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Inference with normal-gamma prior
distributions in regression problems

Jim. E. Griffin∗ and Philip. J. Brown†

Abstract. This paper considers the effects of placing an absolutely continuous
prior distribution on the regression coefficients of a linear model. We show that the
posterior expectation is a matrix-shrunken version of the least squares estimate
where the shrinkage matrix depends on the derivatives of the prior predictive den-
sity of the least squares estimate. The special case of the normal-gamma prior,
which generalizes the Bayesian Lasso (Park and Casella 2008), is studied in depth.
We discuss the prior interpretation and the posterior effects of hyperparameter
choice and suggest a data-dependent default prior. Simulations and a chemomet-
ric example are used to compare the performance of the normal-gamma and the
Bayesian Lasso in terms of out-of-sample predictive performance.

Keywords: Multiple regression, p > n, Normal-Gamma prior, “Spike-and-slab”
prior, Bayesian Lasso, Posterior moments, Shrinkage, Scale mixture of normals,
Markov chain Monte Carlo

1 Introduction

The standard multiple linear regression model assumes that a vector of responses y =
(y1, y2, . . . , yn) can be represented as

y = α1 + Xβ + ε (1)

where ε = (ε1, . . . , εn)T are independent, p(εi) = N(εi|0, σ2) and X is an n × p matrix
of explanatory variables. Here, N(x|µ, σ2) denotes the density of a normal distribution
with mean µ and variance σ2. The scalar α is the intercept and 1 a n× 1 unit vector.
This paper is concerned with the Bayesian analysis of this model and, in particular, the
choice of the prior distribution of the (p×1)-dimensional vector of regression coefficients
β. A zero mean normal prior leads to the ridge estimator as posterior mean. This esti-
mator performs poorly if there are large differences in the size of regression coefficients.
Alternatively, we could perform variable selection and assume that only a subset of the
variables have non-zero regression coefficients which mitigate the problems associated
with the normal prior. The standard approach is the “spike-and-slab” prior (Mitchell
and Beauchamp 1988). An indicator variable zi is introduced to identify whether the
i-th variable is included in the model (zi = 1) or excluded (zi = 0). The prior for βi

can be written as

π(βi) = ziN(βi|0, σ2
β) + (1− zi)δβi=0 , p(zi = 1) = w,

∗School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK,
mailto:J.E.Griffin-28@kent.ac.uk

†School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK,
mailto:Philip.J.Brown@kent.ac.uk

c© 2010 International Society for Bayesian Analysis DOI:10.1214/10-BA507

mailto:J.E.Griffin-28@kent.ac.uk�
mailto:Philip.J.Brown@kent.ac.uk�


172 normal-gamma priors

where δβi=0 represents the Dirac delta measure which places all its mass on zero and
Mitchell and Beauchamp’s uniform slab is replaced by the now traditional Gaussian
“slab”. The independent Bernoulli variables zi have mean w, and so the hyperparameter
w can be interpreted as the prior proportion of non-zero regressors. Alternatively, a
prior distribution can be used for w and its value inferred from the data. The scale
σβ controls the variance of the prior. As we shall show in Section 2, this prior induces
adaptive matrix shrinkage (Chamberlain and Leamer 1976) where the norm |E[β|y]| is
a decreasing function of |β̂| and larger |β̂| are shrunk less than smaller |β̂|. However, for
fixed design X, very large |β̂| shrinkage asymptotes to some non-zero value determined
by σ2

β , (and the eigenvalues of XT X).

Absolutely continuous prior distributions can also induce adaptive shrinkage and
represent an interesting alternative to “spike-and-slab” priors. Park and Casella (2008)
describe a Bayesian analysis where the regression coefficients are given independent
double exponential prior distributions. The idea is motivated by the equivalence of the
maximum a posteriori (MAP) estimator under this prior distribution and the Lasso
estimator (Tibshirani 1996). The prior distribution can also be motivated as a member
of the scale mixture of normals family. If we assume that βi|Ψi ∼ N(βi|0,Ψi) then
a double exponential prior for βi arises when Ψi follows an exponential distribution
(Andrews and Mallows (1974). The prior can be seen as a ridge prior where the variance
of the normal is allowed to change from regression coefficient to regression coefficient,
allowing differences in their scales. Bayesian estimation of regression models with other
absolutely continuous priors has been investigated by several authors (MacKay 1996;
Tipping 2001; Figueiredo and Jain 2001; Figueiredo 2003; Kiiveri 2008; Caron and
Doucet 2008). However their work was restricted to MAP estimation rather than fully
considering the posterior distribution.

The performance of estimators based on absolutely continuous priors depends on
the form of the prior. For example, the double exponential prior used in the Bayesian
Lasso has a single hyperparameter. In many regression problems this inflexibility can
have a considerable effect on the inference since it restricts the prior beliefs that can be
expressed. As we will show this choice fixes the rate of decay of the ordered regression
coefficients. In the extreme case where some regression coefficients are zero then the
mean of the exponential needs to be set to a small value to shrink those regression coef-
ficients close to zero. However, this also leads to substantial shrinkage of the regression
coefficients that are truly non-zero. In other words, the shrinkage is not adaptive enough
for the problem. This can lead to both poor prediction accuracy and inference about the
regression coefficients. This is an extreme case but the problem will also effect analyses
where all the regression coefficients are truly non-zero but many are close to zero. The
problem is particularly acute if n is small and p is large when prior assumptions play
an important role in posterior inference.

This paper looks at the effect of the prior for β on the posterior expectation and
variance of β. We show that the posterior expectation is a shrinkage estimator where
the level of shrinkage is directly related to the form of the prior predictive distribution
of the least squares estimator. We develop a generalisation of the double exponential
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prior distribution for regression problems. The normal-gamma prior provides a natural
extension and we show that it defines estimators that induce a wide-range of shrinkage
behaviour, including effective selection (by shrinking the posterior expectation of many
regression coefficients to values very close to zero).

The paper is organised in the following way. Section 2 discusses a very general
expression for the posterior expectation of the regression coefficients showing that the
shape of the prior predictive distribution plays a key role (and acts as an analogue to
some of the results of Fan and Li (2001) for penalized maximum likelihood estimation).
Section 3 considers the use of the normal-gamma distribution as a prior for regression co-
efficients and the interpretation of its hyperparameters in a Bayesian context. We finish
the section by suggesting a simple, data-dependent default prior for the hyperparam-
eters. Section 4 introduces a Gibbs sampling scheme for posterior inference including
the use of the singular value decomposition for reduced dimension matrix inversion and
computational speed. Section 5 applies the method to two simulation examples and a
real problem in chemometrics and compares with results for estimation using the double
exponential prior distribution. A discussion follows in section 6.

2 The posterior expectation of regression coefficients in
linear regression

Suppose that the regression error variance σ2 is known in the linear regression model
given by equation (1), then the posterior expectation and variance of the (p × 1)-
dimensional vector β can be expressed in a useful form by extending a univariate result
of Pericchi and Smith (1992).

Proposition 1. Suppose that we have the linear regression model given by equation (1)
where n ≥ p+1, the design matrix X is non-singular and its columns have been centred,
and the intercept α is independent of the p×1 vector β a priori. Let β̂ = (XT X)−1XT y,
the standard least squares estimator, and h(β̂) =

∫
N(β̂|β, σ2(XT X)−1)π(β) dβ where

π(β) is the prior distribution of β then

E[β|β̂] =
(
I − S(β̂)

)
β̂ and V[β|β̂] = σ2(XT X)−1 − σ4(XT X)−1W (β̂)(XT X)−1

where
S(β̂) = σ2(XT X)−1R(β̂)

and R(x) is a diagonal matrix with

Rii(x) = − 1
xi

∂

∂xi
log h(x)

and W (x) = − ∂
∂x

∂
∂xT log h(x).

The sampling density of β̂ is N(β, σ2(XT X)−1) and so h(β̂) is the prior predictive
density of β̂. The result may be extended to singular X and p > n − 1 using the
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singular value decomposition of X and exploiting the scale mixture of normals, as il-
lustrated in section 4. The result in Proposition 1 has several implications. The vector
posterior expectation is always a matrix-shrunken version of the least squares estima-
tor. The amount of shrinkage is controlled by the shape of h and the standard error
of β̂. Interestingly, the penalized maximum likelihood estimator can also be expressed
as a shrinkage estimator (Fan and Li 2001). In that case the shrinkage is controlled
by the derivative of the penalty function (which is related to the log prior density if
the posterior mode is used as our estimator). In contrast, the posterior expectation
depends on the derivative of the log predictive distribution. The predictive distribution
can be considered a “smoothed” version of the prior distribution and so, in this case,
the distinction between absolutely continuous and discrete prior distributions is blurred.
Therefore, the posterior mean is a continuous function of β̂, whereas the MAP estimate
is not.

If the design matrix is orthogonal, the result can be simply expressed in terms of
each regression coefficient:

E[βj |β̂j ] = β̂j

(
1− S(j)(β̂j)

)

and

V[βj |β̂j ] =
σ2

∑n
i=1 x2

ij

− σ4

(
∑n

i=1 x2
ij)2

W (j)(β̂j),

where W (j)(β̂j) = − d2

dβ̂2
j

log h(β̂j) and S(j)(β̂j) = σ2∑n
i=1 x2

ij
R(jj)(β̂j) with R(jj)(β̂j) =

− 1
β̂j

d
dβ̂j

log h(β̂j). In this case the shrinkage factor is simply S(j)(β̂j). The shrinkage

of βj only depends on the univariate predictive density of β̂j and its observed value.
Clearly the shape of the prior distribution of βj will directly affect the shrinkage and
heavier tails will lead to less shrinkage. Conversely densities which are more peaked at
zero will lead to larger shrinkage of small estimated values. A desirable property for
fixed design X is that E[βj |β̂j ] → β̂j as β̂j → ∞. If h(x) ≈ exp

{− 1
2cx2

}
( i.e. the

predictive distribution has normal tails), then − 1
x

d
dx log h(x) → c and so E[βj |β̂j ] does

not limit to β̂j as β̂j →∞. The predictive distribution will have these tails if the prior
on β is normal or if a normal “slab” is chosen in a “spike-and-slab” prior. If the tails of
the prior distribution of β are heavier than normal, then the E[βj |β̂j ] → β̂j as β̂j →∞,
(see also Dawid (1973)).

3 The normal-gamma prior

A wide and natural class of prior densities for regression coefficients is the scale mixtures
of normals (SMN) (see e.g. West (1987)), which we write as

π(βi) =
∫

N(βi|0,Ψi)dG(Ψi)

where G is a mixing distribution. The prior can be expressed in a hierarchical form as

βi|Ψi ∼ N(0, Ψi), Ψi ∼ G. (2)
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This hierarchical form for the model shows that the i-th regression coefficient has a
normal prior distribution conditional on an idiosyncratic variance (or scale), Ψi. This
allows for larger differences in the sizes of the regression coefficients than would be
possible under a normal prior. The marginal prior distribution for β̂i has heavier than
normal tails (apart from the degenerate case where G places all its mass at a single
point). The “spike-and-slab” prior can be represented in this way by choosing

G(Ψi) = ziδΨi=σ2
β

+ (1− zi)δΨi=0.

The double exponential prior of the Bayesian Lasso arises if G is an exponential distri-
bution.

An interesting choice of absolutely continuous prior is the normal-gamma distri-
bution, which includes the double exponential prior as a special case. Let Ga(x|c, d)
represent the density of a gamma distribution with shape c and rate d so that

Ga(x|c, d) =
dc

Γ(c)
xc−1 exp {−dx} .

We refer to the distribution as Ga(c, d). The normal-gamma distribution arises by as-
suming that the mixing distribution in a SMN has the density g(x) = Ga(x|λ, 1/(2γ2)).
The density function is expressible as

π(βi) =
1√

π2λ−1/2γλ+1/2Γ(λ)
|βi|λ−1/2Kλ−1/2(|βi|/γ), (3)

where K is the modified Bessel function of the third kind. The variance of βi is vβ =
2λγ2 and the excess kurtosis is 3

λ . The gamma distribution can represent a wide-range
of shapes. As the shape parameter λ decreases these include distributions that place
a lot of mass close to zero but at the same time have heavy tails. Figure 1 shows the
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Figure 1: The log density of the normal-gamma prior with a variance of 2 and different
values of λ. λ = 0.1 (solid line), λ = 0.333 (dot-dashed line) and λ = 1 (dashed line).

effect of shape parameter λ on the marginal prior distribution of βi. The marginal
distribution becomes more peaked at zero which places increasing mass close to zero
as λ decreases. The distribution has proved a popular choice for modelling fat tails
in finance (Bibby and Sorensen 2003), and is a member of the generalized hyperbolic
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family (Barndorff-Nielsen and Blaesild 1981). The prior was considered by Griffin and
Brown (2007), but the shape of the density made it difficult to obtain MAP estimates.
More recently, Caron and Doucet (2008) have looked at MAP estimation and drawn a
link to Lévy processes. The density has exponential tails, but the heaviness of the tail
is controlled by λ, which can take any positive value.

The choice of λ and γ plays an important role in estimation. Park and Casella
(2008) discuss an empirical Bayes estimation strategy for the hyperparameter of the
Bayesian Lasso. However, with the normal-gamma prior, the posterior distribution of
λ and γ can be highly multimodal and an empirical Bayes approach is very difficult to
implement. Therefore we take a fully Bayesian approach and concentrate on choosing
a prior distribution for the hyperparameters of the normal-gamma prior. In order to
make an informed choice, we consider the effect of λ on both the prior and the posterior.

3.1 The effect of λ

It follows from the definition of the model in equations (1) and (2) that

V[yi|Ψ, σ2] = V[α] +
p∑

j=1

Ψj + σ2,

if the regressors have been standardized so that the sample mean and variance of each
regressor is 0 and 1 respectively. The regression total variability is (

∑p
k=1 Ψk). Thus

ζj = Ψj∑p
k=1 Ψk

can be interpreted as the proportion of total variability attributable to
the j-th regressor. If the mixing distribution is gamma, then ζ follows a Di(λ, λ, . . . , λ),
a Dirichlet distribution with all parameters equal to λ. Consequently, the distribution
of ζ is controlled by λ only and γ has no effect. Increasing λ will lead to more evenly
distributed values of ζ1, ζ2, . . . , ζp and small values of λ will be associated with large
differences between the proportions. We look at the strength of this effect by considering
ζ(1) > ζ(2) > · · · > ζ(p), which is the ordered version of ζ, and define rj = log ζ(j) −
log ζ(j+1). Plotting r1, r2, . . . , rp−1 gives an indication of the rate at which the ordered
proportions decay for a given prior distribution. These plots for various values of λ
are shown in Figure 2. The shape of the curve defined by the values r1, r2, . . . , rp−1 is
similar for all values of λ. The rate is fairly constant for small values of j but increases
for larger values of j. The level is determined by both p and λ. Smaller values of λ and
smaller values of p are associated with larger values of rj (i.e. a faster decay). This
illustrates a limitation of the Bayesian Lasso prior, (λ = 1), which implies a particular
set of values for rj for a given p. Extending the prior to the normal-gamma distribution
leads to a wider choice of decay rates.

The posterior properties of the regression coefficients can be studied using Proposi-
tion 1. The shrinkage factor, S(β̂), for the posterior expectation of a single regression
coefficient is plotted against the standard error (SE) of β̂ in Figure 3 for different choices
of λ. The shrinkage for small values of β̂ changes markedly with λ (smaller values of λ
are associated with larger amounts of shrinkage). When SE < 1/5 the graphs show a
fast transition from a high level shrinkage to a low level of shrinkage (e.g. if SE = 1/5
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Figure 2: The prior distribution of ri = log ζ(i+1) − log ζ(i) represented by the median
(cross) and 95% central region (dots).

this transition occurs at around 1). The positions of these transitions are controlled by
the hyperparameter γ.

3.2 Similarity to “spike-and-slab”

The above shrinkage factor results for the normal-gamma prior show an adaptive pattern
which can take a wide range of shapes according to the choice of hyperparameters.
It is therefore interesting to ask whether the “spike-and-slab” prior leads to forms of
shrinkage different from the normal-gamma. The hyperparameters of the normal-gamma
prior can be matched to the “spike-and-slab” prior using the following argument. The
prior proportion of non-zero coefficients, w, of the “spike-and-slab” can be elicited by
choosing a prior guess of the number of non-zero regression coefficients, p?, and setting
w = p?/p. For the normal-gamma prior, we could mimic the “spike and slab” prior by
choosing λ so that most of the variation in the prior is contained in a small number of
regressors. To make this idea operational, we chose λ to solve

median




p?∑

i=1

ζ(i)


 = 1− ε
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Figure 3: Shrinkage factor for different values of β̂ for different priors: λ = 0.1 (solid
line), λ = 0.333 (dashed line) and λ = 1 (dot-dashed line).

for a pre-specified “small” value of ε. Choosing the variance of the normal component
σ2

β = 2λγ2p/p? guarantees that V[βi] is the same under the two priors.
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Figure 4: Shrinkage factor for different values of β̂ for matched normal-gamma (solid
line) and “spike-and-slab” priors (dashed line) with p = 100 and p? = 5.

Figure 4, with ε = 0.1, shows the shrinkage factor S(β̂) for a single regressor with
p = 100 and p? = 5 for several values of the standard error (SE). The two priors lead
to remarkably similar shrinkage for many values of the least squares estimate (only
positive values are shown since this function will be symmetric around 0). The very
sharp transition associated with the “spike-and-slab” prior is mimicked by the matching
normal-gamma distribution. The main differences occur for very small values and very
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large values of β̂. When β̂ is large, the “spike-and-slab” prior reverts to the constant
shrinkage factor induced by a ridge prior, whereas the shrinkage for the normal-gamma
prior tends to zero. If β is small, the shrinkage associated with the “spike-and-slab”
prior tends to be larger than for the matching normal-gamma prior.

3.3 Prior hyperparameter settings

The hyperparameters of the normal-gamma distribution could be chosen to match the
“spike-and- slab” prior as discussed in the Section 3.2. However, we choose a simpler
route by directly specifying priors for λ and γ. A prior for λ which seems to work
well in the simulations and our example is obtained by taking the prior of λ to be
an exponential distribution with mean 1. This offers variability around the Bayesian
Lasso prior (λ = 1). The prior for the scale parameter γ conditional on λ is given by
vβ = 2λγ2 ∼ IG(2,M), where IG denotes the inverted gamma distribution, the inverse
of a gamma distribution, so that IG(2,M) has expectation M. When X is non-singular,
M = 1

p

∑p
i=1 β̂2

i where β̂ is the least squares estimate. When X is singular, as when

p > n − 1, M = 1
n

∑p
i=1 β̂2

i where β̂ is the Minimum Length Least Squares (MLLS)
estimate. In the nonsingular X case, this is the same as that used in the Hoerl-Kennard-
Baldwin estimate of the variance of β for the constant in ridge regression (apart from a
Stein-type dimension correction) (see Hoerl et al. (1975) or Brown (1993), section 4.4).
This completes the prior specification for β.

The prior for the intercept α in (1) is π(α) ∝ 1. Lastly, we choose a vague prior for
the error variance so that σ−2 ∝ 1.

4 Computational method

The posterior distribution of the parameters can be simulated using a Gibbs sampler
with an additional Metropolis-Hastings update. The convergence of the method is
improved by augmenting the model with the latent scale parameters Ψ1, Ψ2, . . . , Ψp.
The full conditionals used in the updating steps are given below.

Updating α and β

Let φ = (α, β)T . The full conditional distribution of φ follows a joint normal distribution

with mean
(
X?T X? + σ2Λ

)−1

X?T y and variance σ2
(
X?T X? + σ2Λ

)−1

, where

Λ = diag
(

0,
1

Ψ1
,

1
Ψ2

, . . . ,
1

Ψp

)
,

and X? = [1 : X]. It is computationally convenient in problems with p > n − 1 to
express the mean and variance of this distribution using the following form which only
involves the inversion of an n×n matrix rather than a larger (p+1)×(p+1) matrix. The
standard MLE estimator will not be defined if p > n− 1. Consequently, the problem is
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re-expressed in terms of an n-dimensional parameter, θ, for which the MLE exists. As
in West (2003), the singular value decomposition of X? can be written as X? = FT DAT

where A is a ((p + 1) × n)-dimensional matrix such that AT A = In, D is an (n × n)-
dimensional diagonal matrix and F is a (n×n)-dimensional matrix for which FT F = In

and FFT = In. Clearly, we can write

X?φ = (FT D)θ.

The MLE, θ̂, of θ is well-defined and has the form

θ̂ = D−1Fy.

Let Λ? = D−2 and Ψ0 = AT ΨA. After some simplification we can express the posterior
mean and covariance in terms of the inverse of an n× n matrix:

E
(
φ

∣∣∣Ψ, θ̂
)

= ΨA(Ψ0 + σ2Λ?)−1θ̂

and
V

(
φ

∣∣∣Ψ, θ̂
)

= Ψ−ΨA(Ψ0 + σ2Λ?)−1AT Ψ.

Updating σ2

The full conditional distribution of σ−2 is Ga (c?, d?) where c? = n/2 and d? = (y−α−
Xβ)T (y − α−Xβ)/2.

Updating Ψ

The parameter Ψ can effectively be updated in a block since the full conditional distribu-
tions of Ψ1, Ψ2, . . . , Ψp are independent. The full conditional distribution of Ψi follows
a Generalized Inverse Gaussian distribution GIG

(
λ− 1

2 , 1/γ2, β2
i

)
where GIG(m, c, d)

has the density
(c/d)m/2

2Km(
√

cd)
xm−1 exp

{
−1

2
(cx + d/x)

}
.

An algorithm for simulation of this distribution is described by Devroye (1986). A
Matlab implementation is available in the “randraw” toolbox which is available from
Matlab Download Central.

Updating hyperparameters of the normal-gamma prior

In section 3.3 we assigned priors for λ and γ. If we denote the prior for λ by π(λ) then
the full conditional of λ is

π(λ)
1

(2γ2)pλ(Γ(λ))p

(
p∏

i=1

Ψi

)λ

,
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which can be updated using a Metropolis-Hastings random walk update on log λ. We
propose λ′ = exp{σ2

λz}λ, where z is standard normal then λ′ is accepted with probability

min



1,

π(λ′)
π(λ)

(
Γ(λ)
Γ(λ′)

)p
(

(2γ2)−p

p∏

i=1

Ψi

)λ′−λ


 .

The tuning parameter σ2
λ is chosen to set the average acceptance rate at around 20-30%.

Now turning to the scale parameter γ, with γ−2 ∼ Ga(2, M/2λ) from section 3.3, γ−2

can be updated directly from its full conditional distribution, which is γ−2 ∼ Ga(e?, f?)
where e? = 2 + pλ and f? = M/2λ + 1

2

∑p
i=1 Ψi.

5 Examples

We consider two simulation examples and a real data example from chemometrics. In
each example, the MCMC algorithm was run for 40,000 iterations with the first 5,000
discarded as a burn-in.

5.1 Simulation 1

In the first simulation we generate data where the design matrix has independent ele-
ments which are standard normally distributed. The regression coefficients are drawn
from normal-gamma priors with three possible shape parameters, (0.1, 1 and 3). In
each case, the prior mean of the regression coefficients was chosen to be 1. Sample sizes
considered were n = 50 and 200 with p = 100. In the first case, n > p and p > n in
the second case. The performance of the double exponential prior is compared to the
normal-gamma prior using root mean squared error of the estimation of β by the pos-
terior mean. The double exponential was favored when λ = 1 and the normal-gamma
in the other two cases. The posterior distributions for λ, γ are summarised in Table 1

Normal-Gamma RMSE
λ n p λ vβ = 2λγ2 NG DE
1 200 100 1.02 (0.54, 2.08) 0.59 (0.35, 1.02) 0.107 0.107
1 50 100 0.92 (0.31, 2.40) 0.25 (0.11, 0.89) 0.683 0.677
3 200 100 1.87 (0.98, 7.62) 0.64 (0.38, 1.08) 0.100 0.101
3 50 100 1.09 (0.30, 5.02) 0.19 (0.09, 0.68) 0.739 0.740

0.1 200 100 0.12 (0.07, 0.19) 0.55 (0.26, 1.36) 0.069 0.091
0.1 50 100 0.08 (0.05, 0.16) 0.94 (0.29, 5.16) 0.203 0.452

Table 1: Simulation 1: Posterior mean and 95% credibility interval of the parameters
of the Normal-Gamma model and the root mean squared errors (RMSE) of estimating
β by its posterior mean with the NG prior and double exponential (DE)

in terms λ, vβ , where variance vβ = 2λγ2. The values of λ and vβ seem well estimated
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in each case. The credibility interval for λ increases as the true value of λ increases.
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Figure 5: Plots of the true regression coefficients against their posterior means under
the NG (crosses) and Lasso priors (circles), simulation 1.

The root mean square errors for estimation of the regression coefficients are given
in Table 1. The performance of the double exponential and normal-gamma priors are
roughly similar when λ = 1 (when the double exponential is the true distribution of the
regression coefficients) and λ = 3. This is reassuring since it demonstrates that there is
little lost in inference about the regression coefficients if the λ is considered unknown.
However, there are substantial differences when λ = 0.1 and, as we would expect, the
differences become larger as the sample size, n, becomes smaller. The RMSE is more
than doubled by the double exponential prior relative to the normal-gamma prior when
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n = 50 and λ = 0.1.

Figure 5 shows the estimated coefficient versus their true values. Clearly, the re-
gression coefficients are well estimated when n = 200 with both prior distributions but
less well when n = 50. If λ = 0.1, there is a substantial number of regression coef-
ficients whose value is close to zero, which is better captured by estimates using the
normal-gamma prior rather than the double exponential prior.

5.2 Simulation 2

In this example, the design matrix is generated in the same way as Simulation 1 but
the regression coefficients have a different structure. In this case, only 10 regression
coefficients are non-zero which are placed evenly throughout the vector of regression
coefficients which can be written as

βi =
{

β? mod((i− 1), p/10) = 0
0 otherwise.

In these simulation β? = 1, 5, n = 50 and p = 100, 200. This is a challenging example
since p is larger than n and our prior places no mass on the regression coefficients being
zero. However, it would be re-assuring if the prior performs well for this type of data.
Table 2 displays the means and 95% credibility intervals for the hyperparameters of

β? n p λ vβ = 2λγ2

1 50 100 0.14 (0.05, 1.22) 0.16 (0.03, 0.84)
5 50 100 0.030 (0.015, 0.054) 4.00 (1.19, 19.65)
1 50 200 0.34 (0.08, 1.56) 0.014 (0.004, 0.075)
5 50 200 0.018 (0.012, 0.0231) 1.95 (0.59, 8.55)

Table 2: Estimates of the hyperparameters of the normal-gamma distribution for sim-
ulation 2.

the NG model. The posterior mean value of λ is much smaller than the Lasso value of
1. The posterior means of the regression coefficients with the NG prior and DE prior
are displayed in Figure 6. The coefficient estimates based on the NG prior out-perform
those based on the DE prior. For large signal (i.e. both β? and n large), the NG
estimates identified all the correct β? with very little attenuation.

5.3 Example: NIR spectroscopy data

The data consists of 215 near-infrared absorbance spectra of meat samples, recorded on
a Tecator Infratec Food Analyzer (represented as a 100-channel absorbance spectrum in
the wavelength range 850-1050nm) and the composition of each sample in terms of water,
fat and protein content. We consider predicting fat content on the basis of its infrared
spectrum using the 100 channels. The data is split in a training/monitoring/testing set
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Figure 6: The posterior mean of β for simulation 2 with normal-gamma (NG) prior and
double exponential prior (DE).

of 129/43/43 samples. The data, originally used by Borggaard and Thodberg (1992), is
available at http://lib.stat.cmu.edu/datasets/tecator. More recently it was analysed in
Eilers et al. (2009). We used the training and monitoring data comprising n = 172 =
129 + 43 samples (all data) as our main data set and also took a random subset of
60 of the training data to create a p larger than n data set (small). The RMSEs for

All data Small
normal-gamma 1.94 2.59

Lasso 3.54 3.09

Table 3: RMSEs for fat prediction

prediction of the 43-sample test set, using the normal-gamma and Lasso priors, are
given in Table 3. The difference in predictive performance is not surprising when one
looks at the posterior median of λ in the normal-gamma prior which is 0.020 with a
95% credibility interval of (0.016, 0.026) on the full data.

The differences in the estimate of β under the two priors are shown in Figure 7,
which shows the posterior means for the two datasets. Clearly, in the large data sets
the RMSE is very different for the two methods as are the posterior means for β. Only
a few regression coefficients are estimated to be far from zero with the normal-gamma
prior unlike the Lasso prior which substantially overestimates many of the regression
coefficients. The results for the smaller data set are similar. The posterior median of λ
is 0.019 with a 95% credible interval of (0.013, 0.032). In the normal-gamma prior there
is more selection with only a few regression coefficients estimated to be far from zero.
However, the estimates of these regression coefficients are similar to those with a larger
sample size, unlike the Lasso prior whose estimates are much smaller.
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Figure 7: The posterior means of the β for the normal-gamma (solid) and Lasso (dashed)
for two datasets.

6 Discussion

This paper considers the performance of absolutely continuous distributions as priors for
regression coefficients. We demonstrate how the posterior expectation of the regression
coefficients depends on the derivative of the prior predictive density of the least squares
estimate of the regression coefficients. This allows us to compare the shrinkage induced
by different absolutely continuous distributions.

A natural class of prior distributions are scale mixtures of normal distributions and
we consider, in detail, the particular choice of a normal-gamma distribution. This
distribution allows us to control prior beliefs about the decay of the absolute values of
the ordered regression coefficients. At one extreme we have normal priors which promote
a similarity between the magnitudes of the regression coefficients, and on the other hand
prior distributions that can promote effective variable selection by extreme shrinkage of
“small” regression coefficients to a value close to zero. A gamma mixing distribution
can be interpreted through the well-known links between the gamma distribution and
the Dirichlet distribution. We specify a default prior for the hyperparameters, shape λ
and scale γ, of the normal-gamma and adopt a full Bayesian analysis.

A Gibbs sampler is proposed to fit the model with a normal-gamma prior, aug-
mented by a Metropolis-Hastings step for updating the gamma shape parameter λ.
Recently, there has been interest in regression problems where n is small and p is large.
Naive application of Gibbs sampling would lead to the inversion of (p× p)-dimensional
matrix. We exploit the singular value decomposition of the design matrix to avoid
this computationally expensive inversion, replacing it by the inversion of an (n × n)-
dimensional matrix. We have shown that the normal-gamma prior can better represent
heterogeneity in regression effects relative to standard “spike-and-slab” priors in terms
of predictive performance. The differences in the regression estimates under the priors
are linked to the normal distribution commonly used as a “slab”, which sets an upper
limit on the shrinkage factors. The normal-gamma could also be used as the “slab” in a
“spike-and-slab” prior. The use of such a distribution with heavy tails is an interesting
area for future research. The computational methods developed in this paper could be
easily extended to other generalized inverse Gaussian mixing distributions, which would
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generate generalized hyperbolic priors for β.

Appendix A: Proof of Proposition 1

The proof follows closely that found in Pericchi and Smith (1992) generalised to mul-
tiparameter β and multiple regression. The centring of the columns of X implies that
the least squares estimates α̂ and β̂ are independent under the sampling distribution.
The assumed prior independence implies that α and β are independent a posteriori and
we can work with β only. From the definition of h(x) as the predictive density of the
p× 1 sufficient statistic β̂, it follows that

∂

∂x
log h(x) =

∫
∂
∂xN(x|β, σ2(XT X)−1)π(β)dβ∫
N(x|β, σ2(XT X)−1)π(β)dβ

= −
∫

σ−2(XT X)(x− β)N(x|β, σ2(XT X)−1)π(β)dβ∫
N(x|β, σ2(XT X)−1)π(β)dβ

.

Re-arranging we have

x + σ2(XT X)−1 ∂

∂x
log h(x) =

∫
βN(x|β, σ2(XT X)−1)π(β)dβ∫
N(x|β, σ2(XT X)−1)π(β)dβ

and so the posterior expectation of (p× 1)-dimensional vector β is given by

E[β|β̂] = β̂ − σ2(XT X)−1s(β̂) (4)

where

s(x) = − ∂

∂x
log h(x).

Clearly, this can can be written as

E[β|β̂] =
(
I − S(β̂)

)
β̂

where
S(β̂) = σ2(XT X)−1R(β̂),

with R as defined in the Proposition.

The form of the variance follows from observing that the mean square error is the
‘variance plus squared bias’ that is in matrix form

Var(β|β̂) = E[(β − β̂)(β − β̂)T |β̂]− [E[β|β̂]− β̂][E[β|β̂]− β̂]T .

From the result (4) we have

E[β|β̂]− β̂ = −σ2(XT X)−1s(β̂).
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Letting p(x|β) denote the sampling density of β̂, differentiating it twice, we can write

(β − x)(β − x)T p(x|β) = σ4(XT X)−1 ∂2

∂x∂xT
p(x|β)(XT X)−1 + σ2(XT X)−1p(x|β).

Multiplying by the prior for β and integrating shows that

E[(β − x)(β − x)T |β̂] = σ4(XT X)−1

[
∂2

∂x∂xT
h(x)

]
(XT X)−1 1

h(x)
+ σ2(XT X)−1.

and so

Var(β|β̂) = σ2(XT X)−1−σ4(XT X)−1

[
s(β̂)s(β̂)T − 1

h(β̂)

∂2

∂x∂xT
h(x)

∣∣∣∣
x=β̂

]
(XT X)−1.

The result follows from noting that

W (x) = − ∂2 log h(x)
∂x∂xT

=
[{

∂h(x)
∂x

∂h(x)
∂xT

}
− h(x)

∂2h(x)
∂x∂xT

]/
h2(x).
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