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ABSTRACT

It is not uncommon to find economists testing hypotheses in models where a

nuisance parameter is not identified under the null hypotheses. This paper studies the

asymptotic distribution theory for such problems. The asymptotic distributions of test

statistics are found to be functionals of chi-square processes. In general, the

distributions depend upon a large number of unknown parameters. A simulation

method is proposed which can calculate the asymptotic distribution. The testing

method is applied to the threshold autoregressive model for GNP growth rates

proposed by Potter (1991). We present formal statistical tests which (marginally)

support Potter's claim that there is a statistically significant threshold effect in a

univariate autoregression for U.S. GNP growth rates.

--- - - -
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1. INTRODUCTION

This paper studies the problem of inference in the presence of nuisance

parameters which are not identified under the null hypothesis. The asymptotic

distributions of Wald, likelihood ratio (LR) and Lagrange multiplier-like (LM-like)

statistics are obtained for parametric econometric estimators under quite general

assumptions, allowing for simultaneous equations, stochastic regressors, heterogeneity,

and weak dependence. The asymptotic distributions are shown to be represented by

the supremum of a chi-square process, a stochastic process which is a quadratic form

in a vector Gaussian process indexed by the nuisance parameter. This generalizes the

results of Davies (1977, 1987). Unfortunately, these distributions appear to depend, in

general, upon the covariance function of the chi square process, which may depend in

complicated ways upon the model and data, precluding tabulation. As a proposed

remedy, we develop a simulation method which approximates the asymptotic null

distribution. This approximation is an improvement over the bounds of Davies (1977,

1987), whose approximation error increases with sample size in many cases of interest.

This paper is organized as follows. Section 2 gives several examples of

non-identified nuisance parameters. Section 3 introduces a distinction between global

estimates (where the structural and nuisance parameters are estimated jointly) and

pointwise estimates (where the structural parameters are estimated for fixed nuisance

parameters). Conditions for consistent pointwise estimation of the structural

parameters, uniformly in the nuisance parameter, are given. Section 4 develops a

theory for testing structural hypotheses when the nuisance parameter is not identified

under the null hypothesis. Likelihood ratio, Wald, Lagrange multiplier (LM), and

maximal pointwise Wald and LM tests statistics are examined. Section 5 develops an

asymptotic distribution theory for the test statistics. This distributions are represented

as functionals of chi-square processes, which are quadratic forms in mean-zero
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Gaussian processes. In the absence of heteroskedasticity and serial correlation, these

test statistics have the same asymptotic distribution. A new finding is that only the

maximal pointwise Wald and LM statistics have asymptotic distributions which are

robust to the presence of heteroskedasticity and serial correlation. The standard LR

and Wald statistics, for example, are not robust. Section 6 develops a simulation

method which can approximate the null asymptotic distribution. Section 7 extends the

results to t-etatistics, Section 8 shows how to apply the theory and techniques to

threshold models, and reports an application to a threshold autoregressive model of

GNP. All proofs are left to the appendix.

Throughout the paper "~" is used to denote weak convergence of probability

measures with respect to the uniform metric, and 11·11 denotes the Euclidean metric.

Sample size is n.



4

2. EXAMPLES

It may not be commonly understood how pervasive is the problem of

unidentified nuisance parameters. I list below a few examples taken from the recent

literature. In most of the following examples, the model has been parameterized so

that the null and alternative hypotheses are

H : e= 0o

and the nuisance parameter I is not identified under Ho'

In this situation, an error commonly made in applied research is the unqualified

reporting of t-statistics to measure the "significance" of the parameter estimate of e.

Since the t-statistic is testing the hypothesis that e= 0, under which I is not

identified, the normal approximation is not valid and inferences made from a

conventional interpretation of the t-statistic may be misguided.

In the following examples, yt ' xt ,and et are real-valued.

1. Additive non-linearity. Gallant, (1987) p. 139.

A simple example of this is

2. Box-Cox Transformation. Box and Cox (1964).

y11-1 x l 2 - 1
= Q + e t + e

t
.

11 12

Originally introduced as a transformation of the dependent variable, the Box-Cox

transformation has been used by some authors, such as Heckman and Polachek (1974),

separately for each independent variable as well. In the above specification, neither

'1 nor '2 is identified when e= o.
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3. Structural Change of Unknown Timing. Quandt (1960).

Here and elsewhere, 1(.) is the indicator function. Under the hypothesis of no

structural change (0 = 0), the time of structural change (1) is undefined. A

distributional theory for this test has been developed recently by Andrews (1990b),

Chu (1989) and Hansen (1990, 1991a).

4. Threshold models in Cross-Section regression.

This model is useful as a simple model of non-linear relationships. Under the null

hypothesis of a linear relationship (0 = 0) , the threshold (1) is undefined. Kim and

Siegmund (1989) present a partial distributional theory for a one-regressor model.

It is also possible to test for multiple thresholds, in which case there would be

several nuisance parameters undefined under the null hypothesis.

5. Threshold models in Time Series Regression. Tong (1983).

where

ct{L)

O(L)

_ Q L + a...L2 + ... + Q LP
1 -~ P

- 0
1
L + 02L2 + ... + 0qLq

and (d.p.q) are known positive integers. This model is known as the self-exciting

threshold autoregressive model, and is a simple way to capture non-linearities in a

stationary process. The null hypothesis of linearity implies 0
1

= ... = Oq = 0 , in

which case the threshold 1 is undefined. The distribution theory of the LR statistic

is studied in Chan (1990) and Chan and Tong (1991).
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6. Two-State Markov Trend Model. Hamilton (1989).

6yt = Q + est + et

St = {O, I}

P{St = Il s
t_1 = I} - 'Yl

P{St = OISt_l = O} - 'Y2'

The test of the two-state model against the standard one-state model takes the null

hypothesis (J = O. Under this model, the transition probabilities 'Y = bl''Y2) are

undefined. Note that the nuisance parameter 'Y is two-dimensional. Hansen (1991b)

develops a method to test the null hypothesis.

7. Common ARMA Roots.

A frequent test of interest in ARMA models is whether there are canceling AR and

MA roots. Under the above parameterization, this hypothesis is (J = O. Note that

the common root, 'Y , is not identified under this hypothesis.

8. Non-Expected Utility. Epstein and Zin (1989), Giovannini and Jorion (1989).

The representative agent has the utility function

U - [c(J + (3(E U1- 'Y)(J/(I-'Y)] 1/ (J
t - t t t+l .

Here, 'Y > 0 is the measure of relative risk aversion, and p = 1 - (J > 0 is the

inverse of the elasticity of intertemporal substitution. When (J = 0 , intertemporal

substitution is unit elastic and 'Y is undefined. Thus conventional hypothesis testing

methods cannot test the unit elastic restriction.
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9. Representative Agent Models.

This example is taken from Eichenbaum, Hansen, and Singleton (1988). The

representative agent's utility function (I use their notation) is

E E8
1pt [(C*1t*1-1)°- 1]

t=O t t

ci - A(L)ct

Ii - B(L)lt

where c
t

is consumption and It is leisure, and A(L) and B(L) are polynomials

in the lag operator. Further, B(L) is specified as

This model has two potential problems. First, to test if leisure enters the utility

function, the relevant null is 1 = 1, in which case the parameters (0,11) are not

identified. (Eichenbaum, et. al., do not not ask this question, however.) Second, to

test if lagged leisure is significant, the relevant hypothesis is 0 = O. As the authors

point out, in this case 11 is not identified. In fact, we can rewrite the equation as

so we see that the problem is exactly that of canceling ARMA roots. Since there is

an unidentified nuisance parameter under the null hypothesis, the authors err in using

conventional asymptotic theory to assess whether or not 0 = 0 .

10. Nonlinear ARCH. Higgins and Bera (1989).

h21 - 1
t

1
= Q +

The hypothesis of no ARCH effect (0 = 0) renders the parameter 1 unidentified.

Bera and Higgins (1990) develop an appropriate test using Davies (1987).
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11. GARCH and GARCH-M. Bollerslev (1986), Engle, Lilien, and Robins (1987).

2
Ytl~-1 :: N(~ + 11ht ,ht) ,

Under the null hypothesis of no ARCH effect ((J = 0) , the risk premium parameter

11 and the GARCH parameter 12 are not identified. Thus conventional

asymptotic distribution theory cannot be invoked to test the hypothesis of no ARCH.

12. Testin& Stability A&ainst AR(I) Alternative. Watson and Engle (1985).

yy - xi Q + Zt13t + et

13t - ~ + 113t- 1 + (Jut

Under the null hypothesis of no random parameter variation ((J = 0) the AR

parameter 1 is unidentified.

13. Consistent Tests of Functional Form. Bierens (1990).

To test if f(x
t,

13) is the correct conditional mean, then one can test the hypothesis

8 = 0 , under which 1 is not identified.

14. Neural Network Tests. White (1989), Stinchcombe and White (1991), and Lee,

White, and Granger (1989).

m

yt = f(xt, 13) + 8 l t/J( 1iXt) + et
i=1

where t/J( .) is the logistic function. To test if f(x
t,

13) is the correct conditional

mean, then one can test the hypothesis (J = 0 , under which 1 is not identified.
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3. CONSISTENCY

The econometric model is assumed to be described by the parameters (0, "}') .

We will call °e 8 c IRk the struetural parameter vector. We will call "}' e r the

nuisance parameter vector, where r is some metric space with metric p(.). There

is some sequence of random criterion functions Qn(O,"}'): °x r ...... IR. One

estimation strategy is to find the global maximum of Qn(0, "}') over °x r .

(0, 1) = Argmax Q (O,"}') .
Oe B "}'er n

It will be useful in the sequel to define estimates of ° obtained from

maximization of Q
n

(0, "}') over e e B , while holding "}' fixed.

Def. The Pointwise Estimate for given "}' e r is O("}') = Argmax Q (O,"}') .
Oe B n

One useful fact relating these estimates is that 0 = 0(1).

Assumption 1.

(i) B and r are compact i

(ii) Q(O,"}') = lim EQn(O,"}') is continuous in (O,"}') uniformly over Bxr
n-+m

(iii) Qn(O,"}') ......p Q(O,"}') for all (O,"}') e s-r i

(iv) Qn(O,"}') - Q(O,"}') is stochastically equicontinuous in (O."}') over Bxr i

(v) For all "}' e r, Q(O,"}') is uniquely maximized over °e 8 at °
0

.

Theorem 1. Under assumption 1,

(i) O( "}') p °
0

'Uniformly in "}' e r i

(ii) O p °0 .
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The assumption that r is compact is critical, while the assumption that 8

is compact is made for convenience. It could be relaxed as in, say, Richardson and ..

Bhattacharyya (1990). Assumption 1 (iii) is a statement of pointwise weak

convergence.

(1)

Suppose Q
n

takes the form

1 n
Qn(8,'Y) = - E q(8,'Y,x

l
· ) .

n. 1
1=

If {xi} is o-mixing and q(8,'Y,x
i)

is uniformly integrable for all (8,'Y) , then the

weak large of large numbers due to Andrews (1988) gives assumption 1 (iii).

The concept of stochastic equicontinuity is used here and in the sequel to obtain

uniform convergence, and therefore warrants some discussion. Stochastic equicontinuity!

is essentially a smoothness condition. If Qn takes form (1), then Andrews (1990a,

Lemma 2) has shown that a sufficient condition for assumptions 1 (ii) and (iv) is the

Lipschitz condition

For all 6> 0, Iq(8','Y',xi) - q(8,'Y,xi) I s B(xi)h(D) for all 118-8'11 < 6

and p('Y,'Y') < 6, where lim h(D) = 0 and sUPn~1 i~EB(xi) < m •

610

The most unusual assumption is 1 (v). It states that at the global maximum,

the limiting criterion function does not depend upon 'Y. This is equivalent to the

statement that the nuisance parameter is not asymptotically identified.

1 {Gn(A)} is stochasticaUy equicontin'Uo1LS on A if for all f > 0 and fJ > 0 there

exists some 6 > 0 such that limnP [sup sup IGn(A I) - G (A) I > f] < fJ ,
AEA p(A,A 1)<6 n

where p( .,.) denotes the distance metric defined on A.
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4. Hypothesis Testing

4.1 Null Hypothesis

The econometrician is interested in testing the following hypothesis concerning

the structural parameters:

Ho : h(O) = 0

where h: 8 ~ IRq is continuously differentiable. Set hI. 0) = fIn( 0)/80' , and

hO = hI. 0
0

) . Assume that rank(h
O)

= q .

We assumed in section 3 that the nuisance parameters are not identified

asymptotically. We now assume that 1 is not identified even in finite samples for

any 0 which satisfies the null hypothesis. This is true of all the examples listed in

section 2.

Assumption 2. For 0 e 8
0

= {O e 8

upon 1.

h(O) = O}, Qn(O,1) does not depend

We can define a criterion function restricted to satisfy H
o'

and an estimate

obtained by maximizing this function.

Def The Restricted Estimate of 0 is

A standard argument gives the consistency of 7J.

Theorem 2. Under assumption 1 and Ho' 7J ~p 0
0

,

4.2 Alternative Hypotheses

The alternative hypothesis of interest is



H
1:

h( (J) f 0 , 'Y e r .

12

Since 'Y is not identified under the null hypothesis in the sequel it will be

convenient to specify as well the set of pointwise alternative hypotheses:

'Y given.

Testing H
o

against H
1

('Y) for any particular 'Y does not lead to any particular

difficulties, for the nuisance parameter is effectively eliminated by fixing it at a

predetermined value. In the structural change application, for example, H
1

('Y) would

be the hypothesis of a single structural change of known timing, while H
1

specifies

the timing as unknown.

4.3 Likelihood Ratio Tests

If Qn( (J,'Y) is the log-likelihood function, then appropriate statistics for the

tests of Ho against H1 and H
o

against H
1

('Y) are given by

LRn = 2n[Qn(O,~) - Qn(O)]

and

respectively. The connection between the statistics may be seen in the following

result.

Theorem 3.

4.4 WaId Tests

Define the random functions
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Sn(tJ,1)
a- 7J7J Qn(0,1)

Mn(0,1)
;;

- - 8080' Qn(0,1)

0n( 0,1) - M
n{

0,1)-IVn(0,1)M
n(

~,1)-I ,

where Vn(0,1) is some estimate of var(Jn Sn(0,1» ,

The pointwise Wald statistics for testing Ho against HI (1) are

Wn(1) = n h[O(1)]'[h o(iJ(1»On(O(-r),1)ho(iJ(1»,]-Ih[O(-r)] ,

The standard Wald statistic for the test of H
o

against HI is given by

Wn = Wn(1) = n h(O)'[hlO)On(O,;Y)hlO),]-lh(O) ,

A reasonable alternative statistic is the largest pointwise Wald statistic:

4.5 Lagrange Multiplier Tests

The Lagrange multiplier (LM) statistic for the test of Ho against HI is not

defined, for 1 is not identified under the null. The sequence of pointwise LM

statistics for the test of Ho against HI (1) , however, are well defined and given by

We can consider two LM-like statistics which generate feasible tests of H
o

against HI' The first uses the estimate of 1 obtained under global maximization:

LMn = LM(1),

while the second takes the largest pointwise LM statistic:

SupLM = sup LMn(1) ,
n -ref
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5. DISTRIBUTIONAL THEORY

The key to unlocking a valid distributional theory for the test statistics of Ho

against HI is the fact that the test statistics can be written as supremum over the

stochastic processes LRn{ 'Y), Wnh), and LMn{ 'Y), for which we can find functional

distributions via empirical process theory. We will be using the following concepts.

De!. G(>.) is a mean zero vector Gaussian prOCe3S in .>t E A , if for all .>t E A ,

E[G{.>t)] = 0 , and all the finite dimensional distributions of G{.) are

multivariate normal. The covariance function of G{.>t) is given by

Def. Z{.>t) is a chi-square prOCe3S in >. E A of order q, if Z{.) can be

represented as Z(>') = G{>,)'K{.>t,.>t)-IG{.>t), where G{.>t) is a mean zero

q-vector Gaussian process with covariance function K{ . ,.) .

Mean-eero Gaussian processes and chi-square processes are completely described

by their covariance functions.

Let 8c be some neighborhood of °
0

, and f - 8c x r .

Assumption 3.

(i) M{O,'Y) = lim EMn{O,'Y) and V{O,'Y) = lim n E Sn{O,'Y)Sn{O,'Y)' are
n~m n~m

continuous in (O, 'Y) uniformly over f j

(iii) Mn{O,'Y) - M{O,'Y) and Vn{O,'Y) - V{O,'Y) are stochastically

equicontinuous in (O, 'Y) over f j
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(iv) M(')') - M(Oo'')') and V(')') = V(Oo'')') are positive definite uniformly

over ')' E r ;

(v) ./n Sn(°
0

,')' ) ==> S(')') on ')' E r , where S(.) is a mean zero

Gaussian process with the covariance function

Let S( ')') be a mean zero Gaussian process with the covariance function

and let C(')') be a chi-square process with covariance function X( . ,. )

Theorem 4. Under assumptions 1, 2, and 9,

(a) ./n(U( ')') - °0) ==> M(')')-1S(')') on ')' E r

(b) W
n(')') ==> C(')') on ')' E r

(c) LM
n(')') ==> C(')') on ')' E r

(d) LR
n(')') ==> C*(')') - S( ')')' [heM(')')-1he]-1S(')') on ')' E r

Assumption 3 is standard for central limit theory, except that all the results are

assumed uniformly over ')' E r. The pointwise laws of large numbers and stochastic

equicontinuity assumptions may be verified as discussed after assumption 2.

One important condition is 3 (iv). If M(')') or V(')') is singular for some

values of "t , then the theory developed here will break down. This possibility will

depend upon the particular application. In this event, we will need to redefine r to

exclude singular values from consideration. One example where this arises is in

structural change problems. If the timing of structural change is considered to be
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some fraction of the sample size, then this fraction has to be bounded away from zero

and one. See Andrews (1990b) on this point.

Assumption 3 (v) may appear unconventional. It is simply the function space

generalization of the statement that for each 'Y E r, In Sn(0
0

, 'Y) converges in

distribution to a normal random vector. Sufficient conditions are given, for example,

in Andrews (1990c). If Qn takes form (1), {a/ ao q( 00,'Y, Xi)} needs to be

uniformly Lr-integrable for some r > 2 , be near epoch dependent of size -Ion

some series which is strong mixing of size -2r/(r-2), and satisfy some form of

smoothness condition with respect to 'Y.

The absence of serial correlation and heteroskedasticity frequently implies

V('Y) = M('Y)-1, in which case the processes C*('Y) and C( 'Y) are identical, and

the LR, Wald, and LM processes have the same asymptotic probability measures.

This is analogous to conventional theory. In this case all the test statistics are

asymptotically similar, as shown in the following theorem.

Theorem 5. Under assumptions 1, 2, and 9, and if V('Y) - M('Y)-1, then

(a) :y -d Argmax C('Y) j

'YEr

(b) SupC - Sup C( 'Y)
'YEr

Note that the parameter estimate 'Y fails to converge in probability. Instead,

it converges in distribution to a random variable, as is common among unidentified

parameter estimates.

In general, however, the equivalence between the LR, Wald and LM tests does

not hold. The following theorem gives the asymptotic distribution theory allowing for

heteroskedasticity and serial correlation.
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Theorem 6. Under assumptions 1, f, and 9,

(a)
.

Argmax C*(-y) ;-y -d
-yE r

(b) LRn -d Sup C*( -y) ;
"YE r

(c) Wn ' LMn -d C(Argmax C*(-y))
-yEr

(d) SupWn ' SupLMn -d SupC

It is not surprising to find that the likelihood ratio statistic is not robust to

heteroskedasticity or serial correlation, since this occurs in standard models. What is

surprising, however, is that the Wald statistic is not robust as well, even though a

robust covariance matrix estimate is used. The problem is due to the unidentified

nuisance parameter, which is not consistent under the null hypothesis. The only test

statistics with distributions robust to heteroskedasticity and serial correlation are the

maximal Wald and Lagrange multiplier statistics. It is interesting to note that these

are the statistics studied in most of the earlier theoretical literature, such as Davies

(1977, 1987), Chan (1990), Andrews (1990b), and Hansen (1990, 1991a). In contrast,

the most commonly reported test statistics in applications are LR statistics and

t-stanstlcs (which are signed square roots of Wald statistics), which do not share this

robustness property, as shown in the next section.
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6. T-TESTS

The theory developed in sections 4 and 5 apply to two-sided hypothesis tests.

Often, the hypothesis test only concerns one element of 0 and the alternative

hypothesis is one-sided, i.e.

Ho : e'O - 0

HI: e' 0 > 0

where e = (1 0 0 ... 0)'. In this case, it is desirable to develop one-sided

versions of the test statistics and asymptotic distributions.

We can define the sequence of pointwise t-statistics

tn( "Y) =
e' On(O( "Y), "Y)e

The standard t-statistic is the pointwise t-statistic evaluated at the global estimate ;.

We can also define the maximal pointwise t-statistic:

SupTn = sup tn( "Y)
"YEr

We can also define a one-sided version of the LM test. The sequence of

pointwise one-sided LM statistics are

e'Mn(O, "Y)-1 Sn(O,"Y)

e' 0n(O,"Y)e

giving the test statistics

and



SupT* = sup t*( 'Y) .
n 'YEf n

Similar arguments as those of the previous section unable us to obtain the

following result. The proofs are quite similar and omitted.

Theorem 7. Under assumptions 1, 2, and 3,

19

(b) -+d t(Argmax C*( 'Y))
'YEf

(c) SupTn ,SupT~ -+d sup t( 'Y)
'rEf

where t( 'Y) is a Gaussian process with covariance junction
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7. OBTAINING THE DISTRIBUTION SupC

7.1 Previous Literature

The process C(1) is completely described by its covariance function K( . ,.) ,

80 the asymptotic distribution of the test statistics, SupC, is fully described by the

pair (K,f). Unfortunately, the function K is context-dependent, precluding

tabulation.

In some cases, the distribution simplifies. In the structural change applications

with weakly dependent data, Andrews (1990b), Chu (1989) and Hansen (1990) found

that the covariance function is that of a vector Brownian bridge. If the regressors are

trended, Hansen (1991a) found that the covariance function is different, but dependent

upon only a small number of parameters. In the one-d.imensional threshold model, a

Brownian bridge result was obtained by Chan (1990) and Kim and Siegmund (1989)

under different assumptions. If there is more than one regressor, however, Chan and

Tong (1991) find that the covariance function is more complicated.

It is possible to construct simple examples, however, which show that the

covariance function need not be particularly simple. Take, for example, the model

where x
t

is stationary, independent of [e.]. The test statistics have the

asymptotic distribution sup C(1) ,where C(1) is a chi-square process with
-yEr

covariance function

K(11'12) = E [exp[(11+ 12)xtJ] = 1/.(11+12)'

The function 1/.( .) is the moment generating function of x
t.

In this simple

example, the covariance function depends upon the entire distribution of the regressor!

Davies (1977, 1987) attempts to circumvent this problem by finding a bound for



21

the asymptotic distribution of the test statistic. His bound, however, depends upon

the assumption that C(1) has a continuous derivative except possibly for a finite

number of jumps. This is critical to his approach since his bound utilizes the total

variation of the process C(1). Unfortunately, in some of the examples in section 2,

the chi-square process C(1) may be nowhere differentiable, and thus have infinite

total variation. Although the number of jumps may be finite for any given sample

size, this number will tend to infinity as the sample size increases, so this

approximation may become arbitrarily poor in large samples.

7.2 Distribution Theory Under Uncorrelated Errors

We now place more structure on the problem. Assume that Q
n

takes the

form

(2)

Set q.(O,1) = q.(O,
1 1

1 n
Qn(O,1) = n. E qi(O, 1 i Xi) .

1=1

1 i Xi)' and si(O,1) = -/0 qi(O,1). si(-Y) = si(0(1),1)

Assumption 5.

This rules out serial correlation, but not heteroskedasticity. In this context we can

use the following estimator of V(-y):

To simplify the notation, set

si(-Y) = si(O( 1),1) ,

Mn(-y) - Mn(O(1),1),

l'ln(1) - l'ln(O(-Y),1) = Mn(-y)-1
V.«1),1)Mn(1)-1
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and

Define ~ = u(x
1

' ... , x
n).

Now imagine the following experiment. Draw

n tid standard normal random variables {u
i}

and construct the q x 1 process

Conditional on [F, /i1 Sn('Y) is a mean-zero Gaussian process with covariance

function

Now construct the process

Cn('Y) = n Sn('Y)'[htt'Y)On('Y)htt'Y),]-lSn('Y)

Conditional on [F I C
n(

'Y) is a chi-square process with covariance function K( .,. ).

Thus as n .... III

Cn('Y) ~ C('Y),

SUPCn = Sup Cn( 'Y) ~ SupC .
-yer

Now repeat the experiment with another n independent draws {u
i}.

Conditional on [F, the SupC
n

are mutually independent, and as n .... III , their

empirical distribution approaches SupC. Since this distribution is independent of :Y,

the dependence upon the data is eliminated in large samples. Thus the upper tail of

the empirical distribution of the SupCn will provide an asymptotically valid method

to determine critical values.

This method easily generates p-values. Suppose the test statistic calculated

from the data is Tn' which has the asymptotic null distribution SupC. Generate

{u
i}

and construct the statistics SupCn and
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If n is large, the variables p will be approximately iid Bernouli draws whose

expectation is the p-value of the test statistic Tn. With a relatively small number

of replications, p-value estimation is quite precise. For example, using 500 replications

and the null of a p-value of 5%, the standard error is approximately 1%.

This simulation method does not require numerical optimization of the

non-linear model. The parameter values and first order conditions are held fixed at

the global estimates. It is not a trivial calculation, however, since the maximal value

of the function Cnb) may have to be found by a grid search.

7.3 Distributional Theory Under Homoskedasticity

In some cases it is possible to simplify a few of the calculations and improve

the approximation of the simulation method in small samples. Consider the example

of additive non-linearity discussed in section 2, additionally assuming homoskedastic

errors:

Yi = 01h(xi''r) + g(xi' O2) + f i

E(f·lx.) - 0
1 1

2 2
E(f·lx.) - a

1 1

H : e' 0 = 0 , e = (1 0 ... 0)'
o

If the model is estimated by non-linear least squares we have

n
Sn(O,'Y) = - ~ E h(x.,'Y)E. , E. = y. - g(x.,a) - Oh(x.,'Y)

n. 1 1 1 1 1 1 1
1=

The process JiiS
n(

O,'Y) converges weakly to a process S('Y) with covariance function
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Therefore, a good approximation to the limit process C( 'Y) can be found in this

context by the following simplified version of the simulation method outlined in section

6.2. Draw tid standard normal random variables {ui} and construct

1 1 n
e'Mn('Y)- s .E h(xi''Y)ui '

1=1

which, conditional upon :Y, is a Gaussian process with covariance function

Therefore the process

where '(,2 = n-1~f~, has the asymptotic distribution of C( 'Y) Replication of

SUP'YC~( 'Y) should provide asymptotically valid draws from the null distribution.

The construction of section 7.2 is similar in many respects to the

heteroskedasticity-consistent covariance matrix estimate of White (1980). It is

frequently found in simulations that this estimator requires large samples for the

asymptotic theory to provide a good approximation to the finite sample distributions.

One would expect similar behavior for the statistics reported here. It seems

reasonable, therefore, to use methods such as that outlined in this section, when

homoskedasticity is not too wild an assumption.
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7.4 Distributional Theory Under Autocorrelation

If Qn(0,1) is a correctly specified likelihood, the scores {si(00,1)} should be

a martingale difference sequence and hence uncorrelated. In some applications (such as

GMM), this may not be part of the maintained hypothesis. It is known in this event

that conventional standard error estimates are invalid and some correction needs to be

made. A similar problem arises in the current context.

We again assume that the criterion function takes the form (2), but allow for

serial correlation in the scores sr In this context we have

n n

K(11'12) = l k l E[Si(00,11)si+k(°0 ,12) ' ]
k=-n i=1

A natural sample estimate of this function is

m n

Kn(11'12) = l w(k/m) k l E[Si(00,11)Si+k(00,12)']'

k=-m i=1

where w(k/m) is a weight function, such as the Bartlett kernel w(x) = I-Ix!' and

m is a bandwidth parameter.

We perform an experiment similar to that of section 7.2. Draw a sample of iid

standard normal random variables [u.] and construct the process

n

Sn(1) = hf!.1) Mn(1)-1 kl Si(-Y)[Ui + ui-I + ... + ui-m] .

i=1

It is a straightforward calculation to show that, conditional upon the data, Sn(1) is a

Gaussian process with covariance function

where the sample function K
n

(•,.) is computed using the Bartlett kernel. So long

as K
n

(· , · ) is consistent for K(.,.), Sn(1) is asymptotically distributed as S(-y).
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It similarly follows that conditional on :7, the process

is a chi-square process with covariance function K( . " ). Under these assumptions we

find

Cn( 'Y) ==> C('Y) ,

SUPCn = Sup Cnb) ==> SupC .
'Yer

As before, repeated draws from SupC
n

allow for the calculation of critical values and

p-values.
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8. TESTING FOR THRESHOLDS

8.1 Threshold Modcls

A fairly general formulation for linear threshold models may be given as

Yt = Dixlt + D2~t1(xat > 1) + et,

E(et Ixlt,X2t,Xat) = 0

where 1(.) is the indicator function. In most models, the ~t is a sub-vector of

xlt' and xat is a scalar element of xlt. This is a simple way to capture

non-linear regression effects.

The null hypothesis of frequent interest is linearity:

under which the threshold parameter 1 is not identified. This model was a primary

motivation for the work of Davies (1977, 1987) and special cases have been studied by

Kim and Seigmund (1989), Chan (1990) and Chan and Tong (1991).

It is fairly straightforward to apply the tests developed in this paper to the

threshold model. For any given 1, the model is linear and can be estimated by

ordinary least squares (OLS). A practical issue is the selection of r. Since the

function 8(1) and the associated test statistics will be discontinuous functions, with

jumps at the values 1 = x
at'

it makes sense to select r to consist of (at most)

the sample values of {x
at}.

Further, to exclude the possibility of near-singularities,

it is necessary to select r to exclude values of {x
at}

too far in the tails of its

empirical distribution. Following the advice of Andrews (1990b) in the context of

testing for structural change, I suggest the informal rule of using the values of {x
at}

between the 15th and 85th percentile of its empirical distribution.
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8.2 Monte Carlo Experiment

Take the simple threshold model

Yt - 8
1xt + e

t
if xt ~ 'Y

Yt - 8
2xt + e

t
if xt > 'Y

x
t

:: N(O,l) , e
t

:: N(O,l) .

I used Monte Carlo methods to evaluate the small sample distribution of the test

statistics for the hypothesis H
o:

8
1

= 8
2,

Sample size was set to 100 and 1000

replications were made.

For each replication, a new sample {Yt,x
t}

was drawn. The region r was

chosen as suggested in the previous subsection, taking the 15th to 85th percentile of

the empirical distribution of x
t.

The SupWn and SupLM
n

statistics were calculated,

both under the assumption of homoskedasticity and allowing for heteroskedasticity as

in White (1980) (thus generating four statistics). The p-values were calculated as

discussed in section 7. The statistics calculated using the standard covariance matrices

used the method of section 7.3 which assumes homoskedastic errors, while the statistics

calculated with the White heteroskedastic-consistent covariance matrices used the

method of section 7.2. A statistic was considered "significant" at the 10% (5%) level

if the calculated p-value were less than .10 (.05).

First, the model was evaluated under the null hypothesis, setting 8
1

= 8
2

= 1.

Table 1 reports the estimates of the upper tails (10% and 5%) of the distributions of

the four test statistics. For comparison, the tail values from the chi-square

distribution with one degree of freedom is also given. The chi-square values (which

we could call the naive critical values) are noticeably lower than the Monte Carlo

values. This is not surprising, given our theory, but reinforces the argument that

unidentified parameters may have important effects upon the correct sampling theory.



Standard
SupW
SupLM

Hetero Consistent
SupW
SupLM

X~

Table 1
Upper Tails of Test Statistics Under Null

.!Q.% ~

5.3 6.8
5.0 6.3

5.7 7.5
5.0 6.3

2.7 3.8

Table 2
Rejection Frequencies Under Null

29

Standard
SupW
SupLM

Hetero Consistent
SupW
SupLM

.122

.108

.149

.105

.058

.054

.075

.051

Table 3
Rejection Frequencies Under Alternative

Standard
SupW
SupLM

Hetero Consistent
SupW
SupLM

.774

.757

.792

.750

.673

.638

.689

.602
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Table 2 presents the frequency at which the p-values rejected the null

hypothesis. This is often called the "nominal size" of the test, since it is the true

size of the test when asymptotic critical values are used. The results are quite

favorable. Both LM tests have nominal sizes very close to their asymptotic value.

The Wald tests are somewhat liberal (reject too often), especially the

heteroskedasticity-corrected Wald test.

Next, the power of the test was examined. For these calculations, I set

(}1 = 1, (}2 = 1.3, and 'Y = O. The same testing methods were employed as under

the null model. Rejection frequencies are presented in table 3. All tests are easily

able to reject the null in favor of the alternative. No size adjustment was performed,

but casual inspection of the rejection frequencies suggests that the tests have very

similar power in this example.

8.3 Self-Exciting Threshold Autoregressive Models

The self-exciting threshold autoregressive model (or SETAR) is a special case of

the general threshold model which has received considerable attention recently in the

non-linear time-series literature. The model may be written as

(3) Yt - 1-£1 + °1(L)Yt-l + et

Yt - ~ + ~(L)Yt-l + et

if Yt-d ~ 'Y

if Yt-d > 'Y

where the error e
t

is assumed to be a martingale difference with respect to the past

history of the scalar process {yt}. The lag polynomials 01(L) and ~(L) are of

order p. The delay parameter d is an integer satisfying 1 ~ d ~ p. The relevant

null is linearity:

under which the threshold 'Y is not identified. If we consider the delay parameter
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d also as a parameter to be estimated, then it is also not identified under the null

hypothesis.

The likelihood ratio test for this model (under the assumption of Gaussian

errors) has been studied by Chan (1990) and Chan and Tong (1991). This test is

equivalent in this context to the SupWn test, when calculated using the standard

covariance matrix. Chan (1990) obtains the asymptotic distribution in a form similar

to Theorem 5 above, and Chan and Tong (1991) present some special cases. They

show that when there is only one regressor (Le., there is no intercept, and p = q =

1), then the relevant Gaussian process is a Brownian bridge. When p > 1, however,

they find that the covariance function is more complicated, precluding tabulation.

Instead, they give some informal rules in a couple special cases which they obtained

from simulation evidence. Our testing method, on the other hand, requires no ad hoc

rule, and is easy to apply in this context.

In addition, our method allows the delay parameter, d, to enter the specification

in a consistent and rigorous manner. We can estimate d in the same way we

estimate "t , by choosing the model with the lowest sum of squared errors. Being

explicit about the way we choose d means that we have to treat it as an

unidentified parameter under the null hypothesis. The fact that d takes only a

finite (and small) number of possible values does not invalidate the asymptotic theory

in this context.

Another variant of the SETAR model is the smooth transition threshold

autoregressive model (STAR) of Chan and Tong (1985). This model generalizes the

SETAR model by replacing the indicator function by a smooth transition function.

This introduces a smoothing parameter which is also not identified under the null

hypothesis of linearity.
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8.4 GNP Growth Rates

We now apply this testing methodology to a real-world problem. The goal is

to obtain a useful characterization of U.S. GNP growth rates, considered as a

univariate process. Many macroeconomists have been satisfied with a low-order

autoregressive model, but other possibilities have been suggested. Nefti (1984) found

evidence for asymmetries in the business cycle. Stock (1987) found evidence for

time-deformation nonlinearities. Hamilton (1989) suggested a Markov switching model.

Although using distinct models, each of these researchers presented evidence that GNP

growth rates are more than just a simple autoregressive process.

Potter (1991) fit a SETAR model to postwar quarterly GNP growth rates. To

select the threshold and delay parameters, Potter did not directly minimize the sum of

squared errors, but instead used informal graphical methods. Still, these (unidentified)

parameters are selected conditional upon the data (rather than from a priori theory),

and therefore conventional asymptotic theory cannot properly assess the significance of

the nonlinear specification. Our methods, however, allow us to directly assess the

statistical significance of his SETAR vis-a-vis a linear model.

I used the real GNP series (seasonally adjusted) from Citibase for the period

1947-1990. The data were transformed into annualized quarterly growth rates. (That

is, ~Yt = 400(lnY
t

- InYt_1), where Y
t

is real GNP in period t). Potter (1991)

suggested that this series is fit well by a SETAR with lagged first, second and fifth

differences. My estimates for the associated autoregressive model with no threshold is

~Yt = 1.99 + 0.32 ~Yt-1 + 0.13 ~Yt-2

(0.57) (0.09) (0.08)

R
2 = 0.16.

.
0.09 ~Yt-5 + et

(0.06)
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(Heteroskedastic-consistent standard errors in parenthesis.)

To fit a TAR model, it is necessary to choose the region r over which to let

the unidentified parameters vary (in this case, 'Y and d). As before, I let 'Y vary

from the 15th to the 85th percentile of the empirical distribution of ~y t For the

delay parameter, d, I let it take on the values 1 , 2 and 5.

Maximizing the sum of squared errors, the estimates for the threshold

parameters are a= 2 and ;. = 0.27. This is surprisingly close to the values d =

2 and 'Y = 0 chosen by Potter's informal identification methods. With these

parameters, we find the following estimates for the TAR model

Regime 1 (~Yt-2 < 0.266)

~Yt - -3.21 + 0.51 ~Yt-l - 0.93 ~Yt-2 + 0.38 ~Yt-5 + e
t

(1.78) (0.19) (0.26) (0.20)

Regime 2 (~Yt-2 > 0.266)

~Yt - 2.14 + 0.30 ~Yt-l + 0.18 ~Yt-2 - 0.16 ~Yt-5 + e
t

(0.73) (0.10) (0.09) (0.07)

2
R = 0.26 .

The SupW and SupLM tests for the null hypothesis of linearity, with end without

heteroskedasticity corrections, are reported in Table 4. If no correction is made for

heteroskedasticity, both the SupW and SupLM tests reject linearity at the 5% level.

When corrected for heteroskedasticity, however, the SupLM test ceases to be

statistically significant. This is difficult to explain since the innovations do not appear

to be heteroskedastic.
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Table 4.
Tests of a SETAR vs a TAR

Standard
SupW
SupLM

Hetero Consistent
SupW
SupLM

Statistic

21.0
18.7

18.0
14.1

P-value

0.02
0.04

0.06
0.21

Figure 1 displays a plot of the Wald test statistics for d = 2 and the

sequence of possible values of 'Y. The plot shows that the value 1- =:: 0 is clearly

chosen by the data. The figure also displays the 10%, 5% and 1% critical values

obtained from the simulated distribution for the test statistic. Note that these critical

values are substantially higher than those from a conventional chi-square table. To

make this point clear, figure 2 displays plots of three probability densities: the X2(4),

the X
2(8)

and the density estimated for SupW for this data set. The latter was

estimated from the simulated empirical distribution using a normal kernel. The X2(4)

would be the appropriate asymptotic distribution if the parameters d and 'Y were

known a priori, and are implicitly those used in common practice. The x2(8) is also

displayed to counter any illusion that an appropriate rule-of thumb might be to

double the degrees of freedom. The estimated density function is substantially to the

right of the X2(8).
This figure makes plain the fact that unidentified nuisance

parameters should not be ignored when making inferences. The distributions are

non-standard, and may be dramatically so.

This empirical exercise has uncovered the following surprising results. First, the

threshold parameters chosen by Potter (1991) for this series using informal methods are

essential the same as those chosen by a classic least squares criterion. Second, even

after the selection of this potentially unidentified parameters is taken into account, the
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linear model can be (marginally) rejected in favor of a SETAR alternative. This lends

considerable support to the view that non-linearities are important in properly

specified conditional expectations for macroeconomic time series.
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APPENDIX

We will frequently use the following result due to Andrews (1990a).

Lemma A. If A is compact, 0n(>') - G(>') is stochastically equicontinuous and for

all

....... O.
p

Proof of Theorem 1.

(i) Fix e > O. By assumption lev), for all "Y E I' , there exists some 6b) > 0

such that

inf [Q(6
0'''Y)

- Q(6,"Y)] = 6( "Y) .

118-6011 ~ e

Note that the region {6: 118-6011 ~ e] is compact under assumption lei). By the

maximum theorem, 6("Y) is continuous on f, so {6("Y) : "Y E I'] is compact, thus

6 = min
7Ef

6( 'Y) > 0 ,

and

min inf [Q(60' ''Y) - Q(6,"Y)] = 6.

"Y Er 118-6011 ~ e

It therefore follows that {[Q(60''Y) - Q(Ob),"Y)] < 6} implies {II O( 'Y) - 6011 < e] ,

and thus

P[sup] O( 'Y) - 6011 ~ e]
'YEf

The result follows if

~ P{sup [Q(60''Y) - Q(Ob),'Y)] < 6} .
'YEf

sup [Q(6
0''Y)

- Q(O("Y),"Y)]
"YEf

....... O.
p
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Indeed,

o < ~¥ [Q(00,1) - Q(O(1),1)]

- ~¥ [Q(00,1) - Qn(8(1),1) + Qn(8(1),1) - Q(O(1),1)]

< sup [Q(00,1) - Qn(00,1) + Qn(O(-Y),1) - Q(O(1),1)]
1er

< sup IQ(00,1) - Qn(00,1)1 + sup IQ(O(1),1) - Qn(O(1),1)\
~r ~r

< 2 sup sup IQ(0,1) - Qn(0,1) I -+p 0,
1er OeB

by Lemma A.

(ii) < supIO(1) - °0 1 -+ 0
Oer p

by part (i).

Proof of Theorem 3.

o

LRn - 2n[Qn(O,1) - Qn(O)]

- 2n[sup Qn(O(1),1) - Qn(O)]
1er

- sup 2n [Qn(O(1),1) - Qn(O)] = sup LRn(1) . 0

~r ~r

Proof of Theorem 4 (a): Here and elsewhere superscripts will denote elements of

vectors and matrices. For example, S: will denote the a'th element of the vector

Sn and M:
b

will denote the a-b'th element of the matrix Mn.

For each 1 e r , the first order conditions for 0(1) are
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Expand each first order condition (for each value of 'Y) about B
o

(AI)

where 0*( 'Y) is on a line segment joining Bo and D( 'Y). Now

(A2) SUpIM:b(o*('Y),'Y) - Mab(Bo''Y)I
'Yer

~ sup\M:b(o*('Y),'Y) - Mab(O*('Y),'Y)I
'Yer

< sup IM:b(B,'Y) - Mab(B,'Y)\

(B,'Y)e%

+ sup IMab(O*("(),'Y) - Mab(Bo''Y)I
"fEr

+ 0p(l) < 0p(l).

The second inequality exploits the assumed continuity of M(.,.) (assumption 3 (i))

and the fact that O*("() -p B
o

uniformly in 'Y. The final inequality follows from

Lemma A. Stacking the row vectors M:(O*('Y),'Y) into a matrix M~('Y), (AI), (A2),

assumption 3 (iv)(v) and the continuous mapping theorem (CMT) give

Proof of Theorem 4(b): Since iJ( 'Y) -p 00 uniformly in 'Y, and hrf...) is

continuous in 8c'

(A3) -p

uniformly in 'Y. Similarly,

(A4) 0n(D('Y),'Y) = Mn(8('Y),'Y)-1 V(D('Y),'Y) Mn(D('Y),'Y)-1

-p M("()-l V('Y) M('Y)-l - O('Y) ,

uniformly in 'Y e r.

Expand each element of the vector h(D("()) about B
o

:

Jiiha(D( 'Y)) = Jiiha(00) + he(0*(,,())Jii( D("() - Bo)
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Thus by (A3), part (a), and the CMT,

(AS) Jiih(O(1)) ~ hrt0o) M(1)-lS(1) .

which when combined with (A4), yields the result. n

Proof of Theorem 4 (c): Expand each element of Sn(O,1) about 00:

S:(O,1) = Sn(00,1) - M:(0*(1),1)(8-00)

where 0*(1) lies on a line segment between 00 and 7J. Since 0 --+p 00' the

argument of (A2) allows us to rewrite this as

(A6)

where M*(1) --+p M(1), uniformly in 1 e r .

Expand each element of h(O) about °
0

:

ha(O) = h
a(

00) + h~ 0*)(8-00) ,

or, stacking equations, and using h(O) = h( 00) = 0 ,

(A7)

where he --+p ho.

For n sufficiently large, there exists a Lagrange multiplier vector X which

satisfies

(A8)

where h
O

= hrt0). (A8), (A6), (A7), and assumption 3 (v) combine to yield,

(A9) ..fD. he M ~ ( 1)-lhoX = ..fD. he M ~ ( 1)-lSn(7J,1)

- ..fD. he M ~ ( 1)-lSn(00,1) - ..fD. he (8-00)
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Therefore

(AIO) JD. Sn(O,'Y) - JD. he). = he[ho M~('Y)-lfie]-lho M~('}')-lJD. SnU'o''Y)

~ h
e[

heM('Y)-lh
e]

-lheM('}')-lS('}')

and

(All) S(1') .

(A4) and (All) combined with the CMT complete the proof.

Proof of Theorem 4 (d). First note that by a second-order Taylor's expansion of

Qn(O) about 0(1'), and the first order conditions for estimation of O('}'),

(A12) LRn('Y) = 2n[Qn(0('}'),'Y) - Qn(O)]

- - 2nSn(0('Y),'Y)(0 - 0(1')) + (0 - O('Y))'Mn(O*('}'),'Y)(O - 0(1'))

- JD.(O - O('Y))'M~('}')Jii(O - O('}')),

where M~( 1') = Mn(0*(1'),1') .....p M(1') , uniformly in l' E r .

Expanding each element of Sn(O,'Y) about 0(1') and stacking we find

(A13) Sn(O,'Y) = Sn(O(1'),1') - M**( 'Y)Jii(O - 0(1')) - - M**( 'Y)Jii(O - 0(1')) ,

where M*(1') .....p M(1'), uniformly in l' E r. (A13) and (AIO) give

(A14) In(O - 0(1')) - - M**( 'Y)-lSn(O,'Y)

~ - M('Y)-lhe[heM('Y)-lhe]-lheM('}')-lS('Y) .

(A12) and (A14) combine to yield

~ S('}')'M( 'Y)-lh
e[

heM('Y)-lhe]-lheM( 'Y)-1S(1')

S('}')' [heM('Y)-lhe]-lS(1') = C*(1') . []
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~

Proof of Theorem 4. A corollary to Theorem 3 is that 'Y = Argmax LR ('Y) .
'YE r n

Part (a) follows from LRn( 'Y) ~ C( 'Y) and the CMT. Now

Wn = W (;.) ~ C[Argmax C( 'Y)] - sup C( 'Y) ,
n 'YE r 'YEr

and similarly for LM
n.

The results for SupWn and LM
n

follow directly from

Theorem 4 (b) (c) and the CMT. 0

Proof of Theorem 6.

(a)

(b)

(c)

(d)

(e)

~

'Y = Argmax LR ('Y) ~ Argmax C*( 'Y) ;
'YEr n 'YEr

LRn - sup LRn( 'Y) ~ sup C*( 'Y) ;
'YEr 'YEr

Wn - W (;.) ~ C[Argmax C*( 'Y)] ;
n 'YE r

LM = LM (;.) ~ C[Argmax C*( 'Y)] ;
n n 'YE r

SupWn = sup Wn( 'Y) ~ sup C( 'Y) ;
'YEr 'YEr

SupLMn = sup LMn( 'Y) ~ sup C( 'Y) .
'YEr 'YEr

n
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