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Inferential Conditions in the Statistical

Detection of Measurement Bias

Roger E. Millsap, Baruch College, City University of New York

William Meredith, University of California, Berkeley

Measurement bias in an observed variable Y as

a measure of an unobserved variable W exists when

the relationship of Y to W varies among popula-
tions of interest. Bias is often studied by examin-

ing population differences in the relationship of Y
to a second observed measure Z that serves as a

substitute for W. Whether the results of such

studies have implications for measurement bias is
addressed by first defining two forms of invariance&mdash;
one corresponding to the relationship of Y to the
unmeasured W, and one corresponding to the rela-
tionship of Y to the observed Z. General theoreti-
cal conditions are provided that justify the inference

of one form of invariance from the other. The

implications of these conditions for bias detection
in two broad areas of application are discussed:
differential item functioning and predictive bias in

employment and educational settings. It is con-

cluded that the conditions for inference are restric-

tive, and that bias investigations that rely strictly
on observed measures are not, in general, diag-
nostic of measurement bias or the lack of bias.
Some alternative approaches to bias detection are
discussed. Index terms: differential item function-
ing, invariance, item bias, item response theory,
measurement bias, predictive bias.

A commonly asked question concerns the type of evidence that is necessary to identify bias in
a measurement process. Statistical methods for the detection of measurement bias have been under

development for several decades. Applications of these methods include the detection of item bias,
also called differential item functioning (DIF; Berk, 1982; Holland & Thayer, 1988; Ironson, 1982;
Marascuilo & Slaughter, 1981; Scheuneman, 1979; Shepard, Camilli, & Averill, 1981); the detection
of predictive bias in educational and employment settings (Cleary, 1968; Humphreys, 1986; Linn,
1984; Linn & Werts, 1971; Reilly, 1986); and studies of salary equity (Birnbaum, 1979; Conway &

Roberts, 1983; Dempster, 1988; Goldberger, 1984; McFatter, 1982, 1987; Peterson, 1986).
A number of researchers have noted that common features exist in the statistical methods used

in these diverse applications (Humphreys, 1986; Linn, 1984; Raju & Normand, 1985). The measure-
ment bias problem is discussed below within a framework that encompasses many detection applica-
tions. The DIF and predictive bias applications serve here as illustrations; the same principles can
be applied to the salary equity application as well. The theoretical conditions that justify inferences
of bias (or lack of bias), given the results of commonly-used detection procedures, are provided. The
conditions presented are very general and do not require the ancillary statistical assumptions often
invoked in discussions of bias detection. For example, the conditions do not require the additivity,
linearity, or homoscedasticity assumptions often used in predictive bias applications. The intent was
to provide a more general analysis of the measurement bias problem than has been available previ-
ously, and to draw some implications for common approaches to bias detection. A central implication
is that detection methods that rely exclusively on observed measures are not generally diagnostic of
measurement bias, or the lack of bias.
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Measurement Invariance

Let Y be an observable random variable that is intended to be a measure of, or systematically
related to, an unobserved or latent random variable W All variables are considered discrete, finite,
and possibly multivariate. Any continuous distribution can be arbitrarily well-approximated by a
discrete distribution, and extensions of the results to the continuous case are generally straightforward.
Also, let multiple populations of persons be defined by values of an observable random variable ~

Ordinarily, V includes demographic variables such as gender, ethnicity, or age. Broadly speaking,
measurement bias in Y as a measure of T~ can be said to exist when the relationship of Y to W varies

among populations defined by V The unobserved conditional invariance (tlcl) for Y with respect
to ~ and h is defined as holding if and only if

for all realizations w and v, and P(-) denotes probability. When Equation 1 holds, Y and Fare statis-

tically independent at all fixed values of W When Equation 1 does not hold, Y can be said to be
biased in relation to t~ among populations defined by E

This definition of invariance contains other forms of invariance that have appeared in the litera-
ture. Lord’s (1980) definition of item bias-in which ~’ is a dichotomous item score variable and W
is a latent trait-corresponds to an inequality in Equation 1. Mellenbergh’s (1989) definition of lack
of bias in a test item is nearly identical to Equation 1. Factorial invariance (Meredith, 1990) is a weaker
form of uci in which the regression of Y on W is linear, and the conditional covariance matrix for
Y is diagonal.

uci is difficult to evaluate directly because W is unmeasured. Bias detection methods often address
this problem by using a second observable random variable Z that is also a measure of, or system-
atically related to, W Population differences in the relationship of Y to Z are considered indications
of bias in Y (or Z).

Observed conditional invariance (oci) of ~’ with respect to Z and h is observed as holding if and

only if

for all realizations z and v. An important limitation in bias detection methods that evaluate Equation
2 is that ocl need not imply, or be implied by, uci of Y in Equation 1. Hence, although these methods

may provide adequate tests of OCI, they may fail to reveal uci or bias in Y Two applications illus-
trate this point.

DIF Detection

In the detection of DIF, Y is a test item score variable, and is a latent variable that is believed

to influence performance on the test item. If W is viewed as a latent trait within an item response
theory (IRT) perspective, uci of Y is equivalent to invariance of the item response function over pop-
ulations defined by V (Lord, 1980). IRT methods for assessing DIF evaluate VCI directly under various

parametric models for the item response function (Thissen, Steinberg, & Wainer, 1988). Other bias
detection methods use the total test score Z as a substitute for W The traditional X2 approaches (Iron-
son, 1982; Marascuilo & Slaughter, 1981; Scheuneman, 1979; Shepard et al., 1981), the Mantel-Haenszel

X2 method (Holland & Thayer, 1988; Mantel & Haenszel, 1959), standardization approaches (Dorans
& Kulick, 1986), and logistic regression methods (Swaminathan & Rogers, 1990) each evaluate OCI
in Equation 2. Various authors have questioned whether DIF detection methods based on IRT and
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those using the observed total score will lead to identical decisions concerning DIF (Ironson, 1982).
Zwick (1990) and Meredith & Millsap (1992) presented results showing that uci of Y and oci need
not be equivalent in DIF detection.

Predictive Bias

In predictive bias, Y is an observable criterion variable, W is an unobservable (possibly multivari-

ate) &dquo;ability&dquo; or &dquo;aptitude&dquo; variable believed to influence Y and Z is an observable predictor varia-

ble, usually a test score. In practice, interest often centers on whether Z is biased as a predictor of
Y, given assumptions such as linearity and homoscedasticity in the regression of Y on Z. The Cleary
(1968) definition of fairness views Z as free of bias if the linear regression of Y on Z is identical among
populations defined by V OCI in Equation 2 implies fairness under the Cleary definition. Conversely,
the Cleary definition implies OCI under the assumptions typically made in predictive bias applica-
tions (i.e., Y is conditionally normal given Z, with the regression of Y on Z being additive, linear,
and homoscedastic with respect to Z and V ). Hence, methods that evaluate bias under the Cleary
definition can be viewed as tests of OCI in Equation 2. The difficulties encountered in assessing predic-
tive bias using the regression function of Y on Z have been noted by several authors (Humphreys,
1986; Linn, 1984; Linn & Werts, 1971; Reilly, 1973). A source of difficulty is that oci is not equiva-
lent to uci of Y or Z. uci of Z can be defined by replacing Y with Z in Equation 1. Even assuming
uci for Y, uci of Z does not require oci, and oci may hold when Z is biased as a measure of W

These examples suggest that it would be useful to know the conditions under which OCI in Equa-
tion 2 is equivalent to uci of Y (or Z), as in Equation 1. The theoretical conditions that justify
inferences from empirical tests of OCI of Y are discussed below.

, Equivalence Conditions

The following developments assume that no pair of variables among Y Z, Jv, and V is marginally
independent-that none of the joint bivariate distributions can be factored into a univariate distribu-
tion. This assumption avoids some trivial cases (e.g., W and V are independent). Conditional

independence is permitted between two variables after conditioning on a third variable. Parametric

assumptions about distributional forms, linearity of regressions, homoscedasticity, or homogeneity
of variance are not needed in the conditions to be presented. Proofs of inferences based on the con-
ditions are provided in the Appendix.

Conditions I

In this condition, the joint distribution of (Z, W) is degenerate because a one-to-one correspon-
dence exists between the values of Z and the values of 1~ Each value of Z corresponds to only one
value of Jïv. Under this condition, P(Z ~ W = w) = 0 or 1 depending on whether Z assumes the value
Z(w) that corresponds to W = w. If W is considered the classical univariate true score random varia-
ble in relation to the univariate observed score Z, then Z is perfectly reliable as a measure of W under
this condition. This condition implies uci for Z because Z depends on W alone, regardless of the
value of V

In DIF applications, Z is usually an unweighted sum of item scores, and W is a univariate latent
trait. Under weak assumptions, asymptotically as items that measure W are added to Z, the joint
distribution of (Z, W) becomes degenerate in the above sense. Hence, tests of sufficient length should

yield scores on Z that asymptotically fulfill Condition I, assuming that the items in Z measure W
The required test length may exceed practical limits and is difficult to specify. Also, Condition I will
fail to hold after scores on Z are grouped, which is common in practice (Ironson, 1982). Finally,
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Condition I is highly restrictive if either Z or W is multivariate. In the multivariate case, a single value
of Z may be consistent with several values of X§ regardless of the reliability of Z. From this perspec-
tive, Condition I is stronger than the condition of &dquo;perfect reliability.&dquo;

The predictive bias problem is trivial under Condition I because Z can be taken as uci without
further evaluation. OCI will or will not hold depending on whether VCI holds for Y A tacit assump-
tion in most investigations of predictive .bias is that tlcl holds for Y implying that OCI holds under
Condition I. Frequently, W may be regarded as multivariate, that is, multiple dimensions of ability
or aptitude underlie test and/or criterion performance. Condition I may not hold in such cases even
when Z is perfectly reliable.

Conditions IIA and IIB

For Conditions IIA and IIB, there are two types of inferences regarding uci and OCI. Given uci
of Y Condition IIA justifies the inference that OCI in Equation 2 holds. Conversely, given OCI in

Equation 2, Condition IIB justifies the inference of VCI for X The two conditions fulfill different
roles in practical applications. For example, suppose that the data support OCI. Then, Condition IIB
allows ucl of Y to be inferred. If the data suggest that oci does not hold, then Condition IIA

implies that uci does not hold. Conditions IIA and IIB may both be true. In this case, uci for Y
holds if and only if OCI holds.

Condition IIA holds when the following two equations are true:

and

for all z, w, y, and v. If Equations 1, 3, and 4 are true, then OCI in Equation 2 holds as well. Equa-
tion 3 can be denoted &dquo;Bayes sufficiency&dquo; of Z for T~ (Lehmann, 1986). When Equation 3 is true,
Z behaves much like a sufficient statistic in relation to I~e All the information in W that is relevant

to Y is captured by Z. Condition IIB holds when the following two equations are true:

and

for all z, w, and v. If Equations 2, 5, and 6 are true, then um of Y also holds. Equation 5 can be
viewed as a &dquo;within-group&dquo; version of Equation 3: Z is Bayes sufficient for W within groups defined

by K Equation 6 indicates that um holds for Z, or that Z is unbiased. Note that Equations 4 and
6 are not equivalent. Condition I implies Equations 3, 4, 5, and 6, but the converse is not true. For

example, Conditions IIA and IIB do not require Z to be perfectly reliable as a measure of W
In DIF applications, Bayes sufficiency in Equations 3 and 5 holds when Z is an unweighted sum

of item scores that includes Y and all items fit a Rasch model (Lord & Novick, 1968). Holland &

Thayer (1988) proved that under certain conditions, the Mantel-Haenszel test of OCI is diagnostic
for um of Y. The required conditions can be shown to be equivalent to Equations 3, 5, and 4 or

Equations 3, 5, and 6. The presence of biased items in Z (other than Y) will generally lead to viola-
tions of both Equations 4 and 6. It is still possible for ocI to hold in such cases even if uci of Y
fails. The above choice for Z is unusual in that Z includes Y and Equation 6 will ordinarily fail when
Y is biased. If I’ is the only biased item in Z, Equation 4 will hold. Condition IIA can be used in
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this case to infer failure of uci from failure of OCI. If Y is omitted in the calculation of Z, Equations
3 and 5 both fail. Local independence holds for Y and Z in this case under standard IRT assumptions
(Lord & Novick, 1968). Also, more complex IRT models, such as two- or three-parameter logistic
models, generally violate Equations 3 and 5 when Z is an unweighted total test score. Under this
choice for Z, violations of the Rasch model assumptions generally lead to violations of Conditions
IIA and IIB.

Conditions IIA and IIB will not always be useful in establishing bias, or lack of bias, for Z in

predictive bias applications. Suppose that c.rc1 holds for Y and that Bayes sufficiency also holds. ’Then,
under Condition IIA, Equation 4 implies OCI. Therefore, failure of OCI implies failure of Equation 4.

Unfortunately, failure of Equation 4 need not imply bias or failure of UCI for Z. Unusual examples
can be constructed under which Equation 4 fails, yet um holds for Z. Thus, failure of OCI need not

imply that Z is biased under Condition IIA. Condition IIB says that given Equation 5 and OCI, uci
in Z implies uci in Y In this situation, if Y is known to be biased, it can be concluded that Z also
is biased. In practical applications, however, Y is ordinarily assumed to be unbiased; therefore, Con-
dition IIB does not help in establishing either ucl or bias in Z. Given Equations 3 or 5, OCI may
hold even though both Y and Z are biased. If neither Equation 3 nor Equation 5 holds, uci may
hold for both Y and Z even though OCI fails. Bayes sufficiency requires that Z capture all aspects
of W that are relevant to criterion performance. Discussions of predictive bias often regard W as a
common factor, or set of factors, underlying Y and Z (Humphreys, 1986; Linn, 1984). Both Equa-
tions 3 and 5 are generally violated under this common factor interpretation.

Conditions IIIA and IIIB

Given uci of Y Condition IIIA justifies the inference of OCI. Conversely, given oci, Condition
IIIB justifies the inference of uci of Y Hence, Conditions IIIA and IIIB have roles that are analo-
gous to Conditions IIA and IIB, respectively. Given both Conditions IIIA and IIIB, tlcl of Y holds
if and only if OCI holds.

Condition IIIA holds when the following two equations are true:

and

for all z, w, and v. If Equations 1, 7, and 8 are true, oci in Equation 2 can be inferred. Condition
IIIB holds when the following two equations are true:

and

for all z, y, w, and v. If Equations 2, 9, and 10 are true, then uci of Y als&reg; must hold. Equation
9 says that Y and Z are conditionally independent given W. In IRT, this property is denoted ‘6local

independence&dquo; of Y and Z given W Equation 7 says that local independence holds within groups
defined by h Equations 8 and 10 concern conditional independence between W and V given Z,
or given both Z and Y As shown in the Appendix, Equation 8 implies that uci fails for Z, or that
Z is biased. Similarly, local independence in Equation 9 contradicts Bayes sufficiency in Equation
3. More generally, given uci of Y Conditions IIA and IIIA cannot both be true. Given oci in
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Equation 2, Conditions IIB and IIIB cannot both be true.
Local independence in Equations 7 and 9 both hold under nearly all IRT models, provided that

the total test score Z is calculated excluding Y. But neither Equation 8 nor Equation 10 will generally
hold under any of these models. Conditions IIIA and IIIB do not appear to be realistic equivalence
conditions for the DIF application.

Similarly, Conditions IIIA and IIIB do not provide tests for UCI of Z in predictive bias applica-
tions. Equation 8 implies that Z is biased, but failure of Equation 8 does not imply ua for Z. Con-
dition IIIA establishes that when tlcl exists for Y OCI may hold even though Z is biased. Hence,
Z would be erroneously declared free of bias in this situation. Local independence in Equations 7
and 9 could hold under a common factor interpretation of M§ given additional distributional assump-
tions (e.g., multivariate normality). The common factor model is generally inconsistent with both

Equations 8 and 10, however.

Reverse Regression

In predictive bias applications, researchers have considered reversing the roles of Y and Z in Equa-
tion 2 and then exploring the implications of OCI in this case (Birnbaum, 1979; Cole, 1973; Darlington,
1971; Linn, 1984; Wainer & Steinberg, 1991). For example, Wainer & Steinberg demonstrated gender
differences in SAT mathematics scores among nearly 12,000 examinees after matching examinees on

performance grades within specific college math courses. In this example, Y is defined as the grade
in a given math course, and Z is an SAT mathematics score. Reverse oci can be defined as holding
if and only if

for all y and v. It is easily established that Equations 2 and 11 cannot both be true unless Z and Y
are marginally independent. In the above example, reverse OCI would imply that within groups matched
on course grades, no gender differences would be found in the distribution of SAT scores. The ques-
tion of the implications for ucI of Z or Y when reverse OCI holds or fails to hold can be addressed

by restating the foregoing conditions-that is, reversing the roles of Y and Z. After reversal, the con-
ditions describe situations in which uci of Z can be inferred from reverse oci, or the converse.

First, reverse OCI and uci of Z are equivalent when there is a one-to-one correspondence be-
tween the values of Y and the values of W This condition will ordinarily be unrealistic in predictive
bias applications, for reasons described earlier. Reversed Condition IIA holds when

and

for all y, w, and v. Bayes sufficiency of Y holds in Equation 12. Reverse OCI can be inferred, given
UCI of Z, Equation 12, and Equation 13. Reversed Condition IIB holds when

and

for all y, w, and v. uci of Y holds in Equation 15, and &dquo;within-group&dquo; Bayes sufficiency of Y holds
in Equation 14. uci of Z can be inferred, given reverse ocl, Equation 14, and Equation 15. Bayes
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sufficiency of Y requires that Y capture all the information in W that is relevant to Z. In predictive
bias applications, Y is often tacitly assumed to be unbiased, fulfilling Equation 15 and possibly Equa-
tion 13. If Bayes sufficiency in Equations 12 and 14 also holds, assessment of reverse oci could be

diagnostic for bias in Z. Bayes sufficiency generally fails if W is viewed as a common factor, or set
of factors, underlying Y and Z.

Reversed Condition IIIA holds when

and

for all y, w, and v. Equations 16 and 7 are equivalent. Reverse oci must hold, given uci of Z, Equa-
tion 16, and Equation 17. Reversed Condition IIIB is equivalent to Condition IIIB in Equations 9
and 10. Given reverse ocl, Equation 9, and Equation 10, uci of Z must hold. Note that Equation
17 implies that Y is biased, and that among individuals matched on Y there will be no group differ-
ences on W A common factor interpretation for W is consistent with Equations 9 and 16, but is gener-
ally inconsistent with Equations 10 and 17. Under Condition IIIA, if VCI holds for Z, reverse oci
will hold even though Y is biased. In this situation, reverse OCI could lead to an erroneous conclu-
sion of uci for Y.

Discussion

Most of the commonly used methods for the detection of measurement bias provide tests of ocl.
When one of the three sets of conditions presented above is met, these methods also provide tests
of uci for Y An implicit assumption behind the development of these conditions for inference
is that uci of Y or Z is of ultimate interest. In other words, it was assumed that the question of
bias rests on the relationship of the measured variables Y or Z to the unmeasured variable W The
variable W may be conceptualized in various ways depending on the context-as a &dquo;latent trait,&dquo;
an &dquo;aptitude,&dquo; or an &dquo;ability.&dquo; In all cases, the investigation of oci is pursued to provide evidence
for the evaluation of uci of Y or Z. The foregoing results clarify the requirements for inference in

specific applications. In developing these results, minimal assumptions have been made about dis-
tributional forms, linearity of regressions, homoscedasticity, or causal relationships. More precise
results can be reached by invoking such assumptions, and restrictive assumptions may be justified
in particular applications. Here, the intention was to explore the fundamental conditions that justify
inferences between the two forms of invariance.

An implication of the conditions presented is that tests of OCI can justify inferences regarding
uci for Y even though Z is biased and/or unreliable as a measure of W. Under Condition IIIA, failure
of oci implies failure of uci for Y, although Z is biased. Perfect reliability in Z is required only in
Condition I; Z may be imperfectly reliable in Conditions IIA, IIB, IIIA, and IIIB. Thus, the demon-
stration of bias and/or unreliability in Z is not sufficient, by itself, to negate the use of Z in tests
of OCI and subsequent inference of uci for Y Parallel conclusions apply to Y in the case of reverse
OCI and VCI of Z.

In most other respects, however, the conditions that justify inferences concerning uci of Y are

quite restrictive. Condition I is unlikely to be fully met in any application. It represents a limiting
condition that is only approximately achieved in real data. Conditions IIA and IIB place weaker

requirements of Bayes sufficiency and unbiasedness on Z. In DIF applications, the Rasch parametric
model leads to Equations 3 and 5. Departures from Rasch model assumptions, such as that
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produced by substantial guessing on multiple-choice items, will lead to violations of Equations 3
and 5 when Z is an unweighted total score. In such cases, one option would be to expand Z to include
additional measures of W that are external to the test under study. Assuming that such measures
can be found, it still will be difficult to verify that the resulting multivariate Z satisfies Equations
3 and 5. Also, care must be taken so that the additional measures do not introduce biases in Z that
violate Equations 4 and 6. Conditions IIA and IIB are not helpful in predictive bias applications,
because the focus in such cases is on testing uci of Z. Confirmation of oci has no necessary
implication for uci of Z under either condition. An important feature of the predictive bias appli-
cation is that the criterion measures included in Yare usually a matter of choice, and different choices
lead to different characterizations of W. Improper choices can lead to violations of Bayes sufficiency
if Y requires abilities that are irrelevant to actual job or educational performance.

Conditions IIIA and IIIB require local independence properties and conditional independence be-
tween W and V given Z, or given Z and Y Neither condition is realistic in the DIF application, because

Equations 8 and 10 are unlikely to hold, and Equation 8 cannot hold if Z is free of bias. Conditions
IIIA and IIIB offer no useful way of testing DCI of Z in predictive bias applications. In fact, these
conditions represent a situation in which Z could be erroneously declared free of bias using oci
detection methods.

In predictive bias applications, the equivalence conditions between reverse oci and uci of Z are

equally restrictive. Reversed Condition I will not be fully met in real data. For Conditions IIA and

IIB, Equation 15 and/or Equation 13 are often assumed to hold. Under this assumption, the value
of reverse OCI in testing uci of Z will depend on the Bayes sufficiency assumptions concerning Y
in Equations 12 and 14. Certain choices for Y may invalidate Bayes sufficiency by failing to capture
target abilities that are relevant to performance on Z. This problem is more likely to occur when W
is multivariate. Bayes sufficiency is also generally violated if W is viewed as a common factor under-

lying Yand Z, as noted above. Reversed Conditions IIIA and IIIB impose requirements that are nnearly
identical to Conditions IIIA and IIIB. Common-factor interpretations of W are inconsistent with
the requirements of conditional independence between W and V given Y The conditions require the
use of a biased criterion measure Y contrary to the usual assumption in predictive bias applications.
Reverse oci may hold under these conditions even though Y is biased.

The above results suggest that bias detection methods that provide tests of OCI, or reverse OCI,
do not provide a rigorous basis for inference about uci of Y or Z. Furthermore, the minimum re-

quirements for inference involve restrictive assumptions about the unobserved W and its relation to

Y Z, and V One immediate implication of these results is that efforts to modify either Y or Z to
achieve om will not guarantee uci of Y or Z. For example, in predictive bias applications, the item
content of Z might be altered to achieve oci in relation to a fixed criterion Y Test construction

strategies of this sort need not lead to DCI of Z, however, if none of the equivalence conditions are
satisfied. 

’

Alternative Approaches to Inferring Bias

If tests of oci generally do not provide a rigorous basis for the inference of bias, two alternatives
are available in practice. First, uci of Y or Z can be investigated through direct modeling of the Y/W
or Z/ W relationship. Second, the effects of violations of the foregoing inferential conditions can be

explored through simulations under various parametric models. In the second approach, conclusions
drawn from tests of om should be robust against minor violations of the inferential conditions.

7he modeling alternative. This alternative has been used effectively in DIF applications by employ-
ing measurement models under IRT. The common approach is to model the Y/W relationship within
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a parametric model-evaluating both the fit of the model and the invariance of the form of the YlW

relationship over V (Lord, 1980; Thissen et al., 1988). There are at least two difficulties with this

approach. First, the sample size requirements for estimation and fit evaluation may exceed practical
limitations. Second, the usual reliance on fully parametric models carries restrictions that are

not directly relevant to the purpose of testing uCl. For example, unidimensionality assumptions are

usually made, but are not a requirement for ucl. Ideally, tests of UCI should be conducted without

unnecessary assumptions.
Although the sample size problem remains, recently there has been progress in addressing the second

problem. Nonparametric conditions required by general latent variable models were described by
Holland & Rosenbaum (1986; Holland, 1981; Rosenbaum, 1984a) who also presented approaches for

testing whether a monotone latent variable model is consistent with empirical data. Stout (1987, 1990)
developed the concept of &dquo;essential unidimensionality&dquo; as an alternative to strict unidimensionality,
along with nonparametric methods of assessing dimensionality. In related work, Shealy & Stout (1990)
defined test bias (failure of ucl) within a multidimensional model that posits &dquo;nuisance abilities&dquo;
as the source of bias. Kok (1988) applied a similar definition. Within this definition, Shealy & Stout

developed an approach to testing UCI that does not require specification of a fully parametric model.
In a different direction, Jannerone (1986, 1987) and Junker (1990) each explored models that weaken
traditional assumptions of strict local independence among test items. In sum, although at present
fully general procedures are not available for direct tests of uci under minimal assumptions, recent
research has widened the scope of available latent variable modeling procedures.

As applied in studies of predictive bias, the modeling approach seeks to model the relationship
of the test score Z to W; or the relationship of both Y and Z to W The most common approach has
been to disaggregate items or subtests in Z and study the invariance of the factorial structure of these
items or subtests. Confirmatory factor analysis is a useful tool in this situation (J6reskog, 1971). Fac-
tor analytic investigations of invariance should extend to latent means as well as covariance struc-
tures (Meredith, 1990; Millsap & Everson, 1991). An obvious alternative approach is to apply item
bias detection procedures to the individual test items using the above-mentioned modeling methods.

Drasgow (1987) illustrated this approach and suggested that the test response function constructed
after fitting items to item models is a useful indicator of test-level bias. Clearly, the two problems
mentioned earlier also apply to modeling efforts in predictive bias applications. Finally, it must be

remembered that confirmation of tlcl for a test Z has no necessary implication for oci.
The simulation approach. As an alternative to direct modeling, the robustness of conclusions drawn

from tests of oci can be evaluated under violations of the inferential conditions presented earlier.
This approach is analogous to sensitivity analysis for causal inference in nonexperimental research

designs (Rosenbaum, 1984b; Rosenbaum & Rubin, 1983). The general idea is to demonstrate the im-

pact of varying departures from the inferential conditions on conclusions drawn from tests of oci.
For example, suppose that in the DIF application, a parametric model, such as the two- or three-

parameter logistic model, is assumed. Neither model supports Bayes sufficiency of Z when Z is an

unweighted sum of item scores. It is still possible that in tests of sufficient length, &dquo;near&dquo; Bayes

sufficiency may be achieved, and tests of oci will have practical value as a basis for decisions about
UCI. Ordinarily, simulations would be necessary to determine the minimum test length beyond which
inferences could be made safely. This kind of approach has already been used effectively in DIF ap-
plications (Donoghue, Holland, & Thayer, 1989; Rudner, Getson, & Knight, 1980; Spray, 1989;
Swaminathan & Rogers, 1990; Thissen et al., 1988). Explorations under linear regression or path models
have been useful in predictive bias applications (Humphreys, 1986; Linn, 1984). The inferential con-
ditions presented earlier can help structure such investigations by identifying factors that determine
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the equivalence between oci and uci of Y or Z.
In the present development of the equivalence conditions, a variety of practical issues that will

influence bias detection in real applications were ignored. The problems of low statistical power and
of sample representativeness that are important in finite samples were not discussed. Missing data
occur frequently in practice and can affect the results of oci assessments and of direct assessments
of uci (Linn, 1983; Little & Rubin, 1987; Lord & Novick, 1968; Meredith, 1964; Reilly, 1973). Forms
of invariance that are weaker than OCI and uci also have not been discussed. For example, Equa-
tions I and 2 could be reformulated in terms of conditional expectation rather than conditional proba-
bility. Invariance of conditional expectations may hold in cases in which other features of the
conditional probability distribution are not invariant. The specification of equivalence conditions
between weaker forms of invariance of this sort is a useful direction for future research.

Appendix

Let Y, Z, m and be discrete, possibly multivariate, random variables. Assume that no pair of
these variables is marginally independent, but conditional independence is allowed. Let y, z, w, and
v denote realizations of the respective random variables. The subscripts g, h, and i denote distinct

values of the realizations.

tlcl of Y given W and V holds if and only if

for all w and v. uci of Z is defined by replacing Y with Z in Equation 18. OCI of Y given Z and V
holds if and only if

for all z and v.

Conditions IIA and IIIA each represent situations in which OCI in Equation 19 can be inferred

given uci of Y in Equation 18. As proof, begin with Condition IIA and assume that Equation 18
holds. This condition says that Equation 19 will be true when the following two equations are true:

and

Also,

and hence,
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Thus, Condition IIA is established. Assuming Equation 18, Condition IIIA says that Equation 19
will hold if the following two equations are true:

and

As proof, note that Equations 18 and 25 imply

Then, using Equation 26,

and Condition IIIA is established. Note also that Equations 18 and 25 imply

Conditions IIB and IIIB represent situations in which ucI of Y in Equation 18 can be inferred
from OCI in Equation 19. Given Equation 19, Condition IIB says that Equation 18 will hold if the

following two equations are true:

and

As proof, Equations 19 and 30 imply that

Then, using Equation 31,

and

Thus, Condition IIB is established. Note that Equations 19, 30, and 31 also imply that

Condition IIIB says that Equation 19 and the following two equations imply Equation 18:
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and

As proof, Equations 19 and 37 imply

Then,

and, using Equation 36,

Thus, Condition IIIB is established.
Condition I implies that Equations 20, 21, 30, and 31 all hold. Hence, the above proofs also estab-

lish that if Condition I is true, uci of Y holds if and only if OCI in Equation 19 holds. Proofs for
the reversed conditions can be obtained by reversing the roles of Y and Z in the above proofs.

Given the restrictions on marginal independence, Conditions IIA and IIIA cannot both hold. As
shown above, Condition IIIA implies that P(Y ~ Z = z, T~ = w) = F’(I’ ~ W = w), and Equation 20
holds under Condition IIA. Assume both conditions are true. Then P(Y ~ W = w) = P(I’ ~ Z = z), and

and

which implies marginal independence between Y and Z and between Y and W Similarly, Condition
IIA implies that P(Z W = w, V = v) = P(Z ~ T~ = w), and Equation 26 is true under Condition IIIA.
Assume that both conditions hold. Then

which implies that P(V I W = w) = P(V 12 = z). Using reasoning identical to that used in the previ-
ous proof (i.e., replacing Y with V), V is marginally independent of both Z and W Hence, Conditions
IIA and IIIA cannot both hold. Completely analogous arguments establish that Conditions IIB and
IIIB will not both hold given oci in Equation 19.
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