

> C,

for some constant C > 0. For a given ǫ > 0, K can be made arbitrarily large, so that wp & 1 − ǫ

(F.10)
∥∥∥

Op(1)√
n(v(θI , λ)2 ∧ δ2)

∥∥∥
∞

< C/2.

Hence wp & 1 − ǫ,

(F.11) inf
v(θI ,λ)>K/

√
n

(
ℓn(θI , λ)

n(v(θI , λ)2 ∧ δ2)

)
≥ C ′ = ξ/2(C/2)2

Hence wp & 1 − ǫ,

(F.12) ℓn(θI , λ) ≥ C ′ · n · (v(θI , λ)2 ∧ δ2) for all ν(θI , λ) > K/
√

n.

Hence C.3 is verified. ¤
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Appendix G. Relationship to Pointwise Inference

Suppose that one is interested in a special parameter θ∗ inside ΘI . The inference about some θ∗ in ΘI is

well motivated, when there is a sense in which θ∗ is the “truth”. This case typically arises in non-structural

analysis or when it is believed that the models are correct representations of data-generating processes for

some parameter value, i.e. there is θ∗ ∈ R
d such that the model law Pθ agrees with the actual stochastic law

of data P . In this scenario, ΘI is not of interest per se, but rather θ∗ is. In method of moments settings, a

similar problem has been already investigated in the context of dynamic model with censoring by Hu (2002),

IV quantile estimation by Chernozhukov and Hansen (2003), and GMM weak or complete unidentification by

Kleibergen (2002). Imbens and Manski (2004) investigate the Wald type inference about θ∗ for the special

case where a real parameter of interest is known to lie in an interval with endpoints that can be consistently

estimated. Here we provide further insights concerning the pointwise inference in its relation to regionwise

inference.

Assumption A.4. Suppose there exists an → ∞ such that

an(Qn(θI) − qn) →d C(θI) for all θI ∈ ΘI

where C(θI) is a random variable. Moreover, for at least one θI ∈ ΘI , C(θI) > 0 with positive probability and

has continuous distribution function on (0,∞); otherwise, C(θI) = 0 with probability one.

Theorem G.1. Suppose that Assumptions A.1 and A.4 hold. Let c∗α = supθI
cα(θI). Then for any θ∗ in ΘI

lim infn→∞ P
{

θ∗ ∈ Cn(ĉ∗α)
}
≥ α.

Proof:

lim inf
n→∞

P{θ∗ ∈ Cn(c∗α)} = lim inf
n→∞

P{an (Qn(θ∗) − qn) ≤ sup
θI

cα(θ)}

(1)

≥ lim inf
n→∞

P{an (Qn(θ∗) − qn) ≤ cα(θ∗)} ≥ (1 or α) ≥ α,

(G.1)

¤

The theorem above is constructed using the Anderson-Rubin pointwise testing principle. Notice that the

confidence set constructed in the theorem above is necessarily smaller than the regionwise confidence set in

Theorem 2.1. Notice also that as a byproduct of our derivation, inequality (1) in (G.3) shows that the set

Cn(cα(·)) = {θ∗ ∈ Θ̂I : an (Qn(θ∗) − qn) ≤ cα(θ∗)}(G.2)

also has the α pointwise coverage. Hu (2001) proposed the set (G.2) in the context of a partially identified

dynamic censored regression model. Chernozhukov and Hansen (2003) also use this technique for IV quantiles.

Manski and Imbens (2004) construct this set for the case of interval-identified parameter.13 The set Cn(cα(·))
is generally not equal (is smaller) than the level set Cn(c∗) of the function anQn(θ). However, this set

is generally a special case of our construction. This can be seen by defining the new objective function

Q̃n(θ) := Qn(θ)/ max[cα(θ), ǫ] for all θ ∈ Θ̂I .
14

Further let ĉα(θ) be the subsampling estimate of cα(θ) for each θ ∈ Θ̂I .

13A more recent paper than ours, by Ho, Pakes and Porter (2004), has also proposed such sets in the context of

moment inequalities. The difference is that they do not directly work with objective functions.
14This is an equi-quantile transformation of the original objective function. In many examples this is unnecessary,

as objective functions have the equi-quantile property by using optimal weights.
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Theorem G.2. Suppose that Assumptions A.1 and A.4 hold. Let ĉ∗α = supθI
ĉα(θI). Then for any θ∗ in ΘI

lim infn→∞ P
{

θ∗ ∈ Cn(ĉ∗α)
}
≥ α. (Likewise, a corollary is that Cn(ĉ∗α(·)) also covers θ∗ with probability α.)

Proof: Since ΘI ⊆ Θ̂I wp → 1, it follows that

lim inf
n→∞

P{θ∗ ∈ Cn(ĉ∗α)} = lim inf
n→∞

P{an (Qn(θ∗) − qn) ≤ sup
θI

ĉα(θ)}

(1)

≥ lim inf
n→∞

P{an (Qn(θ∗) − qn) ≤ ĉα(θ∗)}
(2)

≥ lim inf
n→∞

P{an (Qn(θ∗) − qn) ≤ cα(θ∗) + op(1)}

≥ (1 or α) ≥ α,

(G.3)

Equality (2) follows from the standard argument for subsampling, e.g. as the one presented in Step 2 of the

proof of Theorem 2.1. ( Inequality (1) shows that Cn(ĉ∗α(·)) also covers θ∗ with probability α. ).

¤

[CONSISTENCY AND RATES HERE TOO?]

Notation and Terms

→p convergence in (outer) probability P ∗

→d convergence in distribution under P ∗

wp → 1 with inner probability P∗ converging to one

wp & 1 − ǫ with inner probability P∗ larger than 1 − ǫ for sufficiently large n,

Bδ(x) closed ball centered at x of radius δ > 0

I identity matrix

N (0, a) normal random vector with mean 0 and variance matrix a

F Donsker class here this means that empirical process f 7→ 1√
n

∑n
i=1(f(Wi) − Ef(Wi)) is

asymptotically Gaussian in L∞(F), see Vaart (1999)

L∞(F) metric space of bounded over F functions, see Vaart (1999)

mineig(A) minimum eigenvalue of matrix A
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