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Abstract: We consider the problem of inference on one of the two parameters of a probability

distribution when we have some prior information on a nuisance parameter. When a prior prob-

ability distribution on this nuisance parameter is given, the marginal distribution is the classical

tool to account for it. If the prior distribution is not given, but we have partial knowledge such

as a fixed number of moments, we can use the maximum entropy principle to assign a prior law

and thus go back to the previous case. In this work, we consider the case where we only know

the median of the prior and propose a new tool for this case. This new inference tool looks like

a marginal distribution. It is obtained by first remarking that the marginal distribution can be

considered as the mean value of the original distribution with respect to the prior probability law

of the nuisance parameter, and then, by using the median in place of the mean.
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1 Introduction

We consider the problem of inference on a parameter of interest θ of a probability distribution

when we have some prior information on a nuisance parameter ν from a finite number of samples

of this probability distribution. Assume that we know the expressions of either the cumulative

distribution function (cdf) FX|V ,θ(x|ν, θ) or its corresponding probability density function (pdf)

fX|V ,θ(x|ν, θ), where X = (X1, · · · , Xn)′ and x = (x1, · · · , xn)′. V is a random parameter on which

we have an a priori information and θ is a fixed unknown parameter. This prior information can

either be of the form of a prior cdf FV(ν) (or a pdf fV(ν)) or, for example, only the knowledge of

a finite number of its moments. In the first case, the marginal cdf

FX|θ(x|θ) =

∫ +∞

−∞
FX|V ,θ(x|ν, θ)fV(ν) dν

= EV
(
FX|V ,θ(x|V, θ)

)
, (1)

is the classical tool for doing any inference on θ. For example the Maximum Likelihood (ML)

estimate, θ̂ML of θ is defined as

θ̂ML = argmax
θ

{
fX|θ(x|θ)

}
,

where fX|θ(x|θ) is the pdf corresponding to the cdf FX|θ(x|θ).
In the second case the Maximum Entropy (ME) principle ([4, 5]), can be used for assigning the

probability law fV(ν) and thus go back to the previous case, e.g. [1] page 90.

In this paper we consider the case where we only know the median of the nuisance parameter V.

If we had a complementary knowledge about the finite support of pdf of V, then we could again

use the ME principle to assign a prior and go back to the previous case, e.g. [3]. But if we are

given the median of V and if the support is not finite, then in our knowledge, there is not any

solution for this case. The main object of this paper is to propose a solution for it. For this aim,

in place of FX|θ(x|θ) in (1), we propose a new inference tool F̃X|θ(x|θ) which can be used to infer

on θ (we will show that F̃X|θ(x|θ) is a cdf under a few conditions). For example we can define

θ̃ = argmax
θ

{
f̃X|θ(x|θ)

}
,

where f̃X|θ(x|θ) is the pdf corresponding to the cdf F̃X|θ(x|θ).
This new tool is deduced from the interpretation of FX|θ(x|θ) as the mean value of the random

variable T = T (V; x) =FX|V ,θ(x|V, θ) as given by (1). Now, if in place of the mean value, we take

the median, we obtain this new inference tool F̃X|θ(x|θ) which is defined as

F̃X|θ(x|θ) : P
(
FX|V ,θ(x|V, θ) ≤ F̃X|θ(x|θ)

)
= 1/2,
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and can be used in the same way to infer on θ.

As far as the authors know, there is no work on this subject except recently presented conference

papers by the authors, [9, 8, 7]. In the first article we introduced an alternative inference tool to

total probability formula, which is called a new inference tool in this paper. We calculated directly

this new inference tool (such as Example A in Section 2) and a numerical method suggested for its

approximation. In the second one, we used this new tool for parameter estimation. Finally, in the

last one, we reviewed the content of two previous papers and mentioned its use for the estimation

of a parameter with incomplete knowledge on a nuisance parameter in the one dimensional case.

In this paper we give more details and more results with proofs using weaker conditions, with a new

overlook on the problem. We also extend the idea to the multivariate case. In the following, first

we give more precise definition of F̃X|θ(x|θ). Then we present some of its properties. For example,

we show that under some conditions, F̃X|θ(x|θ) has all the properties of a cdf, its calculation is

very easy and depends only on the median of prior distribution. Then, we give a few examples and

finally, we compare the relative performances of these two tools for the inference on θ. Extensions

and conclusion are given in the last two sections.

2 A New Inference Tool

Hereafter in this section to simplify the notations we omit the parameter θ, and we assume that

the random variables Xi, i = 1, · · · , n and random parameter V are continuous and real. We also

use increasing and decreasing instead of non-decreasing and non-increasing respectively.

Definition 1 Let X = (X1, · · · , Xn)
′ have a cdf FX|V(x|ν) depending on a random parameter V

with pdf fV(ν), and let the random variable T = T (V; x) = FX|V(x|V) have a unique median for

each fixed x. The new inference tool, F̃X(x), is defined as the median of T :

FFX |V(x|V)(F̃X(x)) =
1

2
, or P (FX|V(x|V) ≤ F̃X(x)) =

1

2
. (2)

To make our point clear we begin with the following simple example, called Example A. Let

FX|V(x|ν) = 1 − e−νx, x > 0, be the cdf of an exponential random variable with scale parameter

ν > 0. We assume that the prior pdf of V is known and also is exponential with parameter 1, i.e.

fV(ν) = e−ν , ν > 0. We define the random variable T = FX|V(x|V) = 1 − e−Vx, for any fixed

value x > 0. The random variable 0 ≤ T ≤ 1 has the following cdf

FT (t) = P (1 − e−Vx ≤ t) = 1 − (1 − t)
1
x , 0 ≤ t ≤ 1.
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Therefore, pdf of T is fT (t) = 1
x
(1 − t)( 1

x
−1), 0 ≤ t ≤ 1. Now, we can calculate the mean of the

random variable T as follow

E(T ) =

∫ 1

0

t
1

x
(1 − t)( 1

x
−1) dt = 1 − 1

x + 1
.

Let Med(T ) be the median of the random variable T , then it can be calculated by

FT (Med(T )) =
1

2
⇒ Med(T ) = 1 − e−x ln(2).

Mean value of the random variable T is a cdf with respect to (wrt) x. This fact is always true;

because E(T ) is the marginal cdf of random variable X, i.e. FX(x). The marginal cdf is well known,

well defined and can also be calculated directly by (1). On the other hand, in this example, it is

obvious that Med(T ) is a cdf wrt x, which is called F̃X(x) in Definition 1, see Figure 1. However,

we have not a short cut for calculating F̃X(x) such as FX(x) in (1).

In the following theorem and remark, first we show that under a few conditions, F̃X(x) has all the

properties of a cdf. Then, in Theorem 2, we drive a simple expression for calculating F̃X(x) and

show that, in many cases, the expression of F̃X(x) depends only on the median of the prior and

can be calculated simply, see Remark 2. In Theorem 3 we state separability property of F̃X(x)

versus exchangeability of FX(x).

Theorem 1 Let X have a cdf FX|V(x|ν) depending on a random parameter V with pdf fV(ν) and

the real random variable T = FX|V(x|V) have a unique median for each fixed x. Then:

1. F̃X(x) is an increasing function in each of its arguments.

2. If FX|V(x|ν) and FV(ν) are continuous cdfs then F̃X(x) is a continuous function in each of

its arguments.

3. 0 ≤ F̃X(x) ≤ 1.

Proof:

1. Let y = (y1, · · · , yn)
′, z = (z1, · · · , zn)′, yj < zj for fixed j and yi = zi for i 6= j, 1 ≤ i, j ≤ n

and take

ky = F̃X(y), kz = F̃X(z) and Y = FX|V(y|V), Z = FX|V(z|V).

Then using (2) we have

P (Y ≤ ky) = P (Z ≤ kz) =
1

2
.
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Figure 1: Top: pdf of random variable T = T (V; x) = FX|V(x|V) = 1 − e−Vx, Middle: cdf of

random variable T , and Bottom: mean and median of random variable T in Example A.
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We also have Y ≤ Z, because FX|V is an increasing function in each of its arguments. Therefore,

P (Y ≤ ky) = P (Z ≤ kz) ≤ P (Y ≤ kz),

ky is the unique median of Y and so ky ≤ kz or equivalently F̃X(x) is increasing in its j-th

argument.

2. Let x. = (x1, · · · , xj−1, x., xj+1, · · · , xn)′ and t = (x1, · · · , xj−1, t, xj+1, · · · , xn)′. By part 1,

F̃X(x) is an increasing function in each of its arguments. Therefore,

F̃X(x−) = lim
t↑xj

F̃X(t) and F̃X(x+) = lim
t↓xj

F̃X(t),

exist and are finite, e.g. [11].

Further, FX|V(x|ν) is continuous wrt xj , and so

P (FX|V(x−|V) ≤ F̃X(x−)) = P (FX|V(x|V) ≤ F̃X(x−)),

P (FX|V(x+|V) ≤ F̃X(x+)) = P (FX|V(x|V) ≤ F̃X(x+)),

and by (2) we have

P (FX|V(x|V) ≤ F̃X(x−)) = P (FX|V(x|V) ≤ F̃X(x))

= P (FX|V(x|V) ≤ F̃X(x+)). (3)

But F̃X(x) is the unique median of FX|V(x|V), therefore by (3),

F̃X(x−) = F̃X(x) = F̃X(x+),

and thus F̃X(x) is continuous.

3. F̃X(x) is the median of random variable T , where T = FX|V(x|V) and 0 ≤ T ≤ 1, and so

0 ≤ F̃X(x) ≤ 1. �

Remark 1 By part 1 of Theorem 1, limxj↑+∞ F̃X(x) and limxj↓−∞ F̃X(x) exist and are finite,

[11]. Therefore F̃X(x) is a continuous cdf if conditions of Theorem 1 hold and

1. limxj↓−∞ F̃X(x) = 0 for any particular j,

2. limx1↑+∞,··· ,xn↑+∞ F̃X(x) = 1,

3. ∆b1a1 · · ·∆bnanF̃X(x) ≥ 0, where ai ≤ bi, i = 1, · · · , n, and

∆bjaj
F̃X(x) = F̃X((x1, · · · , xj−1, bj, xj+1, · · · , xn)′)−F̃X((x1, · · · , xj−1, aj , xj+1, · · · , xn)′) ≥ 0.
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In this case, we call F̃X(x) the marginal cdf of X based on median. When F̃X(x) is a one

dimensional cdf, the last condition follows from parts 1 and 3 of Theorem 1.

Theorem 2 If L(ν) = FX|V(x|ν) is a monotone function wrt ν and V has a unique median

F−1
V (1

2
), then F̃X(x) = L(F−1

V (1
2
)).

Proof: Let

L−(u) =

{
inf{ν; L(ν) ≥ u} if L is an increasing function

inf{ν; L(ν) ≤ u} if L is a decreasing function
,

be the generalized inverse of L, e.g. [10] page 39. Noting that

{(u, ν) : L−(u) ≤ ν} =

{
{(u, ν) : u ≤ L(ν)} if L is an increasing function

{(u, ν) : u ≥ L(ν)} if L is a decreasing function
,

and by (2) we have,

P (L(V) ≤ F̃X(x)) =
1

2

⇔
{

P (V ≤ L−(F̃X(x))) = 1
2

if L is an increasing function

P (V ≥ L−(F̃X(x))) = 1
2

if L is a decreasing function

⇔
{

FV(L−(F̃X(x))) = 1
2

if L is an increasing function

1 − FV(L−(F̃X(x))) = 1
2

if L is a decreasing function

⇔ FV(L−(F̃X(x))) =
1

2

⇔ L−(F̃X(x)) = F−1
V (

1

2
) by uniqueness of the median of V

⇔ F̃X(x) = L(F−1
V (

1

2
)),

where the last expression follows from

{(u, ν) : L−(u) = ν} ⊆ {(u, ν) : L(ν) = u}.

�

Remark 2 If conditions of Theorem 2 hold, then F̃X(x) belongs to the family of distributions

FX|V(x|ν). Because, F̃X(x) = FX|V(x|F−1
V (1

2
)). Therefore F̃X(x) is a cdf and conditions in

Remark 1 hold.
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Remark 3 F̃X(x) depends only on the median of prior distribution, F−1
V (1

2
), while the expression

of FX(x) needs the perfect knowledge of FV(ν). Therefore, F̃X(x) is robust relative to prior

distributions with the same median.

Remark 4 If median of T is not unique then F̃X(x) may not be a unique cdf wrt x. For example

(called Example B), assume that V has the following cdf, in Example A, Figure 2-left:

FV(ν) =





0 ν < 0

ν 0 ≤ ν < 1
2

1
2

1
2
≤ ν < 3

4

ν − 1
4

3
4
≤ ν < 5

4

1 5
4
≤ ν

.

Then, T = T (V; x) = FX|V(x|V) = 1 − e−Vx has the following cdf

FT (t) =





0 t < 0
− ln(1−t)

x
0 ≤ t < 1 − e−

1
2
x

1
2

1 − e−
1
2
x ≤ t < 1 − e−

3
4
x

− ln(1−t)
x

− 1
4

1 − e−
3
4
x ≤ t < 1 − e−

5
4
x

1 1 − e−
5
4
x ≤ t

.

Therefore, the median of T is an arbitrary point in the following interval: (see Figure 2-right)

[
1 − e−

1
2
x , 1 − e−

3
4
x
)
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Figure 2: Left: cdf of random variable V in Example B and its corresponding pdf. Right: cdf of

random variable T = T (V; x) = FX|V(x|V) = 1 − e−Vx in Example B.
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Theorem 3 Let FX|V(x|ν) be conditional cdf of X = (X1, · · · , Xn)′ given V = ν and L(k1,··· ,kr)(ν) =

F(Xk1
,··· ,Xkr )|V(xk1, · · · , xkr |ν) be monotone function of ν for each {k1, · · · , kr} ⊆ {1, · · · , n}. Let

also V have a unique median F−1
V (1

2
). If for each {k1, · · · , kr} ⊆ {1, · · · , n},

F(Xk1
,··· ,Xkr )|V(xk1 , · · · , xkr |ν) =

r∏

i=1

FXki
|V(xki

|ν),

i.e. X | V = ν has independent components, then

F̃(Xk1
,··· ,Xkr )(xk1 , · · · , xkr) =

r∏

i=1

F̃Xki
(xki

).

Proof:

Conditions of Theorem 2 hold and so, for each {k1, · · · , kr} ⊆ {1, · · · , n},

F̃(Xk1
,··· ,Xkr )(xk1 , · · · , xkr) = L(k1,··· ,kr)(F

−1
V (

1

2
))

= F(Xk1
,··· ,Xkr )|V(xk1 , · · · , xkr |F−1

V (
1

2
))

=

r∏

i=1

FXki
|V(xki

|F−1
V (

1

2
))

=

r∏

i=1

Lki
F−1
V (

1

2
)

=
r∏

i=1

F̃Xki
(xki

).

�

Remark 5 If X | V= ν has independent components, then the marginal distribution of X cannot

have independent components. For example, in general case,

FX(x) =

∫ +∞

−∞
FX|V(x|ν) dFV(ν) 6=

n∏

i=1

FXi
(xi) =

n∏

i=1

∫ +∞

−∞
FXi|V(xi|ν) dFV(ν).

It can be shown that, if X | V= ν has Independent and Identically Distributed (iid) components,

then the marginal distribution of X is exchangeable, see Example 1. We recall that for identically

distributed random variables exchangeability is a weaker condition than independence.

In the following we show that some families of distributions (e.g. [6]) have a monotone distribution

function wrt their parameters and so, calculation of F̃X(x) is very easy by using Theorem 2.
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Lemma 1 Let L(ν) = FX|V(x|ν). If ν is a real location parameter then L(ν) is decreasing wrt ν.

Proof: Let ν1 < ν2 and ν be a location parameter. Then

L(ν1) = FX|V(x|ν1)

= FX|V(x − ν1), where x − ν1 = (x1 − ν1, · · · , xn − ν1)
′

≥ FX|V(x − ν2), because xi − ν1 > xi − ν2, i = 1, · · · , n

= FX|V(x|ν2)

= L(ν2).

�

Lemma 2 Let L(ν) = FX|V(x|ν). If ν is a scale parameter then L(ν) is monotone wrt ν.

Proof: Let ν1 < ν2. If ν is a scale parameter, ν > 0, then

L(ν1) = FX|V(
x

ν1

)

≤
≥ FX|V(

x

ν2
),

if x < 0

if x > 0

= L(ν2).

Therefore, L(ν) is an increasing function if x < 0 and is a decreasing function if x > 0, i.e. L(ν)

is a monotone function wrt ν. �

The proof of the following lemma is straightforward.

Lemma 3 Let X1, · · ·Xn given V = ν be iid random variables and X = (X1, · · · , Xn)
′. If

L(ν) = FX1|V(x|ν) is an increasing (a decreasing) function then L∗(ν) = FX|V(x|ν) is an increasing

(a decreasing) function of ν.

In some cases we can show directly that L(.) is a monotone function. For example, in the exponen-

tial family this property can be proved by using differentiation. Let X|η be distributed according

to an exponential family with pdf

fX|η(x|η) = h(x) exp (η′T (x) − A(η)) ,

where η = (η1, · · · , ηn)′ and T = (T1, · · · , Tn)′. It can be shown that L(η) = FX|η(x|η) is

a monotone function wrt each of its arguments in many cases by the following method: Let
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Iy≤x = 1 if y1 ≤ x1, · · · , yn ≤ xn and 0 elsewhere; and note that the differentiation under the

integral sign is true for exponential family. Then
∂

∂ηi
L(η) =

∂

∂ηi
FX|η(x|η)

=
∂

∂ηi

∫

Rn

Iy≤x h(y) exp (η′T (y) − A(η)) dy

=

∫

Rn

Iy≤x h(y)
∂

∂ηi
exp (η′T (y) − A(η)) dy

=

∫

Rn

Iy≤x h(y) (Ti(y) − ∂

∂ηi
A(η)) exp (η′T (y) − A(η)) dy

≤
≥

∫

Rn

h(y) (Ti(y) − ∂

∂ηi
A(η)) exp (η′T (y) − A(η)) dy

= EX|η(Ti(X) − ∂

∂ηi

A(η)) = 0.

The last equality follows from EX|η(Ti(X)) = ∂
∂ηi

A(η), e.g. [6] page 27.

On the other hand, we can use stochastic ordering property of a family of distributions for showing

that L(.) is a monotone function. A family of cdfs

F = {FX|V(x|ν), ν ∈ V } (4)

where V is an interval on the real line, is said to have Monotone Likelihood Ratio (MLR) property

if, for every ν1 < ν2 in V the likelihood ratio

fX|V(x|ν2)

fX|V(x|ν1)
,

is a monotone function of x. The property of MLR defines a very strong ordering of a family of

distributions.

Lemma 4 If F is an MLR family wrt x then FX|V(x|ν) is an increasing (or a decreasing) function

of ν for all x.

Proof: See e.g. [12] page 124. �

A family of cdfs in (4) is said to be stochastically increasing (SI) if ν1 < ν2 implies FX|V(x|ν1) ≥
FX|V(x|ν2) for all x. For stochastically decreasing (SD) the inequality is reversed. This definition is

a weaker property than MLR property (by Lemma 4), but is a stronger property than monotonicity

of L(ν) = FX|V(x|ν) (because L(ν) is monotone for each fixed x). Therefore, we have

MLR =⇒ SI or SD =⇒ L(ν) is monotone

It can be shown that the converse of the above relations are not true.
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Remark 6 In Theorem 1, we prove that F̃X(x) is an increasing function. In the proof of this

theorem we do not use the monotonicity property of L(ν) = FX|V(x|ν) wrt ν. For example (called

Example C), assume that

FX|V(x|ν) =
1

2
(1 − e−νx) I{x>0}(x) +

1

2

∫ x

−∞
C (t; ν, 1) dt

be mixture cdf of an exponential and a Cauchy cdf with parameter ν > 0. Figure 3-left shows the

graphs of L(ν) = FX|V(x|ν) for different x. L(ν) is not monotone for some of x values in this

figure. If we assume that the prior pdf of V is known and is also exponential with parameter 1,

then, still median of random variable T is a cdf, see Figure 3-right.
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Figure 3: Left: the graphs of L(ν) = FX|V(x|ν) for different x in Example C. Right: the mean

and median of random variable T in Example C.
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3 Examples

In what follows, we use the following notations and expressions, [2] pages 427-422:

Normal: N (x; µ, σ2) = (2πσ2)−
1
2 exp

{
− 1

2σ2 (x − µ)2
}

; σ > 0

Double Exponential: DE (x; λ) = 1
2λ

exp {−|x|/λ} ; λ > 0

Inverse Gamma: IG (x; α, β) = βα

Γ(α)
x−(α+1)exp {−β/x} ; x, α, β > 0

Student: S (x; µ, λ, α) = Γ((α+1)/2)λ1/2

Γ(α/2)(πα)1/2

(
1 + λ

α
(x − µ)2

)−(α+1)
2 ; λ, α > 0

Cauchy: C (x; µ, σ) = 1
πσ

(
1 + (x−µ

σ
)2

)−1
; σ > 0

Exchangeable Normal: The random vector X = (X1, · · · , Xn)′ is said to have an exchangeable

normal distribution, EN (x; µ, σ2, ρ), if its distribution is multivariate normal with the following

mean vector and variance-covariance matrix



µ

µ

.

µ




n×1

, σ2




1 ρ · · · ρ

ρ 1 · · · ρ

. . · · · .

ρ ρ · · · 1




n×n

, σ > 0, ρ ∈ [0, 1).

It can be shown that EN (x; µ, σ2, ρ) =

kn(ρ, σ2) exp

{
−1

2

(∑n
i=1(xi − µ)2

σ2(1 − ρ)
− ρ(

∑n
i=1(xi − µ))

2

σ2(1 + (n − 1)ρ)(1 − ρ)

)}
,

where kn(ρ, σ2) = (
√

2πσ)−n(1 − ρ)−(n−1)/2(1 + (n − 1)ρ)−1/2, and x = (x1, · · · , xn)′.

3.1 Example 1

The first example we consider is

fX|V ,θ(x|ν, θ) = N (x; ν, θ) = (2πθ)−
1
2 exp

{
− 1

2θ
(x − ν)2

}

where we assume that the mean value ν is the nuisance parameter. Let X1, · · ·Xn be an iid copy

of X (i.e. X|V = ν, θ) and X = (X1, · · · , Xn)′, then:

• Prior pdf case fV(ν) = N (ν; ν0, θ0):

Then we have

fX|θ(x|θ) =

∫ +∞

−∞
fX|V ,θ(x|ν, θ) fV(ν) dν = N (x; ν0, θ + θ0) ,
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and

fX|θ(x|θ) =

∫ +∞

−∞
fX|V ,θ(x|ν, θ) fV(ν) dν = EN

(
x; ν0, θ + θ0,

θ0

θ + θ0

)
.

• Unique median knowledge case Median {V} = ν0:

Then, as we could see, by using Lemma 1 and Theorem 2, we have

F̃X|θ(x|θ) = FX|V ,θ(x|ν0, θ),

or equivalently,

f̃X|θ(x|θ) = N (x; ν0, θ) .

Now we can use Theorem 3 for calculating F̃X|θ(x|θ) (because FX|V ,θ(x|ν, θ) is a decreasing

function wrt ν by Lemma 1), therefore,

f̃X|θ(x|θ) =
n∏

i=1

N (xi; ν0, θ) = EN (x; ν0, θ, 0) . (5)

Note that, if fV(ν) = N (ν; ν0, θ0) or fV(ν) = C (ν; ν0, θ0) then f̃X|θ(x|θ) is given by (5),

because the median of these two distributions are equal to ν0 (see Remark 3).

• Moments knowledge case E(|V|) = ν0:

Then the ME pdf is given by DE (ν; ν0). In this case we cannot obtain an analytical

expression for

fX|θ(x|θ) =

∫ +∞

−∞
(2πθ)−

1
2 exp

{
− 1

2θ
(x − ν)2

}
1

2ν0
exp {−|ν|/ν0} dν

= exp

{
θ − 2ν0x

2ν2
0

}(
1 + erf

{
ν0x − θ

ν0

√
2θ

}
+ exp

{
2x

ν0

}
erfc

{
ν0x + θ

ν0

√
2θ

})
,

where erf(y) = 2√
π

∫ y

0
exp(−t2) dt and erfc(y) = 2√

π

∫ ∞
y

exp(−t2) dt. We recall that, if we

know that E(V) = ν0 or Median {V} = ν0 and the support of V is R the ME pdf does not

exist.

3.2 Example 2

The second example we consider is

fX|V ,θ(x|ν, θ) = N (x; θ, ν) = (2πν)−
1
2 exp

{
− 1

2ν
(x − θ)2

}
,

where, this time, we assume that ν is the variance and the nuisance parameter. Then:
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• Prior pdf case fV(ν) = IG (ν; α, β):

Then, it is easy to show that,

fX|θ(x|θ) = S (x; θ, α/β, 2α) , (6)

but fX|θ(x|θ) cannot be calculated analytically.

• Unique median knowledge case Median {V} = ν0:

Then, as we could see, by using Lemma 2 and Theorem 2, we have

f̃X|θ(x|θ) = N (x; θ, ν0) .

It can be shown that FX|V ,θ(x|ν, θ) is a monotone function wrt ν (by using derivative) and

by Theorem 3 we have

f̃X|θ(x|θ) =

n∏

i=1

N (xi; θ, ν0) = EN (x; θ, ν0, 0) .

• Moments knowledge case E(1/V) = 1/ν0:

Then, knowing that the variance is a positive quantity, the ME pdf fV(ν) is an IG (ν; 1, ν0).

In this case we have

fX|θ(x|θ) = S (x; θ, 1/ν0, 2) ,

and fX|θ(x|θ) cannot be calculated analytically.

3.3 Example 3

In this example we consider is EN (x; ν, σ2, ρ), where ν is a nuisance parameter. Noting that, we

can write EN (x; ν, σ2, ρ), as follows (exponential family),

fX(x) = qn(θ1, θ2, θ3) exp{θ1t1 + θ2t2 + θ3t3},

where θ1 = ρ/l, t1 =
∑

i<j xixj , θ2 = −(1 + (n − 2)ρ)/(2l), t2 =
∑n

i=1 x2
i , θ3 = (1 − ρ)ν/l,

t3 =
∑n

i=1 xi, l = σ2(1 + (n − 1)ρ)(1 − ρ), and qn(θ1, θ2, θ3) can be determined. This pdf is a

monotone function wrt θ3 and so L(ν) is a monotone function. Let θ = (σ2, ρ) and the median of

prior pdf be ν0, then

f̃X|θ(x|θ) = EN
(
x; ν0, σ

2, ρ
)
.
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3.4 Comparison of Estimators in Example 1

Suppose we are interested in estimating θ in Example 1. In the case that n = 1

fX|θ(x|θ) = N (x; ν0, θ + θ0) and f̃X|θ(x|θ) = N (x; ν0, θ) ,

and so the ML estimator (MLE) of θ based on these two pdfs are equal to

θ̂ = max{(X − ν0)
2 − θ0, 0} and θ̃ = (X − ν0)

2

respectively. For n > 1 the MLE of θ based on

fX|θ(x|θ) = EN
(

x; ν0, θ + θ0,
θ0

θ + θ0

)
,

can be calculated numerically by the following simplified likelihood function,

l(θ) = exp

{
−1

2

(∑n
i=1(xi − ν0)

2

θ
− (

∑n
i=1(xi − ν0))

2

θ(θ + n)

)}
/
√

(2π)nθn−1(θ + n),

where we assume that θ0 = 1. The MLE of θ based on f̃X|θ(x|θ) = EN (x; ν0, θ, 0), is equal to

θ̃ =
∑n

i=1(Xi − ν0)
2/n.

Before comparing these two estimators (by considering normal prior for ν), one can predict that, θ̂

is better than θ̃, because θ̂ uses more information (i.e. known normal prior) than θ̃ which uses only

the median of prior distribution. We may also recall that, fX|θ(x|θ) is the true pdf of observations

obtained using the full prior knowledge on the nuisance parameter, while f̃X|θ(x|θ) is a pseudo

pdf which includes only prior knowledge of the median of nuisance parameter.

The empirical Mean Square Error (MSE) of 4 estimators are plotted in Figure 3.4 for different

sample sizes n. We note by T the MLE of θ when ν = ν0, and we note by TMaxEnt the MLE of θ

when the prior mean and variance are known.

In Figure 3.4-left we plot the graphs of MSE of θ̂, θ̃, T and TMaxEnt. In Table 1 we classify these

4 estimators and corresponding assumptions for n = 1. We see that, in Figure 3.4-left, θ̂ is better

than θ̃, especially for large sample size n, and T is the best.

In Figure 3.4-right we plot the graphs of MSE wrt median, ν0. This is useful for checking robustness

of estimators wrt false prior information. We see that θ̂ is more robust than θ̃ relative to ν0, but

both of them dominated by T . In this case, samples are generated from a normal distribution

with random normal mean (median ν0) when θ = 2, however, we assume that ν has a standard

normal prior distribution.

The simulations confirm the following logic: more we have information better will be the estima-

tion. In fact for calculating T we have not nuisance parameter; for θ̂, we use all prior distribution

information; for T
MaxEnt

we use prior mean and prior variance information; and for θ̃ we use only

the median value of prior distribution.
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Figure 4: The empirical MSEs of θ̃, T
MaxEnt

, θ̂, and T wrt θ (left) and ν0 (right, for θ = 2) for

different sample sizes n.
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Table 1: Comparing estimators of variance in four different situations

pdf of X|θ based on prior information Simulated data pdf

Assumptions MLE of θ MSE(θ) = E(MLE − θ)2

Known parameter N (x; ν0, θ) N (x; 0, θ)

ν = ν0 T = (X − ν0)
2 2θ2

Known prior N (x; ν0, θ + θ0) N (x; 0, θ + 1)

fV(ν) = N (ν; ν0, θ0) θ̂ = max{(X − ν0)
2 − θ0, 0} E(θ̂ − θ)2

Known moments N
(
x; ν0, θ + θ0

2

)
N (x; 0, θ + 1)

E(V) = ν0, V (V) = θ0

2
TMaxEnt = max{(X − ν0)

2 − θ0

2
, 0} E(TMaxEnt − θ)2

Known unique median N (x; ν0, θ) N (x; 0, θ + 1)

Median(V) = ν0 θ̃ = (X − ν0)
2 2(θ + 1)2 + 1

4 Extensions

In this section, we show that the suggested new tool can be extended to other functions such as

quantiles instead of median, but not to other functions such as mode. For example, mode of the

random variable T = T (V; x) = FX|V(x|V) in Definition 1, i.e.,

Mod(T ) = arg maxtfT (t), (7)

is not a cdf in Example A. The mode of T is: (see Figure 1 top)

Mod(T ) =






0 0 < x < 1

∀ k ∈ [0, 1] x = 1

1 x > 1

,

which is not a distribution function. If we assume k = 1, then Mod(T ) is a degenerate cdf. In

Figure 5 we plot the mean, median and mode of the random variable T . We see that they are

cdfs. However, the cdf based on mode is the extreme case of the two others.

As noted by one of the referees, the mode of prior pdf is useful for introducing a pseudo cdf

similar to our new inference tool, F̃X(x). That is, instead of using the result of Theorem 2:

F̃X|θ(x|θ) = FX|ν,θ(x|Med(V), θ), using F̃ Mod
X|θ (x|θ) = FX|ν,θ(x|Mod(V), θ). This method was used

for eliminating the nuisance parameter ν. In this case, Theorem 3, i.e. separability property

of pseudo marginal distribution, also holds for F̃ Mod
X|θ (x|θ). Note that, the mode of the random

variable T , defined in (7) is not equal to F̃ Mod
X|θ (x|θ) and may not be a cdf similar to the above
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Figure 5: Mean, median and mode of random variable T = T (V; x) = FX|V(x|V) = 1−e−Vx wrt x.

illustration. However, it may be a cdf similar to the following example pointed out by the referee.

In Example A, let V − 1 be a binomial distribution with parameters B(2, 3
4
), i.e. V is a discrete

random variable with support {1, 2, 3}. Then E(T ) = 1− (e−x +6e−2x +9e−3x)/16 and Mod(T ) =

1 − e−3x are cdfs see Figure 6.
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Figure 6: Mean and mode of random variable T = T (V; x) = FX|V(x|V) = 1 − e−Vx wrt x.

On the other hand, we may extend the method presented in this paper to the class of quantiles

(e.g., quartiles or percentiles). To make our point clear we consider the first and third quartiles

of random variable T in Example A (instead of median, which is the second quartile). We denote

the new inference tools based on first and third quartiles by F̃ Q1

X|θ(x) and F̃ Q3

X|θ(x) respectively.

They can be calculated such as (2) by

P (FX|V(x|V) ≤ F̃ Q1

X (x)) =
1

4
and P (FX|V(x|V) ≤ F̃ Q3

X (x)) =
3

4
.

It can be shown that, in Example A, F̃ Q1

X (x) = 1− ex ln 0.75 and F̃ Q3

X (x) = 1− ex ln 0.25. In Figure 7
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we plot them.
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Figure 7: Q1, median and Q3 of random variable T = T (V; x) = FX|V(x|V) = 1 − e−Vx wrt x.

In conclusion, it seems that the method can be extended to any quantiles instead of median, but

its extension to other functions may need more care.

5 Conclusion

In this paper we considered the problem of inference on one set of parameters of a continuous

probability distribution when we have some partial information on a nuisance parameter. We

considered the particular case when this partial information is only the knowledge of the median

of the prior and proposed a new inference tool which looks like the marginal cdf (or pdf) but its

expression needs only the median of the prior. We gave precise definition of this new tool, studied

some of its main properties, compared its application with classical marginal likelihood in a few

examples, and finally gave an example of its usefulness in parameter estimation.
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