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Abstract The problem of hypothesis testing and interval estimation of the
reliability parameter in a stress–strength model involving two-parameter expo-
nential distributions is considered. Test and interval estimation procedures
based on the generalized variable approach are given. Statistical properties
of the generalized variable approach and an asymptotic method are evaluated
by Monte Carlo simulation. Simulation studies show that the proposed gen-
eralized variable approach is satisfactory for practical applications while the
asymptotic approach is not satisfactory even for large samples. The results are
illustrated using simulated data.

Keywords Coverage probability · Generalized confidence limit · Generalized
p-value · Location-scale invariance · Pareto distribution · Power distribution ·
Size

1 Introduction

There has been continuous interest in the problem of estimating the probability
that one random variable exceeds another, that is, R = P(X > Y), where X

and Y are independent random variables. The parameter R is referred to as
the reliability parameter. This problem arises in the classical stress–strength
reliability where one is interested in assessing the proportion of the times the

K. Krishnamoorthy (B) · S. Mukherjee
University of Louisiana at Lafayette, Department of Mathematics,
Lafayette, LA 70504, USA
e-mail: krishna@louisiana.edu

H. Guo
Xavier University, Department of Mathematics and Computer Science,
Cincinnati, OH 45207, USA
e-mail: guoh@xavier.edu



K. Krishnamoorthy et al.

random strength X of a component exceeds the random stress Y to which
the component is subjected. If X ≤ Y, then either the component fails or the
system that uses the component may malfunction. This problem also arises in
situations where X and Y represent lifetimes of two devices and one wants to
estimate the probability that one fails before the other. Some practical exam-
ples can be found in Hall (1984) and Weerahandi and Johnson (1992). Hall
provided an example of a system application where the breakdown voltage X

of a capacitor must exceed the voltage output Y of a transverter (power supply)
in order for a component to work properly. Weerahandi and Johnson (1992)
presented a rocket–motor experiment data where X represents the chamber
burst strength and Y represents the operating pressure. These authors proposed
inferential procedures for P(X > Y) assuming that X and Y are independent
normal random variables. There are several papers that considered the stress–
strength reliability problem, and for references see the recent article by Guo
and Krishnamoorthy (2004) or the book by Kotz et al. (2003).

For the one-parameter (scale parameter) exponential case, Chao (1982) com-
pared several procedures based on the maximum likelihood estimators (MLEs).
Aminzadeh (1997) proposed an approximate method for setting confidence
bounds for R when the stress and strength variables involve some covari-
ates. Recently, Baklizi and El-Masri (2004) presented a shrinkage estimator
of R when X and Y are independent two-parameter (scale-location) exponen-
tial random variables with common location parameter. Kunchur and Munoli
(1993) considered the problem of estimating reliability for a multicomponent
stress–strength model based on exponential distributions.

In this article, we want to develop inferential procedures about the reliability
parameter R = P(X > Y), where X and Y are independent two-parameter
exponential random variables. A two-parameter exponential distribution has
probability density function (pdf) given by

f (x; µ, θ) =
1

θ
e−(x−µ)/θ , x > µ, µ ≥ 0, θ > 0, (1)

where µ is the location parameter and θ is the scale parameter. In lifetime data
analysis, µ is referred to as a threshold or “guarantee time” parameter, and θ is
the mean time to failure.

As mentioned in Kotz et. al. (2003), the case of the two-parameter exponen-
tial distributions is of importance because it allows us to derive confidence limits
for the reliability parameters involving Pareto distributions or power distribu-
tions by means of one-one transformations. In particular, if X follows a Pareto
distribution with pdf λσ λ/xλ+1, x > σ , then Y = ln(X) has the pdf in (1) with
µ = ln(σ ) and θ = 1/λ. If X follows a power distribution with pdf λxλ−1/σ λ,
0 < x < σ , then Y = ln(1/X) has the pdf in (1) with µ = ln(1/σ) and θ = 1/λ.
Therefore, the inferential procedures about the reliability parameter that we
will derive in the following sections are readily applicable to these distributions.

To formulate the present problem, let X ∼ exponential(µ1, θ1) independently
of Y ∼ exponential (µ2, θ2). That is, the pdf of X is f (x; µ1, θ1) and the pdf of Y
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is f (y; µ2, θ2), where f is given in (1). Then the stress–strength reliability can be
expressed as follows.
If µ1 > µ2, then the reliability parameter R is given by

P(X > Y) = PYPX|Y(X > Y|µ2 < Y < µ1) + PYPX|Y(X > Y|Y > µ1)

=
1

θ2

µ1∫

µ2

e
− (y−µ2)

θ2 dy +
1

θ2

∞∫

µ1

e
− (y−µ1)

θ1 e
− (y−µ2)

θ2 dy

= 1 −
θ2e

(µ2−µ1)

θ2

θ1 + θ2
.

If µ1 ≤ µ2, then R is given by

P(X > Y) = EYPX|Y(X > Y|Y)

=
1

θ2

∞∫

µ1

e
− (y−µ1)

θ1 e
− (y−µ2)

θ2 dy

=
θ1e

(µ1−µ2)

θ1

θ1 + θ2
.

Thus, the reliability parameter R can be expressed as

R =

(
1 −

θ2e(µ2−µ1)/θ2

θ1 + θ2

)
I(µ1 > µ2) +

(
θ1e(µ1−µ2)/θ1

θ1 + θ2

)
I(µ1 ≤ µ2), (2)

where I(.) is the indicator function.
If µ1 = µ2, then the reliability parameter R simplifies to θ1/(θ1+θ2), and exact

confidence limits for R can be obtained using some conventional approaches
(see Bhattacharyya and Johnson 1974). If µ1 �= µ2, then the form for R, as
shown in (2), is quite complex, and only large sample approach is available
(see Kotz et al. 2003, Section 4.2.3). This large sample approach is based on
the asymptotic normality of the MLE of R, and its accuracies are yet to be
investigated. Small sample conventional approaches for the present problem
may fail to yield any useful solution, and so we resorted to use the generalized

variable approach. The concept of the generalized p-value for hypothesis testing
was introduced by Tsui and Weerahandi (1989) and the idea was extended to
interval estimation by Weerahandi (1993). Since then this generalized variable

approach has been used to find solutions to many complex problems; among
others, ANOVA with unequal error variances (Weerahandi 1995a), inferential
methods for lognormal mean (Krishnamoorthy and Mathew 2003), tolerance
limits for random effects model (Krishnamoorthy and Mathew 2004) and the
multivariate Behrens-Fisher problem (Gamage et. al. 2004). For more details
about this approach, see the book by Weerahandi (1995b).
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This article is organized as follows. In the following section, we present some
basic distributional results and the MLE of R. In section 3, we present the
asymptotic results given in Kotz et. al. (2003). In section 4, we explain first the
method of constructing generalized variables for the scale and location parame-
ters of an exponential distribution. Using these generalized variables, in section
5, we construct a generalized variable for the reliability parameter R and outline
the procedures for constructing confidence limits and hypothesis testing about
R. We also show that the generalized variable approach produces exact confi-
dence limits for R when µ1 = µ2. In section 6, Monte Carlo simulation studies
are carried out to assess the validity of the generalized variable approach and
large sample properties of the asymptotic approach. Our simulation studies
indicate that the coverage probabilities of the generalized limits are in general
slightly more than or close to the nominal level. The asymptotic approach has
poor coverage properties even when the samples are large (as large as 100) .
In section 7, we illustrate the inferential procedures using simulated data sets.
Some concluding remarks are given in section 8.

2 Preliminaries

Let Z1, . . . , Zn be a sample of observations from an exponential distribution
with pdf in (1). The maximum likelihood estimators of µ and θ are given by

µ̂ = Z(1) and θ̂ =
1

n

n∑

i=1

(Zi − Z(1)) = Z̄ − Z(1), (3)

where Z(1) is the smallest of the Zi’s. It is known that µ̂ and θ̂ are independent
with

2n(µ̂ − µ)

θ
∼ χ2

2 and
2nθ̂

θ
∼ χ2

2n−2. (4)

(see Lawless 1982, section 3.5)
Let X be an exponential random variable with pdf f (x; µ1, θ1) and Y be an

exponential random variable with pdf f (y; µ2, θ2), where the pdfs are as defined
in (1). Assume that X and Y are independent. Let X1, . . . , Xn1

be a sample
of observations on X and Y1, . . . , Yn2 be a sample of observations on Y. Fur-
thermore, let µ̂1 and θ̂1 denote respectively the MLEs of µ1 and θ1 based on
X observations, and let µ̂2 and θ̂2 denote respectively the MLEs of µ2 and θ2

based on Y observations (see (3) for the formulas). Specifically, the MLEs are

µ̂1 = X(1), µ̂2 = Y(1), θ̂1 = X̄ − X(1) and θ̂2 = Ȳ − Y(1),

The MLE of the reliability parameter R can be obtained by replacing the
parameters µ1, µ2, θ1 and θ2 in (2) by their MLEs. That is, the MLE of R is



Reliability in stress–strength model

given by

R̂ =

(
1 −

θ̂2e(µ̂2−µ̂1)/θ̂2

θ̂1 + θ̂2

)
I(µ̂1 > µ̂2) +

(
θ̂1e(µ̂1−µ̂2)/θ̂1

θ̂1 + θ̂2

)
I(µ̂1 ≤ µ̂2). (5)

3 An asymptotic approach

An asymptotic confidence interval for R is given in Kotz et. al. (2003, section
4.2.3). This confidence interval is based on an asymptotic distribution of the
MLE of R. We shall now present an asymptotic mean squared error of R̂ given
in Kotz et al. (2003). Let λ = n1/(n1 + n2) and define

Cj =

⎧
⎨
⎩

θ̂i

(θ̂i+θ̂j)
2 exp

[
− (µ̂j−µ̂i)

θ̂i

]
, if µ̂j > µ̂i,[

θ̂i

(θ̂i+θ̂j)
2 + µ̂i−µ̂j

θ̂j(θ̂i+θ̂j)

]
exp

[
− (µ̂i−µ̂j)

θ̂j

]
, if µ̂j ≤ µ̂i,

where i = 2 if j = 1 and i = 1 if j = 2. Using these terms, an estimate of
asymptotic MSE of R̂ is given by

σ̂ 2
R̂

= (λ−1C2
1 θ̂

2
1 + (1 − λ)−1C2

2 θ̂
2
2 )/(n1 + n2).

Using this estimate, for large n1 + n2, we have

√
n1 + n2(R̂ − R)

σ̂R̂

∼ N(0, 1) approximately.

A 1 − α lower limit for R based on the above asymptotic distribution is given
by

R̂ − z1−α

σ̂R̂√
n1 + n2

, (6)

where zp denotes the pth quantile of the standard normal distribution.

4 Generalized variables for µ and θ

The reliability parameter in (2) is a function of both µ’s and θ ’s. So we develop
first generalized variables for µ and θ for the one-sample case. Even though
it is not our primary interest, knowing the results of the one-sample case will
make it easier to understand the approach and results for the stress–strength
reliability in section 5.
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4.1 A generalized variable for µ

Let µ̂0 and θ̂0 be observed values of µ̂ and θ̂ respectively. Based on the above
distributional results of the MLEs, a generalized pivot variable for µ can be
constructed as follows.

Gµ = µ̂0 −
2n(µ̂ − µ)

2nθ

θ

θ̂
θ̂0

= µ̂0 −
2n(µ̂ − µ)

θ

1

(2nθ̂ )/θ
θ̂0

= µ̂0 −
χ2

2

χ2
2n−2

θ̂0. (7)

To get the last step, we used the distributional results in (4). The generalized test

variable for testing hypothesis about µ is given by

Gt
µ = Gµ − µ = µ̂0 −

χ2
2

χ2
2(n−1)

θ̂0 − µ. (8)

In general, a generalized pivot variable should satisfy two properties. More
details can be found in Weerahandi (1995b).

(1) The value of Gµ at (µ̂, θ̂ ) = (µ̂0, θ̂0) should be the parameter of interest.
Here, using the step 1 of (7), we see that the value of Gµ at (µ̂, θ̂ ) = (µ̂0, θ̂0)

is µ.
(2) For given µ̂0 and θ̂0, the distribution of Gµ should be independent of any

unknown parameters. This property also holds because we see from step 3
of (7) that the distribution of Gµ, when µ̂0 and θ̂0 are fixed, does not depend
on any parameter.

A generalized test variable should satisfy the following three properties:

(1) The value of Gt
µ at (µ̂, θ̂ ) = (µ̂0, θ̂0) should not depend on any parame-

ter. Here, using the step 1 of (7) and (8), we see that the value of Gt
µ at

(µ̂, θ̂ ) = (µ̂0, θ̂0) is zero.
(2) For given µ̂0 and θ̂0, the distribution of Gt

µ should depend only on the
parameter of interest. Using (8), it is easy to see that this property also
holds.

(3) For given µ̂0 and θ̂0, the distribution of Gt
µ should be stochastically mono-

tone with respect to the parameter of interest. From the definition of Gt
µ

in (8), we see that the distribution of Gt
µ is stochastically decreasing with

respect to µ.

Thus, we showed that Gµ is a bona fide generalized pivot variable for con-
structing confidence limits for µ, and Gt

µ is a valid generalized test variable
for hypothesis testing about µ. For example, the 100αth percentile of Gµ, that
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is, µ̂0 − 2
2n−2 F2,2n−2,1−α θ̂0, where Fm,n,p denotes the 100pth percentile of an F

distribution with degrees of freedoms m and n, is a 1 −α lower confidence limit
for µ. If one is interested in testing

H0 : µ ≤ µ0 vs. Ha : µ > µ0,

then, noting that Gt
µ is stochastically decreasing in µ, the generalized p-value is

given by

P

(
sup
H0

Gt
µ < 0

)
= P(Gt

µ < 0|µ = µ0) = P(Gµ < µ0).

Using (7), and after some simplification, we see that the above p-value can be
expressed as

P

(
2

2n − 2
F2,2n−2 >

µ̂0 − µ0

θ̂0

)
.

The test or interval estimation of µ based on our generalized variable approach
are the same as the usual exact ones (see Lawless 1982, p. 128).

4.2 A generalized variable for θ

A generalized variable for θ is given by

Gθ =
θ

2nθ̂
2nθ̂0 =

2nθ̂0

χ2
2n−2

, (9)

and the generalized test variable based on Gθ is given by

Gt
θ =

2nθ̂0

χ2
2n−2

− θ .

It is easy to see that the generalized pivot variable and the generalized test
variable satisfy the properties given earlier. Furthermore, it is easy to see that
the confidence interval and hypothesis testing [based on (9)] about θ are the
same as the usual exact ones (see Lawless 1982, p. 128).

Notice that under the transformation X → aX + b, where a > 0, Gµ →
aGµ + b and Gθ → aGθ . Therefore, inferential procedures based on the gen-
eralized variables are scale-location invariant.



K. Krishnamoorthy et al.

5 Generalized confidence limits for R

The generalized variable for R can be obtained by replacing the parameters
by their generalized variables. The reliability parameter R simplifies to
θ1/(θ1 +θ2) = 1/(1+θ2/θ1) when µ1 = µ2. In this case, it is enough to find confi-
dence limit for θ2/θ1. The generalized variable for θ2/θ1 is given by Gθ2/Gθ1

, and
after some algebraic manipulation, it is easy to see that the generalized limits
are equal to the exact limits [see Bhattacharyya and Johnson (1974, section 5)]
for the reliability parameter.

If the location parameters are unknown and arbitrary, then a generalized
pivot variable for R can be obtained by replacing the parameters in (2) by their
generalized variables. Denoting the resulting generalized variable by GR, we
have

GR =

⎛
⎜⎝1 −

Gθ2 e

(Gµ2 −Gµ1
)

Gθ2

Gθ1
+ Gθ2

⎞
⎟⎠ I(Gµ1

> Gµ2)

+

⎛
⎜⎝

Gθ1
e

(Gµ1
−Gµ2 )

Gθ1

Gθ1
+ Gθ2

⎞
⎟⎠ I(Gµ1

≤ Gµ2), (10)

where

Gµi = µ̂i0 −
Qi

Wi
θ̂i0, Gθi =

2niθ̂i0

Wi
, i = 1, 2, (11)

(µ̂i0, θ̂i0) is an observed value of (µ̂i, θ̂i), i = 1, 2, and Q1, Q2, W1 and W2 are
independent random variables with Qi ∼ χ2

2 and Wi ∼ χ2
2ni−2, i = 1, 2. The

generalized test variable for R is given by

Gt
R = GR − R.

It is easy to check that the generalized pivot variable GR satisfies the two
properties given in Section 3. In particular, for given µ̂10, µ̂20, θ̂10 and θ̂20, the
distribution of GR does not depend on any unknown parameters. So, Monte
Carlo method given in Algorithm 1, can be used to find confidence limits for R

or to find the generalized p-value for hypothesis testing about R.
Algorithm 1

For a given data set, compute the MLEs µ̂10, θ̂10, µ̂20, θ̂20 using the
formulas in (3)
For i = 1, m

Generate Q1 ∼ χ2
2 , Q2 ∼ χ2

2 , W1 ∼ χ2
2n1−2, W2 ∼ χ2

2n2−2

Compute Gµ1
, Gµ2 , Gθ1

, Gθ2 and GR [see (10) and (11)]
(end loop)
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The 100αth percentile of the generated GR’s is a 1 − α lower limit for the
reliability parameter R. If we are interested in testing

H0 : R ≤ R0 vs. Ha : R > R0,

where R0 is a specified value, then the generalized p-value is the proportion of
the GR’s that are less than R0.

6 Monte Carlo studies

We note first that the exponential distributions, the parameter of interest R in
(2), and the generalized pivot variable GR are scale-location invariant. There-
fore, without loss of generality, we can assume that µ2 = 0 and θ2 = 1 to
compute the coverage probabilities. We estimated the coverage probabilities
via Monte Carlo simulation. The simulation is carried out as follows. For a
given (n1, µ1, θ1, n2), we first generated 2,500 (µ̂10, θ̂10, µ̂20, θ̂20)’s using the dis-
tributional results in (4). For each simulated set (µ̂10, θ̂10, µ̂20, θ̂20), we used
Algorithm 1 with m = 5, 000 to find the 95% lower limit for R. The proportion
of the 2,500 lower limits that are below the value of R is a Monte Carlo estimate
of the coverage probability. The coverage probabilities of the asymptotic limit
in (6) were estimated using simulation consisting of 100,000 runs.

In Table 1, we present coverage probabilities of asymptotic limits and gen-
eralized confidence limits for samples n1 = n2 = 50 and n1 = n2 = 100. We
chose large sample sizes because the asymptotic limits are valid only for large
samples. In Table 2, we give the coverage probabilities of the generalized limits
for small samples. Furthermore, to understand the closeness of the lower con-
fidence limits to the value of the reliability parameter, we present estimates of
the expectation of the lower limits and the value of R for each of the parameter
and sample size configurations.

We observe the following from Monte Carlo estimates given in Tables 1
and 2.

1. We observe from Table 1 that, even for large samples, the coverage proba-
bilities of the asymptotic approach are in general smaller than the nominal
level 0.95, and they are close to the nominal level only when µ1 and µ2 are
close to zero. For larger θ1, the coverage probabilities are much lower than
the nominal level. Even for samples as large as 100, the coverage proba-
bilities of the asymptotic limits go as low as 0.77 when the nominal level is
0.95. So, the asymptotic approach should not be recommended for practical
applications. Furthermore, we notice that the generalized variable limits not
only have good coverage probabilities but also have expected values close
to those of the asymptotic limits.

2. The coverage probabilities of the generalized confidence limits are in gen-
eral either close to or slightly more than the nominal level 0.95. The coverage
probabilities seldom exceed 0.97. Comparison of values for n1 = 10, n2 = 12
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Table 1 Coverage probabilities (CP) and expected lengths (EL) of 95% lower confidence limits
for R

θ1

1 1.5 2 2.5 10

µ1 R CP(EL) R CP(EL) R CP(EL) R CP(EL) R CP(EL)

µ2 = 0, θ2 = 1; n1 = 50, n2 = 50
0 a 0.50 0.95(0.41) 0.60 0.95(0.52) 0.67 0.95(0.59) 0.71 0.95(0.64) 0.91 0.97(0.86)

b 0.94(0.42) 0.92(0.52) 0.90(0.60) 0.89(0.65) 0.69(0.90)
0.2 a 0.59 0.95(0.51) 0.67 0.95(0.59) 0.73 0.94(0.65) 0.77 0.95(0.69) 0.93 0.97(0.88)

b 0.93(0.51) 0.91(0.60) 0.90(0.66) 0.89(0.71) 0.70(0.91)

0.4 a 0.66 0.95(0.58) 0.73 0.95(0.65) 0.78 0.95(0.70) 0.81 0.95(0.74) 0.94 0.96(0.90)
b 0.92(0.59) 0.91(0.66) 0.89(0.72) 0.88(0.76) 0.72(0.93)

0.6 a 0.73 0.95(0.64) 0.78 0.95(0.70) 0.82 0.95(0.75) 0.84 0.96(0.78) 0.95 0.96(0.91)
b 0.92(0.65) 0.90(0.72) 0.89(0.76) 0.88(0.80) 0.73(0.94)

0.8 a 0.78 0.95(0.70) 0.82 0.95(0.75) 0.85 0.96(0.78) 0.87 0.95(0.81) 0.96 0.97(0.93)
b 0.91(0.71) 0.90(0.76) 0.89(0.80) 0.88(0.83) 0.73(0.95)

1 a 0.82 0.95(0.74) 0.85 0.94(0.79) 0.88 0.96(0.82) 0.89 0.95(0.84) 0.97 0.96(0.93)
b 0.90(0.75) 0.89(0.80) 0.88(0.83) 0.87(0.85) 0.74(0.96)

1.3 a 0.86 0.95(0.79) 0.89 0.95(0.83) 0.91 0.95(0.85) 0.92 0.95(0.87) 0.98 0.96(0.95)
b 0.89(0.81) 0.89(0.84) 0.88(0.87) 0.87(0.89) 0.75(0.97)

1.6 a 0.90 0.95(0.84) 0.92 0.94(0.86) 0.93 0.95(0.88) 0.94 0.95(0.90) 0.98 0.97(0.96)
b 0.88(0.85) 0.88(0.88) 0.87(0.90) 0.86(0.91) 0.75(0.97)

1.9 a 0.93 0.95(0.87) 0.94 0.96(0.89) 0.95 0.95(0.91) 0.96 0.95(0.92) 0.99 0.95(0.97)
b 0.88(0.89) 0.87(0.91) 0.86(0.92) 0.86(0.93) 0.76(0.98)

2.2 a 0.94 0.95(0.90) 0.96 0.95(0.92) 0.96 0.95(0.93) 0.97 0.95(0.94) 0.99 0.97(0.98)
b 0.87(0.91) 0.86(0.93) 0.86(0.94) 0.85(0.95) 0.76(0.98)

µ2 = 0, θ2 = 1; n1 = 100, n2 = 100
0 a 0.50 0.95(0.44) 0.60 0.95(0.54) 0.67 0.95(0.61) 0.71 0.95(0.66) 0.91 0.95(0.88)

b 0.95(0.44) 0.93(0.55) 0.92(0.62) 0.91(0.67) 0.77(0.90)
0.2 a 0.59 0.94(0.53) 0.67 0.95(0.62) 0.73 0.96(0.67) 0.77 0.95(0.72) 0.93 0.96(0.90)

b 0.94(0.53) 0.93(0.62) 0.92(0.68) 0.91(0.73) 0.78(0.91)

0.4 a 0.66 0.95(0.61) 0.73 0.95(0.68) 0.78 0.95(0.73) 0.81 0.96(0.76) 0.94 0.97(0.92)
b 0.93(0.61) 0.92(0.68) 0.92(0.73) 0.91(0.77) 0.79(0.93)

0.6 a 0.73 0.95(0.67) 0.78 0.94(0.73) 0.82 0.94(0.77) 0.84 0.95(0.80) 0.95 0.96(0.93)
b 0.93(0.67) 0.92(0.73) 0.91(0.78) 0.90(0.81) 0.80(0.94)

0.8 a 0.78 0.95(0.72) 0.82 0.95(0.77) 0.85 0.95(0.81) 0.87 0.95(0.83) 0.96 0.95(0.94)
b 0.93(0.73) 0.92(0.78) 0.91(0.81) 0.90(0.84) 0.81(0.95)

1 a 0.82 0.95(0.76) 0.85 0.95(0.81) 0.88 0.95(0.84) 0.89 0.96(0.86) 0.97 0.95(0.95)
b 0.92(0.77) 0.91(0.81) 0.91(0.84) 0.90(0.87) 0.81(0.96)

1.3 a 0.86 0.96(0.82) 0.89 0.95(0.85) 0.91 0.95(0.87) 0.92 0.95(0.89) 0.98 0.96(0.96)
b 0.91(0.82) 0.91(0.86) 0.90(0.88) 0.90(0.90) 0.82(0.97)

1.6 a 0.90 0.95(0.86) 0.92 0.95(0.88) 0.93 0.95(0.90) 0.94 0.95(0.91) 0.98 0.96(0.97)
b 0.91(0.86) 0.90(0.89) 0.90(0.91) 0.89(0.92) 0.82(0.98)

1.9 a 0.93 0.95(0.89) 0.94 0.95(0.91) 0.95 0.96(0.92) 0.96 0.95(0.93) 0.99 0.96(0.98)
b 0.91(0.90) 0.90(0.92) 0.89(0.93) 0.89(0.94) 0.83(0.98)

2.2 a 0.94 0.95(0.91) 0.96 0.95(0.93) 0.96 0.95(0.94) 0.97 0.95(0.95) 0.99 0.96(0.98)
b 0.90(0.92) 0.89(0.94) 0.89(0.95) 0.88(0.95) 0.83(0.99)

a Generalized limit, b asymptotic limit, R= Reliability parameter
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Table 2 Coverage probabilities (CP) and expected lengths of 95% generalized lower confidence
limits for R

θ1

1 1.5 2 2.5 10

µ1 R CP(EL) R CP(EL) R CP(EL) R CP(EL) R CP(EL)

µ2 = 0, θ2 = 1; n1 = 12, n2 = 10
0 0.50 0.96(0.33) 0.60 0.96(0.41) 0.67 0.96(0.48) 0.71 0.97(0.53) 0.91 0.97(0.75)
0.2 0.59 0.96(0.40) 0.67 0.96(0.48) 0.73 0.97(0.53) 0.77 0.97(0.58) 0.93 0.97(0.76)
0.4 0.66 0.96(0.48) 0.73 0.94(0.55) 0.78 0.97(0.59) 0.81 0.97(0.62) 0.94 0.98(0.78)
0.6 0.73 0.96(0.53) 0.78 0.95(0.59) 0.82 0.97(0.64) 0.84 0.97(0.66) 0.95 0.97(0.80)

0.8 0.78 0.95(0.59) 0.82 0.96(0.64) 0.85 0.95(0.67) 0.87 0.97(0.70) 0.96 0.97(0.81)
1 0.82 0.95(0.63) 0.85 0.96(0.67) 0.88 0.96(0.70) 0.89 0.97(0.73) 0.97 0.97(0.83)
1.3 0.86 0.95(0.68) 0.89 0.95(0.72) 0.91 0.95(0.75) 0.92 0.96(0.77) 0.98 0.97(0.85)
1.6 0.90 0.94(0.73) 0.92 0.95(0.77) 0.93 0.95(0.79) 0.94 0.96(0.81) 0.98 0.96(0.87)

1.9 0.93 0.95(0.77) 0.94 0.94(0.80) 0.95 0.95(0.82) 0.96 0.96(0.84) 0.99 0.97(0.88)
2.2 0.94 0.94(0.81) 0.96 0.95(0.82) 0.96 0.96(0.85) 0.97 0.96(0.86) 0.99 0.97(0.90)
2.5 0.96 0.95(0.83) 0.97 0.94(0.85) 0.97 0.95(0.87) 0.98 0.96(0.88) 0.99 0.96(0.92)
3.0 0.98 0.95(0.87) 0.98 0.95(0.88) 0.98 0.95(0.90) 0.99 0.95(0.91) 0.99 0.96(0.93)

µ2 = 0, θ2 = 1; n1 = 12, n2 = 10
0.2 0.49 0.96(0.33) 0.69 0.95(0.50) 0.81 0.95(0.62) 0.89 0.95(0.71) 0.98 0.96(0.89)
0.4 0.57 0.96(0.39) 0.74 0.95(0.54) 0.84 0.95(0.65) 0.90 0.95(0.73) 0.99 0.95(0.90)
0.6 0.62 0.95(0.43) 0.77 0.95(0.57) 0.86 0.94(0.68) 0.92 0.94(0.75) 0.99 0.95(0.91)
0.8 0.66 0.95(0.48) 0.80 0.95(0.61) 0.88 0.95(0.70) 0.92 0.96(0.77) 0.99 0.95(0.91)

1.3 0.74 0.96(0.55) 0.84 0.96(0.66) 0.90 0.95(0.74) 0.94 0.96(0.80) 0.99 0.94(0.92)
1.6 0.77 0.96(0.58) 0.86 0.96(0.68) 0.91 0.95(0.76) 0.95 0.94(0.82) 0.99 0.95(0.93)
1.9 0.79 0.97(0.60) 0.87 0.96(0.70) 0.92 0.96(0.77) 0.95 0.96(0.82) 0.99 0.95(0.93)
2.2 0.81 0.97(0.63) 0.89 0.96(0.72) 0.93 0.97(0.79) 0.96 0.96(0.84) 0.99 0.97(0.94)

2.5 0.83 0.97(0.64) 0.89 0.96(0.73) 0.94 0.96(0.80) 0.96 0.96(0.85) 0.99 0.95(0.94)
3.0 0.85 0.97(0.67) 0.91 0.97(0.75) 0.94 0.95(0.81) 0.97 0.97(0.86) 0.99 0.94(0.95)
3.5 0.87 0.97(0.69) 0.92 0.97(0.76) 0.95 0.97(0.82) 0.97 0.96(0.87) 0.99 0.96(0.95)

(in Table 2) and those for n1 = n2 = 50 (in Table 1) suggests that the cover-
age probabilities approach nominal level as sample sizes increase. Thus, we
see that the generalized inference is in general conservative, and its accuracy
increases as the sample sizes increase.

3. Comparison between the estimates of the expectation of the lower limits
and the values of R indicates that the lower limits are expected to be fairly
close to R even though the generalized estimation procedures is slightly
conservative. Furthermore, for fixed confidence level, the lower limits tend
to increase as the sample sizes increase. For example, when n1 = 10, n2 = 12
and θ1 = 1.5, µ1 = 1.0, R = 0.85 and the lower limit is 0.67 (see Table 2); at
the same parameter configuration, the lower limit is 0.79 when n1 = n2 = 50
and is 0.81 when n1 = n2 = 100 (see Table 1). Thus, the lower confidence
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Table 3 Simulated data

X 4.21 4.88 5.17 5.64 6.31 7.42 7.89 8.14 8.27 9.92
10.45 10.59 11.37 12.98 13.94 14.18 14.19 14.94 18.83 20.91

Y 1.07 1.09 1.16 1.17 1.65 1.98 2.12 2.13 2.54 3.18
3.19 3.30 3.33 3.40 3.62 4.29 5.80 5.95 6.39 6.74

limit is expected to increase with increasing sample sizes, which is a desirable
property.

4. The size properties of the generalized test can be understood from the above
coverage properties. In particular, the sizes of the test should be close to or
less than the nominal level, and they are expected to be close to the nominal
level for large samples.

7 An illustrative example

To illustrate the generalized inferential procedures in section 5, we simulated
data on X ∼ exponential(4, 5) and on Y ∼ exponential(1, 2). The value of the
reliability parameter R is 0.936. The ordered data are given in Table 3.

The MLEs are computed as

µ̂10 = 4.21, θ̂10 = 6.298, µ̂20 = 1.07, θ̂20 = 2.138 and R̂ = 0.942.

Using Algorithm 1 with m = 100, 000, we computed the p-value for testing

H0 : R ≤ 0.83 vs. Ha : R > 0.83 (12)

as 0.027, which suggests that the data provide evidence against H0. We also
computed the 95% lower confidence limit for R as 0.849. Thus, we see that the
conclusions based on the p-value and the 95% lower limit are the same.

The asymptotic approach in section 3 produced 95% lower limit as 0.892,
and p-value for testing the hypotheses in (12) as 0.0001.

8 Some concluding remarks

In this article, we developed inferential procedures using the novel concept of
generalized p-value and generalized confidence limits. Even though the gener-
alized variable approach can be used to obtain solutions to complex problems
such as the present one, its statistical properties should be investigated numer-
ically. Based on Monte Carlo studies we conclude that the existing asymptotic
method is not accurate even for very large samples, and the generalized infer-
ential procedures are conservative for some parameter configurations when the
sample sizes are moderate. The accuracy of the generalized variable method
increases as the sample sizes increase. Finally, we note that conservative proce-
dures are safer to use in practical applications than the liberal ones. Therefore,
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our procedures can be used to assess the reliability in stress–strength model
involving two-parameter exponential distributions, or, as noted in the introduc-
tion, the related Pareto and power distributions.
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