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Rythmes Biologiques et Cancers, INSERM U776 et Université Paris Sud, 94807 Villejuif Cedex, France
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SUMMARY

Estimation of the period length of time-course data from cyclical biological processes, such as those driven
by the circadian pacemaker, is crucial for inferring the properties of the biological clock found in many
living organisms. We propose a methodology for period estimation based on spectrum resampling (SR)
techniques. Simulation studies show that SR is superior and more robust to non-sinusoidal and noisy cycles
than a currently used routine based on Fourier approximations. In addition, a simple fit to the oscillations
using linear least squares is available, together with a non-parametric test for detecting changes in period
length which allows for period estimates with different variances, as frequently encountered in practice.
The proposed methods are motivated by and applied to various data examples from chronobiology.
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1. INTRODUCTION

The identification of periodic patterns is crucial to the understanding of cyclical biological processes such
as circadian rhythms found in many living organisms. Circadian clocks are oscillators that are entrained
to a 24 h period by physiological forcing such as daily light–dark cycles. Recent experimental tech-
niques allow one to monitor circadian rhythms with good temporal resolution. Examples considered here
are high-throughput fluorescent imaging time series of circadian genes (see, e.g. Hall and others, 2003;
James and others, 2008), and skin temperature measurements serving as a proxy for core body temper-
ature, identified as a circadian biomarker in the area of cancer chronotherapy (Scully and others, 2011).
Many experiments on circadian clocks are in constant physiological conditions where there is no forcing
and the period may therefore differ from 24 h. In addition, circadian rhythms may be disrupted by the
administration of a specific treatment. In this case, the exact period length is often unknown and may
vary under different experimental conditions or treatments. Most circadian clock related studies currently
estimate period by approximating the oscillatory gene expression profiles by a sum of sine and cosine
functions within a Fourier approximation context (Levine and others, 2002). Software available for gene
reporter data analysis, such as Lumicycle (Actimetrics, 2012), attempts to find the period by looking for
the largest sinusoidal component in such a representation, but provides no measure of its accuracy. The Fast
Fourier Transform Non-linear Least Squares (FFT-NLLS) method by Plautz and others (1997) is widely
used and will serve here as a benchmark for comparison. They apply a non-linear least-squares mini-
mization algorithm to estimate the parameters (and corresponding confidence intervals) of the Fourier
representation of a time series where the period of the component with the largest amplitude serves as
estimator of the period. Other analysis packages, for example, CircWave (Oster and others, 2006), take a
similar approach. Various circadian data have non-sinusoidal patterns as well as measurement errors (see,
e.g. Edwards and others, 2006). Figure 1 shows examples from human and plant circadian systems that
display asymmetric cycles, double peaks, and noise. In this case, period estimation within a Fourier repre-
sentation approach is more challenging as an increased number of components are required and this poses
a burden to the stability of the fitting algorithm. We find that time series with a strong periodic component,
such as those encountered in circadian experiments, robustly produce a clear dominant spectral peak even
in asymmetric and noisy cases. A motivating example is presented in Section 3 of supplementary material
available at Biostatistics online. Combining bootstrap methods (Efron, 1979) with the spectrum allows us
to refine the estimate of the period and to obtain confidence bands.

The use of the bootstrap for spectral analysis has recently received considerable attention (see, e.g.
Sergides and Paparoditis, 2007; Zoubir, 2010). Franke and Härdle (1992) (FH) use the fact that the rela-
tionship between the theoretical and the empirical spectrum can be approximately described by a mul-
tiplicative regression model to propose a non-parametric, residual-based bootstrap. They also establish
the asymptotic properties of their algorithm for kernel spectral estimates. Dahlhaus and Janas (1996)
extend this approach to the class of ratio statistics. A semiparametric methodology is developed by
Kreiss and Paparoditis (2003), who fit an autoregressive (AR) model to obtain a set of residuals to which
they apply the bootstrap, but define the spectrum through a non-parametric estimator. None of the above
approaches directly addresses the problem of period estimation. However, a few spectrum-based meth-
ods for period estimation have been developed in the literature. The MESA algorithm of Burg (1972) has
been implemented in the context of circadian rhythms (see, e.g. Dowse and Ringo, 1989). The period is
estimated using the spectrum of an AR model fitted to the data. This method is, however, sensitive to
the number of AR terms (Marple, 1980). Beyond Fourier methods and spectral analysis, software such as
WAVECLOCK (Price and others, 2008) uses wavelet analysis to estimate the period of oscillatory circa-
dian data as a smooth function over time but provides no routine for confidence intervals.

Circadian data sets often have replicate time series of the same experiment. Figure 1(c) shows three
groups of four time series replicates, each containing measurements on skin temperature for a patient suf-
fering from metastatic colorectal cancer. The groups represent three chemotherapy stages: before, during,
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Fig. 1. Experimental circadian data. (a) Normalized luminescence of the CCA1:LUC construct for the model plant
Arabidopsis thaliana under constant red light and constant temperature of either 17◦C, or 27◦C, averaged over 62 repli-
cates and sampled ZT 2-120 at 17◦C, ZT 2-114 at 27◦C. ZT stands for Zeitgeber time. (b) Normalized luminescence
levels for the PER2:LUC construct for human cells collected from mouse embryos receiving specific combinations of
active compound and dose concentration treatments for lung inflammation (G1 and G2) and a control, averaged over
several replicates, and sampled over approximately 3 days. (c) Skin temperature data collected over approximately 3
days (smoothed) from four locations on the skin of a patient suffering from metastatic colorectal cancer at different
stages of chronotherapy treatment with four anticancer drugs (chronoIFLO4). In (a) and (b) markers correspond to
positions of observed values.

and after treatment with chronoIFLO4, a combination of four anticancer drugs (see Scully and others,
2011, for a description of an equivalent study), and the question is whether the period of the clock is
affected by the treatment. The replicates correspond to measurements taken at four skin locations of the
patient. For testing the hypothesis of equal periodicity between any two groups, one may apply the standard
Welch t-test (Welch, 1947) to the estimated periods. However, this test does not allow for the problem that,

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/14/4/792/370685 by guest on 20 August 2022



Inference on periodicity of circadian time series 795

within a group of replicates, there can be different oscillatory patterns resulting in period estimates with
markedly different variances.

The aim of this article is 2-fold: firstly, to provide an estimator for the period with an appropriate
confidence interval as a measure of accuracy and, secondly, to introduce a hypothesis test for equality of the
period under two different experimental conditions for replicate time series data. Our estimator of period
length uses the spectrum estimator of FH. We define confidence intervals for the point estimate based
on the bootstrap sample of spectrum functions and study their nominal coverage in a variety of scenarios
motivated by real data applications. The current study is the first to investigate the use of FH’s spectrum
estimator for period estimation in the context of circadian oscillations. We then propose a non-parametric
hypothesis test that treats the estimated period lengths within each of two groups of replicates as a sample
from a population whose unknown mean value is the true period under the corresponding experimental
condition. The null hypothesis that the two means are the same is tested allowing for the possibility that
period estimates may have different variances. The paper is organized as follows. After introducing the
spectrum resampling (SR) method in Section 2, we present, in Section 3, results of our simulation studies
to investigate the performance of the SR method with synthetic circadian data, comparing it with that of the
FFT-NLLS routine. The SR method is substantially more robust to non-sinusoidal oscillations and yields
more realistic confidence intervals for period length. Given a set of period estimates, a simple regression
model, described in Section 4, can be used for fitting the mean of the observed oscillations. In Section 5,
we introduce our non-parametric test for the comparison of period lengths in a replicated experimental
scenario. Section 6 shows the use of the methods and presents results for our circadian data. Section 7
concludes with some final remarks.

2. THE SR METHOD FOR PERIOD ESTIMATION

The bootstrap is a resampling technique developed with the aim of gaining information about the dis-
tribution of an estimator. The main idea is to treat the original sample of values as the population and
to resample from it repeatedly, with replacement, computing the desired estimate each time. This pro-
duces a sample of estimates from which a point estimate and confidence intervals can be derived (see, e.g.
Davison and Hinkley, 1997). Bootstrap relies on the ability to identify independent components that can
be simulated. These can be either the original sample, or the residuals of a suitable model that describes the
data. Let f (ωk) and I (ωk) be, respectively, the spectrum function and its estimator, called periodogram,
evaluated at the Fourier frequencies ωk = 2πk/n�, k = 1, . . . , ñ, ñ = n/2, where n is the sample size
(assumed even) and � is the time interval between two consecutive observations (see Section 1 of supple-
mentary material available at Biostatistics online). FH point out that, asymptotically, spectrum estimation
can be cast as a multiplicative regression problem,

I (ωk) = f (ωk)εk, k = 1, . . . , ñ, (2.1)

where the residuals {εk}ñ
k=1 are approximately independent and identically distributed (i.i.d.) standard expo-

nential random variables. Tapering and padding can be used to improve the quality of this approximation
(Dahlhaus and Janas, 1996; Lee, 1997, see Section 7 of supplementary material available at Biostatistics
online). In order to resample from the residuals in (2.1), an initial estimate of the spectrum f (ω) is needed.
A consistent estimator of f (ω) can be obtained through a kernel spectrum estimate, say f̂b†(ω), with
smoothing parameter b† (see, BeltraTo and Bloomfield, 1987). Given a set of residuals to the regression
in (2.1), bootstrap periodogram values are generated using another kernel estimate f̂b‡(ω) with smoothing
parameter b‡. Finally, let b be the smoothing parameter from which the final bootstrap estimate of f (ω),
say f̂ ∗

b (ω), is obtained using the previously generated bootstrap periodogram. The three smoothing param-
eters are set to b = cn−1/5, b† = cn−1/4, b‡ = cn−1/6, with c chosen to minimize an appropriately defined
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mean square error estimator (Lee, 1997). All three are needed to control the bias and variance of the final
kernel spectrum estimator (see Davison and Hinkley, 1997, and Section 1 of supplementary material avail-
able at Biostatistics online for details). These are the key steps in FH’s algorithm. We proceed to define
p̂ = arg maxω f̂b(ω) as the period estimator of interest. Its distribution can be estimated using the boot-
strap procedure described above. Let p̂∗ = arg maxω f̂ ∗

b (ω). The value of p̂∗ provides a point estimate of
the true period length p. By repeating the above procedure R times, we obtain a sample of period esti-
mates { p̂∗

1, . . . , p̂∗
R} from which point estimates and confidence intervals can be derived using percentiles

of the bootstrap sample. The value of R typically varies between 1000 and 2000. The algorithm can be
easily extended to provide estimates for any number N of relevant period lengths that might be present in
the data, provided that the distance between any two such periods is greater than the fundamental period,
2π/n�. By recording the frequencies corresponding to the N largest peaks in the spectrum, we obtain
p̂∗

r = ( p̂∗
r1, . . . , p̂∗

r N ), r = 1, . . . , R, an N -dimensional vector of point estimates from which correspond-
ing confidence intervals can be derived. We refer to the proposed period estimation methodology as SR.

3. SIMULATION STUDY

We evaluate the performance of the SR methodology and compare it with the FFT-NLLS procedure (see
Section 2 of supplementary material available at Biostatistics online) using synthetic data from a mathe-
matical clock model. The theoretical framework for understanding the molecular underpinnings governing
circadian rhythms is based on a negative transcriptional feedback loop that generates an oscillator with a
stable period of around 24 h (see Roenneberg and others, 2008, for an overview on clock models). We
simulate synthetic clock data at the mRNA and protein level from a stochastic dynamic model with a
delayed negative feedback loop (DNFL) which is considered to be a generic model for molecular clocks
(Jensen and others, 2003; Monk, 2003). The manipulation of a set of parameters yields time series with dif-
ferent characteristics of the oscillations (see Section 4 of supplementary material available at Biostatistics
online). For each choice of parameter values, we simulated 200 replicate time series. Let p be the true value
of the period, which is known for the synthetic data, and p̂i represent the period estimate for replicate i .
The performance of the estimators is measured by the mean squared error, MSE = (1/200)

∑200
i=1 SqEi ,

where SqEi = (p − p̂i )
2. For all simulations, we take R to be 1000. We regard a period estimate to be an

“outlier” if it falls outside the circadian range, say [15 h, 35 h].

3.1 Sample size requirements and consistency

Our first simulation study focuses on the properties of the SR estimator in terms of the MSE for varying
values of sample size n and number of cycles nc. The SR method depends on the autocovariance function
of the process through the periodogram (see Section 1 of supplementary material available at Biostatis-
tics online). Hence, in principle, the larger the number of cycles nc, the better will be the performance of
the spectrum function in recovering the true period length. However, in most applications the sample size
n is fixed a priori so that a compromise must be reached in terms of sampling frequency. Too sparsely
measured data reduce identification of the shape of the oscillation, whereas at the same time a minimum
number of full length cycles is needed for period estimation. We look at the effects of n and nc separately.
For the simulations, we use the DNFL model with parameter values such that the oscillations are sinu-
soidal in shape with a known true period of around 24 h. We fix nc = 2, 4, 8, 12, and n = 30, 60, 120, 240,
reflecting a range of different situations in terms of the amount of information available. For example,
nc = 12 and n = 60 corresponds to only 5 observations per cycle, while setting nc = 2 and n = 240 yields
120 observations over 2 cycles (see Section 4 of supplementary material available at Biostatistics online).
Figure 2 shows boxplots of log10(SqE) of period estimates obtained for synthetic mRNA time series using
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Fig. 2. Simulation study. Boxplots of log10(SqE) for period estimates obtained from synthetic mRNA dynamics for
both the SR and the FFT-NLLS (FFT) methods for selected fixed values of nc and n based on 200 replications.
(a) nc = 2. (b) nc = 4. (c) n = 60 observations. (d) n = 120 observations. For all plots crosses represent values of
log10(SqE) associated with non-circadian period estimates.

the SR and the FFT-NLLS method. The value of n was varied while nc was fixed and vice versa. A prob-
lem of the FFT-NLLS estimator, also frequently encountered in practice, is that it produces period lengths
that are far away from the circadian range, even for relatively sinusoidal oscillations (see Section 3 of
supplementary material available at Biostatistics online). In comparison, the SR estimator not only always
produces estimates within the desired range but also outperforms the FFT-NLLS estimator in terms of a
lower squared error. For fixed nc, increasing n does not necessarily decrease the estimated MSE of the SR
estimator, nor that of the FFT-NLLS estimator. However, for fixed n, increasing nc tends to improve the
SR estimator in terms of lower MSE. The only instance where a rise in MSE was observed corresponds to
a very low sampling frequency of almost 5 h (n = 60, nc = 12), which results in too sparse data.

We also study the asymptotic properties of the SR estimator via a small simulation study where the
MSE is estimated for increasing values of n keeping the sampling frequency, say sf (in hours), fixed, so
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that n = (p × nc)/sf . We varied sf ∈ {1 h, 2 h, 4 h, 5 h} and nc ∈ {2, 4, 8, 16, 32}. In general, the MSE of
the SR estimator tends to decrease as n increases. Moreover, the frequency at which observations are drawn
does not seem to affect the rate at which the MSE decays to zero. This is not surprising following the results
in Figure 2.

3.2 Non-sinusoidal cycles and noise

Next we compare SR and FFT-NLLS when cycles are non-sinusoidal or noisy as frequently observed in
practice (see Figure 1). We focus on two forms of non-sinusoidal behavior, namely asymmetry, i.e. cycles
with a short rise followed by a longer, more gradual decline (or vice versa), and shoulder (or bimodal)
patterns, and for each we define three levels: mild, moderate, and severe, each corresponding to different
sets of parameter values in the DNFL model, and such that the period is approximately (or equal to) 24 h.
To quantify the level of asymmetry in a cycle, we use ηAL = (l − r)/(l + r), where l and r are, respectively,
the distance between the peak of the oscillation and its left and right extremities. The value of ηAL varies
between −1 and 1, with positive (negative) values corresponding to left (right)-hand side asymmetry,
symmetry yielding ηAL = 0. To generate noisy cyclic data, we add independent zero mean Gaussian noise to
time series from the DNFL model. The variance is chosen such that the signal-to-noise ratio (SNR) equals
preset values SNR = 1.6, SNR = 2, and SNR = 3. The choice of these values is motivated by signal levels
encountered in observed data (see Section 4 of supplementary material available at Biostatistics online).
Although the resulting time series are not linear processes, and therefore the model in (2.1) may not be
valid, the SR algorithm should be robust to departures from linearity (Franke and Härdle, 1992), and the
simulation study should confirm this. The results in Figure 3, where boxplots of log10(SqE) are displayed,
show that, as can be expected, the MSE of both estimators increases with asymmetry while increasing
the level of the shoulder pattern or SNR seems to have less effect on the individual performance of the
estimators. It is clear that the SR methodology outperforms the FFT-NLLS for all levels of asymmetry,
shoulder pattern, and SNR. In addition, the SR estimator is fairly robust across different levels of the
shoulder pattern, even for a severe shoulder level. In contrast, between 13% and 20% of the estimates
obtained with the FFT-NLLS were non-circadian. Furthermore, we investigated the coverage probability
of the confidence intervals produced by the SR and the FFT-NLLS methods for a nominal level of 95%. The
confidence intervals obtained by the SR approach tend to be slightly conservative, as shown in Table 1.
In contrast, those obtained by the FFT-NLLS method are not only too narrow, but also, for all cases of
asymmetry and shoulder patterns, their coverage probability is unacceptably low.

4. FITTED OSCILLATION AND PHASE ESTIMATION

In addition to period estimation, one may be interested in phase and amplitude estimation or, more gener-
ally, in reconstructing the mean oscillation of the observed process. Here, we take a simple approach that
makes use of standard results from spectral theory (see, e.g. Girling, 1995; Brillinger, 2001). Given a time
series {xt }t , we can represent it as

xt =
N∑

j=1

a j sin (2π t/p j ) + b j cos (2π t/p j ) + εt , t = 1, 2, . . . , (4.1)

where the parameters a j and b j are unknown constants, and the εt ’s are independent random variables with
mean zero. The N period lengths p j are assumed known and fixed. In practice these are estimated using
the SR method and correspond to the frequencies of the N ordered largest peaks in the spectrum. Thus, p1

is the period yielding the largest spectrum peak and associated with the main oscillation in the data. The
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Fig. 3. Simulation study. Boxplots of log10(SqE) for period estimates obtained from non-sinusoidal synthetic mRNA
dynamics for both the SR and FFT-NLLS (FFT) methods based on 200 replications. (a) Asymmetric cycles. (b) Cycles
with shoulder pattern. (c) Cycles with noise. For all plots crosses represent values of log10(SqE) associated with non-
circadian period estimates.

remaining periods, p2, . . . , pN , correspond to smaller scale oscillations that may be present in the process.
For a set of observations {xt }n

t=1, the model in (4.1) can be written in matrix form as x = ZN βN + ε,
with x = (x1, . . . , xn)

T and ε = (ε1, . . . , εn)
T being n-dimensional vectors, βN = (a1, b1, . . . , aN , bN )T a

2N -dimensional vector, and ZN the (n × 2N ) matrix with elements Zt,2 j−1
N = sin (2π t/p j ) and Zt,2 j

N =
cos (2π t/p j ), t = 1, . . . , n, j = 1, . . . , N . Given a set of period estimates p̂1, . . . , p̂N , the model in (4.1)

is linear in βN and thus an unbiased estimate β̂N can be obtained via least squares (Brillinger, 2001).
The number of terms N in (4.1) can be determined by minimizing some information criterion such as the
Akaike criterion, say J (N ). Let N̂ = arg minNJ (N ). The fitted oscillation is then

x̂t =
N̂∑

j=1

â N̂
j sin (2π t/ p̂ j ) + b̂N̂

j cos (2π t/ p̂ j ), t = 1, . . . , n, (4.2)
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Table 1. Simulation study

Asymmetry Shoulder SNR

Method Mild Mod. Sev. Mild Mod. Sev. 1.6 2 3

SR (%) 100 100 35 100 100 100 93.5 94.5 95
FFT-NLLS (%) 54 16 0 22 16 12 88.5 90 93

Coverage probabilities for period length confidence intervals for non-sinusoidal synthetic data using
SR and FFT-NLLS methods based on 200 replicates.

with â N̂
j and b̂N̂

j the (2 j − 1)th and (2 j)th elements of β̂ N̂ , respectively. Estimates for both phase and
amplitude of the oscillations can be obtained from the estimated periods p̂ j (Girling, 1995). We can

write φ̂ j = tan−1(b̂N̂
j /â N̂

j ) and Â j =
√

(â N̂
j )2 + (b̂N̂

j )2 as, respectively, the estimated phase, and ampli-

tude of the oscillation with period length p̂ j . Together with x̂t in (4.2), the sets of period, phase, and
amplitude estimates { p̂ j , φ̂ j , Â j }, j = 1, . . . , N̂ , provide a complete description of the mean of the true
process xt underlying the observed oscillation. Note that the Fourier representation in (4.1) is used
here only to obtain a simple presentation of the observed oscillation, and not for period estimation.
Other methods, such as non-parametric regression, can also be used to describe the typical shape of an
oscillation.

5. A TWO-SAMPLE BOOTSTRAP TEST FOR THE COMPARISON OF PERIODS

Next we study the problem of testing whether sets of time series replicates from two different experimental
conditions have the same period. Hence, we focus on the comparison between the means of two samples
of sizes n1 and n2 given by the number of replicate time series in each experimental group. Let S denote
the test statistic of interest with observed value s, and let pv = Pr(S � s | H0) be the p-value for some null
hypothesis H0. In the bootstrap setting, pv is estimated by means of a Monte Carlo experiment comparing
the observed statistic s to R independent values of S obtained from simulated samples satisfying H0. Let
these be denoted by s∗

1 , . . . , s∗
R then, under H0, all R + 1 values s, s∗

1 , . . . , s∗
R are equally likely values of

S, and so pv ≈ (1 + #{s∗
r � s})/(R + 1). In this setting, the value of R typically varies between 99 and

999 (see, e.g. Davison and Hinkley, 1997, and the references therein). Suppose that the estimated period
of each replicate time series, say yi j , carries a known positive weight wi j , j = 1, . . . , ni , i = 1, 2, and that∑

j wi j = 1, i = 1, 2. The weights correspond to normalized versions of the inverse of the relative error
of the period estimate, defined as the ratio between half the width of the estimate’s confidence interval
and the period estimate itself. Theoretically, the relative error takes values in [0, 1], with values closer
to zero indicating a more precise estimate. This definition of relative error is reminiscent of the relative
amplitude error of the FFT-NLLS period estimator. A test of equality of the mean periodicity is formulated
by the model

yi j = μi + σi jεi j , j = 1, . . . , ni , i = 1, 2, (5.1)

where the εi j ’s have zero mean and variance 1, and are i.i.d. over j given i . We complete the model in (5.1)
with the heterogeneity assumption σ 2

i j = νi/wi j for some νi > 0. Intuitively, this means that the value of
the variance of replicate period estimates depends on the accuracy of the particular estimate, as defined
by wi j (more accurate estimates having smaller variance). These can differ between replicates due to, for
example, measurements being taken by different experimentalists, or at different times of the day. The null
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hypothesis to be tested is H0 : μ1 = μ2, against the alternative HA : μ1 �= μ2. We consider the following
weighted estimates of the sample mean and overall variance, ȳi = ∑

j wi j yi j , and σ̂ 2
i = ∑

j wi j (yi j − ȳi )
2,

i = 1, 2, respectively. The pooled mean under H0 is defined as μ̂0 = (h1 ȳ1 + h2 ȳ2)/(h1 + h2), with
hi = ni/σ̂

2
i , i = 1, 2. Hence, the sample with higher sample variance, or lower sample size, will contribute

less to μ̂0. Let ν̂i = σ̂ 2
i /(ni − 1). It can be shown that if the error terms in (5.1) are normally dis-

tributed, ν̂i is the uniformly minimum variance unbiased estimator of νi (Goldberg and others, 2005).
The observed test statistic is defined as s = (ȳ1 − ȳ2)/(

√
ν̂1 + ν̂2) (Davison and Hinkley, 1997). Spec-

ify ν̂i0 as the estimate of νi under H0, i.e. ν̂i0 = σ̂ 2
i0/(ni − 1), where σ̂ 2

i0 = ∑
j wi j (yi j − μ̂0)

2, and let

ei j = (yi j − μ̂0)/(
√

ν̂i0/wi j ) be the null model studentized residuals. Bootstrap data sets satisfying H0 are
generated as y∗

i j = μ̂0 + √
ν̂i0/wi jε

∗
i j , with ε∗

i j sampled with replacement from the set of ei j ’s. The p-value
pv can then be estimated as above (see Section 5 of supplementary material available at Biostatistics
online).

The above general procedure is termed test T2. We examine its size and power properties in a small sim-
ulation study, details of which are given in Section 6 of supplementary material available at Biostatistics
online. For completeness, we also consider the homogeneous variance case and the two-sample Welch’s
t-test (Welch, 1947), T1 and T0, respectively. Both assume σ 2

i j = σ 2
i , j = 1, . . . , ni . In addition, T0 also

assumes that the εi j ’s in (5.1) are normally distributed, in which case the test statistic S above follows a
Student-t distribution with degrees of freedom given by the Welch–Satterthwaite equation (Satterthwaite,
1946; Welch, 1947). Although here T2 uses the proposed SR period estimator, it can be based on other
estimators and their estimated variances. In general, all three tests attain the correct nominal size. Test
T2 shows a slight advantage in terms of power, especially when attempting to detect larger differences in
mean, even if some power loss is expected for T2 (and T1) due to the finite number of bootstrap samples
used (Davidson and MacKinnon, 2000).

6. APPLICATIONS

6.1 Chronotherapy study

Chronotherapy involves the administration of treatments according to the circadian rhythm of patients.
This approach has been shown to improve cancer treatment tolerability and efficacy (Scully and others,
2011). In humans, skin temperature can act as a biomarker for the circadian system. Figure 1(c) shows skin
temperature recordings for a patient with colorectal cancer taken at four different skin locations (replicates)
before, during, and after treatment with the anticancer drugs chronoIFLO4. The data are part of a larger
study aiming to optimize and personalize chemotherapy according to the patient’s circadian rhythm. The
question is whether the circadian clock period changes with the administration of the drugs. The original
data have temperature measurements taken every minute which results in noisy, low-frequency fluctua-
tions which shift the spectrum away from the desired circadian range. Hence, we first smooth the data by
applying a non-overlapping moving average window such that the resulting data, shown in Figure 1(c),
have a frequency of 1 h (see Sections 8 and 9 of supplementary material available at Biostatistics online).
Figure 4(a) shows the smoothed data for replicate 2 together with the fitted mean oscillation (4.2). Using
the SR method, we clearly see a shift in period during treatment (Figure 4(b)). Moreover, after treatment
the periods seem to be more variable suggesting that monitoring temperature at multiple skin locations is
indeed useful. We used test T2 for all pairwise comparisons and concluded that the period during treat-
ment is significantly different from the period before (pv = 0.02) and after (pv = 0.05) treatment, but that
there is no significant difference between the period before and after treatment. Hence, this patient’s daily
rhythm is altered while receiving the anticancer drugs, and a personalized chronotherapy should take this
into account.
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Fig. 4. Applications. (a) Detrended smoothed observed skin temperature time series recorded from replicate 2 (dotted
line) and fitted theoretical oscillation (solid line). (b) SR period estimates for each replicate and each treatment stage
in the chronotherapy study (B, Before; D, During; A, After). (c) Detrended observed averaged PER2:LUC normalized
luminescence (Norm. lum.) for treatments G1, G2, and control (dashed lines) together with fitted theoretical oscilla-
tions (solid line). (d) Relative error plot for individual replicates of PER2:LUC expression for treatments G1, G2, and
control using the SR method. (e) Detrended observed average CCA1:LUC and TOC1:LUC normalized luminescence
(dashed lines) together with fitted theoretical oscillations (solid line). (f) Relative error plot for individual replicates
of the CCA1:LUC and TOC1:LUC constructs using the SR method. In (c) and (e) markers correspond to positions of
observed values.
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6.2 Human gene luminescence data

Time series data on the expression level of the human circadian clock gene PER2 was made available to us.
Different treatments for inflammation in the lung are applied to cells from mouse embryos, and expression
of the PER2:LUC construct is measured over several days at 1.5 h intervals. Figure 1(b) shows the average
profile for two treatment groups, G1 and G2 (details of which are subject to a confidentiality agreement),
each with 16 replicates, and a control group with no treatment with 36 replicates (see Section 10 of sup-
plementary material available at Biostatistics online). We apply the SR method to the log-transformed
averaged data to obtain the fitted oscillations from (4.2) and displayed in Figure 4(c). They suggest that
cells to which G1 is applied have a longer period than cells in the G2 and control groups. Indeed, for the
averaged profiles, the SR method estimated a period length of 26.09 h for G1, and 23.94 h and 24.17 h
for G2 and control, respectively. We apply the SR method to each of the individual replicates. The results
can be found in Figure 4(d), where the period estimate for each replicate is plotted against its estimated
relative error as defined in Section 5. The results of test T2 conclude that G1 has a different period from
G2 (pv = 0.002) and control (pv = 0.04), while G2 and control yield the same period (pv = 0.41). Thus,
for the two treatments considered here, the one identified as G1 alters the period of the clock.

6.3 Plant luminescence data

The plant data in Figure 1(a) is part of a comprehensive study on the effect of temperature on the circadian
clock of the model plant Arabidopsis thaliana. High-throughput data on the expression levels of circadian
clock genes are recorded for different temperatures under constant red light using luminescence constructs.
Here, we focus on data for TOC1:LUC and CCA1:LUC at 17◦C and 27◦C. A total of 64 replicate time series
are recorded for TOC1:LUC at each temperature, and 62 for CCA1:LUC (see Section 11 of supplementary
material available at Biostatistics online). The results of applying the SR method can be found in the plots
of Figures 4(e) and (f). The estimated mean period across replicates is 25.08 h and 24.90 h for TOC1:LUC
at 17◦C and 27◦C, respectively, and 24.99 h and 25.34 h for CCA1:LUC, respectively. Note that from these
plots it is not possible to say whether the change in temperature leads to a change in period. Our test T2

gave pv = 0.02 for TOC1:LUC and pv = 0.002 for CCA1:LUC, strongly suggesting that this is the case.

7. DISCUSSION

In this study, we propose an improved estimator for the period of an oscillatory time series using boot-
strapping of spectral estimates. In a comparison based on simulated data from circadian clock models,
we find that the SR method outperforms the currently used FFT-NLLS routine based on Fourier series
approximations. Our SR method is substantially more robust to non-sinusoidal patterns and the presence
of noise. Confidence intervals are readily available and are found to be substantially more realistic than
those provided by the FFT-NLLS method. Given a set of estimated period lengths, one can obtain a simple
oscillation fit using linear least squares methods. If required, phase and amplitude estimates are also avail-
able although the definition of phase remains somewhat arbitrary in the context of circadian systems. The
fundamental difference between the SR and the FFT-NLLS methodologies is that the FFT-NLLS attempts
to find the period by coercing the data into a parsimonious sum of sinusoidal functions, while the SR
method simply makes use of the fact that the spectrum function breaks down the observed variance in
the signal into asymptotically independent contributions, making no assumptions on the underlying pro-
cess other than stationarity. Moreover, the spectrum is a transformation of the autocorrelation function
which is quite robust to the particular shape of the oscillation. The simulation results using non-sinusoidal
time series reveal the superiority of this approach. The SR methodology is simple to implement and is
currently developed as freely available software. It should be noted that a key assumption to any period
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estimation technique, including the SR method, is that the time series are stationary. In practice, this can
often be achieved through detrending of the data. We found that a cubic polynomial provides enough flex-
ibility to accommodate the trends encountered in all our experimental data. In addition, the logarithmic
transformation is beneficial, in particular if the oscillations are found to dampen with time. We have also
focused on the scenario where groups of replicate time series from different experimental conditions are
available to study the hypothesis that the period is the same. We have introduced a non-parametric test T2,
which can be seen as a generalization of the t-test, allowing for heteroscedasticity within each group as
this assumption is more realistic for our experimental data. Simulation studies indicate that the test attains
correct nominal size and that allowing for within-group heteroscedasticity resulted in some improvement
of the power. In principle, T2 could be applied to any other period estimator, provided an estimate of the
variance is available. Some limitations remain. For example, the confidence intervals produced by the
proposed methodology using the percentile approach tend to be conservative. Other definitions, as pro-
posed in Carpenter and Bithell (2000), could be used, but we chose the percentile method as it is simple
and inexpensive to compute. The SR methodology requires a minimum of two complete cycles worth of
observed data. However, it seems that most data sets resulting from circadian experiments do fulfill this
requirement. We have shown applications to various observed circadian data which originally motivated
our study. The SR method is able to cope with departures from sinusoidal behavior and the presence of
noise by consistently retrieving period length estimates within the circadian range that match the observed
rhythms, while the non-parametric test has proved very useful in situations where a difference in period
between two experimental groups is not clear from the relative error plots. We believe that the methods
have wide applicability in chronobiology.

8. SOFTWARE

Software implementing the SR methodology is freely available and can be used with appropriate citation,
http://go.warwick.ac.uk/systemsbiology/software/. Automated SR analysis will also be available from the
BioDare repository, http://www.biodare.ed.ac.uk/.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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