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Summary. This article presents procedures for hypothesis testing and interval estimation of the common
mean of several normal populations. The methods are based on the concepts of generalized p-value and
generalized confidence limit. The merits of the proposed methods are evaluated numerically and compared
with those of the existing methods. Numerical studies show that the new procedures are accurate and perform
better than the existing methods when the sample sizes are moderate and the number of populations is four
or less. If the number of populations is five or more, then the generalized variable method performs much
better than the existing methods regardless of the sample sizes. The generalized variable method and other
existing methods are illustrated using two examples.
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1. Introduction

The statistical analysis that combines or integrates the results
of several independent studies is known as meta-analysis, and
it is commonly used in clinical trials and social and behavioral
sciences. If independent samples are collected from different
normal populations with a common mean but possibly with
different variances, then the problem of interest is to combine
the summary statistics of the samples to estimate or test the
common mean. This problem arises in situations where dif-
ferent instruments, different methods, or different laboratories
are used to measure like substances or products to assess their
average quality. The article by Meier (1953) presents an ex-
ample in which four different methods are used to estimate
the mean percentage of albumin in the plasma protein of nor-
mal people (see Example 1 in Section 7). Eberhardt, Reeve,
and Spiegelman (1989) illustrated an example where different
analytical methods are used to estimate a chemical substance
in nonfat milk powder (see Example 2 of Section 7).

To formulate the present problem, consider k different nor-
mal populations with a common mean µ but possibly different
variances σ2

1, . . . ,σ
2
k. Let X̄i and S

2
i denote, respectively, the

mean and variance of a random sample of ni observations
from the ith normal population, i = 1, . . . , k. An extensive
number of papers have been written on the point estimation
of µ, and a landmark result is due to Graybill and Deal (1959),
who first showed for the two-sample case that the combined
estimator

µ̂GD =

n1

S2
1

X̄1 +
n2

S2
2

X̄2

n1

S2
1

+
n2

S2
2

(1)

has a smaller variance than either of the sample mean, pro-
vided n1 ≥ 11 and n2 ≥ 11. Since then, many authors im-
proved and extended this result to the case of more than two
populations. For a good exposition of the work in point es-
timation, we refer to Bhattacharya (1984) and the references
therein.

Several authors proposed approximate confidence intervals
which are centered at µ̂GD. Meier (1953) proposed a normal-
based approximate confidence interval centered at µ̂GD. Us-
ing Welch’s (1947) method, Maric and Graybill (1979) and
Pagurova and Gurskii (1979) derived approximate confidence
intervals which are also centered at µ̂GD. Another approx-
imate confidence interval based on the likelihood ratio test
is proposed in Hinkley (1979). The article by Fairweather
(1972) seems to be the first work that provides an exact confi-
dence interval for µ. This exact confidence interval is based on
a linear combination of individual t-test statistics. Following
the idea of Fairweather (1972), Jordan and Krishnamoorthy
(1996) developed an exact confidence interval centered at
µ̂GD. This interval is obtained by inverting a linear combina-
tion of individual F-test statistics. The results are generalized
to a multivariate normal case in Jordan and Krishnamoorthy
(1995a). Jordan and Krishnamoorthy (1996) compared these
two exact confidence intervals along with two other exact
confidence intervals. Their numerical studies showed that
Fairweather’s intervals and Jordan and Krishnamoorthy’s in-
tervals are in general shorter than the other two intervals.
For smaller variance ratios, Fairweather’s intervals are nar-
rower than Jordan and Krishnamoorthy’s intervals; otherwise
the latter intervals are shorter than the former intervals. Yu,
Sun, and Sinha (1999) considered the four confidence intervals
in Jordan and Krishnamoorthy (1996) and some other inter-
vals that are obtained by inverting the tests based on different
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combinations of the p-values from individual tests (for exam-
ple, see Fisher’s test in Section 6 of this paper). Based on
their numerical studies, they recommended the intervals due
to Fairweather (1972), Jordan and Krishnamoorthy (1996)
and the one based on Fisher’s test in Section 6. It should be
noted that all the methods (except Fairweather’s) considered
in Yu et al. (1999) do not always produce nonempty confi-
dence intervals. They required satisfying some conditions in
order to yield nonempty intervals.

Regarding hypothesis testing about the common mean µ,
Cohen and Sackrowitz (1984) considered several tests, includ-
ing a normal approximate test based on µ̂GD in (1). Their
power comparison studies showed that there is no clear-cut
winner among the tests considered. In particular, the variance
ratio must be known to choose the best test. In the context of
the balanced incomplete block design, Cohen and Sackrowitz
(1989) proposed a test that combines the individual tests by
weighting with their sample variances. Following their idea,
Zhou and Mathew (1993) developed two combined tests for
the present problem, and compared them with Fisher’s test.
Their power comparison studies, for the case of k = 2, showed
that one of the new tests is better than Fisher’s test; however,
knowledge about the magnitude of the variance ratio must be
known to choose the better of the two new tests. Even though
some of these combined tests are easy to use and better than
Fisher’s test and other approximate tests, it is difficult to
invert them to obtain confidence intervals for the common
mean.

We see from the above literature review that there is no
single procedure that performs better than the other meth-
ods for both hypothesis testing and interval estimation. The
main purpose of this article is to develop a single general-
ized pivot variable that is simple to use for both hypothesis
testing and interval estimation of µ. Toward this, we want
to develop inferential procedures based on the generalized
p-value approach. The concept of generalized p-value was in-
troduced by Tsui and Weerahandi (1989) for hypothesis test-
ing. Weerahandi (1993) extended the idea for constructing
confidence intervals. The book by Weerahandi (1995b) gives
a detailed discussion along with numerous examples. The
concepts of generalized p-values and generalized confidence
intervals have turned out to be very satisfactory for obtain-
ing tests and confidence intervals for many complex prob-
lems; see Zhou and Mathew (1994), Weerahandi (1995a),
and Weerahandi and Berger (1999). For these reasons, we
want to construct a pivot variable using the idea of a gen-
eralized p-value approach, so that it can be used for both
hypothesis testing and interval estimation of the common
mean.

This article is organized as follows. In the following sec-
tion, we briefly explain the concept of the generalized p-value
and generalized limits in a typical setup, and then construct
a generalized variable for the present problems. This general-
ized variable is obtained by combining the generalized vari-
ables of the means based on individual samples, using the
reciprocals of the generalized variables of the variances as
weights. In Section 3, we outline the methods of constructing
confidence intervals and hypothesis testing about the com-
mon mean µ using the generalized variable given in Section 2.
For this purpose, a computational algorithm is provided. In

Section 4, we describe the methods of computing powers of
the test and coverage probabilities of the confidence inter-
val based on the generalized variable. A computational algo-
rithm for computing powers of the generalized test and cover-
age probabilities of the generalized confidence interval is also
given. In Section 5, the generalized confidence interval is com-
pared to confidence intervals (i) due to Fairweather (1972) and
(ii) due to Jordan and Krishnamoorthy (1996). Of the two in-
tervals (i) and (ii), there is no clear-cut winner. Comparison
among these three intervals show that the expected lengths
of the generalized intervals are close to the minimums of the
expected lengths of (i) and (ii). If the variances are drasti-
cally different, then the generalized interval has the shortest
expected length. In Section 6, we present some power stud-
ies. Powers of the generalized test are compared with those
of two combined tests in Zhou and Mathew (1993), an ap-
proximate test due to Mathew, Sinha, and Zhou (1993), and
Fisher’s test. When k = 2 and the sample sizes are mod-
erate (at least nine), the powers of the generalized test are
very close to those of the test that has the maximum power
among the other three tests and in some situations, the gen-
eralized test has the largest power. For k ≥ 3, the sample
size requirement is somewhat relaxed. For example, when
k = 3, the generalized test seems to be the most powerful
test of all the tests considered when the sample sizes are five
or more. For moderate k, our power comparison studies show
that the generalized test is the best when sample sizes are
four or more. In Section 7, the generalized variable methods
and other methods considered in this article are illustrated
using two examples. Some concluding remarks are given in
Section 8.

2. Generalized Variable for the Common Mean

2.1 The Generalized P-Value and Confidence Limits

We shall first explain the method of constructing a generalized
pivot variable and the definition of the generalized p-value
in a general setup. Let X be a random variable (that could
be a vector) whose distribution depends on the parameters
(θ, δ), where θ is a scalar parameter of interest, and δ is a
nuisance parameter. Suppose we are interested in testing the
hypotheses

H0 : θ ≤ θ0 vs. Ha : θ > θ0, (2)

where θ0 is a specified quantity. Let x denote the observed
value of X. In other words, x is known after the data have
been collected. A generalized pivot variable, to be denoted by
T 1(X; x, θ, δ), is a function of X, x, θ, and δ, and it satisfies
the following conditions:

(i) For a fixed x, the distribution of T1(X;x, θ, δ) is free of
the nuisance parameter δ.

(ii) The value of T1(X;x, θ, δ) at X = x is free of any un-
known parameters.

(iii) For fixed x and δ, the distribution of T1(X;x, θ, δ) is
either stochastically increasing or stochastically de-
creasing in θ. That is, P{T1(X;x, θ, δ) ≥ a} is an in-
creasing function of θ, or is a decreasing function of θ,
for every a. (3)
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Let t1 = T 1(x; x, θ, δ), the value of T 1(X; x, θ, δ) at X = x. If
T 1(X; x, θ, δ) is stochastically increasing in θ, the generalized
p-value for testing the hypotheses in (2) is given by

supH0
P{T1(X;x, θ, δ) ≥ t1} = P{T1(X;x, θ0, δ) ≥ t1},

and if T 1(X; x, θ, δ) is stochastically decreasing in θ, the
generalized p-value for testing the hypotheses in (2) is given
by

supH0
P{T1(X;x, θ, δ) ≤ t1} = P{T1(X;x, θ0, δ) ≤ t1}.

Note that the computation of the generalized p-value is pos-
sible in view of the conditions (i) and (ii) in (3), i.e., the dis-
tribution of T 1(X; x, θ, δ) is free of the nuisance parameter δ
and t1 = T 1(x; x, θ, δ) is free of any unknown parameters.

A generalized confidence interval for θ is computed us-
ing the percentiles of a generalized pivot variable, say
T 2(X; x, θ, δ), satisfying the following conditions:

(i) For a fixed x, the distribution of T2(X;x, θ, δ) is free of
all unknown parameters.

(ii) The value of T2(X;x, θ, δ) at X = x is θ, the parameter
of interest. (4)

Appropriate quantiles of T 2 form a (1−α) confidence limit
for θ. For example, if T 2(x; p) is the pth quantile of
T 2(X; x, θ, δ), then (T 2(x; α/2), T 2(x;1−α/2)) is a 95%
confidence interval for θ.

For further details on the concepts of generalized p-values
and generalized confidence intervals, along with numerous
examples, we refer the reader to the book by Weerahandi
(1995b).

2.2 The Generalized Variable for Testing and Interval
Estimation of the Common Mean

Let x̄i and s2
i denote respectively the observed values of

X̄i and S2
i , i = 1, . . . , k. Further, let v2

i = (ni − 1)s2
i and

V 2
i = (ni − 1)S2

i , i = 1, . . . , k. The generalized pivot vari-
able for estimating µ based on the ith sample is given by

Ti = x̄i −
(

X̄i − µ
σi/

√
ni

)

σi
Vi

vi√
ni

= x̄i −
Zi

Ui

vi√
ni

, i = 1, . . . , k,

(5)

where U 2
i = V 2

i/σ
2
i and

Zi = (X̄ − µi)/(σi/
√
ni),

i = 1, . . . , k. Notice that U 2
i ’s and Zi’s are independent ran-

dom variables with U 2
i ∼ χ2

ni−1 and Zi ∼ N(0, 1), i = 1, . . . , k.
Furthermore, note that

Ti = x̄i − tisi/
√
ni,

where

ti = Zi

√
ni − 1/Ui

follows a student’s t-distribution with df = ni − 1, i =
1, . . . , k. For a given x̄i and si, let T i,p denote the the pth
quantile of T i, i = 1, . . . , k. Then, the 1−α confidence inter-

val based on T i is (T i,α/2, T i,1−α/2) and it coincides with the
usual t-interval based on the ith sample alone, i = 1, . . . , k.

The generalized pivot variable for estimating σ2
i based on

the ith sample is given by

Ri =
σ2
i

V 2
i

v2
i =

v2
i

Q2
i

, i = 1, . . . , k, (6)

where Q2
i = V

2
i/σ

2
i are independent χ

2
ni−1 random variables, i

= 1, . . . , k. For a given v2
i , let Ri,p denote the pth quantile of

Ri, i = 1, . . . , k. Then (Ri,α/2, Ri,1−α/2) is an exact (1 − α)
confidence interval for σ2

i (based on the ith sample alone) and
it coincides with the usual confidence interval based on the
chi-squared distribution.

The generalized variable that we propose is a weighted av-
erage of the generalized variables T i’s of µ based on individ-
ual samples. The weights are inversely proportional to the
generalized variables Ri’s for the variances and are directly
proportional to the sample sizes. Let X̄ = (X̄1, . . . , X̄k) and
V = (V 1, . . . ,V k), and let x̄ and v denote respectively the
observed values of X̄ and V. Then the generalized variable
can be expressed as

T (X̄,V; x̄,v) =

k
∑

i=1

niQ
2
i

v2
i

(

x̄i −
Zi

Ui

vi√
ni

)

k
∑

j=1

njQ
2
j

v2
j

=

k
∑

i=1

WiTi,

(7)

where Wi = (niQ
2
i/v

2
i )/(

∑k

j=1
njQ

2
j/v

2
j), i = 1, . . . , k, and T i

is given in (5).
To construct confidence limits based on T, we need to verify

that T in (7) satisfies the two conditions in (4). The value of
T i in (5) at (X̄i, Vi) = (x̄i, vi) is µ, i = 1, . . . , k. It follows

from (6) that Wi = (ni/σ
2
i )/(

∑k

j=1
nj/σ

2
j) when V i = vi, i =

1, . . . , k. Therefore, T = µ at (X̄,V) = (x̄,v). It is also clear
from (5) and (6) that, for a given (x̄,v), the distribution of T
is independent of any unknown parameters. Therefore, T is a
bona fide generalized variable, and its quantiles can be used
to construct confidence limits for µ.

For hypothesis testing about µ, a generalized variable,
say T ∗, can be defined as T ∗ = T −µ, where T is defined
in (7). We see that, for a given (x̄,v) and t, P (T > t) =
P (T ∗ > t−µ), and so T is stochastically decreasing in µ.

Remark 2.1 In the definitions of T i in (5) and Ri in
(6), we used different chi-squared random variables U 2

i and
Q2

i , even though both are related to the same sample sums of
squares

∑ni

j=1
(Xij − X̄i)

2.We used different chi-squared vari-
ables because our preliminary numerical studies showed that
the generalized variable based on the same chi-squared vari-
able (that is, the one with Ri = v2

i/U
2
i) produced confidence

limits that are too liberal. In some situations, it yielded con-
fidence limits with coverage probabilities less than 0.88 when
the nominal level is 0.95. As will be seen later, the confidence
limits based on T in (7) are either slightly conservative or
almost exact.
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3. Hypothesis Testing and Interval Estimation

For a given (x̄,v), the distribution of T in (7) is independent of
any unknown parameters and hence the Monte Carlo method
can be used to test the interval estimation of µ. Because T
is stochastically decreasing with respect to µ, the generalized
p-value for testing

H0 : µ ≤ µ0 vs Ha : µ > µ0 (8)

is given by

P (T < µ0 | x̄,v). (9)

The generalized test rejects H0 in (8) whenever the p-value
in (9) is less than α. If one is interested in testing

H0 : µ = µ0 vs Ha : µ 
= µ0, (10)

then the generalized p-value is given by

2min{P (T < µ0 | x̄,v), P (T > µ0 | x̄,v)}. (11)

The null hypothesis in (10) will be rejected whenever the p-
value in (11) is less than α.

The (1−α) confidence interval is given by

(Tα/2, T1−α/2), (12)

where T p denotes the pth quantile of T. One-sided confidence
intervals are similarly constructed.

The following algorithm is useful in constructing a test and
confidence interval for µ.

Algorithm 1

For a given (n1, . . . ,nk), (x̄1, . . . , x̄k), and (v1, . . . , vk):

For j = 1, m:

Generate tn1−1, . . . , tnk − 1.
Generate Q2

l ∼ χ2
nl − 1, l = 1, . . . , k.

Compute W 1, . . . ,W k.
Compute Tj =

∑k

l=1
Wl(x̄l − tnl−1

sl√
nl
).

(end j loop)

Compute the 100(α/2)th percentile Tα/2 and the
100(1 − α/2)th percentile T 1−α/2 of T 1, . . . ,Tm. Then,
(Tα/2, T 1−α/2) is a 1 − α confidence interval for µ. The gen-
eralized p-value for testing (8) is estimated by the proportion
of T i’s which are less than µ0.

4. Computation of Coverage Probabilities
and Powers

Even though, for a given (x̄,v), the distribution of the T in (7)
does not depend on any parameters, the coverage probabilities
of the generalized limits depend on the sampling distributions
of X̄ and V, which depend on the parameters σ2

i ’s. Hence
the properties of the generalized limits and generalized test
are to be evaluated numerically. We computed the coverage
probabilities, expected lengths of the generalized confidence
limits, and powers using the Monte Carlo method given in the
following algorithm.

Algorithm 2

For a given (n1, . . . ,nk), (σ
2
1, . . . ,σ

2
k), and µ:

For i = 1, n:

Generate Z1, . . . ,Zk from N(0, 1).
Generate χ2

n1−1, . . . ,χ
2
nk−1.

Set x̄j = µ+ Zjσj/
√
nj , j = 1, . . . , k. v2

j = σj
2χ2

nj−1,
j = 1, . . . , k.

Use Algorithm 1 to construct a (1−α) confidence inter-
val Ei. If Ei contains µ, set δi =1; otherwise, set
δi =0.

Use Algorithm 1 to compute the generalized p-value. If
this p-value is less than α, set ηi = 1; otherwise, set
ηi = 0.

(end i loop)

The proportion 1
n

∑n

i=1
δi is the estimated coverage proba-

bility of the generalized confidence interval. The proportion
1
n

∑n

i=1
ηi is the estimated power of the generalized test. The

expected length of the generalized limits is estimated by the
average length of Ei’s.

5. Comparison between Confidence Intervals

We shall now present the other confidence intervals that are
to be compared in our numerical studies.
5.0.1 The interval estimate due to Fairweather (1972). Let

ti denote the student’s t variable with df = ni − 1, and
ui = {Var(ti)}−1/[

∑k

j=1
{Var(tj)}−1], i = 1, . . . , k. Further, let

b denote the (1−α)th quantile of |
∑k

j=1
uiti|. Then

k
∑

i=1

uix̄i
√
ni/si

k
∑

j=1

uj
√
nj/sj

± b
k

∑

j=1

uj
√
nj/sj

(13)

is an exact (1 − α) confidence interval for µ. For the case
of k = 2, the critical point b can be obtained using numeri-
cal integration involving the probability density function of a
t-random variable. For k ≥ 2, Fairweather (1972) suggested a
moment approximation.
5.0.2 The confidence interval due to Jordan and

Krishnamoorthy (1996). Let F i denote the F random
variable with numerator df = 1 and the denominator df =
ni − 1, i = 1, . . . , k, and let a denote the (1 − α)th quantile

of
∑k

i=1
wiFi, where wi = {Var(Fi)}−1/[

∑k

j=1
{Var(Fj)}−1],

i = 1, . . . , k. Then

k
∑

i=1

pix̄i ±
a

k
∑

j=1

wjnj

s2
j

−









k
∑

j=1

pj x̄
2
j −

(

k
∑

j=1

pj x̄j

)2








1/2

(14)

is an exact (1−α) confidence interval for the common mean µ.
Again, for the case of k = 2, exact values of a can be obtained
using numerical integration involving the probability density
function of an F random variable; for other cases, Jordan and
Krishnamoorthy (1996) proposed a moment approximation
following the idea of Fairweather (1972).
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Table 1(a)
Simulated expected widths of 95% confidence intervals

n1 = n2 = 11 n1 = n2 = 16

(σ2
1, σ

2
2) 1 2 3 1 2 3

(5,5) 2.04 2.30 2.14(0.95) 1.60 1.85 1.70(0.95)
(5,10) 2.36 2.68 2.47(0.96) 1.88 2.14 1.97(0.96)
(5,15) 2.57 2.87 2.63(0.96) 2.04 2.28 2.08(0.95)
(5,20) 2.73 2.95 2.73(0.96) 2.14 2.36 2.14(0.95)
(5,25) 2.80 3.03 2.77(0.95) 2.23 2.41 2.18(0.95)
(5,30) 2.85 2.98 2.82(0.95) 2.29 2.45 2.22(0.95)
(5,40) 3.00 3.10 2.86(0.95) 2.38 2.50 2.25(0.95)
(5,50) 3.12 3.14 2.87(0.95) 2.45 2.52 2.27(0.95)
(5,100) 3.36 3.25 2.93(0.95) 2.64 2.59 2.32(0.95)
(5,250) 3.60 3.33 2.95(0.95) 2.85 2.63 2.36(0.95)
(5,500) 3.74 3.34 2.93(0.95) 2.96 2.64 2.34(0.95)
(5,1000) 3.86 3.36 2.92(0.95) 3.04 2.65 2.35(0.95)

Table 1(b)
Simulated expected widths of 95% confidence intervals

n1 = 31, n2 = 11 n1 = 11, n2 = 31

(σ2
1, σ

2
2) 1a 2b 3c 1a 2b 3c

(5,5) 1.42 1.55 1.46(0.95) 1.62 1.83 1.46(0.95)
(5,10) 1.58 1.63 1.55(0.95) 1.97 2.30 1.86(0.95)
(5,15) 1.66 1.66 1.59(0.95) 2.18 2.56 2.09(0.95)
(5,20) 1.72 1.68 1.61(0.95) 2.33 2.72 2.24(0.95)
(5,25) 1.76 1.69 1.61(0.95) 2.84 2.85 2.34(0.95)
(5,30) 1.79 1.69 1.61(0.95) 2.53 2.95 2.43(0.95)
(5,40) 1.83 1.70 1.62(0.95) 2.67 3.07 2.54(0.95)
(5,50) 1.87 1.71 1.62(0.95) 2.78 3.16 2.62(0.95)
(5,100) 1.95 1.71 1.63(0.95) 3.08 3.36 2.77(0.95)
(5,250) 2.03 1.72 1.63(0.95) 3.41 3.49 2.88(0.95)
(5,500) 2.08 1.73 1.64(0.96) 3.61 3.56 2.92(0.95)
(5,1000) 2.11 1.73 1.64(0.95) 3.77 3.57 2.92(0.95)

a1—the interval (13) due to Fairweather (1972).
b2—the interval (14) due to Jordan and Krishnamoorthy (1996).
c3—the generalized interval (12)

In simulation studies, we used Algorithm 2 with n = 2500
runs and Algorithm 1 with m = 5000 runs to estimate the
coverage probabilities of the confidence intervals. Because the
sampling distributions of x̄i’s are location invariant, without
loss of generality we can let µ = 0 in our numerical studies.
The estimated coverage probabilities of the generalized con-
fidence interval along with their expected lengths are given
in Tables 1(a) and 1(b) for various sample sizes and parame-
ter configurations considered in Jordan and Krishnamoorthy
(1996). We also presented expected lengths of the exact con-
fidence intervals in (13) and (14). It is clear from these table
values that the generalized variable method produced limits
that are either very close to the shorter of the intervals (13)
and (14) or are the shortest among the three intervals.

6. Power Comparison with Other Combined Tests

The combined tests given in Zhou and Mathew (1993) are
obtained by combining the p-values of the usual tests based on
the individual samples. As already pointed out, these tests are
exact; however, it is difficult to invert them to find confidence

limits for µ. We shall now briefly describe the combined tests.
Note that, for hypotheses in (8), the p-value of the usual t-
test based on the ith sample is given by P (t2ni−1 > t

2
0i), where

tm denotes the student’s t variable with df = m, and t20i is
an observed value of ni(X̄i − µ0)

2/S2
i , i = 1, . . . , k. Let P i =

−lnP (t2ni−1 > t
2
0i), i = 1, . . . , k. The weight of the ith test is

given by

ai =
ni(ni + 1)

{

ni(x̄i − µ0)
2 + v2

i

}−1

k
∑

j=1

(nj + 1)
{

nj(x̄j − µ0)
2 + v2

j

}−1

, i = 1, . . . , k.

(15)

Note that the weights given below the display (3.1) of Zhou
and Mathew (1993) are only for equal sample sizes. For un-
equal sample sizes, the correct weights are the ai’s given
in (15); for more details, see Jordan and Krishnamoorthy
(1995b). Zhou and Mathew (1993) present an exact expres-
sion for computing the p-value of their combined test. Their
test rejects the null hypothesis in (8) whenever the p-value

k
∑

i=1

ak−1
i e−P0/ai

∏

j=1k ;j 
=i

(ai − aj)
≤ α(1 + η), (16)

where

P =

k
∑

i=1

aiPi, η =

∑

i<j

sign{(x̄i − µ0)(x̄j − µ0)}

k(k − 1)/2
, (17)

and P 0 is an observed value of P. The derivation of the p-value
in the left-hand side of (16) utilizes the fact that the test
statistics t2i ’s and the weights are statistically independent.
Therefore, the test based on (16) is applicable only for two-
sided alternative hypothesis (see Zhou and Mathew (1993) for
more details).

Fisher’s test is based on the fact that 2
∑k

i=1
Pi ∼ χ2

2k, and
it rejects the null hypothesis in (8) whenever

P
(

χ2
2k > c

)

< α, (18)

where c is an observed value of 2
∑k

i=1
Pi.

Finally, we consider the approximate test due to Mathew
et al. (1993). Let Bi = ni(x̄i − µ0)

2/{ni(x̄i − µ0)
2 + v2

i},
i = 1, 2. The test statistic is given by

T ∗ =
n1B1 + n2B2θ̂

2 + 2θ̂η
√
n1n2B1B2

(
√
n1 + θ̂

√
n2)2

,

where θ̂2 = (n2
2/n

2
1){n1(x̄1 − µ0)

2 + v2
1}/{n2(x̄2 − µ0)

2 + v2
2}.

It has been shown that T ∗ follows a beta(a, b) distribution
approximately. The expressions for a and b are given by
a = E1(E1 − E2)/(E2 − E2

1) and b = (1 − E1)a/E1, where

E1 = E(T
∗ | θ̂) = 1 + θ̂2

(
√
n1 + θ̂

√
n2)2

and

E2 = E(T
∗2 | θ̂) =

3

2

(

n1

n1/2 + 1
+

θ̂4n2

n2/2 + 1

)

+ 6θ̂2

(
√
n1 + θ̂

√
n2)4

.
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For an observed value T ∗
0 of T ∗, this test rejects the null

hypothesis in (10) whenever

P
(

X > T ∗
0

)

< α, (19)

where X is a beta(a, b) random variable. This test is available
only for k = 2, and is applicable only when the alternative
hypothesis is two-sided.

The generalized test based on T in (7) and the other com-
bined tests given above are scale invariant, and hence the
powers of these tests depend on the variances via the ratio
σ2

2/σ
2
1 when k = 2. Therefore, for the case k = 2, it suffices to

study the power properties for various values of σ2/σ1. The
powers of the generalized test are computed using Algorithm 2
with n = 2500 runs and Algorithm 1 withm = 5000 runs. The
powers of the combined tests are computed using Monte Carlo
method with 100,000 runs. The powers of

Table 4(a)
Simulated powers of the tests when H0 :µ = 0 vs Ha: µ 
= 0 and α = 0.05

n1 = n2 = 4 n1 = n2 = 9

µ µ

σ2/σ1 Testsa 0 0.4 0.8 1.2 1.6 2.0 2.4 0 .2 .4 .6 .8 1

1 (a) .14 .39 .70 .90 .98 1.0 .12 .31 .60 .84 .95
(b) .09 .25 .53 .79 .94 .99 .09 .22 .47 .73 .90
(c) .11 .31 .61 .86 .97 1.0 .10 .25 .53 .79 .94
(d) .05 .15 .45 .78 .95 .99 1.0 .05 .12 .34 .63 .86 .96
(e) .03 .10 .30 .59 .84 .95 .99 .05 .10 .30 .58 .84 .96

2 (a) .10 .26 .50 .71 .86 .94 .09 .22 .42 .64 .82
(b) .08 .19 .36 .56 .74 .86 .08 .18 .35 .57 .76
(c) .08 .19 .38 .60 .79 .91 .08 .17 .33 .55 .75
(d) .05 .11 .28 .52 .73 .86 .93 .05 .09 .22 .43 .65 .82
(e) .04 .08 .19 .39 .60 .78 .90 .05 .08 .20 .41 .64 .82

3 (a) .10 .24 .44 .64 .79 .87 .09 .19 .37 .56 .73
(b) .09 .19 .36 .54 .70 .81 .08 .18 .35 .56 .75
(c) .08 .17 .31 .49 .67 .81 .07 .15 .29 .48 .67
(d) .05 .09 .23 .43 .61 .74 .82 .05 .09 .20 .38 .59 .76
(e) .04 .07 .17 .35 .53 .71 .84 .05 .09 .20 .36 .57 .78

4 (a) .09 .22 .41 .60 .74 .83 .08 .18 .34 .52 .67
(b) .09 .20 .37 .55 .71 .82 .08 .19 .36 .56 .75
(c) .08 .16 .29 .45 .61 .74 .07 .15 .27 .45 .63
(d) .05 .09 .21 .38 .55 .66 .74 .05 .08 .20 .37 .57 .74
(e) .05 .08 .17 .33 .51 .69 .81 .05 .09 .19 .36 .54 .74

5 (a) .09 .21 .39 .57 .70 .79 .08 .18 .32 .49 .62
(b) .09 .20 .37 .55 .71 .82 .08 .19 .35 .56 .75
(c) .08 .15 .27 .42 .58 .72 .07 .14 .27 .44 .62
(d) .05 .09 .20 .37 .52 .63 .70 .05 .08 .19 .36 .56 .74
(e) .04 .07 .16 .32 .50 .68 .80 .05 .08 .18 .33 .55 .72

6 (a) .09 .21 .37 .54 .67 .75 .08 .17 .31 .47 .60
(b) .09 .20 .38 .57 .73 .85 .08 .18 .35 .56 .75
(c) .08 .15 .27 .39 .54 .66 .07 .14 .26 .43 .61
(d) .05 .08 .20 .35 .50 .61 .68 .05 .09 .19 .36 .56 .74
(e) .05 .08 .17 .33 .50 .66 .79 .05 .08 .17 .33 .57 .74

10 (a) .09 .19 .34 .49 .59 .66 .08 .16 .28 .42 .53
(b) .09 .21 .38 .58 .75 .87 .08 .18 .35 .56 .75
(c) .08 .15 .26 .39 .54 .66 .07 .14 .26 .42 .59
(d) .05 .08 .18 .34 .49 .59 .66 .05 .08 .19 .36 .56 .75
(e) .04 .08 .18 .33 .51 .67 .79 .05 .07 .17 .38 .54 .70

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (d) the approximate test in (19); (e) the generalized
test in (11).

(a) the test in (16) with η in (17),
(b) the test in (16) with η = 0,
(c) Fisher’s test (18),
(d) the approximate test in (19), and
(e) the generalized test in (11)

are given in Tables 4(a)–4(d) for various values of µ. Test (d)
is included only for the case of k = 2, and other tests are
compared when k = 2, 3, 4, and 7. The power comparison
studies indicate the followings:

(i) Among the tests (a), (b), (c), and (d), no test is uni-
formly better than the others when k = 2. Test (d) seems
to be asymptotically less efficient than other tests; when
n1 = n2 = 4, n1 = n2 = 9, and σ2/σ1 is small, it performs
better than all other tests (see Table 4(a)); when n1 =
n2 = 12 it is inferior to all other tests, while when
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Table 4(b)
Simulated powers of the tests when H0 :µ = 0 vs Ha :µ 
= 0 and α = 0.05

n1 = n2 = 12 n1 = 15, n2 = 4

µ µ

σ2/σ1 Testsa 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

1 (a) .39 .71 .91 .99 1.0 .11 .28 .54 .77 .90
(b) .28 .58 .84 .97 1.0 .08 .21 .43 .67 .84
(c) .32 .64 .88 .98 1.0 .10 .27 .55 .81 .95
(d) .05 .15 .44 .77 .95 .99 .05 .12 .35 .65 .87 .96
(e) .04 .35 .69 .91 .99 1.0 .04 .10 .26 .53 .83 .94

2 (a) .27 .51 .74 .89 .96 .10 .27 .49 .68 .80
(b) .23 .45 .69 .87 .96 .10 .27 .51 .74 .88
(c) .21 .42 .66 .85 .96 .09 .23 .47 .73 .90
(d) .05 .11 .30 .56 .80 .93 .05 .11 .31 .58 .81 .98
(e) .04 .24 .49 .74 .90 .98 .04 .10 .28 .52 .74 .89

3 (a) .23 .44 .67 .85 .95 .10 .26 .46 .62 .72
(b) .18 .36 .59 .79 .92 .11 .29 .56 .79 .92
(c) .22 .41 .59 .74 .95 .09 .23 .46 .71 .89
(d) .05 .10 .27 .51 .74 .89 .05 .11 .30 .57 .81 .93
(e) .05 .22 .46 .71 .87 .95 .05 .11 .28 .57 .79 .92

4 (a) .22 .41 .59 .74 .95 .10 .25 .43 .59 .67
(b) .22 .44 .67 .85 .95 .11 .30 .57 .81 .94
(c) .18 .35 .56 .75 .89 .09 .23 .45 .70 .88
(d) .05 .10 .26 .49 .72 .88 .05 .11 .30 .58 .81 .94
(e) .05 .23 .43 .69 .85 .94 .05 .11 .29 .56 .79 .93

5 (a) .21 .38 .56 .69 .77 .10 .24 .42 .56 .64
(b) .23 .44 .67 .85 .95 .11 .30 .58 .81 .94
(c) .17 .34 .54 .74 .88 .09 .22 .45 .70 .88
(d) .05 .10 .25 .49 .72 .88 .05 .11 .30 .58 .82 .94
(e) .05 .22 .43 .66 .85 .95 .05 .11 .29 .57 .82 .93

6 (a) .20 .37 .53 .66 .73 .10 .24 .41 .54 .62
(b) .23 .44 .67 .85 .95 .11 .30 .57 .82 .95
(c) .17 .33 .53 .73 .87 .09 .22 .44 .70 .88
(d) .05 .10 .25 .48 .71 .88 .05 .11 .30 .58 .82 .95
(e) .05 .22 .44 .66 .85 .95 .05 .11 .29 .56 .82 .95

10 (a) .19 .34 .48 .58 .64 .10 .23 .39 .51 .57
(b) .23 .44 .67 .85 .95 .11 .30 .58 .82 .95
(c) .17 .32 .52 .72 .86 .09 .22 .45 .69 .87
(d) .05 .10 .25 .48 .71 .88 .05 .11 .30 .58 .82 .94
(e) .05 .22 .43 .67 .84 .95 .05 .12 .29 .58 .81 .95

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (d) the approximate test in (19); (e) the generalized
test in (11).

n1 = 15, n2 = 4, it performs as good as other tests. For
moderate k, Fisher’s test seems to be better than the
tests (a) and (b) (see Tables 4(d) and 4(e)). The test
(a) is better than (b) when σ2/σ1 is not too different
from 1; otherwise (b) is better than (a).

(ii) The generalized test (e) is slightly conservative when
the differences among the variances are not large and/or
sample sizes are very small.

(iii) For smaller k, conditions on the sample sizes are neces-
sary for the generalized test (e) to dominate the other
tests; for k = 2, a sufficient condition is that both n1

and n2 are at least nine. This condition does not seem
to be necessary; see Table 4(b). For k = 3, the sample
sizes must be at least seven; for k ≥ 4, they must be
at least six. If the sample sizes satisfy these conditions

and/or k is moderate, then the powers of the generalized
test are close to those of the one that has the highest
power among the other three tests ((a), (b), and (c)). In
some situations, the powers of the generalized test are
much higher than those of the other tests (see Tables
4(d), 4(e), and 5).

7. Illustrative Examples

We shall now illustrate the generalized variable methods
using two examples given in Meier (1953) and Eberhardt
et al. (1989). These examples are also used by Jordan and
Krishnamoorthy (1996) for constructing 95% confidence in-
tervals. Applicability of the present problem to these exam-
ples and other details are discussed in the article just cited.
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Table 4(c)
Simulated powers of the tests when H0 :µ = 0 vs Ha :µ 
= 0 and α = 0.05

n1 = n2 = n3 = 7 n1 = n2 = n3 = n4 = 6

µ µ

(σ1, σ2, σ3) Testsa 0 0.2 0.4 0.6 0.8 1.0 (σ1, σ2, σ3, σ4) 0 0.2 0.4 0.6 0.8 1.0

(1,1,1) (a) .10 .26 .52 .78 .93 (1,1,1,1) .09 .22 .47 .74 .91
(b) .08 .18 .40 .66 .87 .07 .16 .36 .62 .84
(c) .09 .24 .50 .78 .94 .10 .23 .50 .79 .95
(e) .05 .10 .30 .60 .85 .96 .05 .11 .29 .62 .89 .97

(3,1,1) (a) .08 .19 .38 .62 .81 (3,2,1,1) .07 .16 .31 .52 .72
(b) .08 .16 .34 .57 .78 .07 .14 .27 .47 .67
(c) .08 .16 .33 .55 .76 .07 .13 .24 .41 .60
(e) .05 .07 .23 .49 .67 .84 .05 .07 .14 .36 .56 .76

(5,3,1) (a) .07 .15 .26 .42 .59 (9,6,3,1) .07 .13 .22 .35 .50
(b) .07 .15 .27 .43 .60 .07 .13 .22 .36 .51
(c) .06 .10 .16 .25 .36 .06 .08 .12 .18 .25
(e) .05 .07 .16 .25 .40 .56 .04 .07 .14 .22 .34 .46

(8,4,1) (a) .07 .14 .26 .41 .58 (2,2,1,1) .07 .16 .32 .53 .73
(b) .07 .15 .27 .43 .60 .07 .14 .27 .46 .67
(c) .06 .10 .16 .25 .35 .07 .13 .25 .42 .62
(e) .05 .06 .15 .27 .43 .58 .05 .07 .18 .34 .54 .76

(10,5,1) (a) .07 .14 .26 .41 .58 (16,9,6,1) .07 .13 .22 .35 .50
(b) .07 .15 .27 .43 .60 .07 .13 .23 .36 .51
(c) .06 .10 .16 .24 .35 .06 .08 .12 .17 .24
(e) .05 .08 .15 .26 .44 .55 .05 .08 .12 .22 .35 .51

(1,.8,.5) (a) .48 .95 .99 1.0 1.0 (3,1,.8,5) .37 .87 .98 .99 1.0
(b) .42 .93 .99 1.0 1.0 .35 .85 .97 .99 1.0
(c) .33 .88 1.0 1.0 1.0 .23 .71 .97 1.0 1.0
(e) .41 .95 1.0 1.0 1.0 .05 .37 .86 .99 1.0 1.0

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (e) the generalized test in (11).

To compute the 95% generalized confidence limits, we used
Algorithm 1 with m = 100,000 runs.
Example 1 (Meier, 1953). Four experiments are used to es-

timate the mean percentage of albumin µ in the plasma pro-
tein of normal human subjects. The summary statistics, along
with sample sizes, are given in Table 2. The confidence inter-
vals are given following Table 2. All three methods yielded
confidence intervals with centers very close to each other. The
interval (13) due to Fairweather (1972) is the shortest among
the three intervals. The generalized interval (12) is close to
the interval (13), and shorter than the interval (14) due to
Jordan and Krishnamoorthy (1996). For the sake of illustra-
tion, we also computed the p-values for testing H0 :µ = 59.5
vs. Ha :µ 
= 59.5. Noting that η in (17) for this example is 1,
we see that the test (16) and the generalized test reject H0 at

Table 2
Percentage of albumin in plasma protein

Experiment ni x̄ s2

A 12 62.3 12.986
B 15 60.3 7.840
C 7 59.5 33.433
D 16 61.5 18.513

the level of 0.05. Fisher’s test in (18) does not reject the null
hypothesis.
95% confidence intervals.
Fairweather’s (1972) Interval (13): 61.04 ± 1.15
Jordan and Krishnamoorthy’s (1996) Interval (14) : 61.00±
1.44

Generalized limits in (12): 61.01 ± 1.22

P-Values for testing. H0 :µ = 59.5 vs. Ha :µ 
= 59.5
Zhou and Mathew (1993) Test (16): 0.088; η in (17) is 1
Fisher’s Test in (18): 0.055
Generalized p-value in (11): 0.016
Example 2. Here, we are interested in estimating the mean

selenium content in nonfat milk powder using four different
analytical methods. The methods and summary statistics are
given in Table 3. The interval estimates are given below. We

Table 3
Selenium in nonfat milk powder

Methods ni x̄ s2

Atomic absorption spectrometry 8 105.0 85.711
Neutron activation instrumental 12 109.75 20.748
Radiochemical 14 109.5 2.729
Isotope dilution mass spectrometry 8 113.25 33.640
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Table 4(d)
Simulated powers of the tests when H0 :µ = 0 vs Ha :µ 
= 0 and α = 0.05

k = 7; ni = 4, i = 1, . . . , 7

µ

(σ1, σ2, σ3, σ4, σ5, σ6,σ7) Testa 0 0.2 0.4 0.6 0.8 1.0

(1,1,1,1,1,1,1) (a) .07 .14 .29 .52 .75
(b) .06 .10 .20 .39 .62
(c) .08 .18 .40 .69 .90
(e) .05 .08 .23 .49 .76 .94

(1,.9,.9,.9,.9,.9,.9) (a) .07 .16 .35 .61 .83
(b) .06 .12 .25 .48 .72
(c) .08 .21 .25 .48 .72
(e) .05 .09 .28 .57 .84 .97

(1,1,1,1,.9,.9,.9) (a) .07 .15 .32 .57 .79
(b) .06 .11 .23 .43 .67
(c) .08 .19 .43 .74 .93
(e) .05 .08 .26 .53 .81 .96

(1,.9,.9,.9,.8,.8,.8) (a) .08 .18 .40 .67 .87
(b) .07 .13 .29 .54 .78
(c) .09 .23 .54 .84 .97
(e) .04 .08 .31 .63 .89 .97

(1,.9,.9,.9,.6,.6,.6) (a) .09 .25 .56 .83 .95
(b) .08 .19 .44 .73 .90
(c) .10 .32 .70 .94 .98
(e) .04 .12 .41 .78 .95 .99

(1,.8,.8,.5,.5,.4,.4) (a) .14 .50 .86 .97 .99
(b) .11 .39 .78 .94 .98
(c) .16 .59 .94 1.0 1.0
(e) .05 .19 .69 .97 1.0 1.0

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (e) the
generalized test in (11).

again see that the centers of the intervals are very close to
each other. The generalized confidence interval (12) is the
shortest among the three intervals. The p-values for testing
H0 :µ = 110.5 vs. Ha :µ 
= 110.5 are given below. At the level
of significance 0.05, we see that only the Zhou and Mathew
(1993) test (16) rejects H0.
95% confidence intervals.
Fairweather’s (1972) Interval (13): 109.7 ± 1.11
Jordan and Krishnamoorthy’s (1996) Interval (14): 109.6 ±

1.08
Generalized limits in (12): 109.6 ± 0.93

P-Values for testing. H0 :µ = 110.5 vs. Ha :µ 
= 110.5
Zhou and Mathew’s (1993) Test (16): 0.042; η in (17) is 0
Fisher’s Test (18): 0.071
Generalized p-value in (11): 0.064

8. Concluding Remarks

In this article, we have shown yet another problem where
the generalized variable approach yielded efficient inferential
procedures. Unlike other methods, it yielded the generalized
pivot variable T in (7) which is simple to use for both hy-
pothesis testing and for constructing confidence intervals for

the common mean. Even though this approach is computa-
tionally involved, it is as easy as other procedures once it is
programmed using Algorithm 1. In order to get consistent
results irrespective of the seed used for random number gen-
erators, we recommend a Monte Carlo simulation of 100,000
runs.

So far, the majority of the articles in this area have con-
sidered comparison studies only for the case of k = 2 be-
cause powers or coverage probabilities are computed nu-
merically. Another reason could be many authors assumed
that the results that hold for smaller k will also hold for
large k. However, we showed that the results that hold
for smaller k (say ≤6) may not hold for moderately large
k. In particular, we showed that Fisher’s test, although it
does not appear to be superior to other tests for smaller
k, seems to be better than the tests (a) and (b) given in
Zhou and Mathew (1993) for moderate values of k (see Ta-
bles 4(d) and 4(e)). We also did power comparison stud-
ies for large k for a few values of (σ2

1, . . . ,σ
2
k) and ni = 4,

i = 1, . . . , k, in an arbitrary manner (these values are not
reported here). For instance, when k = 20, we randomly
picked 20 numbers from the interval [1,50] for population
variances, and 20 integers from [3,15] for sample sizes,
and computed the powers of all the tests considered. The
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Table 4(e)
Simulated powers of the tests when H0 :µ = 0 vs Ha :µ 
= 0 and α = 0.05

k = 7; ni = 4, i = 1, . . . , 7

µ

(σ2
1, σ

2
2, σ

2
3, σ

2
4, σ

2
5, σ

2
6, σ

2
7) Testa 0 0.2 0.4 0.6 0.8 1.0

(5,3,3,3,2,2,1) (a) .06 .10 .18 .31 .48
(b) .06 .08 .14 .23 .37
(c) .06 .11 .21 .38 .58
(e) .05 .05 .17 .28 .50 .69

(10,1,1,1,1,2,2) (a) .06 .12 .23 .41 .62
(b) .06 .09 .17 .31 .50
(c) .07 .13 .28 .50 .74
(e) .04 .08 .17 .38 .61 .83

(10,9,4,1,1,1,1) (a) .06 .11 .22 .38 .59
(b) .06 .09 .17 .30 .48
(c) .07 .12 .24 .42 .64
(e) .04 .06 .18 .31 .52 .77

(10,10,10,3,3,3,3) (a) .06 .07 .10 .14 .21
(b) .05 .06 .08 .11 .16
(c) .06 .07 .11 .16 .25
(e) .04 .06 .08 .14 .23 .30

(10,9,8,7,6,5,4) (a) .05 .06 .08 .10 .14
(b) .05 .06 .07 .08 .11
(c) .05 .06 .09 .12 .17
(e) .04 .05 .08 .10 .17 .23

(10,10,10,8,8,8,8) (a) .05 .06 .07 .09 .11
(b) .05 .05 .06 .07 .09
(c) .05 .06 .07 .10 .13
(e) .05 .06 .08 .13 .17

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (e) the generalized test in (11).

overall pattern that we observed is similar to the one re-
ported in Table 5. For moderately large k, the generalized
method seems to be the most efficient among all the meth-
ods considered. This may be the most common situation in
clinical trials where k (the number of groups of patients) is
large and ni (the number of patients in the ith group) is
small. Thus, we conclude that the generalized variable meth-
ods are very efficient, and readily applicable for practical
use.

Table 5
Simulated powers of the tests when H0 :µ = 0 vs Ha :µ 
= 0 and α = 0.05

k = 20, ni = 4, i = 1, . . . , 20

µ µ

(σ2
1, . . . ,σ

2
20) Testsa 0 0.2 0.4 0.6 0.8 1.0 (σ2

1, . . . ,σ
2
20) 0 0.2 0.4 0.6 0.8 1

(1,1,1,1,1, (a) .05 .06 .11 .22 .41 .64 (10,9,8,7,6, .05 .06 .08 .13 .21 .34
2,2,2,2,2, (b) .05 .06 .09 .17 .32 .53 9,9,9,8,8, .05 .05 .07 .11 .17 .27
3,3,3,3,3, (c) .05 .07 .17 .38 .69 .92 3,3,3,3,3, .05 .06 .10 .18 .33 .53
4,4,4,4,4) (e) .05 .11 .34 .62 .89 .97 1,2,3,4,5) .05 .09 .16 .36 .59 .80

(30,20,10,12,11, (a) .05 .06 .09 .15 .24 .38 (1,.9,.9,.8,.8, .05 .09 .30 .71 .93 .98
20,25,24,12,1, (b) .05 .06 .08 .13 .21 .33 .7,.7,.7,.6,.6, .05 .08 .23 .60 .88 .97
3,6,5,4,3, (c) .05 .06 .09 .15 .26 .41 .6,.6,.5,.5,.5, .05 .14 .60 .97 1 1
30,31,35,1,2) (e) .04 .08 .17 .32 .50 .73 .5,.4,.4,.4,.4) .05 .30 .81 .98 1 1

a(a) the test in (16) with η in (17); (b) the test in (16) with η = 0; (c) Fisher’s test (18); (e) the generalized test in (11).
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Résumé

Cet article présente des procédures pour effectuer un test
d’hypothèse et une estimation par intervalle de la moyenne
commune de plusieurs populations normales. Les méthodes
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sont basées sur le concept du p généralisé et de l’intervalle
de confiance généralisé. L’intérêt des méthodes proposées est
quantifié et comparé à celui de méthodes existantes. Les com-
paraisons numériques montrent que les nouvelles procédures
sont correctes et ont des performances supérieures à celles
des méthodes existantes quand les échantillons sont de taille
modérée et que le nombre de populations est quatre ou moins.
Si le nombre de populations est cinq ou plus, cette nouvelle
méthode est bien supérieure aux méthodes existantes, quelles
que soient les tailles des échantillons. Nous illustrons cette
nouvelle méthode et les méthodes existantes avec des données
de deux exemples.
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