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Abstract

This paper deals with the estimation of the stress-strength parameter R = P (Y <
X), when X and Y are two independent weighted Lindley random variables with a
common shape parameter. The MLEs can be obtained by maximizing the profile log-
likelihood function in one dimension. The asymptotic distribution of the MLEs are
also obtained, and they have been used to construct the asymptotic confidence interval
of R. Bootstrap confidence intervals are also proposed. Monte Carlo simulations are
performed to verify the effectiveness of the different estimation methods, and data
analysis has been performed for illustrative purposes.
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1 Introduction

Lindley (1958) originally proposed a lifetime distribution which has the following probability

density function (PDF)

f1(x) =
θ2

1 + θ
(1 + x)e−θx, x > 0, θ > 0. (1)

The distribution with PDF (1) is well known as the Lindley distribution. This distribution

was proposed in the context of Bayesian statistics, and it is used as a counter example

of fudicial statistics. Ghitany et al. (2008) discussed different properties of the Lindley

distribution. It is known that the shape of the PDF of the Lindley distribution is either

unimodal or a decreasing function, and the hazard function is always an increasing function.

Although, Lindley distribution has some interesting properties, due to presence of only

one parameter, it may not be very useful in practice. Due to this reason, Ghitany et al.

(2011) proposed a two-parameter extension of the Lindley distribution, and named it as

the weighted Lindley (WL) distribution. The WL distribution is more flexible than the

Lindley distribution, and Lindley distribution can be obtained as a special case of the WL

distribution. The WL distribution can be defined as follows. A random variable X is said

to have a WL distribution if it has the PDF

f(x) =
θc+1

(θ + c) Γ(c)
xc−1(1 + x)e−θx, x > 0, c, θ > 0. (2)

From now on a WL distribution with the parameters c and θ, and PDF (2) will be denoted

by WL(c, θ). The WL distribution has several interesting properties. A brief description of

the WL distribution, and some of its new properties are discussed in Section 2.

The main aim of this paper is to consider the inference on the stress-strength parameter

R = P (Y < X), where X ∼ WL(c, θ1), Y ∼ WL(c, θ2) and they are independently dis-

tributed. Here the notation ∼ means ‘follows’ or has the distribution. The estimation of the



3

stress-strength parameter arises quite naturally in the area of system reliability. For exam-

ple, if X is the strength of a component which is subject to stress Y , then R is a measure of

system performance.

In this paper we consider the case when all the three parameters c, θ1, θ2 are unknown.

The MLEs of the unknown parameters cannot be obtained in explicit forms. The asymptotic

distribution of the MLEs of the unknown parameters and also of R are obtained. The

asymptotic distribution has been used to construct asymptotic confidence interval of the

stress strength parameter. Since the asymptotic variance of the MLE of R is quite involved,

we have proposed to use parametric and non-parametric Bootstrap confidence intervals also.

Different estimation methods are compared using Monte Carlo simulations and data analysis

has been performed for illustrative purposes.

It may be mentioned that the estimation of the stress-strength parameter has received

considerable attention in the statistical literature starting with the pioneering work of Birn-

baum (1956), where the author has provided an interesting connection between the classical

Mann-Whitney statistic and the stress-strength model. Since then extensive work has been

done on developing the inference procedure on R for different distributions, both from the

Bayesian and frequentist points of view. The monograph by Kotz et al. (2003) provided an

excellent review on this topic till that time. For some of the recent references the readers

are referred to the articles by Kundu and Gupta (2005, 2006), Gupta and Li (2006), Kim

and Chung (2006), Krishnomoorthy et al. (2007), Jiang and Wong (2008), Gupta and Peng

(2009), Gupta et al. (2010, 2012, 2013), Al-Mutairi et al. (2011, 2013), Saraçoğlu et al.

(2012), Ghitany et al. (2015), and the references cited therein.

The rest of the paper is organized as follows. In Section 2, we briefly discuss about

the WL distribution, and discuss some of its properties. In Section 3, we discuss the MLE

of R and derive its asymptotic properties when all the parameters are unknown. Different
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bootstrap confidence intervals are discussed in Section 4. Monte Carlo simulation results

are provided in Section 5 and the data analysis has been presented in Section 6. Finally, we

conclude the paper in Section 7.

2 Weighted Lindley Distribution

A random variable X is said to have a WL distribution with parameters c and θ, if it has

the PDF (2). The corresponding survival function (SF) takes the following form:

S(x) =
(θ + c) Γ(c, θx) + (θx)c e−θx

(θ + c) Γ(c)
, x > 0, c, θ > 0, (3)

where

Γ(a, z) =
∫ ∞

z
ya−1e−ydy, a > 0, z ≥ 0,

is the upper incomplete gamma function and Γ(a) = Γ(a, 0) is the usual gamma function. It

has been observed by Ghitany et al. (2011) that the PDF of the WL distribution is either

decreasing, unimodal or decreasing-increasing-decreasing shape depending on the values of c

and θ. The hazard function of the WL distribution is either bathtub shaped or an increasing

function depending only on the value of c.

It is clear from (3) that the inversion of the SF cannot be performed analytically. The

following mixture representation is useful in generating random samples and also deriving

some other properties for the WL distribution. The PDF (2) of WL distribution can be

written as

f(x) = pfGA(x; c, θ) + (1− p)fGA(x; c+ 1, θ). (4)

Here p = θ/(θ + c), and

fGA(x; c+ j − 1, θ) =
θc+j−1

Γ(c+ j − 1)
xc+j−2e−θx; x > 0, c, θ > 0, j = 1, 2,
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is the PDF of the gamma distribution with the shape parameter c+j−1 and scale parameter

θ. Since the generation from a gamma distribution can be performed quite efficiently, see for

example Kundu and Gupta (2007), the generation from a WL distribution becomes quite

straight forward. We further have the following result regarding likelihood ratio ordering.

Theorem 1: Let X ∼ WL(c1, θ1) and Y ∼ WL(c2, θ2). If c1 ≥ c2 and θ1 ≤ θ2, then X is

larger than Y in the sense of likelihood ratio order, written as X ≥lr Y.

Proof: From the definition of the likelihood ratio,

f(x; c1, θ1)

f(x; c2, θ2)
=

(c2 + θ2) Γ(c2) θ
c1−1
1

(c1 + θ1) Γ(c1) θ
c2−1
2

xc1−c2e−(θ1−θ2) x

increases in x, since c1 ≥ c2 and θ1 ≤ θ2. Therefore the result follows.

3 Maximum Likelihood Estimator of R

In this section first we provide the expression of R, and then provide the maximum likelihood

estimator of R when all the parameters are unknown.

3.1 Expression of R

To derive the expression of R, we will be using the following notation:

∫ ∞

0
Γ(a, x) xs−1 e−βxdx =

Γ(a+ s)

s(1 + β)a+s 2F1(a+ s, 1; s+ 1;
β

1 + β
), s > 0, β > −1.

where

2F1(a1, a2; b; z) = 2F1(a2, a1; b; z) =
∞∑
n=0

(a1)n (a2)n
(b)n

zn

n!
, |z| < 1, (a)0 = 1, (a)n =

n−1∏
k=0

(a+k),

is the hyper-geometric function. We assume b ̸= 0,−1,−2, . . . to prevent the denominators

from vanishing, see Erdélyi et al. (1954), p. 325, formula (16).
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Let X ∼ WL(c, θ1) and Y ∼ WL(c, θ2) be independent random variables. Then

R = P (X > Y )

=
∫ ∞

0
P (X > Y |Y = y) . fY (y) dy

=
∫ ∞

0
SX(y) . fY (y) dy

=
θc+1
2

(θ1 + c)(θ2 + c) Γ2(c)

{
(θ1 + c)

∫ ∞

0
Γ(c, θ1y) . (yc−1 + yc)e−θ2y dy

+θc1

∫ ∞

0
(y2c−1 + y2c)e−(θ1+θ2)y dy

}
=

θc+1
2

(θ1 + c)(θ2 + c) Γ2(c)

{(θ1 + c)

θc+1
1

∫ ∞

0
Γ(c, t) . (θ1t

c−1 + tc)e−(θ2/θ1)t dt

+
θc1 Γ(2c)

(θ1 + θ2)2c+1
(θ1 + θ2 + 2c)

}
=

θc1 θ
c+1
2 Γ(2c)

(θ1 + c)(θ2 + c)(θ1 + θ2)2c+1 Γ2(c)

{(θ1 + c)(θ1 + θ2)

c
2F1(2c, 1; c+ 1;

θ2
θ1 + θ2

)

+
2c(θ1 + c)

c+ 1
2F1(2c+ 1, 1; c+ 2;

θ2
θ1 + θ2

) + θ1 + θ2 + 2c
}

=
θc1 θ

c+1
2 Γ(2c)

(θ2 + c)(θ1 + θ2)2c+1 Γ2(c)

{θ1 + θ2
c

2F1(2c, 1; c+ 1;
θ2

θ1 + θ2
)

+
2c

c+ 1
2F1(2c+ 1, 1; c+ 2;

θ2
θ1 + θ2

) +
θ2 + c

θ1 + c
+ 1

}

Remarks.

(i) When θ1 = θ2, R = 0.5. This, of course, is expected since, in this case, X and Y are i.i.d.

and there is an equal chance that X is bigger than Y .

3.2 Maximum Likelihood Estimator of R

Suppose x1, x2, . . . , xn1 is a random sample of size n1 from the WL(c, θ1) and y1, y2, . . . , yn2

is an independent random sample of size n2 from the WL(c, θ2). The log-likelihood function
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ℓ ≡ ℓ(c, θ1, θ2) = ℓ(θ) based on the two independent random samples is given by

ℓ =
n1∑
i=1

ln[fX(xi)] +
n2∑
j=1

ln[fY (yj)]

= n1[(c+ 1) ln(θ1)− ln(θ1 + c)− ln(Γ(c))] +
n1∑
i=1

ln(1 + xi) + (c− 1)
n1∑
i=1

ln(xi)− n1θ1x̄

+ n2[(c+ 1) ln(θ2)− ln(θ2 + c)− ln(Γ(c))] +
n2∑
j=1

ln(1 + yj) + (c− 1)
n2∑
j=1

ln(yj)− n2θ2ȳ,

where x̄ and ȳ are the sample means of x1, . . . , xn1 and y1, . . . , yn2 , respectively. The maxi-

mum likelihood estimator (MLE) θ̂ of θ is the solutions of the non-linear equations:

∂ℓ

∂c
= n1

[
ln(θ1)−

1

θ1 + c

]
+ n2

[
ln(θ2)−

1

θ2 + c

]
− (n1 + n2)ψ(c)

+
n1∑
i=1

ln(xi) +
n2∑
j=1

ln(yi) = 0,

∂ℓ

∂θ1
= n1

c(θ1 + c+ 1)

θ1(θ1 + c)
− n1x̄ = 0,

∂ℓ

∂θ2
= n2

c(θ2 + c+ 1)

θ2(θ2 + c)
− n2ȳ = 0,

where ψ(c) =
d

dc
ln(Γ(c)) is the digamma function. It is clear that the MLEs of the unknown

parameters cannot be obtained in explicit forms. The MLEs are as follows:

θ̂1 ≡ θ̂1(ĉ) =
−ĉ(x̄− 1) +

√
ĉ2(x̄− 1)2 + 4ĉ(ĉ+ 1)x̄

2x̄

θ̂2 ≡ θ̂2(ĉ) =
−ĉ(ȳ − 1) +

√
ĉ2(ȳ − 1)2 + 4ĉ(ĉ+ 1)ȳ

2ȳ
,

where ĉ is the solution of the non-linear equation:

n1

[
ln(θ̂1(ĉ))−

1

θ̂1(ĉ) + ĉ

]
+n2

[
ln(θ̂2(ĉ))−

1

θ̂2(ĉ) + ĉ

]
−(n1+n2)ψ(ĉ)+

n1∑
i=1

ln(xi)+
n2∑
j=1

ln(yi) = 0.

Some iterative procedure needs to be used to solve the above non-linear equation.

Now we provide the elements of the expected Fisher information matrix, which will be

needed to construct the asymptotic confidence intervals of the unknown parameters. We will
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use the following notations.

p1 = lim
n1,n2→∞

n1

n1 + n2

, p2 = lim
n1,n2→∞

n2

n1 + n2

and

H(θ) =



∂2l
∂c2

∂2l
∂c∂θ1

∂2l
∂c∂θ2

∂2l
∂θ1∂c

∂2l
∂θ21

∂2l
∂θ1∂θ2

∂2l
∂θ2∂c

∂2l
∂θ2∂θ1

∂2l
∂θ22

 .

The elements of the symmetric expected Fisher information matrix of (c, θ1, θ2) is given by

I(θ) = [Iij(θ)] = lim
n1,n2→∞

E
[ −1

n1 + n2

H(θ)
]
.

In this case

I11(θ) = ψ′(c)− p1
(θ1 + c)2

− p2
(θ2 + c)2

,

I22(θ) = p1
[c+ 1

θ21
− 1

(θ1 + c)2

]
,

I33(θ) = p2
[c+ 1

θ22
− 1

(θ2 + c)2

]
,

I12(θ) = −p1
[ 1
θ1

+
1

(θ1 + c)2

]
,

I13(θ) = −p2
[ 1
θ2

+
1

(θ2 + c)2

]
,

I23(θ) = 0,

where ψ′(c) =
d

dc
ψ(c) is the trigamma function. Since WL family satisfies all the regular-

ity conditions of the consistency and asymptotic normality of the MLEs, see for example

Lehmann and Casella (1998), pp. 461-463, we have the following result.

Theorem 2: The asymptotic distribution of the MLE θ̂ of θ satisfies

√
n1 + n2 (θ̂ − θ)

d→ N3(0, I
−1(θ)),

where
d→ denotes convergence in distribution and I−1(θ) is the inverse of the matrix I(θ).
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The asymptotic variance-covariance matrix of the MLE θ̂ is given by

1

n1 + n2
I−1(θ) =


V ar(ĉ) Cov(ĉ, θ̂1) Cov(ĉ, θ̂2)

Cov(ĉ, θ̂1) V ar(θ̂1) Cov(θ̂1, θ̂2)

Cov(ĉ, θ̂2) Cov(θ̂1, θ̂2) V ar(θ̂2)

 .

We need the following integral representation for further development, see for example

Andrews (1998), p. 364:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt, |zt| < 1, c > b > 0,

2F1(2c, 1; c+ 1; z) = c
∫ 1

0
(1− t)c−1 (1− zt)−2c dt

J1(c, z) =
∂

∂c

{
1

c
2F1(2c, 1; c+ 1; z)

}
=

∫ 1

0
(1− t)c−1 (1− zt)−2c ln

(
1− t

(1− zt)2

)
dt

2F1(2c+ 1, 1; c+ 2; z) = (c+ 1)
∫ 1

0
(1− t)c (1− zt)−2c−1 dt

J2(c, z) =
∂

∂c

{
1

c+ 1
2F1(2c+ 1, 1; c+ 2; z)

}
=

∫ 1

0
(1− t)c (1− zt)−2c−1 ln

(
1− t

(1− zt)2

)
dt.

In order to establish the asymptotic normality of R, we further define

d(θ) =
(∂R
∂c
,
∂R

∂θ1
,
∂R

∂θ2

)T
=
(
d1, d2, d3

)T
,

where T is the transpose operation and
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d1 =
θc1 θ

c+1
2 Γ(2c)

(θ2 + c)(θ1 + θ2)2c+1 Γ2(c)

{
(θ1 + θ2) J1(c,

θ2
θ1 + θ2

) + 2c J2(c,
θ2

θ1 + θ2
)

+
2

c+ 1
2F1(2c+ 1, 1; c+ 2;

θ2
θ1 + θ2

) +
θ1 − θ2
(θ1 + c)2

}
+R

{
ln

(
θ1θ2

(θ1 + θ2)2

)
+ 2ψ(2c)− 2ψ(c)− 1

θ2 + c

}

d2 = d2(θ1, θ2)

= −
Γ(c+ 1

2
)
{
4c3 + (θ1 + 1)(θ1 + θ2)

2 + c2(2 + 8θ1 + 4θ2) + c[5θ21 + θ2(θ2 + 2) + θ1(4 + 6θ2)]
}

21−2c θ−c
1 θ−c−1

2

√
π Γ(c)(θ1 + c)2(θ2 + c)(θ1 + θ2)2c+2

,

d3 = − d2(θ2, θ1).

Therefore, using Theorem 2 and delta method, we obtain the asymptotic distribution of R̂,

the MLE of R, as

√
n1 + n2 (R̂−R)

d→ N
(
0,dT (θ) I−1(θ) d(θ)

)
. (5)

From (5) the asymptotic variance of R̂ is obtained as

V ar(R̂) =
1

n1 + n2

dT (θ) I−1(θ) d(θ)

= d21 V ar(ĉ) + d22 V ar(θ̂1) + d23 V ar(θ̂2) + 2 d1 d2 Cov(ĉ, θ̂1)

+2 d1 d3 Cov(ĉ, θ̂2) + 2 d2 d3 Cov(θ̂1, θ̂2).

Hence, using (5), an asymptotic 100(1− α)% confidence interval for R can be obtained as

R̂∓ zα
2

√
V̂ ar(R̂),

where zα
2
is the upper α/2 quantile of the standard normal distribution. Since, the expression

of asymptotic variance of R̂ is quite involved, we consider different bootstrap confidence

intervals of R.
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4 Bootstrap Confidence Intervals

In this section we provide different parametric and non-parametric bootstrap confidence

intervals of R. It is assumed that we have independent random samples x1, · · · , xn1 and

y1, · · · , yn2 obtained from WL(c, θ1) and WL(c, θ2), respectively. First, we propose to use the

following method to generate non-parametric bootstrap samples, as suggested by Efron and

Tibshirani (1998), from the given random samples.

Algorithm: (Non-parametric bootstrap sampling)

• Step 1: Generate independent bootstrap samples x∗1, · · · , x∗n1
and y∗1, · · · , y∗n2

taken with

replacement from the given samples x1, · · · , xn1 and y1, · · · , yn2 , respectively. Based on

the bootstrap samples, compute the MLE (ĉ∗, θ̂∗1, θ̂
∗
2) of (c, θ1, θ2) as well as R̂∗ =

R(ĉ, θ̂∗1, θ̂
∗
2) of R.

• Step 2: Repeat Step 1, B times to obtain a set of bootstrap estimates of R, say

{R̂∗
j , j = 1, · · · , B}.

Using the above bootstrap sample values of R, we obtain three different bootstrap confidence

interval of R. The ordered R̂∗
j for j = 1, · · ·B will be denoted as:

R̂∗(1) < · · · < R̂∗(B).

(i) Percentile bootstrap (p-boot) confidence interval:

Let R̂∗(τ) be the τ percentile of {R̂∗
j , j = 1, 2, . . . , B}, i.e. R̂∗(τ) is such that

1

B

B∑
j=1

I(R̂∗
j ≤ R̂∗(τ)) = τ, 0 < τ < 1,

where I(·) is the indicator function.
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A 100(1− α)% p-boot confidence interval of R is given by

(R̂∗(α/2), R̂∗(1−α/2)).

(ii) Student’s t bootstrap (t-boot) confidence interval:

Let R̂∗ and se(R̂∗) be the sample mean and sample standard deviation of {R̂∗
j , j =

1, 2, . . . , B}, where R̂∗
j is the MLE of R for the jth bootstrap sample.

Also, let t̂∗(τ) be the τ percentile of { R̂∗
j−R̂∗

se(R̂∗)
, j = 1, 2, . . . , B}, i.e. t̂∗(τ) is such that

1

B

B∑
j=1

I(
R̂∗

j − R̂∗

se(R̂∗)
≤ t̂∗(τ)) = τ, 0 < τ < 1.

A 100(1− α)% t-boot confidence interval of R is given by

R̂± t̂∗(α/2) se(R̂∗).

(iii) Bias-corrected and accelerated bootstrap (BCa-boot) confidence interval:

Let z(τ) and ẑ0, respectively, be such that z(τ) = Φ−1(τ) and

ẑ0 = Φ−1
( 1
B

B∑
j=1

I(R̂∗
j ≤ R̂)

)
,

where Φ−1(.) is the inverse CDF of the standard normal distribution. The value ẑ0 is called

bias-correction. Also, let

â =

∑n
i=1

(
R̂(.) − R̂(i)

)3
6
[ ∑n

i=1

(
R̂(.) − R̂(i)

)2 ]3/2
where R̂(i) is the MLE of R based of (n− 1) observations after excluding the ith observation

and R̂(·) =
1
n

∑n
i=1 R̂(i). The value â is called acceleration factor.

A 100(1− α)% BCa-boot confidence interval of R is given by

(R̂∗(ν1), R̂∗(ν2)),
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where

ν1 = Φ
(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)
, ν2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)
.

Now we provide the following method to generate parametric bootstrap samples from

the given random samples, and they can be used to construct different parametric bootstrap

confidence intervals.

Algorithm: (Parametric bootstrap sampling)

• Step 1: Compute the MLEs of c, θ1 and θ2 from the given random samples, say ĉ, θ̂1 and

θ̂2, respectively. Generate independent bootstrap samples x∗1, · · · , x∗n1
and y∗1, · · · , y∗n2

,

from WL(ĉ, θ̂1) and WL(ĉ, θ̂2), respectively. Based on the bootstrap samples, compute

the MLE (ĉ∗, θ̂∗1, θ̂
∗
2) of (c, θ1, θ2) as well as R̂

∗ = R(ĉ, θ̂∗1, θ̂
∗
2) of R.

• Step 2: Repeat Step 1, B times to obtain a set of bootstrap estimates of R, say

{R̂∗
j , j = 1, · · · , B}.

Using the above bootstrap samples of R we can obtain three different parametric bootstrap

confidence intervals of R similar to the non-parametric ones. It may be mentioned that all

the bootstrap confidence intervals can be obtained even in the logit scale also, and we have

presented those results in Section 5.
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5 Monte Carlo Simulations

In this section, we present some Monte Carlo simulation results mainly to compare the per-

formances of different methods for different sample sizes and for different parameter values.

We mainly investigate the performance of the point and interval estimation of the reliability

R = P (X > Y ) based on maximum likelihood procedure when all the parameters are un-

known. Specifically, we investigate the bias and mean square error (MSE) of the simulated

MLEs. Also, we investigate the coverage probability and the length of the simulated 95%

confidence intervals based on maximum likelihood method and different bootstrap proce-

dures presented in Section 4.

For this purpose, we have generated 3, 000 samples with B = 1, 000 bootstrap samples

from each of independent WL(c, θ1) and WL(c, θ2) distributions where (c, θ1, θ2): (0.75, 2.5,

1), (2, 1, 1) and (4, 2, 5). These parameter values correspond to R = 0.26, 0.5 and 0.91,

respectively. We have taken different sample sizes namely (n1, n2): (20,20), (20,30), (20,50),

(30,20), (30,30),(30,50), (50,20), (50,30), (50,50).

In Tables 1 - 3, we report the average biases and the mean squared errors of the estimates

of R based on MLEs, parametric bootstrap and non-parametric bootstrap methods. In

Tables 4 - 6, we provide the coverage percentages and the average lengths of the confidence

intervals of R based on MLE of R and using different bootstrap methods.

Some of the points are quite clear from these experiments. Even for small sample sizes

the performances of the MLEs are quite satisfactory in terms of biases and MSEs. It is

observed that when n1 = n2 = n, and increases, the bias and MSEs decrease. It verifies

the consistency property of the MLE of R. For fixed n1(n2) as n2(n1) increases, the MSEs

decrease. Comparing the average confidence interval lengths and coverage percentages, it

is observed that the performance of the confidence intervals of R, based on the asymptotic
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distribution of MLE is quite satisfactory. It maintains the nominal coverage percentages

even for small sample sizes. Among the different bootstrap confidence intervals the biased

corrected parametric bootstrap confidence intervals perform the best in terms of the coverage

percentages. In most of the cases considered here, the confidence intervals based on MLE

performs better than the biased corrected bootstrap confidence intervals in terms of shorter

average confidence intervals.

Table 1: Average bias (mean squared error) of different estimators of R = P (X > Y ) when
c = 0.75, θ1 = 2.5 and θ2 = 1.

n1, n2 MLE Parametric Boot Non-Parametric Boot

20, 20 -0.0045 (0.0046) -0.0075 (0.0047) -0.0072 (0.0047)
20, 30 -0.0030 (0.0037) -0.0084 (0.0038) -0.0064 (0.0037)
20, 50 -0.0059 (0.0029) -0.0081 (0.0029) -0.0096 (0.0030)
30, 20 -0.0017 (0.0037) -0.0017 (0.0039) -0.0024 (0.0037)
30, 30 -0.0023 (0.0029) -0.0046 (0.0031) -0.0042 (0.0029)
30, 50 -0.0046 (0.0023) -0.0053 (0.0023) -0.0071 (0.0024)
50, 20 0.0011 (0.0031) 0.0049 (0.0033) 0.0027 (0.0032)
50, 30 0.0009 (0.0023) -0.0002 (0.0023) 0.0008 (0.0023)
50, 50 -0.0004 (0.0018) -0.0016 (0.0017) -0.0016 (0.0018)

Table 2: Average bias (mean squared error) of different estimators of R = P (X > Y ) when
c = 2, θ1 = 1 and θ2 = 1.

n1, n2 MLE Parametric Boot Non-Parametric Boot

20, 20 0.0001 (0.0078) 0.0008 (0.0079) 0.0000 (0.0080)
20, 30 -0.0042 (0.0065) -0.0007 (0.0065) -0.0054 (0.0067)
20, 50 -0.0021 (0.0055) -0.0060 (0.0051) -0.0044 (0.0056)
30, 20 -0.0013 (0.0064) 0.0041 (0.0067) -0.0001 (0.0065)
30, 30 -0.0012 (0.0050) -0.0014 (0.0052) -0.0012 (0.0052)
30, 50 -0.0024 (0.0040) 0.0005 (0.0041) -0.0035 (0.0040)
50, 20 0.0046 (0.0052) 0.0050 (0.0056) 0.0069 (0.0053)
50, 30 0.0008 (0.0040) 0.0015 (0.0042) 0.0018 (0.0040)
50, 50 0.0016 (0.0030) 0.0003 (0.0030) 0.0016 (0.0030)
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Table 3: Average bias (mean squared error) of different estimators of R = P (X > Y ) when
c = 4, θ1 = 2 and θ2 = 5.

n1, n2 MLE Parametric Boot Non-Parametric Boot

20, 20 0.0026 (0.0016) 0.0037 (0.0015) 0.0040 (0.0016)
20, 30 0.0008 (0.0013) 0.0020 (0.0012) 0.0015 (0.0013)
20, 50 0.0004 (0.0010) -0.0009 (0.0011) 0.0001 (0.0010)
30, 20 0.0019 (0.0014) 0.0036 (0.0013) 0.0033 (0.0013)
30, 30 0.0014 (0.0011) 0.0025 (0.0010) 0.0024 (0.0011)
30, 50 0.0001 (0.0009) 0.0010 (0.0009) 0.0004 (0.0008)
50, 20 0.0010 (0.0010) 0.0019 (0.0011) 0.0021 (0.0010)
50, 30 0.0019 (0.0008) 0.0028 (0.0008) 0.0029 (0.0008)
50, 50 0.0013 (0.0006) 0.0009 (0.0007) 0.0020 (0.0006)

Table 4: Coverage probability (average confidence interval length) of different estimators of
R = P (X > Y ) when c = 0.75, θ1 = 2.5 and θ2 = 1.

n1, n2 MLE Parametric Bootstrap Non-parametric Bootstrap
p-boot t-boot BCa-boot p-boot t-boot BCa-boot

20, 20 0.9400 0.9263 0.9827 0.9543 0.9127 0.9757 0.9387
(0.2473) (0.2546) (0.3050) (0.2635) (0.2496) (0.3026) (0.2566)

20, 30 0.9427 0.9290 0.9823 0.9493 0.9140 0.9700 0.9370
(0.2265) (0.2299) (0.2764) (0.2379) (0.2252) (0.2739) (0.2310)

20, 50 0.9483 0.9330 0.9827 0.9523 0.9050 0.9710 0.9320
(0.2048) (0.2075) (0.2474) (0.2142) (0.2003) (0.2432) (0.2057)

30, 20 0.9507 0.9317 0.9763 0.9500 0.9293 0.9707 0.9523
(0.2277) (0.2348) (0.2648) (0.2397) (0.2312) (0.2624) (0.2347)

30, 30 0.9487 0.9277 0.9760 0.9543 0.9260 0.9723 0.9497
(0.2044) (0.2086) (0.2392) (0.2129) (0.2048) (0.2358) (0.2085)

30, 50 0.9390 0.9350 0.9763 0.9507 0.9193 0.9707 0.9380
(0.1815) (0.1845) (0.2128) (0.1884) (0.1805) (0.2101) (0.1840)

50, 20 0.9490 0.9373 0.9583 0.9487 0.9333 0.9573 0.9447
(0.2090) (0.2163) (0.2288) (0.2174) (0.2113) (0.2234) (0.2119)

50, 30 0.9530 0.9463 0.9717 0.9547 0.9400 0.9653 0.9513
(0.1842) (0.1879) (0.2036) (0.1897) (0.1855) (0.2017) (0.1868)

50, 50 0.9433 0.9430 0.9720 0.9527 0.9323 0.9640 0.9417
(0.1599) (0.1621) (0.1792) (0.1640) (0.1597) (0.1770) (0.1614)
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Table 5: Coverage probability (average confidence interval length) of different estimators of
R = P (X > Y ) when c = 2, θ1 = 1 and θ2 = 1.

n1, n2 MLE Parametric Bootstrap Non-parametric Bootstrap
p-boot t-boot BCa-boot p-boot t-boot BCa-boot

20, 20 0.9413 0.9383 0.9630 0.9567 0.9303 0.9510 0.9497
(0.3172) (0.3361) (0.3391) (0.3380) (0.3355) (0.3398) (0.3365)

20, 30 0.9450 0.9400 0.9650 0.9607 0.9343 0.9583 0.9503
(0.2918) (0.3060) (0.3135) (0.3071) (0.3035) (0.3122) (0.3041)

20, 50 0.9413 0.9507 0.9687 0.9590 0.9310 0.9543 0.9410
(0.2690) (0.2791) (0.2904) (0.2795) (0.2756) (0.2880) (0.2759)

30, 20 0.9480 0.9293 0.9440 0.9510 0.9323 0.9497 0.9523
(0.2920) (0.3059) (0.3031) (0.3073) (0.3040) (0.3012) (0.3049)

30, 30 0.9457 0.9450 0.9593 0.9577 0.9383 0.9527 0.9493
(0.2635) (0.2740) (0.2760) (0.2749) (0.2724) (0.2743) (0.2728)

30, 50 0.9513 0.9450 0.9607 0.9517 0.9453 0.9607 0.9543
(0.2373) (0.2444) (0.2496) (0.2447) (0.2432) (0.2492) (0.2433)

50, 20 0.9480 0.9347 0.9413 0.9503 0.9323 0.9400 0.9487
(0.2693) (0.2786) (0.2713) (0.2797) (0.2747) (0.2661) (0.2755)

50, 30 0.9527 0.9433 0.9517 0.9557 0.9413 0.9487 0.9550
(0.2372) (0.2448) (0.2422) (0.2455) (0.2423) (0.2394) (0.2427)

50, 50 0.9510 0.9400 0.9527 0.9480 0.9387 0.9507 0.9483
(0.2069) (0.2121) (0.2132) (0.2124) (0.2107) (0.2117) (0.2109)
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Table 6: Coverage probability (average confidence interval length) of different estimators of
R = P (X > Y ) when c = 4, θ1 = 2 and θ2 = 5.

n1, n2 MLE Parametric Bootstrap Non-parametric Bootstrap
p-boot t-boot BCa-boot p-boot t-boot BCa-boot

20, 20 0.9570 0.9303 0.8943 0.9580 0.9010 0.8677 0.9393
(0.1641) (0.1473) (0.1305) (0.1731) (0.1426) (0.1254) (0.1646)

20, 30 0.9547 0.9263 0.8960 0.9660 0.9037 0.8713 0.9447
(0.1490) (0.1368) (0.1226) (0.1543) (0.1346) (0.1200) (0.1507)

20, 50 0.9560 0.9347 0.9123 0.9530 0.9317 0.9040 0.9500
(0.1325) (0.1262) (0.1155) (0.1363) (0.1235) (0.1124) (0.1330)

30, 20 0.9527 0.9140 0.8833 0.9477 0.9023 0.8660 0.9393
(0.1485) (0.1344) (0.1190) (0.1546) (0.1305) (0.1147) (0.1478)

30, 30 0.9477 0.9263 0.8987 0.9547 0.9147 0.8833 0.9350
(0.1331) (0.1235) (0.1100) (0.1377) (0.1208) (0.1071) (0.1337)

30, 50 0.9543 0.9330 0.9057 0.9520 0.9297 0.8963 0.9463
(0.1179) (0.1113) (0.1007) (0.1200) (0.1102) (0.0994) (0.1183)

50, 20 0.9527 0.9230 0.8887 0.9450 0.9153 0.8817 0.9377
(0.1327) (0.1227) (0.1094) (0.1370) (0.1191) (0.1054) (0.1319)

50, 30 0.9563 0.9323 0.9020 0.9500 0.9193 0.8893 0.9463
(0.1170) (0.1097) (0.0980) (0.1203) (0.1077) (0.0955) (0.1175)

50, 50 0.9553 0.9360 0.9060 0.9483 0.9317 0.9040 0.9473
(0.1020) (0.0981) (0.0884) (0.1047) (0.0960) (0.0862) (0.1023)
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6 Data Analysis

In this section we consider two data sets and describe all the details for illustrative purposes.

The two data sets were originally reported by Bader and Priest (1982), on failure stresses

(in GPa) of single carbon fibers of lengths 20 mm and 50 mm, respectively. We present the

data sets below.

Length 20 mm: X (n1 = 69): 1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944,

1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253,

2.270, 2.272, 2.274, 2.301, 2.301, 2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511,

2.514, 2.535, 2.554, 2.566, 2.57, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770,

2.773, 2.800, 2.809, 2.818, 2.821, 2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128,

3.233, 3.433, 3.585, 3.585.

Length 50 mm: Y (n2 = 65): 1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764,

1.807, 1.812, 1.84, 1.852, 1.852, 1.862, 1.864, 1.931, 1.952, 1.974, 2.019, 2.051, 2.055, 2.058,

2.088, 2.125, 2.162, 2.171, 2.172, 2.18, 2.194, 2.211, 2.27, 2.272, 2.28, 2.299, 2.308, 2.335,

2.349, 2.356, 2.386, 2.39, 2.41, 2.43, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593,

2.601, 2.604, 2.62, 2.633, 2.67, 2.682, 2.699, 2.705, 2.735, 2.785, 3.02, 3.042, 3.116, 3.174.

Before progressing further first we perform some preliminary data analysis. Figure 1

shows the empirical scaled total time on test (TTT)-transform for each considered data set

where

T (r/n) =

∑r
i=1 xi:n + (n− r)xr:n∑n

i=1 xi:n
, r = 1, 2, . . . , n,

where x1:n ≤ x2:n ≤ . . . ≤ xn:n are the order statistics from a random sample x1, x2, . . . , xn.

For more details on the empirical scaled total time on test (TTT)-transform and its relation

to the behavior of the hazard rate function, we refer the reader to the seminal paper by Barlow

and Campo (1975). Inspection of Figure 1 shows concave behavior above the diagonal line,
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indicating that each of the considered data sets is drawn from a population with an increasing

hazard rate. Therefore, WL can be used to analyze the two data sets.
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Figure 1: Scaled TTT plots: (a) Length 20 mm data (b) Length 50 mm data.

First it is assumed that X ∼ WL(c1, θ1) and Y ∼ WL(c2, θ2). The MLEs of the unknown

parameters are as follows: ĉ1 = 22.8930, θ̂1 = 8.2277, ĉ2 = 28.0882, θ̂2 = 11.3519, and the

associated log-likelihood value is L1 = −85.0880. Second suppose that X ∼ WL(c, θ1) and

Y ∼ WL(c, θ2). Then, the MLEs of the unknown parameters are as follows: ĉ = 25.1549,

θ̂1 = 10.5491, θ̂2 = 11.5153, and the associated log-likelihood value is L0 = −85.4284. We

perform the following testing of hypothesis;

H0 : c1 = c2, vs. H1 : c1 ̸= c2,

and in this case −2(L0 − L1) = 0.6808. Hence, the null hypothesis cannot be rejected.

Therefore, in this case the assumption of c1 = c2 is justified.

To compute the MLEs of c, θ1 and θ2, we use the profile likelihood method. Figure 2

provides the profile log-likelihood of c. It indicates that it has a unique maximum. In Table 7
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we provide the MLEs of the parameters c, θ1, θ2 as well as the Kolmogorov-Smirnov (K-S) and

Anderson-Darling (A-D) goodness-of-fit tests. The table shows that both the tests accept

the null hypothesis that each data set is drawn from WL distribution. Such conclusions are

also supported by various diagnostic plots in Figures 3 and 4. Based on the MLEs ĉ, θ̂1, θ̂2,

the point estimate of R is 0.6235 and the 95% confidence interval of R is (0.5164, 0.7307) with

confidence interval length 0.2143. MLE, parametric and non-parametric bootstrap estimates

of R are provided in Table 8.

Table 7: MLEs and K-S and A-D goodness-of-fit tests.

Plane MLEs K-S statistic p-value A-D statistic p-value

Length 20 mm ĉ = 25.1549 0.0559 0.9823 0.3309 0.9130

θ̂1 = 10.5491
Length 50 mm ĉ = 25.1549 0.0723 0.8857 0.3311 0.9128

θ̂2 = 11.5153
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Figure 2: The profile log-likelihood of c for the given data.
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Figure 3: Diagnostic plots for the fitted weighted Lindley model for length 20 mm data.
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Figure 4: Diagnostic plots for the fitted weighted Lindley model for length 50 mm data.
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Table 8: Statistical inference of R for the different estimation methods.

Estimation Method R̂ 95% C.I. of R confidence interval length
MLE 0.6235 (0.5286, 0.7099) 0.1813

Parametric Bootstrap
p-boot 0.6232 (0.5265, 0.7154) 0.1889
t-boot 0.6232 (0.5265, 0.7116) 0.1851
BCa-boot 0.6232 (0.5218, 0.7140) 0.1922

Non-Parametric Bootstrap
p-boot 0.6251 (0.5364, 0.7081) 0.1717
t-boot 0.6251 (0.5364, 0.7033) 0.1669
BCa-boot 0.6251 (0.5328, 0.7030) 0.1702

7 Concluding Remarks

In this paper we consider the statistical inference of R = P (X > Y ), where X and Y

are independent weighted Lindley random variables with a common shape parameter. This

probability is a measure of discrimination between two groups and has been studied quite

extensively under different conditions by various authors. We investigate Maximum likeli-

hood, p-, t-, and BCa-bootstrapping estimation methods (point and interval) of R and their

performances are examined by extensive simulations. It is observed that the maximum like-

lihood method provides very satisfactory results both for point and interval estimation of R.

An example is provided to illustrate these results. It is hoped that our investigation will be

useful for researchers dealing with the kind of data considered in this paper.
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