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SUMMARY 

Statistical methods for carrying out asymptotic inferences (tests or confidence 

intervals) relative to one or two independent binomial proportions are very frequent. However 

inferences about a linear combination of K independent proportions L=βipi (in which the first 

two are special cases) have had very little attention paid to them (focused exclusively on the 

classic Wald method). In this paper the authors approach the problem from the more efficient 

viewpoint of the score method, which can be solved using a free program which is available 

from the webpage quoted in the article. In addition the paper offers approximate formulas that 

are easy to calculate, gives a general proof of Agresti’s heuristic method (consisting of adding 

a certain number of successes and failures to the original results before applying Wald’s 

method) and, finally, it proves that the score method (which verifies the desirable properties 

of spatial and parametric convexity) is the best option in comparison with other methods. 
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1. Introduction. 

Asymptotic inferences relative to binomial proportions are very usual in applied 

research, and this has resulted in a large number of statisticians developing appropriate 

theoretical procedures. In particular, the case of one or two independent proportions has 

received a great deal of attention in recent years. For example, in 2008 alone thirteen articles 
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about the difference, ratio or odds-ratio of two independent proportions have been 

published113. 

Surprisingly, however, the asymptotic inferences concerning a linear combination 

(L=βipi) with K>2 independent binomial proportions have received very little attention, despite 

their great practical importance (e.g., dose–response studies, public-health surveys, multicenter 

clinical trials, agricultural experiments, etc.)14. Even more surprisingly, up till now the problem 

has been approached only from the points of view of the confidence intervals obtained using 

Wald’s method. 

In this paper, the problem is dealt with from the point of view of the hypothesis tests, and 

the confidence interval (CI) is obtained by inverting the test. Moreover, the problem is resolved 

by using the score method, which, by general agreement, produces better results that Wald’s 

method in cases K=115, K=216 and in general for any parameter of a contingency table5. Finally, 

the paper offers a theoretical proof of the heuristic result that Wald’s 95% confidence interval 

improves if 2/K successes and failures are added to each sample Agresti and Coull15 for K=1, 

Agresti and Caffo17 for K=2 and Price and Bonett18 for K>2, at the same time as it generalizes 

the result for any confidence value. 

2. Examples. 

Price and Bonett18 refer to a study by Cohen et al.19 in which 120 rats were randomly 

assigned to four diets (high or low fat and with fiber or without  fiber). The absence or presence 

of a tumor was recorded for each rat. Table 1 shows the data and the contrasts L of interest (L2 

for evaluating  the effect of dietary fiber; L3 for evaluating the effect of the level of fat; L1 for 

evaluating the interaction between L1 and  L2, that is, the difference between the effects of fiber 

according to which one or other of the fat levels are determined). In all cases βi=0.  

Tebbs and Roths14 refer to the data (Table 2) in a multicenter clinical trial where the aim 

was to evaluate the efficacy of a reduced-salt regime in treating male infants for acute watery 

diarrhea. One of the characteristics measured was the number of infants experiencing fever at 
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admission or during the trial. The aim is to estimate the pooled proportion of subjects who 

respond to treatment. Because the level of participation is likely different depending on the 

location, a natural estimate of the pooled proportion is the average of the response 

probabilities from the K=6 sites, i.e. L=βipi with βi=ni/ni.  Now βi≠0. A similar problem 

often arises in the metaanalysis, where it is common to take linear combinations across 

studies. 

3. The Wald method and the adjusted Wald method. 

Let K be independent binomial random variables xi~B(ni; pi), where i=1, 2, …, K and let 

L=βipi the parameter of interest (where the proportions pi are unknown and the parameters 

βi≠0 known). When K=1 and β1=1, the parameter of interest is the simple proportion p1. When 

K=2, β1=–1 and β2=+1, the parameter of interest is the difference between two proportions 

d=p2–p1.  Generally speaking, the parameter of interest L may refer to a contrast (if βi =0) or 

to a more general combination (if βi≠0). 

Whatever the situation the statistic i iL p  , where i i ip x / n , is asymptotically 

normal with mean L=βipi and variance 2
i i i iV p q / n  , where qi=1–pi. As a result, the test 

for contrasting H0: L=λ vs. H1: L≠ will be based on the statistic  z L / V ,   which 

must be compared in traditional fashion with zα/2 (the α/2–upper percentile of the typical 

normal distribution). Inverting the test  that is, making 2 2
2/z z  and working out  a (1–α)-

CI for L is obtained: 2/L z V . As the values of pi are unknown, the simplest option is to 

substitute pi by ip , which yields to the following Wald’s statistic and Wald’s CI (where 

1i iq p  ): 

                       1 1 1 2 1: /z L / V ,  CI L z V    where 2
1 i i i iV p q / n  .        (1) 

Price and Bonett18 found heuristically that Wald’s CI improves substantially if expression 

(1) is obtained not based on the original xi and ni,  but on xi +2/K  and ni +4/K, that is if 2/K 
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successes and 2/K failures are added to the original data. This yields the adjusted Wald method 

W(+2/K), in contrast to the original Wald method W(+0), which is also applicable in the case of 

the test. The procedure is compatible with the one recommended by Agresti and Coull15 for the 

case of one proportion (K=1, β1=1) and by Agresti and Caffo17 for the case of the difference 

between the two proportions (K=2, β1= –1, β2= +1). The origin of the method is to be found in 

the case of one proportion. Agresti and Coull15 proved that Wilson’s CI (which proceeds from 

the score test) has a midpoint that is equal to that of method W(+ 2
2 2/z / ), thus yielding a 

theoretical justification concerning the good behavior of method W(+2) in the case of one 

proportion, because 2 2
2 5 1 96 4. %z .  . The natural extension of this to case K>1 is 

W(+ 2
2 2/z / K )W(+2/K) for α =5%, but as yet no theoretical justification of it has been 

found. In section 5 it is proved that the reason is similar to the one given for case K=1. More 

recently, Schaarschmidt et al.20 indicate that, according to their results, method W(+1) is better 

than method W(+2/K) for K≥6 and α=5%. 

Other methods exist which are operationally more complicated than the adjusted Wald 

method and which appear to produce better results. In some cases (Newcombe16 for K=2 and 

βi=0; Newcombe21 for K=4 and βi=0; Zou et al.22 for any value of K and βi), the 

proportions pi are replaced by the extremes of Wilson’s CI for the values pi. In others (Beal23 for 

K=2; Tebbs and Roths14 for K≥2) the K–1 nuisance parameters are replaced by bayesian type 

estimators.  

4. Score method 

The aim of this section is to determine the value of the score statistic  0 0z L / V  , 

where 2
0 i i i i

ˆ ˆV p q / n  , ip̂  are the estimators of maximum likelihood (under H0) of pi and 

íq̂ =1 ip̂ . For all the following it is to be understood that n=ni, B=βi, B
+= 0i   βi  and B–

= 0i   βi. Observe that B+–B– =βi, B++B– =B and that B–≤λ, L , B≤ B+ (since 0≤ pi , 

1ip  ). Therefore, –βi≤ L – λ≤+βi. In Appendix A1 the following results, based on 
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the key expression below, are proved: 

                            y=n+(B–2λ)C–Ri=0 where 

 2

2 2 2 22

1 2
i i i i i i

i i

C z / L

R n n bC C

b p



 

  
   
  

. (2) 

If L  , it is obvious that i ip̂ p  and z0=0. If L  , then 2
0z  is the sole solution 

different from zero for the equation y( 2
0z )=0,  and moreover: 

             0 0z L / V   where  2
0 i i i i

ˆ ˆV p q / n   and   2i i i i ip̂ n C R / C,     (3) 

Searches for the value 2
0z  is made easier if it is borne in mind that: 

                               
     

    

2

2
02

if4

ifi i

T L / B           LL
z

/ n n T L / B   L

  
   





          
, (4) 

where  
0 0i i

i i iT x n x
  

    . Alternatively, if the researcher does not wish to know 

the value of z0, but only to know if the test has significance to the error α, then s/he 

need only apply the following rule based on expression (2): 

                                           Decide   2
1 2 0/H y C z / L     , (5) 

which simplifies the calculations enormously. For example, if one wishes to carry out the test 

of interaction H0: L1=0 vs. H1: L1≠0 in Table 1 to the error α=5%, then λ=B=0, 2
2 5. %z =1.962

, 

1L = –2/30, C=151.962, 2
iR =30{30+1.962(ai+7.51.962)}, ai=10, 2, –24 and 8 for i= 1, 2, 3 

and 4 respectively and y(C)=120Ri =129.866<0, for which reason the test is not 

significant. The intensity of the calculations is similar to that of Wald’s test. In Appendix A2 

it is proved that the statistic 2
0z  is equal to the classic chi-square statistic. 

Another common aim is to obtain the score CI (CI0) for L. To this end it is sufficient to 

make 2 2
0 2/z z  in expression (2) and to determine both solutions 1 2B L B       of 

equation y(λ)=0 (see Appendix A3). If there is no solution λ1 (λ2) then λ1=B– ( λ2=B+). Table 3 

indicate the values z0 and/or the intervals CI0  for the contrasts and/or effects in Tables 1 and 2 



 

 

6

 

(note that the contrasts L2 and L3 are significant and that there is no interaction between 

them). Similarly when the aim is to obtain the CI for K in fixed values of λ, βi≠βK and 

2 2
0 2/z z . 

Note that all the above contains the cases of one proportion (K=1), of the 

difference between two proportions (L=d=p2–p1) and of the risk ratio (L=p2–Rp1 and 

=0) as special results.  In particular, the tests and CI’s of Mee24 for d and of 

Koopman25 for R are special cases of the general case L. Similarly, the present proof 

that 2 2
0 0z   contains the proofs of Nam26 and Gart and Nam27 for d and R respectively as 

special cases. Expression (2) was proved by Martín and Herranz28 for case d. 

5. General and adjusted Wald -type approximations. 

In order to simplify the solution of equation (2) in 2
0z  (for the test) or in λ (for 

the CI), it is advisable to obtain approximate expressions of that equation. In 

Appendix A4 it is shown that, by expanding the term iR  in Maclaurin series, expression 

(2) is converted to the following: 

                               3 2 4
0 1 0 2 0L z L V z V      , where 

3

2 2
i

i

i i ip q b
V .

n


                           (6) 

If one retains only the terms of order O(ni)≥–1 and divides by  L   one obtains 

Wald’s classic solutions for expression (1). If one only retains the terms of O(ni)≥–2, one 

replaces  24 2
0 0 1z z L / V  and divides by  L  , then 0   2

1L V    2
2 0L V z   

2
1 0V z  is obtained. From this one can deduce the following approximate statistic and CI: 

                  
 

2

2 22 2
2 2 2 2 1 2

1 11 2 1

:
2 2/ / /

L V V
z , CI L z z V z

V VV L V / V
  





 
     

   
. (7) 

In Table 3 the values of z1 and z2 for the contrasts in Table 1 are set out. It can be seen 

that both are near the real value z0, and that z2 is the best option. Something similar occurs 
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with the intervals CI1 and CI2 for the effects L of Tables 1 and 2 (see Table 3): CI2 is the best 

option. 

As has already been stated, the adjusted Wald heuristic methods  2
2W 2/z / K  

have their origin in the proposal by Agresti and Coull15 for case K=1. These authors show that 

the center of Wilson’s CI (which is the score CI for a proportion) is equal to the center of the 

adjusted Wald CI  2
2W 2/z / , and this is the reason that this performs so well. On the basis 

of the approximations of this section it is now possible to prove that that is what occurs 

approximately in the case K>1. In Appendix A5 it is proved that the adjusted Wald method 

W(+ci) where: 

                                    
2 2

2 2
2

2

where
2 22

i / i /
i

ii /

n z n h z
c h  h

n h KKn z
 



  


 , (8) 

has a center which is approximately the same as that of CI2 in the expression (7). Note that by 

making ic h , the adjusted Wald method W(+h 2/K) proposed by Price and Bonett18 for 

α=5% is obtained. 

Table 3 sets out the CI obtained using the adjusted Wald methods W(+ci) and W(+h). It 

can be seen that both methods produce very similar results, with a slight advantage in favour 

of the adjusted Wald method W(+h). Note also that both procedures estimate the real range 

(that of CI0) better than its center and that, in the case of large samples as in Table 2, all the 

procedures yield practically the same result. 

The previous approximations are correct only when the observed data do not belong to 

the border of the sample space, that is, when 0<xi<ni (i).  Otherwise, at the end of Appendix 

A4 it is shown that the correct solutions for the intervals CI1 and CI2 and the adjusted Wald 

methods W(+ci) and W(+h) are the intervals 1CI   and 2CI    and the following adjusted Wald 

methods W(+ ic ) and W(+ ih )  (in all cases one must make j=1 and use the sign  in order to 

obtain the lower extreme,  and make j=2 and use the sign + to obtain the upper extreme): 
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  and  
2
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1

.
2

ij
i

Kz
h

K
 

  ,                           (11) 

where j ij ii
N n , j ij i ii

B b  , i1=1 in all the subscripts i verifying { ip =0 and i<0} 

or { ip =1 and i>0} (i1=0 otherwise) and i2=1 in all the subscripts i verifying { ip =0 y i>0} 

or { ip =1 and i<0} (i2=0 otherwise). Note that 1CI  CI1, 2CI  CI2, W(+ ic )W(+ci) and 

W(+ ih )W(+h) when 0< ip <1 (i) and that in 2CI   it is understood that V2/V1=0 when V1=0. 

6. Coherence of the inferences: properties of convexity. 

In order for an S statistic (such as z0) to be useful in the inference it is necessary for it 

to verify certain coherence properties. This section aims to analyze these. 

Barnard29 recommended that the critical regions should be convex for the classic test 

H0: d=0, and this means that the S statistic should increase (decrease) in 2p  ( 1p ), although 

this increase or decrease need not be strict. Röhmel and Mansmann30 justified the fact that the 

same should occur in the more general case of H0: d=δ. In the present case (H0: L=) the 

statistic S should increase (decrease) in the ip  values where βi>0 (βi<0) i.e meaning S should 

verify the property of spatial convexity and this means that the CRs will present no gaps. In 

Annex A5 it is proved that z0 verify this property. The proof contains two special cases: that 

of the difference H0: d=p2−p1 =δ (proved by Martín and Herranz31) and that of the risk ratio 

H0: p2−Rp1 = p2−ρp1 =0 (for which there is no proof.).  

Röhmel and Mansmann32 showed it was better for the p-value P(δ) for the test H0: 

d=p2−p1 ≤δ to increase in δ. In general, in order for test H0: L=λ based on S to be coherent its 
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p-value P(λ) must increase (decrease) in λ when λ< L  (λ> L ). This means that the S statistic 

should decrease in λ, that is, that S should verify the property of parametric convexity in λ. 

The verification of this property is what guarantees that inverting the test using the equality 

2S   2
/ 2z  is equivalent to resolving the equality 2 2

/ 2S z  and yields a CI for λ which 

presents no gaps. Similarly, in order for the CI for βi to be coherent it is necessary for S to 

increase in βi (parametric convexity in βi). In Annex A5 it is proved that z0 verify both 

properties of parametric convexity (and it contains, as a special case, case d of Martín and 

Herranz31).  

 To summarize what has been said, any S statistic should verify the following 

properties (z0 verify them): 

                                            
0 si 0

 , 0  , 0
0 si 0

i

ii i

dS dS dS

dp d d


  

 
  

. (12) 

7. Simulation study. 

In this section method W(+2/K) (the best adjusted Wald method known at present) and 

the 8 new methods proposed in this paper S (scores), CI2, 1CI  , 2CI  , W(+ci), W(+h), W(+ ic ) 

and W(+ ih ) will be compared;  the classic method of Wald W(+0) CI1 is excluded because, 

as has been said,  it is known to behave badly. 

For the 100(1)% CI, the actual probability of coverage R and the expected interval 

width W for fixed values of pi are defined by: 

 
1 2

1 2

1 2
0 0 0 1

K
i i i

K

n n n K
i x n x

i i K
x x x i i

n
R ... p q I x ,x ,...,x

x


   

 
  

 
   and   

1 2

1 20 0 0 1

K
i i i

K

n n n K
i x n x

i i S I
x x x i i

n
W ... p q L L

x


   

 
  

 
  , 

where I(x1, x2, ..., xK)=1 if the CI (LI, LS) occasioned by the outcomes (x1, x2, ..., xK) contains  

L=ipi and I(x1, x2, ..., xK)=0  otherwise. For each set of values (ni, i) in Table 4, 10,000 sets of 

pi´s  were randomly generated from the uniform [0, 1] distribution, and one of the previous 

methods was used to compute W and R. The mean of R (Rmean) and W (Wmean), the minimum 
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of R (Rmin) and the percentage of R that fell below 93% (Rbelow93) in the 10,000 sets of pi´s 

were computed for 1=95%. It is desirable for Rmean to be 95% on average (the method will 

be conservative if Rmean is greater than 95%, and if not it will be liberal), for Rmin to be as close 

as possible to 95%, for Wmean to be as small as possible and, finally, for the method to have few 

liberal “failures” (that is, for Rbelow93 to be as small as possible). 

 Table 4 shows the results for methods W(+2/K), W(+ ih ) and S for a CI of 95%. The 

results for the other methods are excluded (these may be requested from the authors) as we have 

determined that the methods CI2, 1CI   y 2CI   fail a great deal, that the methods W(+ci) and 

W(+h) function worse than W(+ ic ) and W(+ ih ) and, finally, that method W(+ ic ) is too 

conservative.  From these first results we can extract two commentaries of interest. In the first 

place, it is surprising that, given that method W(+ ih ) is an approximation of method W(+ ic ), 

and the latter is in turn an approximation of method 2CI  , the previous results indicate that the 

first is better than the second which in turn is better than the third. Secondly, and given that 

W(+ci) and W(+h) are worse methods than W(+ ic ) and W(+ ih ) respectively, it is necessary 

to point out the importance of defining CI differently when the outcomes are extreme (xi=0 or 

xi=ni) to when they are not (0<xi<ni). 

From Table 4 we can deduce that the best option is S (except when all the sample sizes 

are equal to 10) because compared to the other two methods it is more balanced, it has an equal 

or smaller Wmean, its liberal failures are almost always lower (that is, its Rbelow93 is almost 

always smaller) and its value for Rmin is almost always closer to 95%. It can also be seen that 

method W(+2/K) is slightly conservative and that W(+ ih ) is always very conservative 

(especially in K=4), and as a result the second of the two usually has few failures (especially 

in K=4) and an excessively large value for Wmean. Finally, we should point out that although 

the method W(+2/K) contains some desirable features, it is not reliable because its value for 

Rbelow93 can be very large; in contrast, method W(+ ih ) is reliable, but is also very 
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conservative. In general, these conclusions remain valid for 90% and 99% CI’s (the data may 

be requested from the authors), although W(+2/K) now behaves very well for 1=90%  and 

very badly for 1=99%. 

8. Conclusions. 

Asymptotic inferences (tests or confidence intervals) relative to independent binomial 

proportions are very frequent in applied research, but until now the research has centered 

almost entirely on cases with one simple proportion p and on the difference (d=p2–p1) or the 

ratio (R= p2/p1) between two proportions. Surprisingly, the case of a linear of K proportions 

(L=βipi) has received very little attention, despite its great practical importance14. Even more 

surprising is the fact that the problem has been approached till now only from the point of 

view of the confidence intervals obtained by the classic Wald method. 

In this article the problem is looked at from the point of view of the score method 

(equivalent to the classic chi-square method), and proves the suitability of this method 

compared to the other 8 procedures. Because the application of the method requires an 

iterative procedure, the reader may apply the free program obtainable at 

http://www.ugr.es/local/bioest/ Z_LINEAR_K.EXE. 

The paper also provides a theoretical proof of the heuristic result that Wald’s 95%-

confidence interval improves if 2/K successes and failures are added to each sample. In 

addition, at the end of section 5 the rule is generalized, so that a simple and reliable (although 

conservative) CI consists in applying Wald’s classic CI from expression (1) and adding ih  

successes and failures to each sample, a quantity which is reduced to 2
2 2/z / K  when 0<xi<ni 

in all the samples (which is usually the  case). When the values of ni and/or K are small it may 

be more suitable to add  2 2
2 22i i / i /c n z / Kn z 

     successes and failures. 

The article also points out how important it is for any test statistic (such as z0) to verify 

both spatial and parametric convexity. The first, so that the test behaves coherently. The 



 

 

12

 

second, so that the CI can be obtained by inverting the test by means of the equality 2 2
0 2 /z z . 
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APPENDIX A 

A1. Estimators of maximum likelihood and the score test. 

Since, under H0, Pr (x1, …, xK  λ=βipi)= i i ii x n x
i i

i

n
p q

x
 

 
 

, where 

 K i K i i Kp p / ,      then  = ln Pr (x1, …,xK  λ=βipi)   xiln pi+(ni–xi)ln (1–pi). 

When L  , the restricted estimators of maximum likelihood ip̂  are equal to the classic 

unrestricted ip  ones. 

When L̂  , because dpK /dpi=–βi/βK  then the ip̂  are the solutions to d  /dpi= 

(∂  /∂pi)–(βi/βK)/(∂  /∂pK) = ni  i ip p / piqi–(βi/βK)nK  K Kp p /pKqK = 0 ( i), that is: 

                                              
   i i ii i i i

i i i i i i i

n p pn p n q
C i

p q p q  


    , (A1) 

where C is a constant to be determined. From the above it can be deduced that 

  2i i i i ip̂ n C R / C,    where 2 2 2 22i i i i i iR n n b C C     and 1 2i ib p  . 

In order to see which of the two solutions  ip̂   or  ip̂  is the appropriate one, one 

must remember that  22
i i iR n C ,   because 0 1ip  , so that Ri ≥ ni–βiC ≥ ni+ βiC . 

When βiC>0, this implies that   1ip̂   , which is impossible unless   1ip̂    . But if this is 

so, it is because 1ip   , ni=βiC -from expression (A1)-  and Ri=0; hence     1i i
ˆ ˆp p     . 

Similarly, if βiC <0 then   0ip̂    which is also impossible unless     0i i
ˆ ˆp p    . Hence 
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the solution will always be  ip̂  . This means that 2 i i i i ip̂ C n C R    , so that by adding 

in i, and bearing in mind that i i
ˆ ˆL p    ,   that makes C the solution to the equation: 

                                                          y(C)=n+(B–2λ)C–Ri=0. (A2) 

The constant C may be expressed in the following ways: 

                     
     2

0

0

1 1i i i i i i i i i

i i i i i i i i

ˆ ˆ ˆn p p n p p n p pzL
C

ˆ ˆ ˆ ˆ ˆ ˆV L K p q p q B p q


  

   
      

 
. (A3) 

 In order to obtain the first equality one need only note that, from expression (A1), 

  2
i i i i i i i

ˆ ˆ ˆp p p q C / n   , so that by adding in i:   2
0i i i iˆ ˆL C p q / n CV     . The other 

equalities are obtained in a similar way, except the second, which proceeds from the fact that 

 22
0 0z L / V  . From expressions (A1) and (A3) it can be deduced that 

                                         Sign (C) = Sign  i i i
ˆp p /   = Sign  L  ,  (A4) 

and that in the contrasts (B=0),   0i i i i i
ˆ ˆ ˆn p p / p q   . Also note that   2

0 i i iˆz n p p L     

 i i i
ˆ ˆ/ p q  i  . 

In order to prove that, when L  , the equation (A2) has a unique solution C≠0, it is 

necessary to study function y(C). Note that y(C=0)=0, so that C=0 is always a false solution to 

equation (A3). On the other hand, dy/dC=(B–2λ) –βi(βiC+nibi)=0 will provide the extremes 

C  of function y(C). If they exist, they give rise to a maximum, given that 2 2dy / dC   

2 34 0i i i i in p q / R   . However, since: 

                         

 
 
 

2 if
2

2 if
i

C

B m   Cy( C )
lim B ,

C B m   C


 



 

 

        
   



 

then y(C) has two oblique asymptotes from slope m+ and m– and from  equations y = m±C + 

h±, where: 

      2 2i i i i i
i i i

C C C
i i i

n n b C
h lim y C m C lim n C R lim

n C R

 



 

  

 
       

 
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 
 

2 if
1

2 if
i i i

T h            C +
n s b ,

n T h   C





      
   

  

where si=Sign (βi) and T is the value referred to in expression (4). But, if Ai=iC+nibi: 

                                      
24

0i i i
i i i

i i i

n p q
y C m C h s A R

s A R
         

 
,                      (A5) 

because as 2 2 24i i i i iR A n p q   then Ri ≥ Ai ≥ ±Ai = ±siAi and the denominator of the previous 

fraction is positive. Expression (A5) indicates that function y(C) is always found below the 

two asymptotes and, from what was stated above, it will have a maximum in C C . Because, 

moreover, it cuts the horizontal axis at C=0, it can be deduced that it also ought to cut that 

axis at another point C=C0≠0 which will be C0>0 (C0<0) when  L  L   . In addition the 

solution C=C0 will have to be sought where the asymptotes cut the horizontal axis: –h+/m+ = 

T/(λ–B) and h–/m– = –(n–T)/(B+–λ). Finally, since i i
ˆ ˆp q 1/4 then, from the first equality of 

(A3),  24 i iC L / / n    . As a result it can be affirmed that the equation (A2) has only 

one solution C0≠0 which is contained between the following bounds: 

                              
     
       

2
0

2
0

If 4

If 4

i i

i i

 L :  L / / n C T / B

L :  n T / B C L / / n

   

   





      


       
.              (A6) 

Once the value C0  has been determined then  2
0 0z C L   . 

In order to obtain the value 2
0z  directly, without having to obtain the value of C0 

previously, one need only replace C with  2
0z / L  ; hence the expressions (2) and (4). By 

making this change in (A2) and multiplying the whole expression by  L  , the following, 

more general, equation is obtained: 

                                           f=n  L  +(B2) 2
0z Sign  L  iR =0,                            (A7) 

where  22 2 2 4
0i i iR n L z     2

02 i i in b z  L  . With this format ip̂ = {ni  L  + 2
0i z 
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Sign  L  iR }/2 2
0i z . By solving f=0 the value of 2

0z  is obtained. 

Alternatively, if the researcher does not wish to obtain the p-value of the test, but only 

carry out the test to error α, the calculations become very much simpler, because it is not 

necessary to resolve equation (2). In effect, as Hi will be decided when  2 2
0 0 2/z C L z   , 

then the test will be significant if  2
0 2/C z / L    or C0  2

2/z / L   when L   or 

L   respectively, that is, when   2
2/y C z / L   0 in expression (2); this is due to the 

fact that y(C)≥0 for C between 0 and C0, as has been indicated above. If the format for 

expression (A6) is adopted, the following alternative statement is obtained: decide 

 2
1 2 0/H f z  (if L  ) or  2

2 0/f z   (if L  ). 

A2. The chi-square test. 

 The traditional chi-square test is: 

         
2 2 2

2
0

i i i i i i i i i i i i i
i i i

i i i i i i i i

ˆ ˆ ˆ ˆx n p n x n q n p p n p p
ˆp p

ˆ ˆ ˆ ˆ ˆ ˆn p n q p q p q
 

              
  

 

    2
0i i i

ˆC p p C L z       , 

where the last three equalities are due to expression (A1), to the fact that i iL p   

and i i
ˆn p   , and to expression (A3) respectively. 

A3. The score CI. 

Because  2
0z C L    then 2

0L z / C   . After substitution in expression (2), 

   2
02 2 0iy C n z B L C R       is obtained. In order to obtain a CI for  one only need 

make 2 2
0 2/z z , determine the two values C=C1>0 and C=C2<0 which satisfy the previous 

equation and calculate 2
2i / iL z / C   . From this, λ1≤λ≤λ2 is the required solution. It is more 

direct to resolve equation (2) in λ within the licit margins: B–≤ λ1< L <2≤B+. Alternatively 

equation (A7) can be used and resolved in . Based on expression (4), it can be seen that 
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some more specific bounds where solutions i can be sought are 2
2 / 4i iL z n     1   

   2 2
2 2/ /z B TL / z T 

    and      2 2
2 2/ /z B n T L / z n T 

       2 ≤ L   

2
2 / 4i iz n  . 

A4. Approximations. 

Expanding Ri in Maclaurin series for C=0 indicates that: 

                                     
2 3

2 3
2

2 2i i i i i i i
i i i i

i i

p q p q b
R n bC C C

n n

                                         (A8) 

so that by substitution in expression (2) and by dividing by 2C one obtains  0 L   

2
1 2CV C V   with the Vi as in expressions (1) and (6). By substituting C= 2

0z /  L   and 

operating, expression (6) is obtained. 

In section 5 it is shown that a CI with order O(ni)≥–2 is given by expression (7). The 

present aim is to express its center  2
2 2 12/L z / V / V  in Wald’s traditional format, that is, to 

make it equal to L  based on the increased observations i i ix x c    and 2i i in n c   , where 

ci are values to be determined. In order to do this approximately one must bear in mind that: 

                                      
2 2

2

1

1i i i i i i i i i i

i i i i

V p q b p q b
. /

V n n n K n

    
    
 

 ,                                (A9) 

because V2/V1 is the weighted average of βibi/ni and it will be approximately equal to its 

arithmetic average. Thus the center of the CI (7) will be: 

2 2
2 2 2

1

where
2 2

/ i i /
i

i

z V x hb z
L .   h .

V n K
  

    

As the center of the adjusted Wald CI W(+ci) is βi(xi+ci)/(ni+2ci), then by making both 

expressions equal  it is found that ci  must verify the equality (xi+ci)/(ni+2ci) = (xi+hbi)/ni, and 

so ci = nih/(ni–2h) as indicated in section 5. 
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All the above is valid when 0< ip <1, because when ip =0 or 1 that is, when bi=1 

then Ri=ni+biiC and the serial development of expression (A8) yields a value of ni+biiC 

which is does not necessarily coincide with the previous one. For example, when ip =0 and 

iC<0 expression (A1) indicates that iC=ni/ iq̂  and thus 0 = ni+ iq̂ iC  ni+iC (because 

iq̂ 1) = ni+biiC (because bi=1); as a result Ri=(ni+biiC) and not ni+biiC as expression 

(A8) indicated. The same result is obtained when ip =1 and iC>0. The conclusion is that 

Ri=(ni+biiC) when bi=1 and biiC<0, and otherwise the approximation of the expression 

(A8) may be applied. If with this new definition one proceeds as at the beginning of this 

annex, the following expression, which is more exact than (6), is obtained (in which one must 

make j=1 if L   and j=2 if L  ): 

                                 3 2 2 4 6
0 1 0 2 00 j jN L L L B z L V z V z                          (A10) 

When 0< ip <1 (i), then ij=0 (i, j), Nj=Bj=0 and expression (A10) turns into 

expression (6). When bi=1, that is,  when the observed point falls in one of the corners of the 

sample space, then the following result (which can be shown to be the same as that of the 

score method) is obtained: 

 

 

1

2
0

2

  if  

 if  

L N
L

Bz
L N

L
B














 


  
  

   and   
2 2

1 2 2 2
2 2

1 2 2 2

/ /

/ /

N L z B N L z B
L .

N z N z
 

 

  
 

 
 

In general, if one proceeds for expression (A10) as one did for expression (6) in section 5, 

expressions (9) and (10) are obtained. Lastly, if the center of the interval 2CI   are equal to that 

of interval CI1 with its data increased in ic  (just as above with the center of the interval CI2) 

expression (11) is obtained. 
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A5. Properties of convexity 

Let S=z0 in expression (12) and let ψ= ip , λ or βi. Because 2
0dz /d=2z0(dz0/d), then 

the sign of d 2
0z /d is the same as (different to) the sign of dz0/d when L >λ ( L <λ) because 

then z0>0 (z0<0). This means that the convexity properties (12) are verified for z0 if 2
0z  

verifies the expressions (12) when L >λ, or the opposite ones when L <λ. The aim is thus to 

calculate 2
0dz /d. 

For expression (2), ∂y/∂λ= −2C, ∂y/∂ ip =2niβiC/Ri, ∂y/∂βi=C{Ri−Ai}/Ri and: 

( 2 ) i i

i

Ay
B D

C R


   

    where −2n ≤ DC ≤0, 

where the last statement is owed to the fact that DC=(B−2λ)−ΣβiCAi/Ri or, using expression 

(2), / /i i i i i i iDC n R CA R n n A R           where iA=ni+biβiC; but as 2 2
i iR A   

2 24 i i iC p q  then Ri≥| iA |, −1≤ iA /Ri ≤+1 and −2n≤DC≤0 . From which it can be deduced that: 

                                       Sign ( ) Sign ( ) Sign ( )D C L    ,                                            (A11) 

and the last statement is owed to what has been said in expression (A4). 

Because y=0, / 0 ( / ) ( / )( / )dy d y y C dC d         , so that dC/d =−(∂y/∂)/ 

(∂y/∂C) and so: 

                              
( ) 22

 ,  ,i i i i

i i i i

C R A n CdC C dC dC

d D d DR dp DR


 


     .                           (A12)

  

Finally, as 2
0z =C( L −λ) then  d 2

0z /d=(∂ 2
0z /∂)+( L −λ)(dC/d), so that by substituting 

expressions (A12): 

2 2 2
0 0 02( ) 2 ( ) ( )( )

1 , 1 ,  ,i i i
i i

i i i i

dz L dz n L dz R A L
C C C p

d D dp DR d DR

  
 

       
          

     
(A13)
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where Ri≥Ai as indicated in section (A1). If, in expressions (A13) one bears in mind 

expressions (A11) it can be deduced that 2
0z  verifies expressions (12) when L >λ and the 

opposite ones when L <λ.  
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Table 1: Diet and tumor study 

 Fiber No Fiber 

 High Fat Low Fat High Fat Low Fat 

Sample size (ni) 30 30 30 30 

Rats showing cancer (xi) 20 14 27 19 

Effect β1 β2 β3 β4 

L1=Fiber×Fat +1 –1 –1 +1 

L2=Fiber +1 +1 –1 –1 

L3=Fat +1 –1 +1 –1 

 

Table 2: Multicenter clinical trial data 

Location Sample size (ni) Fever cases (xi) Coefficients (βi) 

Bangladesh 

Brazil 

India  

Peru 

Vietnam 

Total 

158 

107 

175 

092 

143 

675 

73 

32 

44 

34 

104 

287 

158/675 

107/675 

175/675 

092/675 

143/675 

1 
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Table 3: Analysis of the data in Tables 1 and 2 

 Contrast (Table 1) 
 z0 z1 z2 
L1 −0.4119 −0.4100 −0.4117 
L2 −2.4241 −2.4598 −2.4021 
L3 2.8033 2.8697 2.7682  
             CI (Tables 1 and 2) = Center  (1st entry) ± Range (2nd entry) 

 L1 L2 L3 L 
CI0 0.0719  0.3164 0.3934  0.3162 0.4581  0.3161 0.4256  0.0349
CI1 0.0667  0.3187 0.4000  0.3187 0.4667  0.3187 0.4252  0.0349
CI2 0.0732  0.3188 0.3938  0.3188 0.4585  0.3188 0.4256  0.0349

W(+ci) 0.0645  0.3161 0.3872  0.3161 0.4517  0.3162 0.4256  0.0348
W(+h) 0.0646  0.3162 0.3876  0.3162 0.4522  0.3162 0.4256  0.0348

 
 Contrast (Table 1) 

 z0 z1 z2 z3 

L1 −0.4119 −0.4100 −0.4117 −0.4119 

L2 −2.4241 −2.4598 −2.4021 −2.4295 

L3 2.8033 2.8697 2.7682 2.8104 

 CI (Tables 1 and 2) = Center  (1st entry) ± Range (2nd entry) 

 CI0 CI1 CI2 CI3 

L1 0.0719  0.3164 0.0667  0.3187 0.0732  0.3188 0.0731  0.3164

L2 0.3934  0.3162 0.4000  0.3187 0.3938  0.3188 0.3939  0.3164

L3 0.4581  0.3161 0.4667  0.3187 0.4585  0.3188 0.4587  0.3165 

L 0.4256  0.0349 0.4252  0.0349 0.4256  0.0349 0.4256  0.0349 

 W(+ci) W(+ ic ) W(+h) W(+ h ) 

L1 0.0645  0.3161 0.0646  0.3162 0.0646  0.3162 0.0647  0.3163

L2 0.3872  0.3161 0.3876  0.3162 0.3876  0.3162 0.3878  0.3165

L3 0.4517  0.3162 0.4522  0.3162 0.4522  0.3162 0.4526  0.3163 

L 0.4256  0.0348 0.4256  0.0348 0.4256  0.0348 0.4256  0.0348 

 



 
Table 4: Exact coverage (R) and width (W) of S (score), W(+2/K) (Price and Bonett) and W(+ ih ) (new) intervals for a confidence = 95% 

K=3 
 

Method: W(+2/K) W(+ ih ) S 

n1/n2/n3 Rmean Rmin  Wmean Rbelow93 Rmean  Rmin  Wmean Rbelow93 Rmean Rmin  Wmean Rbelow93 

i = (1/3, 1/3, 1/3) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.6 

95.2 

95.5 

95.4 

 

88.3 

92.7 

92.2 

91.4 

 

0.28 

0.16 

0.25 

0.22 

 

0.1 

0.0 

0.1 

0.1 

 

97.0 

95.6 

96.7 

96.4 

 

89.5 

93.1 

93.5 

92.9 

 

0.30 

0.17 

0.26 

0.23 

 

0.1 

0.0 

0.0 

0.0 

 

94.4 

94.8 

95.0 

95.1 

 

89.9 

92.9 

90.2 

93.0 

 

0.27 

0.16 

0.24 

0.22 

 

7.1 

0.0 

0.0 

0.0 

i = (1, 1/2, 1/2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.5 

95.2 

95.4 

95.4 

 

87.6 

92.2 

92.1 

90.0 

 

0.58 

0.35 

0.44 

0.41 

 

0.6 

0.0 

0.1 

0.1 

 

96.9 

95.6 

96.5 

96.2 

 

93.1 

93.0 

92.5 

92.8 

 

0.64 

0.36 

0.47 

0.43 

 

0.0 

0.0 

0.0 

0.0 

 

95.1 

94.9 

94.4 

94.7 

 

92.4 

93.9 

92.4 

92.9 

 

0.58 

0.35 

0.44 

0.41 

 

0.1 

0.0 

0.3 

0.0 

i = (1, 1/2, 2) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.4 

95.1 

95.4 

95.3 

 

87.9 

93.0 

89.4 

89.7 

 

1.09 

0.65 

1.02 

1.00 

 

1.4 

0.0 

4.7 

8.2 

 

96.9 

95.6 

96.7 

96.6 

 

90.7 

94.1 

91.5 

91.0 

 

1.18 

0.66 

1.09 

1.07 

 

0.1 

0.0 

0.6 

3.3 

 

95.4 

95.1 

95.5 

95.5 

 

91.6 

94.4 

89.8 

88.9 

 

1.07 

0.64 

0.99 

0.97 

 

0.1 

0.0 

0.1 

0.0 

i = (1, 1, 1) 

10/10/10 

30/30/30 

30/10/10 

30/20/10 

 

95.6 

95.2 

95.5 

95.4 

 

90.0 

92.5 

90.1 

90.7 

 

0.83 

0.49 

0.73 

0.66 

 

0.2 

0.0 

0.0 

0.1 

 

97.0 

95.7 

96.8 

96.4 

 

90.5 

92.8 

92.6 

93.4 

 

0.90 

0.51 

0.79 

0.69 

 

0.0 

0.0 

0.0 

0.0 

 

94.3 

94.8 

95.0 

95.1 

 

92.1 

92.4 

91.8 

93.0 

 

0.82 

0.49 

0.73 

0.65 

 

7.0 

0.0 

0.0 

0.0 
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Table 4 (cont.): K=4 
 

Method: W(+2/K) W(+ ih ) S 

n1/n2/n3/n4 Rmean Rmin  Wmean Rbelow93 Rmean  Rmin  Wmean Rbelow93 Rmean Rmin  Wmean Rbelow93 

I=(1/4, 1/4, 1/4, 1/4) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

95.3 

95.1 

95.2 

95.3 

 

92.9 

93.2 

93.0 

85.7 

 

0.24 

0.17 

0.21 

0.24 

 

0.0 

0.0 

0.0 

0.6 

 

97.2 

96.0 

96.8 

97.5 

 

93.6 

93.8 

94.0 

93.7 

 

0.27 

0.18 

0.23 

0.27 

 

0.0 

0.0 

0.0 

0.0 

 

93.8 

94.5 

94.4 

95.1 

 

91.7 

92.9 

93.1 

93.1 

 

0.24 

0.17 

0.21 

0.24 

 

7.1 

0.0 

0.0 

0.0 

i = ( 1, 1, 1, 1) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

95.3 

95.1 

95.2 

95.3 

 

93.0 

93.6 

92.7 

91.3 

 

0.96 

0.69 

0.84 

0.97 

 

0.0 

0.0 

0.0 

0.5 

 

97.1 

96.1 

96.7 

97.5 

 

93.6 

93.8 

94.2 

94.0 

 

1.06 

0.73 

0.91 

1.08 

 

0.0 

0.0 

0.0 

0.0 

 

93.8 

94.5 

94.4 

95.1 

 

92.0 

92.1 

93.0 

92.9 

 

0.94 

0.69 

0.83 

0.96 

 

6.4 

0.0 

0.0 

0.0 

I=(1/3, 1/3, 1/3, 1) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

94.9 

94.9 

94.8 

94.8 

 

90.2 

92.3 

87.0 

80.8 

 

0.55 

0.40 

0.53 

0.69 

 

4.5 

0.1 

13.8 

40.7 

 

96.9 

95.9 

96.7 

97.8 

 

92.6 

93.7 

92.6 

93.5 

 

0.60 

0.41 

0.57 

0.77 

 

0.0 

0.0 

0.4 

0.0 

 

95.3 

95.2 

95.4 

95.6 

 

92.8 

94.3 

93.5 

90.3 

 

0.54 

0.39 

0.52 

0.65 

 

0.0 

0.0 

0.0 

0.1 

i = (3, 1, 1, 3) 

10/10/10/10 

20/20/20/20 

20/20/10/10 

20/15/10/5 

 

95.1 

95.0 

95.0 

95.1 

 

91.4 

92.9 

90.1 

85.8 

 

2.14 

1.54 

1.86 

2.29 

 

0.1 

0.0 

0.6 

35.0 

 

97.0 

95.9 

96.6 

97.7 

 

93.6 

94.0 

91.8 

94.0 

 

2.35 

1.61 

2.01 

2.55 

 

0.0 

0.0 

0.0 

0.0 

 

95.0 

94.7 

95.2 

95.6 

 

93.2 

93.8 

93.9 

92.3 

 

2.12 

1.53 

1.85 

2.23 

 

0.0 

0.0 

0.0 

0.0 
 
 
 

 


