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Abstract. Tests based on the quantile regression process can be formulated like
the classical Kolmogorov-Smirnov and Cr�amer-von-Mises tests of goodness-of-�t
employing the theory of Bessel processes as in ?. However, it is frequently desirable
to formulate hypotheses involving unknown nuisance parameters, thereby jeopar-
dizing the distribution free character of these tests. We characterize this situation
as \the Durbin problem" since it was posed in ?, for parametric empirical processes.

In this paper we consider an approach to the Durbin problem involving a martin-
gale transformation of the parametric empirical process suggested by ? and show
that it can be adapted to a wide variety of inference problems involving the quan-
tile regression process. In particular, we suggest new tests of the location shift and
location-scale shift models that underlie much of classical econometric inference.

The methods are illustrated in some limited Monte-Carlo experiments and with
a reanalysis of data on unemployment durations from the Pennsylvania Reemploy-
ment Bonus Experiments. The Pennsylvania experiments, conducted in 1988-89,
were designed to test the e�cacy of cash bonuses paid for early reemployment in
shortening the duration of insured unemployment spells.

1. Introduction

Quantile regression is gradually evolving into a comprehensive approach to the
statistical analysis of linear and nonlinear response models for conditional quantile
functions. Just as classical linear regression methods based on minimizing sums
of squared residuals enable one to estimate models for conditional mean functions,
quantile regression methods based on minimizing asymmetrically weighted absolute
residuals o�er a mechanism for estimating models for the conditional median func-
tion, and the full range of other conditional quantile functions. By supplementing
least squares estimation of conditional mean functions with techniques for estimating
an entire family of conditional quantile functions, quantile regression is capable of
providing a much more complete statistical analysis of the stochastic relationships
among random variables.
There is already a well-developed theory of asymptotic inference for many impor-

tant aspects of quantile regression. Rank-based inference based on the approach of
? appears particularly attractive for a wide variety of quantile regression inference
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2 Inference on the Quantile Regression Process

problems including the construction of con�dence intervals for individual quantile
regression parameter estimates. There has also been considerable attention devoted
to various resampling strategies. See e.g. ?, ?, ? ?. In ? some initial steps have
been taken toward a complete theory of inference based on the entire quantile regres-
sion process. These steps have clari�ed the close tie to classical Kolmogorov-Smirnov
goodness of �t results, and related literature on Bessel processes initiated by ?. They
have also successfully extended the applicability of certain Wald and rankscore tests
to the linear location scale model.
This paper describes some further steps in this direction. These steps depend

crucially on an ingenious suggestion by ? for dealing with tests of composite null
hypotheses based on the empirical distribution function. Khmaladze's results have
been slow to percolate into statistics generally, but the approach has recently played
an important role in work on regression diagnostics by ? and ?. In econometrics, ?
seems to have been the �rst to recognize the potential importance of these methods.
Khmaladze's martingale transformation approach provides a general strategy for

purging the e�ect of estimated nuisance parameters from the �rst order asymptotic
representation of the empirical process and thereby restoring the feasibility of \asymp-
totically distribution free" tests. The approach seems especially attractive in quantile
regression settings and is capable of greatly expanding the scope of inference methods
described in earlier work.

1.1. Quantile Treatment E�ects. To motivate our results it is helpful to begin
by reconsidering the classical two-sample treatment-control problem. In the simplest
possible setting we can imagine a random sample of size, n, drawn from a homo-
geneous population and randomized into n1 treatment observations, and n0 control
observations. We have a response variable, Yi, and are interested in evaluating the
e�ect of the treatment on this reponse.
In a typical clinical trial application, for example, the treatment would be some form

of medical procedure, and Yi, might be log survival time. In our application appearing
in Section 6, the treatment is an o�er of a cash bonus for early exit from a spell of
unemployment, and Yi is the logarithm of individual i's unemployment duration. In
the �rst instance we might be satis�ed to know simply the mean treatment e�ect, that
is, the di�erence in means for the two groups. This we could evaluate by \running
the regression" of the observed yi's on an indicator variable: xi = 1, if subject i was
treated, xi = 0, if subject i was a control. Of course this regression would presume,
implicitly, that the variability of the two subsamples was the same; this observation
opens door to the possibility that the treatment alters other features of the response
distribution as well. Although we are accustomed to thinking about regression models
in which the covariates a�ect only the location of the conditional distribution of the
response { this is force of the iid error assumption { there is no compelling reason to
believe that covariates must operate in this restrictive fashion.
? introduced the following general formulation of the two sample treatment e�ect,
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\Suppose the treatment adds the amount �(x) when the response of the
untreated subject would be x. Then the distribution G of the treatment
responses is that of the random variable X +�(X) where X is distributed
according to F ."

? provides a detailed axiomatic analysis of this formulation, showing that if we
de�ne �(x) as the \horizontal distance" between F and G at x, so

F (x) = G(x+�(x))

then �(x) is uniquely de�ned and can be expressed as

�(x) = G�1(F (x))� x:

Changing variables, so � = F (x) we obtain what we will call the quantile treatment
e�ect,

�(� ) = �(F�1(� )) = G�1(� )� F�1(� ):

In the two sample setting this quantity is naturally estimable by

�̂(� ) = Ĝ�1
n1
(� )� F̂�1

n0
(� )

where Ĝn1 ; F̂n0 denote the empirical distribution functions of the treatment and con-

trol observations respectively, and F̂�1
n = inffxjF̂n(x) � �g, as usual. Since we cannot

observe subjects in both the treated and control states { and this platitude may be
regarded as the fundamental \uncertainty principle" underlying the the \causal ef-
fects" literature { it seems reasonable to regard �(� ) as a complete description of the
treatment e�ect. Of course, there is no way of really knowing whether the treatment
operates in the way prescribed by Lehmann. In fact, the treatment may make other-
wise weak subjects especially robust, and turn the strong to jello. All we can observe
from the experimental evidence is the di�erence between the two marginal survival
distributions, so it is natural to associate the treatment e�ect with this di�erence.
The quantile treatment e�ect provides the unexpurgated version.
Of course, it is possible that the two distributions di�er only by a location shift, so

�(� ) = �0, or that they di�er by a scale shift so �(� ) = �1F
�1(� ) or that they di�er by

a location and scale shift so �(� ) = �0+ �1F�1(� ): But these hypotheses are all nicely
nested within Lehmann's general framework. And yet, as we shall see, testing these
hypotheses against the general alternatives represented by the Lehmann- Doksum
quantile treatment e�ect poses some serious techical problems.
In the next section we briey describe the nature of these problems in their canon-

ical form, the classical one-sample goodness of �t problem. Khmaladze's martingale
decomposition strategy for dealing with these problems is then introduced. Section 3
extends the Khmaladze approach to general problems of inference based on the quan-
tile regression process. Section 4 treats some practical problems of implementing the
tests. Section 5 reports the results of a limited Monte-Carlo experiment designed to
evaluate the �nite sample performance of the tests. Section 6 describes an empirical
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application to the analysis of unemployment durations. And Section 7 contains some
concluding remarks.

2. A Heuristic Introduction to Khmaladzation

Arguably the most fundamental problem of statistical inference is the classical
goodness-of-�t problem: given a random sample, fy1; : : : ; yng, on a real-valued ran-
dom variable, Y , test the hypothesis that Y comes from distribution function, F0.
Tests based on the empirical distribution function, Fn(y) = n�1

P
I(Yi � y), like the

Kolmogorov-Smirnov statistic

Kn = sup
x2R

p
njFn(y)� F0(y)j;

are especially attractive because they are asymptotically distribution-free. The limit-
ing distribution of Kn is the same for every continuous distribution function F0. This
remarkable fact follows by (trivially) noting that the process,

p
n(Fn(y)�F0(y)), can

be transformed to a test of uniformity, via the change of variable, y ! F�1
0 (t), based

on

vn(t) =
p
n(Fn(F

�1
0 (t))� t):

It is well known that vn(t) converges weakly to a Brownian bridge process, v0(t), that
is a mean-zero Gaussian process with covariance function

Ev0(t)v0(s) = t ^ s� st;

and thus the distribution of Kn and related functionals follows from the observation
of ? and its subsequent re�nements.

2.1. The Durbin Problem. It is rare in practice, however, that we are willing to
specify F0 completely. More commonly, our hypothesis places F in some parametric
family F� with � 2 � � Rp. For example, we may wish to test \normality", claiming
that Y has distribution F�0(y) = �((y � �0)=�0), but �0 = (�0; �0) is unknown. We
are thus led to consider, following ?, the parametric empirical process,

Un(y) =
p
n(Fn(y)� F�̂n

(y)):

Again changing variables, so y! F�1
�0
(t); we may equivalently consider

un(t) =
p
n(Gn(t)�G�̂n

(t))

where Gn(t) = Fn(F
�1
�0
(t)) and G�̂(t) = F�̂n

(F�1
�0
(t)) so G�0(t) = t. Under mild

conditions on the sequence f�̂ng we have the linear (Bahadur) representation,
p
n(�̂n � �0) =

Z 1

0

h0(s)dvn(s) + op(1):
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So provided the mapping �! G� has a Fr�echet derivative1, g = g�0 , we may write

G�̂n
(t) = t+ (�̂n � �0)

>g(t) + op(1);

and thus obtain, with rn(t) = op(1);

v̂n(t) =
p
n(Gn(t)� t� (G�̂n

(t)� t))(2.1)

= vn(t)� g(t)>
Z 1

0

h0(s)dvn(s) + rn(t);

which converges weakly to the Gaussian process,

u0(t) = v0(t)� g(t)>
Z 1

0

h0(s)dv0(s):

The necessity of estimating �0 introduces the drift component g(t)>
R 1

0
h0(s)dv0(s):

Instead of the simple Brownian bridge process, v0(t), we obtain a more complicated
Gaussian process with covariance function

Eu0(t)u0(s) = s ^ t� ts� g(t)>H0(s)� g(s)>H0(t) + g(s)>J0g(t)

where H0(t) =
R t
0 h0(s)ds and J0 =

R 1

0

R 1

0 h0(t)h0(s)
>dtds: When �̂n is the mle, so

h0(s) = �(Er� )�1 (F�1(s)) with  = r� log f , the covariance function simpli�es
nicely to

Eu0(t)u0(s) = s ^ t� ts� g(s)>I0g(t)
where I0 denotes Fisher's information matrix. See ? and ? for further details on this
case.
The practical consequence of the drift term involving the function g(t) is to invali-

date the distribution-free character of the original test. Tests based on the parametric
empirical process un(t) require special consideration of the process u0(t) and its depen-
dence on F in each particular case. ? discuss several leading examples. ? describes
a general numerical approach based on Fourier inversion, but also expresses doubts
about feasibility of the method when the parametric dimension, p; of � exceeds one.
Although the problem of �nding a viable, general approach to inference based on the
parametric empirical process had been addressed by several previous authors, notably
?, we will, in the spirit of Stigler's law of eponymy, ?, refer to this as \the Durbin
problem."

2.2. Martingales and the Doob-Meyer Decomposition. Khmaladze's general
approach to the Durbin problem can be motivated as a natural elaboration of the
Doob-Meyer decomposition for the parametric empirical process. Recall that a sto-
chastic process x = fx(t) : t � 0g that is (i) right continuous with left limits; (ii)

1That is, supt jG�+h(t) � G�(t)� h>g(t)j = o(jjhjj) as h! 0, see van der Vaart (1998, p 278.)
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integrable sup0�t<1 Ejx(t)j < 1; and (iii) adapted to the �ltration fFt : t � 0g, is
called a submartingale if

E(x(t+ s)jFt) � x(t) a:s:

and is called a martingale if

E(x(t+ s)jFt) = x(t) a:s:

The Doob-Meyer decomposition asserts that for any nonnegative submartingale, x,
there exists an increasing right continuous predictable process, a(t), such that Ea(t) <
1, and a right continuous martingale m; such that

x(t) = m(t) + a(t) a:s:

A process a(t) is called predictable with respect to a �ltration fFt : t � 0g if, viewed
as a mapping from [0;1) � 
 to R it is measurable with respect to the �-algebra
generated by the �ltration Ft, that is the �-algebra generated by all sets of the form
(r; s]�A for 0 � a < b < 1 and A 2 Fr: See e.g. ?.
Let X1; : : : ;Xn be iid from F0, so Yi = F0(Xi); i = 1; : : : ; n are iid uniform,

U [0; 1]: The empirical distribution function

Gn(t) = Fn(F
�1
0 (t)) = n�1

nX
i=1

I(Yi � t):

viewed as a process, is a submartingale. We have an associated �ltration FGn =
fFGn

t : 0 � t � 1g and the order statistics Y(1); : : : ; Y(n) are Markov times with
respect to FGn, that is fX(i) � tg = fFn(t) � i=ng 2 FGn

t .
The process Gn(t) is Markov; Khmaladze notes that for �t � 0,

n�Gn(t) = n[Gn(t+�t)�Gn(t)]

� Binomial(n(1�Gn(t));�t=(1� t))

with Gn(0) = 0, thus

E(�Gn(t)jFGn
t ) =

1�Gn(t)

1� t
�t:(2.2)

This suggests the decomposition

Gn(t) =

Z t

0

1 �Gn(s)

1 � s
ds +mn(t):

That mn(t) is a martingale then follows from the fact that, from (2.2),

E(mn(t)jFGn

s ) = mn(s)

and integrability of mn(t) follows from the inequalityZ t

0

1 �Gn(s)

1 � s
ds � � log(1� Y(n));
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which implies a �nite mean for the compensator, or predictable component. Sub-
stituting for Gn(t) in (2.2) we have the classical Doob-Meyer decomposition of the
empirical process vn

vn(t) = wn(t)�
Z t

0

vn(s)

1� s
ds

where vn(t) =
p
n(Gn(t) � t) and the normalized process wn(t) =

p
nmn(t) con-

verges weakly to a standard Brownian motion process, w0(t); by the argument of
Khmaladze(1981, x2.6).
2.3. The Parametric Empirical Process. To extend this approach to the general
parametric empirical process, we now let g(t) = (t; �g(t)>)> = (t; g1(t); : : : gm(t))>

be a (m + 1)-vector of real-valued functions on [0; 1]. Suppose that the functions
_g(t) = dg(t)=dt are linearly independent in a neighborhood of 1 so

C(t) �
Z 1

t

_g(s) _g(s)>ds

is non-singular, and consider the transformation

wn(t) = vn(t)�
Z t

0

_g(s)>C�1(s)

Z 1

s

_g(r)dvn(r)ds:

Here, wn(t) clearly depends upon the choice of g, and therefore di�ers from wn(t)
de�ned above. But the abuse of notation maybe justi�ed by noting that in the
special case g(t) = t, we have C(s) = 1 � s, and

R 1

s
_gdvn(r) = �vn(s) yielding the

Doob-Meyer decomposition (2.2). In the general case, the transformation

Qg'(t) = '(t)�
Z t

0

_g(s)>C�1(s)

Z 1

s

_g(r)d'(r)ds

may be recognized as the residual from the prediction of '(t) based on the recursive
least squares estimate using information from (t; 1]: For functions in the span of g,
the prediction is exact, that is, Qgg = 0:
Now returning to the representation of the parametric empirical process, v̂n(t),

given in (2.1), using Khamaladze (1981, x4.2), we have,
~vn(t) = Qgv̂n(t)

= Qg(vn(t)� �g(t)>
Z 1

0

h0(s)dvn(s) + rn(t))

= Qg(vn(t) + rn(t))

= w0(t) + op(1):

The transformation of the parametric empirical process annihilates the g component
of the representation and in so doing restores the feasibility of asymptotically distri-
bution free tests based on the transformed process ~vn(t).
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2.4. The Parametric Empirical Quantile Process. What can be done for tests
based on the parametric empirical process can also be adapted for tests based on the
parametric empirical quantile process. In some ways the quantile domain is actu-
ally more convenient. Suppose fy1; : : : ; yng constitute a random sample on Y with
distribution function FY : Consider testing the hypothesis, FY (y) = F0((y � �0)=�0);
so,

�(t) � F�1
Y
(t) = �0 + �0F

�1
0 (t):

Given the empirical quantile process

�̂(t) = inffa 2 Rj
nX
i=1

��(yi � a) = min!g

and known parameters �0 = (�0; �0) tests may be based on

vn(t) =
p
n(�̂(t)� �(t))=�s0(t)) v0(t)

where s0(t) = (f0(F
�1
0 (� )))�1 and v0(� ) is the Brownian bridge process.

To test our hypothesis when � is unknown, set �(t) = (1; F�1
0 (t))> and for an

estimator �̂n satisfying,

p
n(�̂n � �0) =

Z 1

0

h0(s)dvn(s) + op(1)

set

~�(t) = �̂ + �̂F�1
0 (t) = �̂>n �(t):

Then

v̂n(t) =
p
n(�̂(t)� ~�(t)=(�s(t))(2.3)

=
p
n(�̂(t)� �(t)� (~�(t)� �(t)))=(�s(t))

= vn(t)�
p
n(�̂ � �0)

>�(t)=(�s(t))

= vn(t)� �(t)>
Z 1

0

h0(s)dvn(s) + op(1)

Thus, if we take g(t) = (t; �(t)>=s(t))>, we obtain,

_g(t) = (1; _f=f; 1 + F�1
0 (t) _f=f)>

where _f=f is evaluated at F�1
0 (t), so for example in the Gaussian case,

_g(t) = (1� ��1(t); 1� ��1(t)2)>:

Given the representation (2.3) and the fact that �(t) lies in the linear span of g, we
may again apply Khmaladze's martingale transformation to obtain,

~vn(t) = Qgv̂n(t);
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which can then be shown to converge to the standard Brownian motion process. In
the next section we explore extending this approach to multidimensional quantile
regression.

3. Quantile Regression Inference

The classical linear regression model asserts that the conditional mean of the re-
sponse, Yi, given covariates, xi, may be expressed as a linear function of the covariates.
That is, there exists a � 2 RP such that,

E(yijxi) = x>i �:

The linear quantile regression model asserts, analogously, that the conditional quantile
functions of yi given xi are linear in covariates,

F�1
yijxi

(� jxi) = x>i �(� )(3.1)

for � in some index set T � [0; 1]: The model (3.1) will be taken to be our basic
maintained hypothesis. For convenience we will restrict attention to the case that
T = [�; 1� �] for some � 2 (0; 1=2), and to faciliatate asymptotic local power analysis
we will consider sequences of models for which �(� ) = �n(� ) depends explicitly on
the sample size, n.
A leading special case is the location-scale shift model,

F�1
yijxi

(� jxi) = x>i �+ x>i F
�1
0 (� ):(3.2)

where F�1
0 (� ) denotes a univariate quantile function. Covariates a�ect both the

location and scale of the conditional distribution of yi given xi in this model, but the
covariates have no e�ect on the shape of the conditional distribution. Typically, the
vectors fxig \contain an intercept" so e.g., xi = (1; z>i )

> and (3.2) may be seen as
arising from the linear model

yi = x>i � + (x>i )ui

where the \errors" fuig are iid with distribution function F0. Further specializing the
model, may write,

x>i  = 0 + z>i 1;

and the restriction, 1 = 0, then implies that the covariates a�ect only the location
of the yi's. We will call this model

F�1
yijxi

(� jxi) = x>i �+ 0F
�1
0 (� )(3.3)

the location shift model. Although this model underlies much of classical econometric
inference, it posits a very narrowly circumscribed role for the xi. In the remainder of
this section we explore ways to test the hypotheses that the general linear quantile
regression model takes either the location shift or location-scale shift form.
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We will consider a linear hypothesis of the general form,

R�(� )� r = 	(� ) � 2 T(3.4)

where R denotes a q � p matrix, q � p; r 2 Rq, and 	(� ) denotes a known function
	 : T ! R

q. For example in the one sample setting of the previous section, we
might take R = ��1; r = �=� and 	(� ) = ��1(� ); in order to test that the yi's were
N (�; �2).
In the two sample model described in Section 1.1.

F�1
yijDi

(� jDi) = �0(� ) + �1(� )Di

we might like to test that, the treatment and control distributions di�er by an a�ne
transformation

�0(� ) = �0 + �1�1(� )

or, even more simply, that they di�er by a location shift,

�0(� ) = �0 + �1(� ):

In these cases we may take 	(� ) � 0; r = �0; R = (1;��1) in the former case, and
R = (1;�1) in the latter case. Of course, we could also expand these two-sample
hypotheses to consider fully speci�ed parametric models with an explicit choice of
	(� ), however, the semi-parametric form of the hypotheses expressed above seems
more plausible for most econometric applications.
We will consider tests based on the quantile regression process,

�̂(� ) = argminb2Rp
nX
i=1

�� (yi � x>i b)

where ��(u) = u(� � I(u < 0)): Under the location-scale shift form of the quantile
regression model (3.2) we will have under mild regularity conditions,

p
nf0(F

�1
0 (� ))
�1=2(�̂(� )� �(� ))) v0(� )(3.5)

where v0(� ) now denotes a p-dimensional independent Brownian bridge process,

�(� ) = �+ F�1(� );

and 
 = H�1
0 J0H

�1
0 with J0 = limn�1

P
xix

>
i ; and H0 = limn�1

P
xix

>
i =

>xi.
It then follows quite easily that under the null hypothesis (3.4),

vn(� ) =
p
nf0(F

�1
0 (� ))(R
R>)�1=2(R�̂(� )� r �	(� ))) v0(� ):

So tests that were asymptotically distribution free could be readily constructed.
Indeed, ? consider tests of this type when R constitutes an exclusion restriction so

e.g., R = [0
...Iq]; r = 0, and 	(� ) = 0. In such cases it is also shown that the nui-

sance parameters f0(F
�1
0 (� )) and 
 can be replaced by consistent estimates without

jeopardizing the distribution free character of the tests.
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To formalize the foregoing discussion we introduce the following conditions, which
closely resemble the conditions employed in Koenker and Machado. We will assume
that the fyig's are conditional on xi, independent with linear conditional quantile
functions given by (3.1) and local, in a sense speci�ed in A.3, to the location-scale
shift model (3.2).

A. 1. The distribution function F0, in (3.2) has a continuous Lesbesgue density, f0,
with f0(u) > 0 on fu : 0 < F0(u) < 1g:
A. 2. The sequence of design matrices fXng = f(xi)ni=1g satisfy:

(i): xi1 � 1 i = 1; 2; : : :
(ii): Jn = n�1XnXn ! J0, a positive de�nite matrix.
(iii): Hn = n�1Xn��1n Xn ! H0, a positive de�nite matrix where �n = diag(>xi).
(iv): maxi=1;::: ;n k xi k= O(n1=4 log n)

A. 3. There exists a �xed, continuous function �(� ) : [0; 1]! R
q such that for sam-

ples of size n,
R�n(� )� r �	(� ) = �(� )=

p
n:

As noted in ?, conditions A.1 and A.2 are quite standard in the quantile regression
literature. Somewhat weaker conditions are employed by ? in an e�ort to extend the
theory further into the tails. But this isn't required for our present purposes, so we
have reverted to conditions closer to those of ?. Condition A.3 enables us to explore
local asymptotic power of the proposed tests employing a rather general form for the
local alternatives.
We can now state our �rst result. Proofs of all results appear in the appendix.

Theorem 1. Let T denote the closed interval ["; 1�"], for some " 2 (0; 1=2). Under
conditions A.1-3

vn(� )) v0(� ) + �(� ) for � 2 T
where v0(� ) denotes a q-variate standard Brownian bridge process and

�(� ) = f0(F
�1
0 (� ))(R
R>)�1=2�(� ):

Under the null hypothesis, �(� ) = 0, the test statistic

sup
�2T

k vn(� ) k) sup
�2T

k v0(� ) k :

Typically, even if the hypothesis is fully speci�ed, it is necessary to estimate the
matrix 
 and the function '(t) � f0(F

�1
0 (t)). Fortunately, these quantities can be

replaced by estimates satisfying the following condition.

A. 4. There exist estimators 'n(� ) and 
n satisfying

i.: sup�2T j'n(� )� '0(� )j = op(1),
ii.: jj
n � 
jj = op(1).

[Recall that we need to de�ne matrix norms a la Hilbert-Schmidt.]
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Corollary 1. The conclusions of Theorem 1 remain valid if f0(F
�1
0 (� )) and 
 are

replaced by estimates satisfying condition A.4.

Theorem 1 extends slightly the results of ?, but it fails to answer our main question:
how to deal with unknown nuisance parameters in R and r? To begin to address this
question, we introduce the following condition.

A. 5. There exist estimators Rn and rn satisfying
p
n(Rn�R) = Op(1) and

p
n(rn�

r) = Op(1):

And we consider the parametric quantile regression process,

v̂n(� ) =
p
nf0(F

�1
0 (� ))[Rn
R

>
n ]
�1=2(Rn�̂(� )� rn �	(� )):

The next result establishes a representation for v̂n(� ) analogous that provided in (2.2)
for the univariate empirical quantile process.

Theorem 2. Under conditions A.1-5, we have

v̂n(� )� �(� )>Zn ) v0(� ) + �(� )

where �(� ) = f0(F
�1
0 (� ))(1; F�1

0 (� ))>, and Zn = Op(1), with v0(� ) and �(� ) as speci-
�ed in Theorem 1.

Corollary 2. The conclusions of Theorem 2 remain valid if f0(F
�1
0 (� )) and 
 are

replaced by estimates satisfying condition A.4.

As in the univariate case we are faced with two options. We can accept the presence
of the Zn term, and abandon the asymptotically distribution free nature of tests based
upon v̂n(� ): Or we can, following Khmaladze, try to �nd a transformation of v̂n(� )
that annihilates the Zn contribution, and thus restores the asymptotically distribution
free nature of inference. We adopt the latter approach.
Let g(t) = (t; �(t)>)> so

_g(t) = (1;  (t);  (t)F�1(t))>

with  (t) = _f=f(F�1(t)). We will assume that g(t) satis�es the following condition.

A. 6. The function g(t) satis�es:

i:
R k _g(t) k2 dt <1,

ii: f _gi(t) : i = 1; : : : ;mg are linearly independent in a neighborhood of 1.

We consider the transformed process,

~vn(� ) � Qgv̂n(� ) = v̂n(� )�
Z �

0

_g(s)C�1(s)

Z 1

s

_g(r)dv̂n(r)ds;(3.6)

where the recursive least squares transformation should now be interpreted as oper-
ating coordinate by coordinate on the v̂n process.
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Theorem 3. Under conditions A.1 - 6, we have

~vn(� )) w0(� ) + ~�(� )

where w0(� ) denotes a q-variate standard Brownian motion, and ~�(� ) = Qg�(� ).
Under the null hypothesis, �(� ) = 0,

sup
�2T

k ~vn(� ) k) sup
�2T

k w0(� ) k :

[Note: Khmaladze (1981, x3.3) shows that A.6.ii implies C�1(� ) exists for all �:]

Typically, in applications, the function g(t) will not be speci�ed under the null
hypothesis, but will also need to be estimated. Fortunately, only one rather mild
further condition is needed to enable us to replace g by an estimate.

A. 7. There exists an estimator, gn(� ), satisfying

sup
�2T

k _gn(� )� _g(� ) k= op(1):

Corollary 3. The conclusions of Theorem 3 remain valid if f(F�1(� ));
, and g are
replaced by estimates satisfying conditions A.4 and A.7.

The foregoing results provide some basic machinery for a broad class of tests based
on the quantile regression process. In the next section we consider several special
cases including tests of the location shift hypothesis, and tests for the location-scale
shift hypothesis.

4. Implementation of the Tests

Given a framework for inference based on the quantile regression process, we can
now {in a somewhat more pragmatic spirit{ elaborate some missing details. We will
begin by considering tests of the location scale shift hypothesis against a general
quantile regression alternative. Tests of the location shift hypothesis and several
variants of a symmetry hypothesis will then be considered. Problems associated with
estimation of nuisance parameters are treated in the �nal subsection.

4.1. The location-scale shift hypothesis. We would like to test

F�1
yijxi

(� jxi) = x>i �+ x>i F
�1
0 (� )

against the sequence of linear quantile regression alternatives

F�1
yijxi

(� jxi) = x>i �n(� ):

In the simplest case the univariate quantile function is known and we can formulate
the hypothesis in the (3.4) notation,

R�(� )� r = 	(� )

by setting ri = �i=i; R = diag(�1i ), and 	(� ) = �pF
�1
0 (� ): Obviously, there is some

di�culty if there are i equal to zero. In such cases, we can take i = 1, and set the
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corresponding elements ri = �i and 	i(� ) � 0. How should we go about estimatng
the parameters � and ? Under the null hypothesis,

�i(� ) = �i + iF
�1
0 (� ) i = 1; : : : ; p

so it is natural to consider linear regression. Since �̂i(� ) is piecewise constant with
jumps at joints J = f�1; : : : ; �J) j = 1; : : : ; J: it su�ces to consider p bivariate linear

regressions of �̂i(�j) on f(1; F�1
0 (�j)) : j = 1; : : : ; J: Each of these regressions has a

known (asymptotic) Gaussian covariance structure that could be used to construct a
weighted least squares estimator, but pragmatism might lead us to opt for the simpler
unweighted estimator. In either case we have our required O(n�1=2) estimators �̂n
and ̂n.
When F�1

0 (� ) is (hypothetically) known the Khmaladzation process is relatively
painless. The function _g(t) = (1;  0(t);  0(t)F

�1
0 (t))> is known and the transforma-

tion (2.3) can be carried out by recursive least squares. Again, the discretization is

based on the jumps J = f�1; : : : ; �Jg of the piecewise constant �̂(� ) process. Tests
statistics based on the transformed process, ~vn(� ), can then be easily computed. The
simplest of these is probably the Kolmogorov-Smirnov sup-type statistic

Kn = sup
�2T

k ~vn(� ) k

where T is typically of the form ["; 1� "] with " 2 (0; 1=2):
When F�1

0 (t) isn't assumed to be known under the null it is convenient to choose
one coordinate, typically the intercept coe�cient, to play the role of numeraire. From
(3.4) we can write

�i(� ) = �i + �i�1(� ) i = 2; : : : ; p(4.1)

where �i = �i � �1i=1 and �i = i=1, or in matrix notation as

R�(� ) = r

where 	(� ) � 0; R = [�
...� Ip�1] and r = ��. Estimates of the vectors � and � are

again obtainable by regression of �̂i(� ) i = 2; : : : ; p� 1 on the intercept coordinate

�̂1(� ):
Finally, we must now face the problem of estimating the function _g. Fortunately,

there is already a large literature on estimation of score functions. For our purposes
it is convenient to employ the adaptive kernel method described in ?. An attractive
alternative to this approach has been developed by ? and ? based on smoothing
spline methods. Given a uniformly consistent estimator, _gn, satisfying condition A.7,
see Portnoy and Koenker (1989, Lemma 3.2), Corollary 3 implies that under the null
hypothesis

~vn(t) � Qgn v̂n(t)) w0(t)



Roger Koenker and Zhijie Xiao 15

and therefore Tests can be based on

Kn = sup
�2T

k ~vn(� ) k :

as before. Note that in this case estimation of _g provides as a byproduct an estimator
of the function f0(F

�1
0 (t)) which is needed to compute the process v̂n(t).

4.2. The location shift hypothesis. An important special case of the location-
scale shift model is, of course, the pure location shift model,

F�1
yijxi

(� jxi) = x>i � + F�1
0 (� )

This is just the classical homescedastic linear regression model,

yi = x>i �+ ui

where the fuig are iid with distribution function F0. This model underlies much of
classical econometric theory and practice. If it is found to be appropriate then it is
obviously sensible to consider estimation by alternative methods. For F0 Gaussian,
least squares would of course be optimal. For F0 unknown one might consider the
Huber M-estimator, or its L-estimator counterpart,

�̂� = (1� 2�)2
Z 1��

�

�̂(� )d�;

see ?. In the location shift model it is also well-known from ?, that the slope param-
eters, (�2; :::; �p), are adaptively estimable provided F0 has �nite Fisher information
for the location parameter. Thus, it would be reasonable to consider M-estimators
like those described in ? or the adaptive L-estimators described in ?.
The location-shift hypothesis can be expressed in standard form,

R�(� ) = r;

by setting R = [0
...Ip�1]; r = (�2; : : : ; �p)

>. It asserts simply that the quantile re-
gression slopes are constant, independent of � . Again, the unknown parameters in
fR; rg are easily estimated so the process v̂n(� ) is easily constructed. The transfor-
mation is obviously somewhat simpler in this case since g(t) = (t; '0(t)) has one fewer
coordinate than in the previous case.
We can continue to view tests of the location-shift hypothesis as tests against a

general quantile regression alternative represented in (A.3), or we can also consider the
behavior of the tests against a more specialized class of lcoation-scale shift alternatives
for which

�(� ) = �0F
�1
0 (� )

for some �xed vector �0 2 Rp�1. In the latter setting we have a test for parametric
heteroscedasticity and we can compare the performance of our very general class of
tests against alternative tests designed to be more narrowly focused on heteroscedastic
alternatives. We will explore this in Section 9.z below.
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An optimal (invariant) test in the parametric setting may be based on optimal
L-estimator of scale with weight function,

!(� ) =
d

dx
(xf 0=f)jx=F�1

0 (�);

see e.g. ?. Thus, for example, in the normal (Gaussian) model, F0 = �, we would
have, !(� ) = ��1(� ); so our estimator of �0 would be,

�̂n =

Z 1

0

��1(� )�̂(� )d�;

and a test for heteroscedasticity could be based on the last p�1 coordinates of �̂n. One
way to interpret such tests is to view them as smoothly weighted linear combinations
of the interquantile range tests for heteroscedasticity introduced in ?. Clearly, in the
case of the Gaussian weight function, extreme interquantile ranges get considerable
weight, so it may be prudent to consider Huberized versions of these tests that trim
the inuence of the tails. Alternatively, one could consider weight functions explicitly
designed for more heavy tailed distributions like the Cauchy,

!(� ) = 2 sin(2�� )(cos(2�� )� 1):

4.3. Local Asymptotic Power Comparison. In this section we compare the het-
eroscedasticity tests proposed above in an e�ort to evaluate the cost of considering a
much more general class of semiparametric alternatives instead of the strictly para-
metric alternatives represented by the location scale shift model.

4.4. Estimation of Nuisance Parameters. Our proposed tests depend crucially
on estimates of the quantile density and quantile score functions: f(F�1(� )), and
. f 0(F�1(� ))=f(F�1(� )). Fortunately, there is a large related literature on estimat-
ing f(F�1(� )); including e.g. ?, ?, ?, and ?. Following Siddiqui, and noting that,
dF�1(t)=dt = (f(F�1(t)))�1, it is natural to use the estimator,

fn(F
�1
n (t)) =

2hn
F�1
n (t+ hn)� F�1

n (t� hn)
;(4.2)

where F�1
n (s) is an estimate of F�1(s) and hn is a bandwidth which tends to zero as

n!1:
One way of estimating F�1(s) is to use a variant of the empirical quantile function

for the linear model proposed in ?,

F�1
n (s) =

b�(s)� b�b� :(4.3)

If we use (4.3) in the formula (4.2), the density f(F�1(t)) can be estimated by

fn(F
�1
n (t)) =

2hnb�b�(t+ hn)� b�(t� hn)
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and thus

fn(F�1
n (t))b� =

2hnb�(t+ hn)� b�(t� hn)
(4.4)

can be used in constructing testing statistics. Smoothed estimators based on (4.4)
may also be used.

5. Monte Carlo Results

We have conducted some limited Monte Carlo experiments to examine the �-
nite sample performance of the proposed tests. In particular, we examine the ef-
fectiveness of the martingale transformation based on the size and power proper-
ties of the tests. The following sample sizes were considered in our experiment:
n = 100; 200; 300; 400; 500: These sample sizes were chosen because they represent
the most relevant range of sample sizes in empirical analyses.
First of all, to investigate the e�ectiveness of the martingale transformation on

quantile regression inference, we examine the size and power properties of the infea-
sible version tests where the true density and score functions are used in the stan-
dardization and the martingale transformation. We start with the heteroskedasticity
test. The data were generated from

yi = �+ �xi + �(xi)ui;(5.1)

where xi and ui are iidN (0; 1) random variates and are mutually independent, � = 0;
and � = 1. �(xi) = 0 + 1xi, 0 = 1. We examined the empirical rejection rates
of the test for di�erent choices of sample sizes and 1 values, at 5% level of signi�-

cance. In constructing the test, we used the OLS estimator for b�, and the truncation
parameter value � = 0:05 (i.e. T = [0:05; 0:95]). Since xi is a scalar, the limiting
null distribution of the test statistic is sup0:05���0:95 jW (� )j : The 5% level critical
value is 2.14. For the choices of the heteroskedasticity parameter 1; we consider
1 = 0; 0:1; 0:2; 0:3; 0:5; 1; 2; 5: When 1 = 0; the model is homoskedastic and the
rejection rates give the empirical sizes. When 1 6= 0; the model is heteroskedastic
and the rejection rates deliver the empirical powers. Table 1 reports the empirical
rejection rates for di�erent values of 1 and n: Other values of the truncation param-
eter � were also tried and quantitatively similar results were obtained. These Monte
Carlo results indicate that, given information on the density and score, the martingale
transformation brings pretty good size and power to the proposed testing procedure
in �nite sample.
The remaining Monte-Carlo experiments are based on the even simpler two sample

model, �
y1i = �1 + �1ui; i = 1; :::::; n1;
y2i = �2 + �2vi; i = 1; :::::; n2;

(5.2)
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In particular, we considered the following two sets of parameter values

Location Shift: �1 = 1; �2 = 0; �1 = �2 = 1;(5.3)

Location-Scale Shift: �1 = 1; �2 = 0; �1 = 2; �2 = 1;(5.4)

where ui; vi are iid N (0; 1) random variates. When the parameters take the �rst
set of values, (5.2) represents a pure location shift model. The null hypothesis of a
shift model can be tested by the procedure given in Section 4.2. When the data is
generated from the second set parameters, (5.2) is a location-scale shift model. The
location-scale hypothesis can be tested by the procedure given in Section 4.1. Table
2 reports the empirical size of these tests for di�erent combinations of n1 and n2. We
can see that the test has good size properties in �nite samples. These Monte Carlo
results, together with the results on the heteroskedasticity test in Table 1, con�rm
the e�ectiveness of the martingale transformation in quantile regression inference.
The above Monte Carlo experiments use the true density and score. It is obviously

important to evaluate the e�ect of nonparametric nuisance parameter estimation on
the performance of the proposed tests. In our next Monte Carlo experiments, we
estimated F�1(s) using the empirical quantile function approach given by formula
(4.3). For the density function, we use procedure (4.4) as an estimator of f(F�1(s)):
The quantile score process, and thereby the function g, is estimated by the adaptive
kernel estimator of Portnoy and Koenker (1989).
The kernel estimation procedures for these nuisance functions are nonparamet-

ric and therefore obviously entail choices of bandwidth values. Unsuitable bandwidth
selection can produce poor estimates. However, under broad conditions on the conver-
gence rate of the bandwidth parameters, the nonparametric estimates are consistent
and testing procedures using di�erent bandwidth choices are (�rst order) asymp-
totically equivalent, although the �nite sample performance of these tests can vary
considerably with bandwidth choice. Extensive simulations have been conducted in
the literature to show the importance of bandwidth choice on estimation and testing
procedure that use nonparametric estimates.
It was anticipated that the estimation of f(F�1(s)) would exert important inuence

on the �nite sample performance of our tests. This is con�rmed in the simulations. For
this reason, we pay particular attention to the bandwidth choice in density estimation.
Hall and Sheather (1988) suggested a bandwidth rule based on Edgeworth expansion
for studentized quantiles. This bandwidth is of order n�1=3 and we denote it as hHS.
Another bandwidth selection has been proposed by Bo�nger (1975) is of order n�1=5.
We denote it by hB. We have considered both of these bandwidth choices for our
tests. In addition, notice that the Bo�nger bandwidth is eventually much larger than
the Hall and Sheather bandwidth, we have also considered the following bandwidth
choice which takes values between hHS and hB; it is denoted as h�, h� = �hB, where
hB is the Bo�nger bandwidth and � is a scalar. We report the results for the case
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� = 0:6 here. The score function was estimated by the method of Portnoy and
Koenker (1989) and we simply choose the Silverman (1986) bandwidth.
Tables 3a, 3b, 3c report the Monte Carlo results for the heterskedasticity test with

di�erent bandwidth selections and Tables 4a, 4b, 4c give the result of the location-
scale test. The Monte Carlo evidence indicates that the bandwidth choice does have
an important inuence on the �nite sample performance of these tests. It also shows
that, by choosing appropriate bandwidth, the proposed tests have reasonable size
and power properties. In general, we found over-rejection when the Hall-Sheather
bandwidth was used. For the other two bandwidth, h� and hB, the relative perfor-
mance depend on which test we consider. For the heteroskedasticity test, we found
under-rejection when the Bo�nger bandwidth was used. In this test, at least for the
model and the nonparametric methods used here, the bandwidth choice h� provides
pretty good �nite sample performance. However, for the location-scale test, h� tends
to over-reject and hB seems to be a relatively better bandwidth choice. To focus our
attention on the e�ect of fn(F�1

n (s)), we have also conducted Monte Carlo experi-
ments where only the density function is estimated (and use the true score function),
the Monte Carlo results recon�rmed our �ndings on the three bandwidth choices.

TABLE 1: Size and Power of the Heteroskedasticity Test (Truncated, � = 0:05)
Size Power

n 1 = 0 1 = 0:1 1 = 0:2 1 = 0:3 1 = 0:5 1 = 1 1 = 2 1 = 5
100 0.006 0.134 0.377 0.729 0.974 0.981 0.990 0.999

200 0.054 0.269 0.77 0.977 0.999 1.000 1.000 1.000

300 0.052 0.383 0.931 1.000 1.000 1.000 1.000 1.000

400 0.052 0.549 0.989 1.000 1.000 1.000 1.000 1.000

500 0.052 0.616 1.000 1.000 1.000 1.000 1.000 1.000

TABLE 2: Application to The Two-Sample Models
Case 1: Location Shift Case 2: Location-Scale Shift
�1 = 1; �2 = 0; �1 = �2 = 1 �1 = 1; �2 = 0; �1 = 2; �2 = 1
n1 n2 size n1 n2 size n1 n2 size n1 n2 size
100 100 0.074 100 200 0.060 100 100 0.153 100 200 0.179
150 150 0.080 100 300 0.086 150 150 0.158 100 300 0.196
200 200 0.064 150 300 0.055 200 200 0.169 150 300 0.175
250 250 0.054 200 300 0.056 250 250 0.172 200 300 0.183

TABLE 3a
(The Heteroskadasticity Test. Bandwidth in Density Estimation: hHS ;

Kernel Estimation of Score with Silverman Bandwidth)
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Size Power

n 1 = 0 1 = 0:2 1 = 0:5 1 = 1
100 0.45 0.723 0.99 1.000
200 0.21 0.877 1.000 1.000
300 0.195 0.952 1.000 1.000
400 0.186 0.995 1.000 1.000
500 0.173 1.000 1.000 1.000

TABLE 3b
(The Heteroskadasticity Test. Bandwidth in Density Estimation: hB ;

Kernel Estimation of Score with Silverman Bandwidth)

Size Power

n 1 = 0 1 = 0:2 1 = 0:5 1 = 1
100 0.009 0.053 0.197 0.545
200 0.013 0.109 0.772 0.949
300 0.019 0.229 0.985 0.992
400 0.023 0.412 0.997 0.998
500 0.029 0.565 1.000 1.000

TABLE 3c
(The Heteroskadasticity Test. Bandwidth in Density Estimation: h�;

Kernel Estimation of Score with Silverman Bandwidth)
Size Power

n 1 = 0 1 = 0:2 1 = 0:5 1 = 1
100 0.035 0.211 0.755 0.820
200 0.041 0.406 0.990 0.989
300 0.043 0.665 1.000 1.000
400 0.043 0.809 1.000 1.000
500 0.045 0.911 1.000 1.000

TABLE 4a
(Location-Scale Test. Bandwidth in Density Estimation: hHS ;

Kernel Estimation of Score with Silverman Bandwidth)
n1 n2 size n1 n2 size
100 100 0.589 50 50 0.616
150 150 0.538 75 75 0.603
200 200 0.511 250 250 0.507
500 500 0.406 300 300 0.456

TABLE 4b
(Location-Scale Test. Bandwidth in Density Estimation: hB ;

Kernel Estimation of Score with Silverman Bandwidth)
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n1 n2 size n1 n2 size
100 100 0.037 50 50 0.028
150 150 0.079 75 75 0.033
200 200 0.079 250 250 0.065
500 500 0.105 300 300 0.078

TABLE 4c
(Location-Scale Test. Bandwidth in Density Estimation: h�;

Kernel Estimation of Score with Silverman Bandwidth)
n1 n2 size n1 n2 size
100 100 0.097 50 50 0.063
150 150 0.112 75 75 0.086
200 200 0.123 250 250 0.126
500 500 0.145 300 300 0.135

6. A Reappraisal of the Pennsylvania Reemployment Bonus

Experiments

A common concern about unemployment insurance (UI) systems has been the
suggestion that the insurance bene�t acts as a disincentive for job-seekers and thus
prolongs the duration of unemployment spells. During the 1980's several controlled
experiments were conducted in the U.S. to test the incentive e�ects alternative com-
pensation schemes for UI. In these experiments, UI claimants were o�ered a cash
bonus if they found a job within some speci�ed period of time and if the job was
retained for a speci�ed duration. The question addressed by the experiments was:
would the promise of such a monetary lump-sum bene�t provide a signi�cant induce-
ment for more intensive job-seeking and thus reduce the duration of unemployment?
In the �rst experiments conducted in Illinois a random sample of new UI claimants

were told that they would receive a bonus of $500 if they found full-time employment
within 11 weeks after �ling their initial claim, and if they retained their new job for
at least 4 months. These \treatment claimants" were then compared with a control
group of claimants who followed the usual rules of the Illinois UI system. The Illinois
experiment provided very encouraging initial indication of the incentive e�ects of
such policies. They showed that bonus o�ers resulted in a signi�cant reduction in the
duration of unemployment spells and consequent reduction of the regular amounts
paid by the state to UI bene�ciaries. This �nding led to further \bonus experiments"
in the states of New Jersey, Pennsylvania and Washington with a variety of new
treatment options. An excellent review of the experiments, some general conclusions
about their e�cacy and a critique of their policy relevance can be found in ?. In this
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section we will focus more narrowly on a reanalysis of data from the Pennsylvania
Reemployment Bonus Demonstration described in detail in ?.
The Pennsylvania experiments were conducted by the U.S. Department of Labor

between July 1988 and October 1989. During the enrollment period, claimants who
became unemployed and registered for unemployment bene�ts in one of the selected
local o�ces throughout the state were randomly assigned either to a control group
or one of six experimental treatment groups. In the control group the existing rules
of the unemployment insurance system applied. Individuals in the treatment groups
were o�ered a cash bonus if they became reemployed in a full-time job, working more
than 32 hours per week, within a speci�ed quali�cation period. Two bonus levels and
two quali�cation periods were tested, but we will restrict attention to the high bonus,
long quali�cation period treatment which o�ered a cash of bonus of six times the
weekly bene�t for claimants establishing reemployment within 12 weeks. A detailed
description of the characteristics of claimants under study is presented in ? which
has information on age, race, gender, number of dependents, location in the state,
existence of recall expectations, and type of occupation.
Categorical variables related to these characteristics are used in our modeling. More

speci�cally these are:

Treatment: indicator variable taking the value 1 if the claimant is in the treatment
group and zero otherwise.

young: 1 if the claimant's age is less than 35 and 0 otherwise.

old: 1 if the claimant's age is more than 54 and 0 otherwise.

black: 1 if the claimant is black and 0 otherwise.

hispanic: 1 if the claimant is hispanic and 0 otherwise.

female: 1 if the claimant is female and 0 otherwise.

recall: 1 if the claimant answered \yes" when asked if he/she had any expectation
to be recalled to his/her prior job.

dependents: indicates the number of dependents of the claimant. Coded 0, 1, or
2 if the number of dependents is 2 or greater.

lusd: 1 if the claimant �led in Coatesville, Reading, or Lancaster and 0 otherwise.
These three sites were considered to be characterized by low unemployment rate and
therefore shorter durations of unemployment.

durable: 1 if the occupation of the claimant was in the sector of durable manu-
facturing and 0 otherwise.

Q1-Q5: �ve indicator variables indicating the quarter of enrollment of each claimant.

Our measure of duration is called inuidur in the �nal reports of the experiment.
Since a large portion of spells end in either the �rst or the twenty seventh week,
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it should be stressed that the de�nition of the �rst spell of UI in the Pennsylvania
study includes a waiting week and that the maximum number of uninterruptedly
received full weekly bene�ts is 26. This implies that many subjects did not receive
any weekly bene�t and that many other claimants received continuously their full,
entitled unemployment bene�t. Again, ? contains further details.

6.1. The Model. Our basic model for analyzing the Pennsylvania experiment pre-
sumes that the logarithm of the duration (in weeks) of subjects' spells of UI bene�ts
have linear conditional quantile functions of the form

Qlog(T )(� jx) = x0�(� ):

The choice of the log transformation is dictated primary by the desire to achieve
linearity of the parametric speci�cation and by its ease of interpretation. Multiplica-
tive covariate e�ects are widely employed throughout survival analysis, and they are
certainly more plausible in the present application than the assumption of additive ef-
fects. It is perhaps worth reiterating that the role of the transformation is completely
transparent in the quantile regression setting, where

Qh(T )(� jx) = x0�(� )

implies

QT(� jx) = h�1(x0�(� )):

In contrast, the role of transformations in models of the conditional mean function
are rather complicated since the transformation a�ects not only location, but scale
and shape of the conditional distribution of the response. Our (provisional) model
includes the following e�ects:

� Indicators for the treatment group.
� Indicators for female, black and hispanic respondents.
� Number of dependents, with 2 indicating two or more dependents.
� Indicators for the 5 quarters of entry to the experiment.
� Indicator for whether the claimant \expected to be recalled".
� Indicators for whether the respondent was \young" { less than 35, or \old" {
greater than 54.

� Indicator for whether claimant was employed in the durable goods industry.
� Indicator for whether the claimant was registered in a low employment district:
Coatesville, Reading, or Lancaster.

In Figure 6.1 we present a concise visual representation of the results from the
estimation of this model. Each of the panels of the Figure illustrate one coordinate
of the vector-valued function, �̂(� ), viewed as a function of � 2 [�; 1 � �]. Here
we choose � to be .20 e�ectively neglecting the proportion of the sample that are
immediately reemployed in week one and those whose unemployment spell exceeds
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that insured limit of 26 weeks. The lightly shaded region in each panel of the �gure
represents a 90 percent con�dence band.
Before turning to interpretation of speci�c coe�cients, we will try to o�er some

brief general remarks on how to interpret these �gures. The simplest case is the pure
location shift model in which we would have the classical accelerated failure time
(AFT) model,

log Ti = x0i� + ui

with fuig's iid from some F . For F of the form F (u) = 1 � exp(� exp(u)), this is
the well known Cox proportional hazard model with Weibull baseline hazard. In this
case we would expect to see coe�cients �̂j(� ) that oscillate around a constant value
indicating that the shift due to a change in the covariate is constant over the entire
estimated range of the distribution.
Another conventional model with linear quantile functions is the linear location-

scale model,

log Ti = x0i� + (x0i)ui

where again, ui is taken to be iid. Now the covariates are allowed to inuence the
scale as well as the location of the conditional distribution of durations. In this case
the \slope" coe�cients �̂j(� ) should look just like the \intercept" coe�cient up to a
location and scale shift. The intercept coe�cient estimates a normalized version of
the quantile function of the ui's and all the other coe�cients are simply location and
scale shifts of this function.
No treatment e�ect is observed in either tail implying that the treatment had no

e�ect in changing the probability of immediate reemployment (in week one), or in
e�ecting the probability of durations beyond the 26 week maximum. The high bonus
and long quali�cation period treatment, yielded roughly a 15% reduction in median
duration. This e�ect is considerably stronger statistical signi�cance than that seen
in the other treatments.
The randomization of the experiment was quite e�ective in rendering the poten-

tially confounding e�ects of other covariates orthogonal to the treatment indicators.
Nevertheless, it is of some interest to explore the e�ect of other covariates in an e�ort
to better understand determinants of the duration of unemployment.
Women are 5 to 15% slower than men to exit unemployment. Blacks and Hispanics

appear much quicker than whites to become reemployed. This e�ect is particularly
striking in the case of blacks for whom median duration is roughly half (� e�:75) that
of whites, and only 30% as long as controls at � = :33: The number of dependents
appears to exert a rather weak positive e�ect on unemployment durations. The
quarter-of-entry variables are inherently not very interesting, but it appears that late
entry into the experiment improved one's chances for early reemployment. The recall
indicator is considerably more interesting; anticipated recall to one's prior job has a
very strong and very precisely estimated detrimental e�ect over the entire lower tail
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Figure 6.1. Quantile Regression Process for Log Duration Model
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of the distribution. However, beyond quantile � = :6; which corresponds to about 20
weeks duration for white, male controls, the anticipated recall appears to be foresaken
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and beyond this point recall becomes a signi�cant force for early reemployment in
the upper tail of the distribution.
Not surprisingly the young (those under 34) tend to �nd reemployment earlier

than their middle aged counterparts, while the old (those over 54) do signi�cantly
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worse. In both cases the e�ects are highly signi�cant throughout the entire range
of quantiles we have estimated. Prior employment in durable manufacturing has a
weakly disadvantageous e�ect on reemployment, but residing in a low unemployment
district is, not surprisingly, helpful in facilitating more rapid reemployment.
The treatment e�ect of the bonus o�er clearly does not conform to the location

shift paradigm of the conventional models. After the log transformation of durations,
a location shift would imply that the treatment exerts a constant percentage change in
all durations. In the present instance this implication is particularly unpalatable since
the entire point of the experiment was to alter the shape of the conditional duration
distribution. In the treatment panel of Figure 6.1 we have seen that the bonus
e�ect gradually reduces durationsfrom a null e�ect in the lower tail to a maximum
reduction of 15% at the median, and then gradually again returns to a null e�ect
in the upper tail. This �nding accords perfectly with the timing imposed by the
quali�cation period of the experiment. It might be thought that the bonus should
not e�ect durations at all beyond the quali�cation period, but further consideration
suggests that accelerated search in an e�ort to meet the quali�cation period deadline
could easily yield \successes" that extended beyond the quali�cation period due to
decision delay by potential employers, or other factors.
Taken together, the results presented in Figure 6.1 do not seem to lend much

support to either the location shift, or to the location-scale shift, hypotheses of the
conventional regression model. In the former case we would expect to see plots that
appeared essentially constant in � while in the latter, we expect to see plots that
mimic the shape of the intercept plot. Neither of these expectations are full�lled.
However, as we have emphasized earlier, it is crucial to to be able evaluate these
impressions by more formal statistical methods.

6.2. Inference on the Quantile Regression Process. To illustrate our proposed
inference strategy we have decomposed the test of the location scale shift hypothesis
based on the full model represented in Figure 6.1, into several intermediate steps.
In each of these steps we present results for only a subset of eight selected covariate
e�ects in an e�ort to conserve space, but all 15 covariate e�ects are handled in an
identical fashion. In Figure 6.2 we present, for each of our selected covariates, the
prediction of the process �̂i(� ) based on the regression onto the estimated \intercept

process", �̂1(� ) as indicated by (4.1). Each of the �tted curves is based on least
squares estimation using the 301 estimated points of the quantile regression process
for each coordinate. The solid lines in these panels are the same as those appearing
in the previous �gure; the dotted lines represents the �tted curve. With the possible
exception of the recall e�ect, none of these �ts look very compelling, but at this stage
we are already deeply mired in the Durbin problem and so it is di�cult to judge the
signi�cance of departures from the �tted relationships.
Taking the residuals from the panels of Figure 6.2, and standardizing by the

Cholesky decomposition of their (inverse) covariance matrix yields the parametric
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Figure 6.2. Quantile Regression Process for Log Duration Model
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quantile regression process, v̂n(� ), whose coordinates are illustrated in Figure 6.3. It
is perhaps misleading to associate the coordinates of this process so closely with the
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Figure 6.3. Parametric Quantile Regression Process for Log Duration Model
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original labeling of the coordinates of �̂(� ), since the matrix transformation of the
process mixes the coordinates thoroughly. Had we speci�ed hypothetical values for
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Figure 6.4. Transformed Parametric Quantile Regression Process
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the coe�cients rather than estimating them for Figure 6.2, we could of course treat
the resulting process in Figure 6.3 as a vector of independent Brownian bridges under
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Figure 6.5. Parametric Quantile Regression Process
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the null. However, the e�ect of the estimation is to distort the variability of the
process, as we have seen in Section 3. At this point we estimate the function _g and
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Figure 6.6. Transformed Parametric Quantile Regression Process
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perform the martingale transformation on each slope coordinate. The transformed
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Table 6.1. Kni Statistics for the Log Duration Model

Treatment 1.40 Q1-E�ect 3.65 Recall E�ect 1.99
Female 3.02 Q2-E�ect 0.54 Young E�ect 1.43
Black 5.97 Q3-E�ect 0.16 Old E�ect 4.16
Hispanic 3.93 Q4-E�ect 0.25 Durable E�ect 1.72
N-Dependents 0.01 Q5-E�ect 0.20 Lusd E�ect �2.23

coordinates of the process ~vn(� ), are illustrated in Figure 6.4. Under the null hypoth-
esis the coordinates of ~vn(� ), Figure 6.4 are, asymptotically, independent Brownian
motions. We consider the test statistic,

Kn = sup
�2T

jj~vn(� )jj1
which takes the value 114.78. The critical value for this test is 16.55, so the location-
scale-shift hypothesis is decisively rejected.
It is of some independent interest to investigate which of the coordinates contribute

most to the joint signi�cance of our Kn statistic. This inquiry is fraught with all the
usual objections, but we plunge ahead. In place of the joint hypothesis we can consider
univariate sub-hypotheses of the form,

�i(� ) = �i + �i�1(� )

for each \slope" coe�cient. In e�ect this approach replaces the matrix standardiza-
tion used for the joint test by a scalar standardization. The martingale transformation
is then applied just as in the previous case. Now, because there is no matrix stan-
dardization the original labeling of the coordinates is more meaningful. In Figure
6.5 we replot the standardized residuals for our eight selected covariate e�ects using
this coordinatewise approach. And in Figure 6.6 we plot these processes after the
martingale transformation. In Table 6.1 we present the the test statistics,

Kni = sup
�2T

j~vni(� )j

for each of the covariates. E�ects for the quarter of entry are not reported. The critical
values for these coordinatewise tests are given in Appendix B, and we see that with
the exception of the dependent e�ect, all the e�ects are quite highly signi�cant.
What should we conclude from this exercise? The linear location shift and locatio-

scale shift models are very elegant and convenient abstractions for many statistical
purposes. However, they also clearly place very strigent restrictions on the way that
covariates are permitted to inuence the conditional distribution of the response vari-
able. In the case of our unemployment duration application the location-scale shift
hypothesis may be viewed as a generalized form of the familiar accelerated failure
time model in which the scale of the response distribution responds linearly to the
covariates. This speci�cation is decisively rejected by the data from the Pennsylvania
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experiments. Not only the treatment e�ect of the bonus payment, but many other
of the covariates appear to a�ect the conditional distribution of unemployment dura-
tion in ways that are not adequately represented by pure location and/or scale shifts.
One consequence of the proposed methods of inference, it may be hoped, would be a
greater willingness to explore more exible models for covariate e�ects.

Appendix A.

Proof of Theorem 1 Notice that

Rb�(� ) � r � 	(� ) = R
hb�(� )� �(� )

i
+ R�(� )� r � 	(� ):

Under Assumption A.3, R�(� )� r � 	(� ) = �(� )=
p
n; thus

Rb�(� )� r �	(� ) = R
hb�(� )� �(� )

i
+ �(� )=

p
n:

Under Assumptions A.1 and A.2, by Theorem 1 of Gutenbrunner and Jureckova (1992), we have,
uniformly for � 2 T ;

p
n
hb�(� )� �(� )

i
) 1

'(� )
H�1
0 J

1=2
0 v0(� )

where v0(� ) is a standardized p-dimensional Brownian bridge process, '(� ) = f(F�1(� )). Thus

vn(� ) =
p
n'(� )[R
R>]�1=2[Rb�(� ) � r � 	(� )]

= '(� )[R
R>]�1=2R
p
n
hb�(� ) � �(� )

i
+ '(� )[R
R>]�1=2�(� )

) v0(� ) + �(� ):

Proof of Corollary 1

vn(� ) =
p
n'n(� )[R
nR

>]�1=2[Rb�(� ) � r � 	(� )]

=
p
n'(� )[R
R>]�1=2[Rb�(� )� r � 	(� )]

+ ['n(� )� '(� )] [R
nR
>]�1=2

p
n[Rb�(� ) � r � 	(� )]

+'(� )
h
[R
nR

>]�1=2 � [R
R>]�1=2
ip

n[Rb�(� )� r �	(� )]

Notice that

[R
nR
>]�1=2� [R
R>]�1=2 = [R
nR

>]�1=2
n
[R
R>]1=2 � [R
nR

>]1=2
o
[R
R>]�1=2;

and [R
nR
>]1=2 = R bH�1

0 J
1=2
0 ;

[R
R>]1=2 � [R
nR
>]1=2 = R[H�1

0 � bH�1
0 ]J1=2 = R bH�1

0 [ bH0 �H0]H
�1
0 J1=2:

Under Assumption A.4,

['n(� )� '(� )] [R
nR
>]�1=2

p
n[Rb�(� )� r �	(� )] = op(1);

'(� )
h
[R
nR

>]�1=2 � [R
R>]�1=2
ip

n[Rb�(� )� r �	(� )] = op(1);
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thus

vn(� ) =
p
n'n(� )[R
nR

>]�1=2[Rb�(� )� r � 	(� )]

=
p
n'(� )[R
R>]�1=2[Rb�(� )� r �	(� )] + op(1)

) v0(� ) + �(� ):

Proof of Theorem 2

bvn(� ) =
p
n'(� )[Rn
R

>
n ]
�1=2[Rn

b�(� )� rn � 	(� )]

= '(� )[Rn
R
>
n ]
�1=2

p
n[Rb�(� ) � r � 	(� )]

+'(� )[Rn
R
>
n ]
�1=2

p
n[rn � r] + '(� )[Rn
R

>
n ]
�1=2

p
n[Rn � R]b�(� )

= '(� )[R
R>]�1=2
p
n[Rb�(� ) � r � 	(� )]

+'(� )[R
R>]�1=2
p
n[rn � r] + '(� )�(� )[R
R>]�1=2

p
n[Rn� R]

+op(1)

Notice that �(� ) = �+ F�1(� );

bvn(� ) = '(� )[R
R>]�1=2
p
n[Rb�(� )� r � 	(� )]

+'(� )
n
[R
R>]�1=2

p
n[rn � r] + �[R
R>]�1=2

p
n[Rn �R]

o
+'(� )F�1(� )[R
R>]�1=2

p
n[Rn � R]

+op(1)

= vn(� ) + �(� )>Zn + op(1)

where

�(� ) = ('(� ); '(� )F�1(� ))>

and

Zn =

�
[R
R>]�1=2

p
n[rn � r] + �[R
R>]�1=2

p
n[Rn� R]

[R
R>]�1=2
p
n[Rn� R]

�
= Op(1):

By result of Theorem 1,

bvn(� ) � �(� )>Zn ) v0(� ) + �(� ):

Proof of Corollary 2

Similar to that of Corollary 1.
Proof of Theorem 3

By the result of Theorem 2,

bvn(� ) = v0(� ) + �(� )>Zn + �(� ) + op(1):

Denote the transformation based on _g as

Qg(h(� )) = h(� )�
Z �

0

�
_g(s)>C(s)�1

Z 1

s

_g(r)dh(r)

�
ds;

Then, noticing that Qg is a linear operator, we have

evn(� ) = Qgbvn(� ) = Qgv0(� ) +Qg�(� )
>Zn +Qg�(� ) + op(1):
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By construction, Qg(�(� )) = 0, and by Khmaladze (1981), Qgv0(� )) w0(� ); where w0 is a standard
Brownian motion. Thus

evn(� )) w0(� ) + e�(� ):
Under the null hypothesis,

sup
�2T

kevn(� )k ) sup
�2T

kw0(� )k :

Proof of Corollary 3

We denote the transformation based on _gn as

Qgn(bvn(� )) = bvn(� ) � Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

_gn(r)dbvn(� )
�
ds:

Noticing that

bvn(� ) = p
n'n(� )[Rn
nR

>
n ]
�1=2[Rn

b�(� )� rn � 	(� )] = vn(� ) + �n(� )
>Zn + op(1)

where Zn is an Op(1) quantity independent of � , by construction, Qgn(gn) = 0. Thus we have

bvn(� )� Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

_gn(r)dbvn(r)
�
ds

= vn(� )�
Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

_gn(r)dvn(r)

�
ds+ op(1):

Because _gn(r) is a consistent estimator of _g(r) uniformly on r 2 T = ["; 1� "]; we have, for all s 2 T
C(s)�1 =


�Z 1

s

_g(v) _g(v)>dv

��1 �

�Z 1

1�"

_g(v) _g(v)>dv

��1 <1;(A.1)

and

Cn(s)
�1
 =


�Z 1

s

_gn(v) _gn(v)
>dv

��1(A.2)

�

�Z 1

1�"

_gn(v) _gn(v)
>dv

��1
=


�Z 1

1�"

_g(v) _g(v)>dv

��1 + op(1) <1:

By assumption A.7, (A.1), and (A.2), we haveZ �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

[ _gn(r) � _g(r)]dvn(r)

�
ds = op(1);Z �

0

��
_gn(s)

> � _g(s)>
�
C(s)�1

Z 1

s

_g(r)dvn(r)

�
ds = op(1):

Also notice that, under Assumption A.7, for all s 2 T ,

C(s) �Cn(s) =

Z 1

s

�
_g(v) _g(v)> � _gn(v) _gn(v)

>
�
dv = op(1);(A.3)
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thus, by (A.3), (A.1), and (A.2),

Z �

0

�
_gn(s)

>
�
Cn(s)

�1 �C(s)�1
� Z 1

s

_g(r)dvn(r)

�
ds

=

Z �

0

�
_gn(s)

>Cn(s)
�1 [C(s)� Cn(s)]C(s)

�1

Z 1

s

_g(r)dvn(r)

�
ds

= op(1):

Thus Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

_gn(r)dvn(r)

�
ds �

Z �

0

�
_g(s)>C(s)�1

Z 1

s

_g(r)dvn(r)

�
ds

=

Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

[ _gn(r) � _g(r)] dvn(r)

�
ds

+

Z �

0

�
_gn(s)

>
�
Cn(s)

�1 � C(s)�1
� Z 1

s

_g(r)dvn(r)

�
ds

+

Z �

0

��
_gn(s)

> � _g(s)>
�
C(s)�1

Z 1

s

_g(r)dvn(r)

�
ds

= op(1);

vn(� ) �
Z �

0

�
_gn(s)

>Cn(s)
�1

Z 1

s

_gn(r)dvn(r)

�
ds

= vn(� ) �
Z �

0

�
g(s)>C(s)�1

Z 1

s

g(r)dvn(r)

�
ds+ op(1);

and the result of Corollary 3 follows immediately.

Appendix B. Asymptotic Critical Values

Like many other Kolmogorov-Smirnov type tests (see, e.g. ?, the limitingdistribution sup�2T kw0(� )k
is dependent on the norm jj � jj, the pre-speci�ed T and the dimension parameter q. Notice that
the transformation is generally unstable in the extreme right tails, and the uniform convergency of
existing estimators of the density and score (f(F�1(s)) and f 0=f(F�1(s))) usually requires that T
be bounded away from zero and one, we consider a subset of [0; 1] whose closure lies in (0; 1):

We calculated the 1%, 5%, and 10% critical values for the test statistic sup�2T kevn(� )k based
on simulations where the Brownian motion was approximated by a Gaussian random walk, using
a sample size n = 2000 and 20; 000 replications. For the norm k�k, we use the `1 norm for a q-
dimensional vector x; kxk = Pq

j=1 jxjj. Table 1 covers T = ["; 1�"] for " = 0:05; 0:1; 0:15, 0:2, 0:25,

0:3; and q = 1; 2; ::::::; 20. Although conventionally we consider symmetric intervals T = ["; 1� "]
for some small numbers ", a much wider range of intervals T may be considered for the proposed
tests. Critical values based other choices of the interval T and the dimension parameter q can be
similarly calculated. Gauss programs are available from the authors upon request.

Asymptotic Critical Values
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� = 0:05 � = 0:1 � = 0:15
1% 5% 10% 1% 5% 10% 1% 5% 10%

p = 1 2.721 2.140 1.872 2.640 2.102 1.833 2.573 2.048 1.772
p = 2 4.119 3.393 3.011 4.034 3.287 2.946 3.908 3.199 2.866
p = 3 5.350 4.523 4.091 5.267 4.384 3.984 5.074 4.269 3.871
p = 4 6.548 5.560 5.104 6.340 5.430 4.971 6.148 5.284 4.838
p = 5 7.644 6.642 6.089 7.421 6.465 5.931 7.247 6.264 5.758
p = 6 8.736 7.624 7.047 8.559 7.412 6.852 8.355 7.197 6.673
p = 7 9.876 8.578 7.950 9.573 8.368 7.770 9.335 8.125 7.536
p = 8 10.79 9.552 8.890 10.53 9.287 8.662 10.35 9.044 8.412
p = 9 11.81 10.53 9.820 11.55 10.26 9.571 11.22 9.963 9.303
p = 10 12.91 11.46 10.72 12.54 11.17 10.43 12.19 10.85 10.14
p = 11 14.03 12.41 11.59 13.58 12.10 11.29 13.27 11.77 10.98
p = 12 15.00 13.34 12.52 14.65 13.00 12.20 14.26 12.61 11.86
p = 13 15.93 14.32 13.37 15.59 13.90 13.03 15.22 13.48 12.69
p = 14 16.92 15.14 14.28 16.52 14.73 13.89 16.12 14.34 13.48
p = 15 17.93 16.11 15.19 17.53 15.67 14.76 17.01 15.24 14.36
p = 16 18.85 16.98 16.06 18.46 16.56 15.65 17.88 16.06 15.22
p = 17 19.68 17.90 16.97 19.24 17.44 16.53 18.78 16.93 16.02
p = 18 20.63 18.83 17.84 20.21 18.32 17.38 19.70 17.80 16.86
p = 19 21.59 19.72 18.73 21.06 19.24 18.24 20.53 18.68 17.70
p = 20 22.54 20.58 19.62 22.02 20.11 19.11 21.42 19.52 18.52

� = 0:2 � = 0:25 � = 0:3
1% 5% 10% 1% 5% 10% 1% 5% 10%

p = 1 2.483 1.986 1.730 2.420 1.923 1.664 2.320 1.849 1.602
p = 2 3.742 3.100 2.781 3.633 3.000 2.693 3.529 2.904 2.602
p = 3 4.893 4.133 3.749 4.737 4.018 3.632 4.599 3.883 3.529
p = 4 6.023 5.091 4.684 5.818 4.948 4.525 5.599 4.807 4.365
p = 5 6.985 6.070 5.594 6.791 5.853 5.406 6.577 5.654 5.217
p = 6 8.147 6.985 6.464 7.922 6.760 6.241 7.579 6.539 6.024
p = 7 9.094 7.887 7.299 8.856 7.611 7.064 8.542 7.357 6.832
p = 8 10.03 8.775 8.169 9.685 8.510 7.894 9.413 8.211 7.633
p = 9 10.90 9.672 9.018 10.61 9.346 8.737 10.27 9.007 8.400
p = 10 11.89 10.52 9.843 11.48 10.17 9.517 11.15 9.832 9.192
p = 11 12.85 11.35 10.66 12.48 10.99 10.28 12.06 10.62 9.929
p = 12 13.95 12.22 11.48 13.54 11.82 11.11 12.96 11.43 10.74
p = 13 14.86 13.09 12.31 14.34 12.66 11.93 13.82 12.24 11.51
p = 14 15.69 13.92 13.11 15.26 13.46 12.67 14.64 13.03 12.28
p = 15 16.55 14.77 13.91 16.00 14.33 13.47 15.46 13.85 13.05
p = 16 17.41 15.58 14.74 16.81 15.09 14.26 16.25 14.61 13.78
p = 17 18.19 16.43 15.58 17.59 15.95 15.06 17.04 15.39 14.54
p = 18 19.05 17.30 16.37 18.49 16.78 15.83 17.85 16.14 15.30
p = 19 19.96 18.09 17.17 19.40 17.50 16.64 18.78 16.94 16.05
p = 20 20.81 18.95 17.97 20.14 18.30 17.38 19.48 17.74 16.79
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