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Highly concentrated distributed crystallographic orientation measurements

within individual crystalline grains are analysed by means of ordinary statistics

neglecting their spatial reference. Since crystallographic orientations are

modelled as left cosets of a given subgroup of SO(3), the non-spatial statistical

analysis adapts ideas borrowed from the Bingham quaternion distribution on S
3
.

Special emphasis is put on the mathematical definition and the numerical

determination of a ‘mean orientation’ characterizing the crystallographic grain

as well as on distinguishing several types of symmetry of the orientation

distribution with respect to the mean orientation, like spherical, prolate or

oblate symmetry. Applications to simulated as well as to experimental data are

presented. All computations have been done with the free and open-source

texture toolbox MTEX.

1. Introduction and motivation
The subject of this communication is the non-spatial statistical

analysis of highly concentrated crystallographic orientations

measured within individual crystallographic grains. Crystal-

lographic orientations are explicitly considered as left cosets

of crystallographic symmetry groups, i.e. classes of crystal-

lographically symmetrically equivalent rotations. Our objec-

tive is twofold.

Primarily, this work is an attempt to clarify a lasting

confusion concerning the ‘mean orientation’ characterizing a

grain, i.e. its mathematical definition and its numerical deter-

mination (Humbert et al., 1996; Morawiec, 1998; Barton &

Dawson, 2001a,b; Glez & Driver, 2001; Humphreys et al., 2001;

Pantleon, 2005; Cho et al., 2005; He et al., 2008; Krog-Pedersen

et al., 2009; Pantleon et al., 2008), and then to proceed to its

meaning for inferential statistics.

The second objective is to verify these theoretical findings

with fabricated and experimental data from within individual

grains. Our approach here is diametrically different to the

more commonly used approach in electron backscatter

diffraction (EBSD) to the misorientation within individual

grains, which seeks to explain the orientation gradients in

terms of dislocation slip systems using the Nye tensor (El-

Dasher et al., 2003; Field et al., 2005; Nye, 1953; Pantleon, 2008;

Wheeler et al., 2009; Wilkinson et al., 2006).

For all computations we use the versatile features of the

free and open-sourceMatlab (MathWorks, Natick, MA, USA)

software toolbox MTEX (Hielscher, 2007; Hielscher &

Schaeben, 2008; Schaeben et al., 2007), providing a unifying

approach to texture analysis with individual (‘EBSD’) or

integral (‘pole figure’) orientation measurements. For the time

being, the functions implemented in MTEX require the

assumption that the rotation or orientation measurements are

independent even if they are spatially indexed and likely to be

spatially dependent. Whenever this artificial assumption is

essential, it is made explicit. Readers are referred to van den

Boogaart (1999, 2002) for fundamental spatial statistics of

orientations, and to forthcoming publications reporting the

additional implementation of functions in MTEX to apply

spatial statistics numerically.

The next section provides preliminaries concerning

quaternions, notions of descriptive spherical statistics, and the

relationship of individual orientation measurements and left

cosets of some rotational subgroups induced by crystal-

lographic symmetry, i.e. classes of rotations equivalent by

crystallographic symmetry, which cannot be distinguished

physically but should be distinguished mathematically. The

third section applies the Bingham quaternion distribution to

highly concentrated individual orientation measurements as

sampled, e.g., by EBSD. In particular, it is shown that

quaternion multiplication of the measurements by a given

reference orientation acts analogously to centring the

measurements with respect to this reference orientation.

Therefore, replacing the initial orientation measurements by
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their corresponding disorientations, i.e. orientation differences

with respect to the reference orientation, is obsolete. The

orientation tensor derived from the initial measurements

contains all ingredients necessary for the characterization of

details of the highly concentrated distribution of orientations.

The final section completes this communication with practical

examples of simulated and experimental EBSD data sets.

2. Preliminaries

2.1. Quaternions

The group SO(3) may be considered in terms ofH, the skew

field of real quaternions. In particular, a unit quaternion

q 2 S
3 � H determines a rotation. For unit quaternions the

inverse equals the conjugate, q�1 ¼ q�. The unit quaternion q

and its negative �q describe the same rotation. Thus, it would

make sense to identify the pair ðq;�qÞ with a unique rotation.

Working with pairs may be quite cumbersome; for general

statistical purposes the proper entity to work with is the

ð4� 4Þ symmetric matrix

Q ¼

q21 q1q2 q1q3 q1q4
q1q2 q22 q2q3 q2q4
q1q3 q2q3 q23 q3q4
q1q4 q2q4 q3q4 q24

0
BB@

1
CCA: ð1Þ

Thinking of q ¼ ðq1; q2; q3; q4Þ
T
as elements of S

3 � R
4 we

could write Q ¼ qqT.

The product of two quaternions is defined as

pq ¼ ScðpÞScðqÞ � VecðpÞ � VecðqÞ

þ ScðpÞVecðqÞ þ ScðqÞVecðpÞ þ VecðpÞ � VecðqÞ; ð2Þ

where ScðpÞ and VecðpÞ denote the scalar and vector part of

the quaternion p, respectively. The quaternion product can be

rewritten as

pq ¼ Lpq ¼

p0 �p1 �p2 �p3
p1 p0 �p3 p2
p2 p3 p0 �p1
p3 �p2 p1 p0

0
BB@

1
CCAq; ð3Þ

and analogously

qp ¼ Rpq ¼

p0 �p1 �p2 �p3
p1 p0 p3 �p2
p2 �p3 p0 p1
p3 p2 �p1 p0

0
BB@

1
CCAq; ð4Þ

where the matrices Lp and Rp, respectively, have the proper-

ties

Lp� ¼ LT

p; Rp� ¼ RT

p;

Lp�Lp ¼ Lp�p ¼ L1 ¼ E;

Rp�Rp ¼ Rpp� ¼ R1 ¼ E; ð5Þ

i.e. they are orthonormal (cf. Gürlebeck et al., 2006, p. 33).

The scalar product of two quaternions is defined as

p � q ¼ Scðpq�Þ ¼ ScðpÞScðqÞ þ VecðpÞ � VecðqÞ ¼ cos ffðp; qÞ:

ð6Þ

The scalar product of the unit quaternions p and q agrees with

the inner (scalar) product of p and q when recognized as

elements of S
3 � R

4, i.e. the scalar product provides the

canonical measure for the distance of unit quaternions (cf.

Gürlebeck et al., 2006, p. 21).

2.2. Descriptive spherical statistics

Even though spherical statistics is not the topic here, the

entities considered are borrowed from spherical statistics

(Watson, 1983; Mardia & Jupp, 2000). The following issues

have been clarified in the context of texture analysis by

Morawiec (1998).

In spherical statistics a distinction is made between vectors

q and pairs ðq;�qÞ of antipodal vectors, i.e. axes.

2.2.1. Vectorial data. The key summary statistic of vectorial

data is the normalized sample mean vector

r ¼
1

k
Pn

‘¼1 q‘k

Xn

‘¼1

q‘; ð7Þ

where r provides a measure of location and k
P

q‘k provides a

measure of dispersion (concentration). The normalized mean

vector solves the following minimization problem. Given

vectorial data q1; . . . ; qn 2 S
3 � R

4 find r 2 S
3
minimizing the

‘mean angular’ deviation. More precisely, with �‘ ¼ ffðq‘; xÞ

the entity to be minimized is

FRðx; q1; . . . ; qnÞ ¼
1

n

Xn

‘¼1

ð1� cos �‘Þ ¼ 1�
1

n

Xn

‘¼1

cos �‘

¼ 1�
1

n

Xn

‘¼1

xq‘ ¼ 1� x
1

n

Xn

‘¼1

q‘

 !
¼ 1� xq: ð8Þ

Thus, the solution x0 ¼ r is provided by the normalized mean

vector

r ¼
q

kqk
; ð9Þ

and

FRðr; q1; . . . ; qnÞ ¼ 1� kqk ð10Þ

is a measure for the spherical dispersion of the data. The

normalized mean vector is also the solution of the problem of

minimizing the sum of squared Euclidean distances as

1

n

Xn

‘¼1

kq‘ � xk2 ¼
1

n

Xn

‘¼1

ðq‘ � xÞðq‘ � xÞ ¼
1

n

Xn

‘¼1

ð2� 2 cos �‘Þ

¼ 2FRðx; q1; . . . ; qnÞ ð11Þ

(Humbert et al., 1996). However, the normalized mean vector

does not provide statistical insight into a sample of quater-

nions used to parametrize rotations (Watson, 1983; Mardia &

Jupp, 2000, x13.2.1).

2.2.2. Axial data. The key summary statistic of axial data is

the orientation tensor

T ¼
1

n

Xn

‘¼1

q‘q
T

‘ : ð12Þ
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Its spectral decomposition into the set of eigenvectors

a1; . . . ; a4 and the set of corresponding eigenvalues �1; . . . ; �4

provides a measure of location and a corresponding measure

of dispersion, respectively. Since the orientation tensor T and

the tensor of inertia I are related by

I ¼ E� T; ð13Þ

where E denotes the unit matrix, the eigenvectors of T

provide the principal axes of inertia and the eigenvalues of T

provide the principal moments of inertia. From the definition

of T as a quadratic form, T is positive definite, implying that

all eigenvalues are real and non-negative; moreover, they sum

to 1.

The spectral decomposition solves the following minimiza-

tion problem. Given axial data q1; . . . ; qn 2 S
3
find a 2 S

3

minimizing the mean squared orthogonal distance. With

�‘ ¼ ffðq‘; xÞ as before, the entity to be minimized is

FTðx; q1; . . . ; qnÞ ¼
1

n

Xn

‘¼1

sin2 �‘ ¼
1

n

Xn

‘¼1

1� cos2 �‘
� �

¼ 1�
1

n

X
cos2 �‘ ¼ 1�

1

n

Xn

‘¼1

ðxTq‘Þ
2

¼ 1� xT
1

n

Xn

‘¼1

q‘q
T

‘

 !
x

¼ 1� xTTx: ð14Þ

Obviously, the solution x0 ¼ a1 is provided by the eigenvector

a1 of T corresponding to the largest eigenvalue denoted �1.

Then 1� �1 is a measure of the spherical dispersion of the

axial data with respect to the quaternion	a1. The eigenvalues

are related to the shape parameters of the Bingham (quater-

nion) distribution (Bingham, 1964, 1974; Kunze & Schaeben,

2004, 2005) by a system of algebraic equations involving

partial derivatives of the hypergeometric function 1F1 of a

ð4� 4Þ matrix argument.

In general, a single eigenvector and its eigenvalue are

insufficient to provide a reasonable characterization of the

data. Therefore, often the ratios of the eigenvalues are

analysed and interpreted.

2.2.3. Normalized mean vector versus first principal axis of

inertia. It is emphasized that the mean vector for axial data is

always identically zero. Despite this mathematical fact, it may

sometimes be tempting to treat axes like vectors. If axes are

treated as vectors by some ‘trick’, e.g. moving all data to the

‘upper hemisphere’, the statistical inference will generally be

misleading. A uniform distribution on the upper hemisphere

will appear as preferred distribution in terms of vectors, but as

uniform distribution in terms of axes.

In the special case of a highly preferred unimodal distri-

bution of axes, and after additional provision as sketched

above, the normalized mean vector may be a sufficiently good

approximation to the eigenvector corresponding to the largest

eigenvector. This approximation may be considered suffi-

ciently good as long as cos is considered as a sufficiently good

approximation to cos2, i.e. for (very) small angles.

In the case of highly unimodal preferred orientation, the

largest eigenvalue �1 is much larger than the other eigenvalues

and provides a first measure of the dispersion just by itself.

The other eigenvalues and their ratios provide insight into the

shape of the distribution, e.g. the extent to which it is

symmetrical or not.

This special case seems to apply to individual orientation

measurements within a crystalline grain, where the EBSD

measurements should differ only very little. However, careful

attention should be paid to the way of defining individual

grains, i.e. to the way of defining grain boundaries. A common

practice in defining the boundaries of grains is based on a

measurement-by-measurement comparison of orientations,

i.e. two measurements q0 ¼ qðxÞ and q1 ¼ qðxþ �xÞ located

next to one another (separated by a grid step of size �x) are

compared. If the orientation difference is smaller than a user-

defined threshold !0, the two positions x; xþ �x are assigned

to the same grain. Then q1 ¼ qðxþ �xÞ and q2 ¼ qðxþ 2�xÞ

are compared. If the orientation difference is larger than the

threshold, a grain boundary is constructed (e.g. Lloyd et al.,

1997; Heilbronner, 2000).

Determined in this way the size and the shape of a crys-

tallographic grain depend rather on the threshold !0 defined

by the user than on the amount of available sampling

controlled by the grid step size �x. Thus, a grain is referred to

as a definition – rather than a sampling-limited spatial object

(cf. Bonham-Carter, 1996, p. 29–30). Then the orientation

gradient along the line x; xþm �x, m 2 N, may be large

enough to result occasionally in surprisingly large dispersions

which may be prohibitive of any reasonable interpretation in

terms of ‘grain’ properties or prevent a simple comparison of

‘grains’ defined in this way.

2.3. Considering crystallographic symmetry

In the case of crystallographic symmetry GLaue \ S
3 ¼

~GGLaue � S
3
to be considered in terms of the restriction ~GGLaue of

the Laue group GLaue to rotations, an additional difficulty has

to be mastered, as crystal orientations that are equivalent

under crystal symmetries must be considered to determine a

mean orientation. In fact, the initial orientation measurements

are of the form q‘gm‘
, q‘ 2 S

3
, gm‘

2 ~GGLaue, i.e. they are some

elements of the corresponding left cosets q‘ ~GGLaue.

If qi and qj are very close, qig1 and qjg2, g1; g2 2 ~GGLaue,

g1 6¼ g2, may appear to be mathematically different though

they are physically close. The practical problem with the

computation of the orientation tensor T and its spectral

decomposition, respectively, is to transform the initial

elements of the sample such that they are not only physically

but also mathematically highly concentrated.

Thus, explicitly considering crystallographic symmetry, the

entity to be minimized [cf. equation (14)] actually is

FTðx; q1; . . . ; qn; ~GGLaueÞ ¼ 1� xT
1

n

Xn

‘¼1

ðq‘ ~GGLaueÞðq‘ ~GGLaueÞ
T

" #
x

ð15Þ
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given crystallographic orientations q1; . . . ; qn, and the rota-

tional symmetry group ~GGLaue, i.e.

argminx2S3;gm‘
2 ~GGLaue

1� xT
1

n

Xn

‘¼1

ðq‘gm‘
Þðq‘gm‘

Þ
T

" #
x

( )
ð16Þ

with gm‘
2 ~GGLaue;m‘ ¼ 1; . . . ; s; ‘ ¼ 1; . . . ; n, where s

denotes the cardinality of ~GGLaue.

While the map S
3 ! S

3
= ~GGLaue is continuous, its inverse is

not. Thus, assigning to each measured orientation q‘gm‘
the

element of q‘ ~GGLaue with the smallest angle of rotation does not

lead to a solution of equation (16).

Therefore, we apply the following heuristics to resolve the

problem of equation (16). To this end, an initial reference

orientation is required. Given the data set q1; . . . ; qn, we may

choose q1 as reference orientation. For every ‘ ¼ 1; . . . ; n,

determine argmaxg2 ~GGLaue
q‘g� q1 ¼ g

ð0Þ
0;‘ 2

~GGLaue and replace

q‘ by q
ð0Þ
‘ ¼ q‘g

ð0Þ
0;‘. Then we evaluate FT ½x; q

ð0Þ
1 ; . . . ; qð0Þn 
 for

determining the largest eigenvalue �
ð0Þ
1 and its corresponding

eigenvector a
ð0Þ
1 .

Then we choose a
ð0Þ
1 as the reference orientation, determine

for every ‘ ¼ 1; . . . ; n, argmaxg2 ~GGLaue
q
ð0Þ
‘ g� a

ð0Þ
1 ¼ g

ð1Þ
0;‘ 2

~GGLaue,

and replace q
ð0Þ
‘ by q

ð1Þ
‘ ¼ q

ð0Þ
‘ g

ð1Þ
0;‘. Then we evaluate

FT ½x; q
ð1Þ
1 ; . . . ; qð1Þn 
 for determining the largest eigenvalue �

ð1Þ
1

and its corresponding eigenvector a
ð1Þ
1 .

Now let i ¼ 1; . . . ; I enumerate the successive iterations.

For every ‘ ¼ 1; . . . ; n, we replace q
ði�1Þ
‘ by q

ðiÞ
‘ . Next we

evaluate FT ½x; q
ðiÞ
1 ; . . . ; q

ðiÞ
n 
, and determine the largest eigen-

value �
ðiÞ
1 and its corresponding eigenvector a

ðiÞ
1 , which will be

the reference orientation in the next step of this iterative

approximation. We continue until �
ðiÞ
1 does not increase any

longer and its corresponding eigenvector a
ðiÞ
1 does not change

any more.

This iterative procedure to determine the proper eigen-

vector corresponding to the largest eigenvalue is similar to the

one suggested by Pantleon (2005), Pantleon et al. (2008), He et

al. (2008) and Krog-Pedersen et al. (2009) to be applied to the

normalized mean vector. It converges only if the measure-

ments are sufficiently well clustered, i.e. if their dispersion is

sufficiently small, and if it is appropriately initialized. The

modal orientation, i.e. the orientation for which the kernel-

estimated orientation density function is maximum, may be a

more appropriate initial reference orientation than an arbi-

trary measured orientation.

3. Characterizing sets of highly preferred orientation

Neglecting this problem of how to define grains and their

boundaries, the confusion about the normalized mean vector

and the spectral decomposition can be avoided if it is assumed

that (a) the measurements q1; . . . ; qn are highly preferred, i.e.

the dispersion within an individual grain is small, and (b) a

mean orientation a1 has been assigned to the grain by means

of the eigenvector a1 corresponding to the largest eigenvector

�1 according to equation (14), which has been interpreted

itself as a measure of the extent of preferred orientation, i.e.

ð�1; a1Þ are no longer the statistics of primary interest.

Then the focus is on ð�‘; a‘Þ; ‘ ¼ 2; 3; 4, and their ratios.

Therefore the spectral decomposition of the symmetric posi-

tive definite matrix T is considered in detail and related to the

spectral decomposition suggested earlier (Pantleon, 2005;

Pantleon et al., 2008; He et al., 2008; Krog-Pedersen et al.,

2009).

If T is a ð4� 4Þ positive definite symmetric matrix, then the

decomposition

T ¼ V�VT ð17Þ

exists where

� ¼

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

0
BB@

1
CCA ð18Þ

is the ð4� 4Þ diagonal matrix of eigenvalues �1; . . . ; �4, and

where V ¼ ða1; a2; a3; a4Þ is the ð4� 4Þ matrix comprising the

corresponding column eigenvectors a1; . . . ; a4 2 R
4. Equiva-

lently,

VTTV ¼ �: ð19Þ

Here, the matrix T is given in terms of a set of unit vectors

q1; . . . ; qn 2 S
3 � R

4 as

T ¼
1

n

Xn

‘¼1

q‘q
T

‘ ¼
1

n
QnQ

T

n; ð20Þ

where Qn is the ð4� nÞ matrix composed of column vectors

q1; . . . ; qn. Hence, T is symmetric and positive definite. Let p�

denote the conjugate of an arbitrary quaternion p. Consid-

ering the set q1p
�; . . . ; qnp

� 2 S
3
, i.e. the set of disorientations

with respect to p, and the corresponding

T� ¼
1

n

Xn

‘¼1

ðq‘p
�Þðq‘p

�Þ
T
¼

1

n

Xn

‘¼1

ðRp�q‘ÞðRp�q‘Þ
T
¼ Rp� T RT

p� ;

ð21Þ

the decomposition is

eVVT

T�eVV ¼ ðRp�VÞ
T
ðRp� T RT

p�Þ ðRp�VÞ ¼ VTTV ¼ � ð22Þ

with eVV ¼ RT

p�V composed of column eigenvectors

eaa‘ ¼ a‘p
�; ‘ ¼ 1; . . . ; 4, with respect to eigenvalues

�‘; ‘ ¼ 1; . . . ; 4. The analogue is true for the multiplication

with p� from the left.

In particular, if p ¼ a1, then eaa1 ¼ ð1; 0; 0; 0Þ
T
, i.e. multi-

plication with a�1 from the right acts like centring the

measurements at the identity rotation ð1; 0; 0; 0Þ
T
. In this case

eVV is of the form

eVV ¼

1 0 0 0

0 eww11 eww21 eww31

0 eww12 eww22 eww32

0 eww13 eww23 eww33

0
BB@

1
CCA ¼

1 0
T

0 eWW

� �
ð23Þ

with the ð3� 3Þ matrix eWW composed of the ð3� 1Þ column

vectors

eww‘ ¼ a‘þ1a
�
1jR3 ; ‘ ¼ 1; 2; 3; ð24Þ
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where a‘þ1a
�
1 ¼eaa‘þ1 are restricted to R

3 by omitting the zero

scalar part of the quaternionseaa‘þ1; ‘ ¼ 1; 2; 3. Then

eVVT

¼
1 0

T

0 eWWT

� �
: ð25Þ

Accordingly, T� may be rewritten explicitly as

T� ¼

t�11 t�12 t�13 t�14
t�21 t�22 t�23 t�24
t�31 t�32 t�33 t�34
t�41 t�42 t�43 t�44

0
BB@

1
CCA ¼

t�11 t�12 t�13 t�14
t�21

t�31
eTT�

t�41

0
BB@

1
CCA ð26Þ

with

eTT�
¼

t�22 t�23 t�24
t�32 t�33 t�34
t�42 t�43 t�44

0
@

1
A: ð27Þ

The ð3� 3Þ lower-right submatrixeTT�
of T� corresponds to the

matrix Q [equation (13) of Pantleon, 2005].

Eventually

eVVT

T�eVV ¼

t�11
P

t�1;jþ1eww1;j

P
t�1;jþ1eww2;j

P
t�1;jþ1eww3;jP

t�iþ1;1eww1;i

P
t�iþ1;2eww2;i

eWWTeTT�eWWP
t�iþ1;3eww3;i

0
BBBB@

1
CCCCA

¼ �

ð28Þ

or, equivalently,

eWWTeTT�eWW ¼ e�� ¼

�2 0 0

0 �3 0

0 0 �4

0
@

1
A: ð29Þ

Thus, if a‘; ‘ ¼ 1; . . . ; 4, are the eigenvectors of T with respect

to eigenvalues �1; . . . ; �4, then eww‘ ¼ a‘þ1a
�
1jR3 ; ‘ ¼ 1; 2; 3,

equation (24), are the eigenvectors of the ð3� 3Þ lower-right

submatrix eTT�
of T� with respect to eigenvalues �2; �3; �4.

4. Inferential statistics

4.1. Inferential statistics with respect to the Bingham

quaternion distribution

Neglecting the spatial dependence of EBSD data from

individual crystalline grains, the Bingham quaternion distri-

bution

f ð	q;AÞ ¼ 1F1 1=2; 2;Að Þ
� ��1

expðqTAqÞ ð30Þ

with a random q 2 S
3
, with a symmetric ð4� 4Þ matrix A, and

with the hypergeometric function 1F1ð1=2; 2; �Þ of matrix

argument seems appropriate (Bingham, 1964, 1974; Schaeben,

1993; Kunze & Schaeben, 2004, 2005). It is emphasized that

the densities f ð	q;AÞ and f ð	q;Aþ tIÞ, with t 2 R and the

ð4� 4Þ identity matrix I, define the same distribution.

Furthermore, these densities form a transformation model

under the group Oð4Þ. For U 2 Oð4Þ

f ð	Uq;UAUTÞ ¼ f ð	q;AÞ ð31Þ

implying that

1F1 1=2; 2;UAUT
� �

¼ 1F1 1=2; 2;Að Þ: ð32Þ

In particular, if

A ¼ UTKU ð33Þ

with U orthonormal and K ¼ diagð�1; . . . ; �4Þ, then

1F1 1=2; 2;Að Þ ¼ 1F1 1=2; 2;Kð Þ ð34Þ

and, therefore, the estimates of the parameters of the Bingham

quaternion distribution based on the sample q1; . . . ; qn are

given by

bUU ¼ VT; ð35Þ

@ log 1F1ð1=2; 2;KÞ

@�i

���
K¼K̂K

¼ �i; i ¼ 1; . . . ; 4: ð36Þ

It should be noted that equation (36) determines �̂�i,

i ¼ 1; . . . ; 4, only up to an additive constant, because �̂�i and

�̂�i þ t, i ¼ 1; . . . ; 4, result in the same �i, i ¼ 1; . . . ; 4.

Uniqueness could be conventionally imposed by setting

�̂�4 ¼ 0.

Provided that �1 >�2; �3; �4 calculation shows that

qTAq ¼ qTUTKUq ¼ xTKx ¼ �1 �
1

2

X4

j¼2

x2j

�2
j

; ð37Þ

where x ¼ ðx1; x2; x3; x4Þ
T
¼ Uq and �2

j ¼ ½2ð�1 � �jÞ

�1

for

j ¼ 2; 3; 4. Thus if q has the Bingham distribution with para-

meter matrixA and �1 � �j ! 1 for j ¼ 2; 3; 4, then	x tends

to 	ð1; 0; 0; 0Þ
T
and the distribution of ðx2=�2; x3=�3; x4=�4Þ

T

tends to that of three independent standard normal random

variables. Then for j ¼ 2; 3; 4, �j ’ Eðx2j Þ ’ �2
j , and so

�j � �1 ’ �ð2�jÞ
�1
: ð38Þ

Since we expect that �1 � �j and �̂�1 � �̂�j; j ¼ 2; . . . ; 4, are very

large, the interesting statistical issue is to test rotational

symmetry, i.e. to test the null hypothesis of spherical symmetry

that �2 ¼ �3 ¼ �4. If this hypothesis can be rejected we would

be interested in distinguishing the ‘prolate’ case, �2 >�3 ¼ �4,

and the ‘oblate’ case, �2 ¼ �3 >�4.

Assuming rotational symmetry, i.e. degeneracy of the

Bingham to the Watson distribution, the test statistic

TBingham
s ¼ n

P4
‘¼2

ðb��‘ � �Þð�‘ � �Þ � �2
5; n ! 1; ð39Þ

where

� ¼
1

3

X4

‘¼2

�̂�‘; � ¼
1

3

X4

‘¼2

�‘ ð40Þ

(Mardia & Jupp, 2000, p. 234). For a given sample of individual

orientation measurements q1; . . . ; qn we compute the value ts
and the corresponding

p ¼ Prob ðTs > tsÞ; ð41Þ
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and conclude that the null hypothesis of rotational symmetry

may be rejected for any significance level �> p.

If the hypothesis of spherical symmetry is rejected, we test

for prolateness using

TBingham
p ¼

n

2
ð�̂�3 � �̂�4Þð�3 � �4Þ � �2

2; n ! 1; ð42Þ

or, analogously, for oblateness using

TBingham
o ¼

n

2
ð�̂�2 � �̂�3Þð�2 � �3Þ � �2

2; n ! 1: ð43Þ

According to equation (38), for 1 ’ �1  �2 � �3 � �4 we

may apply the asymptotics

�j ’ e�j�j ¼ �ð2�jÞ
�1

ðj ¼ 2; 3; 4Þ; ð44Þ

assuming �1 ’ e�1�1 ¼ 0. Then the test statistics TBingham simplify

to

TBingham
s ’ TasympBingham

s ¼
n

6

X

i¼2;3;4

X

j¼2;3;4

�i

�j

� 1

� �
; ð45Þ

TBingham
p ’ TasympBingham

p ¼
n

4

�3

�4

þ
�4

�3

� 2

� �
; ð46Þ

TBingham
o ’ TasympBingham

o ¼
n

4

�2

�3

þ
�3

�2

� 2

� �
: ð47Þ

Note that three summands in equation (45) vanish and that

the �j are arranged in decreasing order. These formulae agree

well with the common-sense interpretation of a spherical,

prolate and oblate shape, respectively.

4.2. Inferential statistics without parametric assumptions

Dropping the assumption that 	q has a Bingham distribu-

tion and applying large-sample approximation the tedious

numerics with respect to 1F1 can be avoided; only

cij ¼
1

n

Xn

‘¼1

ðqT‘aiÞ
2
ðqT‘ajÞ

2
ð48Þ

is required, where ai; i ¼ 1; . . . ; 4, are the eigenvectors of T

corresponding to the eigenvalues �1 � �2 � �3 � �4. Analo-

gously to results (Prentice, 1984, x6, 1986, x5; Mardia & Jupp,

2000, x10.7.2) the test statistics are, for the spherical case,
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Figure 1
Inverse pole figure colour bar.

Figure 2
900 simulated spatially indexed individual orientations from the Bingham
quaternion distribution with modal orientation qmodal ¼ (0.78124,
0.26042, 0.15035, 0.54703) and dispersion parameters K ¼
diag ð340; 0; 0; 0Þ in a 30� 30 grid as a colour-coded orientation map
according to the ð100Þ inverse pole figure colour bar (a) and RGB colours
(b) and as a three-dimensional axis–angle scatter plot centred at the mean
orientation (c).
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Ts ¼ 15n
�2
2 þ �2

3 þ �2
4 � ð1� �1Þ

2
=3

2ð1� 2�1 þ c11Þ
� �2

5; n ! 1; ð49Þ

for the prolate case,

Tp ¼ 8n
�2
3 þ �2

4 � ð1� �1 � �2Þ
2
=2

2½1� 2ð�1 þ �2Þ þ c11 þ 2c12 þ c22

� �2

2; n ! 1;

ð50Þ

and for the oblate case,

To ¼ 8n
�2
2 þ �2

3 � ð1� �1 � �4Þ
2
=2

2½1� 2ð�1 þ �4Þ þ c11 þ 2c14 þ c44

� �2

2; n ! 1:

ð51Þ

For details concerning inferential statistics the reader is

referred to Appendix A. Some details of the computation and

asymptotics are given in Appendix B.

5. Practical applications

Several samples of individual orientation measurements are

analysed. The first sample, referred to as simIOM, is a set of

simulated measurements; the following three samples are

actual measurements on oxygen-free high-conductivity

copper, deformed to 25% in tension (Krog-Pedersen et al.,

2009).

The data are displayed as follows:

(a) Orientation maps applying the colour coding given by

the inverse pole figure colour bar as shown in Fig. 1 to the

specimen x direction, and

(b) applying RGB colour coding of Euler angles ð’1; 	; ’2Þ

according to Bunge’s zxz convention, where the Euler angle

’1 is associated with red, 	 with green and ’2 with blue. For the

simulated EBSD data, the units along both axes of the

orientation map are just pixels; for the experimental data, the

unit is 1 mm for both axes of the orientation map. Thus each

pixel of the map corresponds to one experimental orientation.

The labels along the axes refer to the origin of the coordinate
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Figure 3
Pole point plots for crystallographic forms f100g; f110g; f111g and f113g
of 900 simulated spatially indexed individual orientations from the
Bingham quaternion distribution, augmented with the mean orientation
marked by a red dot emphasizing a small dispersion.

Figure 4
�-Sections of orientation density function (a) and pole density functions
for crystallographic forms f100g; f110g; f111g and f113g (b) of 900
simulated spatially indexed individual orientations according to the
Bingham quaternion distribution, augmented with the mean orientation
marked by a red dot.
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system attached to the specimen comprising not just the

analysed grain.

(c) A three-dimensional scatter plot with respect to axis–

angle parametrization, i.e. ! n ¼ ! ðnx; ny; nzÞ
T

with ! 2

½0; 180
 and n 2 S
2
are displayed in a Cartesian ðx; y; zÞ-

coordinate system. No provision whatsoever is made for the

spherical metric of the axis–angle parametrization.

(d) Pole points q‘
~GGLaue h

~GG
�

Laue q
�
‘; ‘ ¼ 1; . . . ; n, for some

crystallographic forms h 2 S
2, i.e. crystallographic directions

and their symmetrical equivalents ~GGLaue h
~GG
�

Laue, and

(e) plots of the orientation density and

( f) pole density function.

Here, orientation maps are used for a rough indication of

spatial dependence only.

The orientation density function is computed by non-

parametric kernel density estimation with the de la Vallée

Poussin kernel, and corresponding pole density functions are

determined as superpositions of the totally geodesic Radon

transform of the de la Vallée Poussin kernel.

In all cases the orientation tensor T and its eigenvalues and

eigenvectors are computed, and the shape parameters are

derived such that the smallest estimated shape parameter

eventually equals 0 whatever formula was used for its

computation. Since the Bingham test statistics involve differ-

ences of estimated shape parameters they are independent of

the way the shape parameters are determined as the differ-

ently estimated shape parameters differ by additive terms

only. Then the spherical, oblate and prolate cases are tested, if

reasonable.

All computations have been done with our free and open-

source Matlab toolbox MTEX 3.0, which can be downloaded

from http://code.google.com/p/mtex/.

5.1. Simulated EBSD data

The first data set was fabricated by simulation of 900

(pseudo-)independent spatially indexed individual orientation

measurements from a given Bingham quaternion distribution

with modal orientation qmodal ¼ (0.78124, 0.26042, 0.15035,

0.54703) [(65�, 35�, 5�) in Euler angles according to Bunge’s

zxz convention] and dispersion parameters K ¼

diagð340; 0; 0; 0Þ in a 30� 30 grid. Assuming cubic crystal

symmetry the 900 simulated orientation data are displayed as

orientation maps of 30� 30 pixels and as a three-dimensional

scatter plot with respect to axis–angle parametrization in Fig. 2,

as pole point plots of crystallographic forms ~GGLaueh (100),

(110), (111) and (113) in Fig. 3, and as pole and orientation

densities in Fig. 4.
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Figure 5
Grain 40 with 3068 spatially indexed individual orientations as a colour-
coded orientation map according to the ð100Þ inverse pole figure colour
bar (a) and RGB colours (b) and as a three-dimensional axis–angle
scatter plot centred at the mean orientation (c).

Figure 6
Pole point plots of grain 40 for crystallographic forms f100g; f110g; f111g
and f113g, augmented with the mean orientation marked by a red dot
emphasizing a small dispersion.

electronic reprint



For these simulated data the estimated texture index

I ¼ 61:2971 and entropy E ¼ �3:6491. The eigenvalues are

for i ¼ 1; . . . ; 4; �i ¼ 0:9954; 0:0016; 0:0015; 0:0014, respec-

tively, and their ratios are �2=�3 ¼ 1:1043; �3=�4 ¼ 1:0517.

5.2. Experimental EBSD data

Experimental orientation data were collected on a

deformed oxygen-free high-conductivity copper with a purity

of 99.99%. The starting material was recrystallized to a grain

size (mean linear intercept length excluding twin boundaries

obtained by EBSD) of about 30 mm. A cylindrical dog-bone

ASTM standard tensile specimen with a gauge area of ø4 �

20 mmwas prepared by spark-cutting and loaded in tension on

an INSTRON testing machine with a cross-head speed of

0.5 mm min�1 till failure. The ultimate tensile strength was

reached at 25% strain. Part of the gauge section of the

deformed specimen was cut out and half the sample was

ground away so that the longitudinal midsection was exposed.

After further polishing, the sample was finally electro-polished

in preparation for the EBSD investigation. Using a scanning

electron microscope (Zeiss SUPRA 35) equipped with a field

emission gun and a Nordlys2 detector, lattice orientations on a

central section of the specimen (comprising the tensile direc-

tion) were recorded with the Channel5 software from HKL

Technology (Hobro, Denmark). The investigated regions are

well outside the neck and only the homogeneously deformed

part is analysed (Krog-Pedersen et al., 2009).

Orientations were determined on the longitudinal midsec-

tion in a square grid of 1100� 800 points with a distance of

1 mm between measuring points. The disorientations between
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Figure 8
Grain 147 with 4324 spatially indexed individual orientations as a colour-
coded orientation map according to the ð100Þ inverse pole figure colour
bar (a) and RGB colours (b) and as a three-dimensional axis–angle
scatter plot centred at the mean orientation (c).

Figure 7
�-Sections of orientation density function (a) and pole density functions
for crystallographic forms f100g; f110g; f111g and f113g (b) of spatially
indexed individual orientations of grain 40, augmented with the mean
orientation marked by a red dot.
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all neighbouring points were calculated taking into account

the cubic symmetry of the face-centred cubic crystalline lattice

of copper. Grains are identified as contiguous areas fully

surrounded by boundaries with disorientation angles larger

than 7� separating them from neighbouring grains. Three large

grains were selected to represent different shapes of orienta-

tion distributions; their orientation maps are presented in

Figs. 5, 8 and 11, with the tensile axis displayed vertically.

Owing to the medium stacking-fault energy of copper, many

twins are present which can be recognized in the orientation

maps as twin lamellae (e.g. the horizontal white cut in the

grain shown in Fig. 8).

Next we shall analyse the distribution of crystallographic

orientations of three individual grains, labelled grain 40, grain

147 and grain 109.

The data of grain 40 are depicted as colour-coded orienta-

tion maps and as a three-dimensional axis–angle scatter plot

centred at the identity in Fig. 5, as pole point plots in Fig. 6,

and as pole density and orientation densities in Fig. 7.

In the same way, the data of grain 147 are depicted in Figs. 8,

9 and 10. Figs. 11, 12 and 13 display the data of grain 109.

The analyses of the orientation data, in particular the

spectral analyses of the orientation matrices T, are summar-

ized numerically in Tables 1 and 2.

The orientation maps of grain 40 (Fig. 5) exhibit only gentle

colour variations, corresponding to a unimodal orientation

density function (Fig. 7). Its pole point plots (Fig. 6) reveal

best that the distribution is not spherically symmetric with

respect to its mean. Only the pole point mode in the centre of

the ð110Þ pole point plot is almost spherical, indicating that

this is the direction of the axis of internal rotation or bending

within the grain, which is confirmed by the vector components

of the eigenvector Vecð	a2Þ ¼ 	ð0:0499455; 0:545993; 0:8363Þ
T

corresponding to the second largest eigenvalue.

The orientation maps of grain 147 (Fig. 8) are almost

uniformly colour coded; all plots seem to indicate spherical

symmetry with respect to the unique mode of the orientation

density function.

The orientation maps of grain 109 (Fig. 11) indicate that it

comprises two parts with distinct orientations, clearly visible as
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Figure 9
Pole point plots of grain 147 for crystallographic forms f100g; f110g; f111g
and f113g, augmented with the mean orientation marked by a red dot
emphasizing a small dispersion.

Figure 10
�-Sections of orientation density function (a) and pole density functions
for crystallographic forms f100g; f110g; f111g and f113g (b) of spatially
indexed individual orientations of grain 147, augmented with the mean
orientation marked by a red dot.
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bimodality in the pole point, pole and orientation density plots

(Fig. 13). The centred scatter plots agree roughly with the

analyses of the ratios of eigenvalues and the statistical tests.

These differences in the symmetry of the orientation density

function originate from the peculiarities of plastic deforma-

tion. Crystal plasticity is achieved by glide on crystallographic

glide systems: f111g h110i glide systems in the case of copper.

Depending on the number of activated glide systems, intra-

grain disorientations develop with different degrees of

freedom for the main rotation axis. For instance, a prolate

distribution with a single dominating rotation axis indicates a

single degree of freedom in selecting slip systems, whereas

spherical symmetric distributions require three degrees of

freedom in selecting slip systems (Krog-Pedersen et al., 2009).

6. Conclusions

Conclusions are restricted to rather methodological aspects.

The proper statistic of individual orientation measurements

is the orientation tensor T, if independence is assumed. For
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Figure 12
Pole point plots of grain 109 for crystallographic forms f100g; f110g; f111g
and f113g, augmented with the mean orientation marked by a red dot
emphasizing a small dispersion.

Figure 11
Grain 109 with 2253 spatially indexed individual orientations as a colour-
coded orientation map according to the ð100Þ inverse pole figure colour
bar (a) and RGB colours (b) and as a three-dimensional axis–angle
scatter plot centred at the mean orientation (c).

Table 1
Summary of the spectral analysis of the orientation tensor T for grain 40,
grain 147 and grain 109.

Data comprise texture index, entropy, largest eigenvalue �1 corresponding to
principal axes a1 of smallest inertia, remaining eigenvalues �i and their ratios,
and estimated shape parameters �i of the Bingham quaternion distribution,
involving either equation (36) or the large-concentration approximation,
equation (44).

simIOM Grain 40 Grain 147 Grain 109

Sample size 900 3068 4324 2253
Texture index 61.2971 337.7395 308.9108 178.4238
Entropy �3.6491 �5.3425 �5.1136 �4.7782
�1 0.9954 0.9965 0.9983 0.9956
�2 1.645 � 10�3 2.928 � 10�3 8.713 � 10�4 2.166 � 10�3

�3 1.489 � 10�3 3.000 � 10�4 4.989 � 10�4 1.906 � 10�3

�4 1.416 � 10�3 2.645 � 10�4 3.513 � 10�4 3.120 � 10�4

�2=�3 1.1043 9.7599 1.7465 1.1364
�3=�4 1.0517 1.1345 1.4199 6.1100
Visual inspection ‘Spherical’ ‘Prolate’ ‘Spherical’ ‘Oblate’

Computation involving 1F1, equation (36)
�1 3.5344 � 102 1.8908 � 103 1.4234 � 103 1.6029 � 103

�2 49.037 1.7195 � 103 8.4916 � 102 1.3716 � 103

�3 17.354 2.2410 � 102 4.2083 � 102 1.3401 � 103

�4 0.0 0.0 0.0 0.0
�2 � �3 31.6829 1.4954 � 103 4.2832 � 102 31.4763
�3 � �4 17.3542 2.2410 � 102 4.2083 � 102 1.3401 � 103

Computation applying large-concentration approximation, equation (44)
�1 3.5293 � 102 1.8903 � 103 1.4229 � 103 1.6024 � 103

�2 49.037 1.7196 � 103 8.4916 � 102 1.3716 � 103

�3 17.354 2.2410 � 102 4.2083 � 102 1.3401 � 103

�4 0.0 0.0 0.0 0.0
�2 � �3 31.6830 1.4956 � 103 4.2832 � 102 31.4763
�3 � �4 17.3542 2.2410 � 102 4.2083 � 102 1.3401 � 103

electronic reprint



sufficiently concentrated distributions the first principal axis of

inertia (corresponding to the largest eigenvalue of T, i.e. the

smallest principal moment of inertia) is fairly well approxi-

mated by the normalized mean quaternion (and its negative),

if special provisions are taken, or by the modal quaternion

(and its negative) of some kernel-estimated orientation

density. However, neither the normalized mean quaternion

nor the modal quaternion leads to inferential statistics.

The ratios of the three remaining small eigenvalues may

indicate the geometric shape of the sample of individual

orientations. Special cases are oblateness, prolateness or a

spherical shape. They may reveal details of the texture-

generating processes, as different deformation regimes or

differently activated sets of slip systems. While a prolate shape

of the distribution may be identified by means of pole point,

pole or orientation density plots, oblate and spherical shapes

can hardly be distinguished. Three-dimensional scatter plots

may give a first hint, but are usually distorted and therefore

hard to read.

The ratios of the three small eigenvalues of the orientation

tensor T may be interpreted as describing a tendency towards

one of the three symmetric cases, if we exclude some special

cases by visual inspection of all available plots. From

descriptive statistics one proceeds to inferential statistics

either applying parametric assumptions with reference to the

Bingham quaternion distribution on S
3 or using large-sample

approximations avoiding any parametric assumptions. Then

significance tests prove the absence of symmetry if they lead to

the rejection of the null hypothesis with respect to a given

significance.

Comparing the ðx; yÞ plots of the fabricated and the

experimental data suggests that one should proceed to

methods of spatial statistics as introduced by van den

Boogaart & Schaeben (2002a,b), e.g. to capture the spatially

induced correlation.
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Figure 13
�-Sections of orientation density function (a) and pole density functions
for crystallographic forms f100g; f110g; f111g and f113g (b) of spatially
indexed individual orientations of grain 109, augmented with the mean
orientation marked by a red dot.

Table 2
Summary of the spectral analysis of the orientation tensor T for grain 40,
grain 147 and grain 109.

Data comprise tests for the spherical, oblate and prolate Bingham case
applying shape parameters estimated with either equation (36) or the large-
concentration approximation, equations (45), (47), (46), respectively, and
large-sample approximation tests for spherical, oblate and prolate symmetry,
respectively, without parametric assumptions, equations (49), (51), (50). ‘a’
indicates that the test does not apply, ‘no rejection’ indicates that rejection at
any reasonable level of significance is not possible.

simIOM Grain 40 Grain 147 Grain 109

Sample size 900 3068 4324 2253

Bingham statistics involving 1F1, equations (39), (42), (43)
pspherical 0.3895 0 0 0
Spherical ‘No rejection’ Reject Reject Reject
poblate 0 0 0.0099
Oblate Reject Reject Reject for �> p

pprolate 0.0022 0 0
Prolate Reject for �> p Reject Reject

Bingham statistics involving large-concentration approximation, equations
(45), (46), (47)

pspherical 0.3895 0 0 0
Spherical ‘No rejection’ Reject Reject Reject
poblate 0 0 0.0100
Oblate Reject Reject Reject for �> p

pprolate 0.0022 0 0
Prolate Reject for �> p Reject Reject

Large-sample approximation statistics without parametric assumptions,
equations (49), (50), (51)

pspherical 0.4031 0 0 0
Spherical ‘No rejection’ Reject Reject Reject
poblate 0 0 0.0043
Oblate Reject Reject Reject for �> p

pprolate 0.0418 0 0
Prolate Reject for �> p Reject Reject
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APPENDIX A

Tests of rotational symmetry of axial distributions

A1. A useful proposition

Proposition. If X ¼ ðX1; . . . ;XpÞ
T
is a random vector with

X � Nð0; �Ip � 
11TÞ ð52Þ

then

��1
Pp
i¼1

ðXi � XÞ
2
� �2

p�1: ð53Þ

Proof. First note that

varðX � X1Þ ¼ ðIp � p�1
11

TÞð�Ip � 
11TÞðIp � p�1
11

TÞ

¼ �ðIp � p�1
11

TÞ: ð54Þ

Take V independent of X with V � Nð0; �=pÞ. Then

X � X1þ V1 � Nð0; �IpÞ; ð55Þ

and so

��1
Xp

i¼1

ðXi � X þ VÞ
2
¼ ��1

Xp

i¼1

ðXi � XÞ
2
þ

p

�
pV2 � �2

p;

ð56Þ

from which the result follows by Cochran’s theorem.

A2. Testing O(p � 2) symmetry of Bingham distributions

Consider the Bingham distributions onRPp�1 with densities

f ð	x;AÞ ¼ 1F1ð1=2; p=2;AÞ
�1

expðxTAxÞ; ð57Þ

where x ¼ ðx1; . . . ; xpÞ
T
is a random unit vector and A is a

symmetric p� p matrix. We shall use the spectral decom-

position

A ¼
Pp
i¼1

�i�i�
T

i ð58Þ

of A, where �1; . . . ; �p are orthonormal vectors and

�1 � � � � � �p. We are interested in the hypothesis

Hprolate : �3 ¼ � � � ¼ �p ð59Þ

of Oðp� 2Þ symmetry of the distribution about the plane

spanned by �1 and �2, and in the hypothesis

Hoblate : �2 ¼ � � � ¼ �p�1 ð60Þ

of Oðp� 2Þ symmetry of the distribution about the plane

spanned by �1 and �p.

Observations 	x1; . . . ;	xn on RPp�1 can be summarized

by the scatter matrix T about the origin, defined (see x9.2.10 of

Mardia & Jupp, 2000) by

T ¼
1

n

Xn

i¼1

xix
T

i : ð61Þ

Let t1; . . . ; tp (with t1 � � � � � tp) denote the eigenvalues of T.

From x10.3.37 of Mardia & Jupp (2000), the maximum like-

lihood estimates �̂�1; . . . ; �̂�p of �1; . . . ; �p under the full

Bingham model are given by

@ log 1F1ð1=2; p=2;KÞ

@�i

����
K¼K̂K

¼ ti; i ¼ 1; . . . ; p; ð62Þ

where K̂K ¼ diagð�̂�1; . . . ; �̂�pÞ. (Recall that �̂�1; . . . ; �̂�p can be

determined only up to addition of a constant, since, for any

real constant c, the matrices A and Aþ cIp give the same

distribution.) The maximum likelihood estimates

~��1; ~��2; ~��; . . . ; ~�� of �1; . . . ; �p under Hprolate are given (up to

addition of a constant) by

@ log 1F1ð1=2; p=2;KÞ

@�i

����
K¼ ~KK

¼ ti; i ¼ 1; 2; ð63Þ

@ log 1F1ð1=2 semip=2;KÞ

@�3

����
K¼ ~KK

¼ ~tt; ð64Þ

where ~KK ¼ diagð ~��1; ~��2; ~��; . . . ; ~��Þ and

~tt ¼
1

p� 2

Xp

i¼3

ti: ð65Þ

Similarly, the maximum likelihood estimates ���1; ���; . . . ; ���; ���p of

�1; . . . ; �p underHoblate are given (up to addition of a constant)

by

@ log 1F1ð1=2; p=2;KÞ

@�i

����K¼ �KK ¼ ti; i ¼ 1; p; ð66Þ

@ log 1F1ð1=2; p=2;KÞ

@�2

����K¼ �KK ¼ �tt; ð67Þ

where �KK ¼ diagð ���1; ���; . . . ; ���; ���pÞ and

�tt ¼
1

p� 2

Xp�1

i¼2

ti: ð68Þ

It follows from standard results on regular exponential models

that the likelihood ratio statistics wprolate and woblate of Hprolate

and Hoblate satisfy the large-sample approximations

wprolate ’ ~wwprolate ¼ n
Pp
i¼3

ð�̂�i � ~��Þðti � ~ttÞ; ð69Þ

woblate ’ �wwoblate ¼ n
Pp�1

i¼2

ð�̂�i � ���Þðti � �ttÞ: ð70Þ

In the case p ¼ 4, equations (69) and (70) can be rewritten as

wprolate ’ ~wwprolate ¼
n

2
ð�̂�3 � �̂�4Þðt3 � t4Þ; ð71Þ

woblate ’ �wwoblate ¼
n

2
ð�̂�2 � �̂�3Þðt2 � t3Þ: ð72Þ

The parameter matrix A of a Bingham distribution inHprolate is

specified by the pair of orthogonal p vectors �1�1 and �2�2,
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and so the dimension of Hprolate is pþ ðp� 1Þ. Similarly, the

parameter matrix A of a Bingham distribution in Hoblate is

specified by the pair of orthogonal p vectors �1�1 and �p�p,

and so the dimension of Hoblate is pþ ðp� 1Þ. The parameter

space of the Bingham distributions has dimension

pðpþ 1Þ=2� 1. Thus the codimension of both Hprolate and

Hoblate is

½ pðpþ 1Þ=2� 1
 � ½ pþ ðp� 1Þ
 ¼
pðp� 3Þ

2
: ð73Þ

It follows from standard results on likelihood ratio statistics

that the (large-sample) asymptotic distributions of ~wwprolate and

�wwoblate (and wprolate and woblate) under the null hypotheses

Hprolate and Hoblate are

~wwprolate :��2
pðp�3Þ=2; ð74Þ

�wwoblate :��2
pðp�3Þ=2; ð75Þ

where :� means ‘is asymptotically distributed as’ (provided

that �1 >�2 >�3 in the prolate case and �1 >�2 and �p�1 >�p
in the oblate case).

A3. A large-sample test of SO(p � r) symmetry

In this section we drop the assumption that 	x has a

Bingham distribution. We are interested in the hypothesis of

Oðp� rÞ symmetry of the distribution about the r-dimensional

subspace spanned by r orthonormal vectors �1; . . . ; �r.

Without loss of generality, we can take the unit eigenvectors of

EðxxTÞ to be �1; . . . ; �p with �i ¼ ð0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
i�1

; 1; 0; . . . ; 0Þ for

i ¼ 1; . . . ; p. Put

cij ¼ Eðx2i x
2
j Þ; 1 � i; j � p: ð76Þ

Under Oðp� rÞ symmetry, the matrices ½EðxixjÞ
 and ðcijÞ have

the form

½EðxixjÞ
 ¼
diagð�1; . . . ; �rÞ 0

0 �Ip�r


 �
ð77Þ

and

ðcijÞ ¼

c11 . . . c1r c1;rþ11
T

c21 . . . c2r c2;rþ11
T

..

. . .
. . .

. ..
.

cr1 . . . crr cr;rþ11
T

c1;rþ11 . . . cr;rþ11 ðcrþ1;rþ1 � crþ1;rþ2ÞIp�r þ crþ1;rþ211
T

0
BBBBBBB@

1
CCCCCCCA

ð78Þ

where 1 ¼ ð1; . . . ; 1Þ
T
.

From the definition of S
p�1

,

Pp
i¼1

x2i ¼ 1: ð79Þ

Taking the expectation of equation (79) gives

Pr
i¼1

�i þ ðp� rÞ� ¼ 1: ð80Þ

Multiplying equation (79) by x2j and taking the expectation

gives

Pr
i¼1

cji þ ðp� rÞcj;rþ1 ¼ �j; j ¼ 1; . . . ; r: ð81Þ

Similarly, multiplying equation (79) by x2rþ1 and taking the

expectation gives

Pr
j¼1

crþ1;j þ crþ1;rþ1 þ ðp� r� 1Þcrþ1;rþ2 ¼ �: ð82Þ

Further,

�
ðcos �Þxr þ ðsin �Þxrþ1

�4
¼ ðcos �Þ

4
x4r þ 4ðcos �Þ

3
ðsin �Þx3rxrþ1

þ 6ðcos �Þ
2
ðsin �Þ

2
x2rx

2
rþ1

þ 4ðcos �Þðsin �Þ
3
xrx

3
rþ1 þ ðsin �Þ

4
x4rþ1; ð83Þ

and so

crr ¼ ðcos �Þ
4
crr þ 0þ 6ðcos �Þ

2
ðsin �Þ

2
cr;rþ1 þ 0þ ðsin �Þ

4
crr

¼ ðcos2 � þ sin2 �Þ
2
crr þ 2 cos2 � sin2 �ð3cr;rþ1 � crrÞ; 8�;

ð84Þ

leading to

crr ¼ 3cr;rþ1: ð85Þ

Substituting equations (80), (81) and (85) into (82) yields

Xr

j¼1

1

p� r
�j �

Xr

i¼1

cij

 !
þ ðp� rþ 2Þcr;rþ1 ¼

1�
Pr

i¼1 �i

p� r
;

ð86Þ

and so

cr;rþ1 ¼
1� 2

Pr

i¼1 �i þ
Pr

i¼1

Pr

j¼1 cij

ðp� rÞðp� rþ 2Þ
: ð87Þ

Simple calculations show that ðtrþ1;rþ1; . . . ; tpp; trþ1;rþ2; . . .,

tp�1;pÞ
T
has variance matrix

"
ðcrþ1;rþ1 � crþ1;rþ2ÞIp�r þ ðcrþ1;rþ2 � �2Þ11T 0

0 crþ1;rþ2Iðp�rÞðp�r�1Þ=2

#
:

ð88Þ

It follows from equation (85) that this is equal to

crþ1;rþ2

2Ip�r þ ð1� �2=crþ1;rþ2Þ11
T

0

0 Iðp�rÞðp�r�1Þ=2


 �
: ð89Þ

Partition T ¼ ðtijÞ (according to the subspaces spanned by

�1; . . . ; �r and �rþ1; . . . ; �p, respectively) as

T ¼
T11 T12

T21 T22

� �
; ð90Þ

where

research papers

J. Appl. Cryst. (2010). 43, 1338–1355 Florian Bachmann et al. � Inferential statistics of EBSD data 1351
electronic reprint



T11 ¼

t11 . . . t1r

..

. . .
. ..

.

tr1 . . . trr

0
B@

1
CA ð91Þ

and

T22 ¼

trþ1;rþ1 . . . trþ1;p

..

. . .
. ..

.

tp;rþ1 . . . tp;p

0
B@

1
CA: ð92Þ

Since the unit eigenvectors of T are Oðn�1=2Þ close to

�1; . . . ; �p, we have

T22 �
trðT22Þ

p� r
Ip�r

����
����
2

¼
Xp

i¼rþ1

ðti � t�1Þ
2
þ 2

X

rþ1�i< j�p

t
2
ij þOðn�1=2Þ;

ð93Þ

where t1; . . . ; tp denote the eigenvalues of T and

t�1 ¼ trðT22Þ=ðp� rÞ. It follows from equation (89) and the

Proposition at the beginning of this appendix that

1

2crþ1;rþ2

T22 �
trðT22Þ

p� r
Ip�r

����
����
2

:��2
ðp�r�1Þðp�rþ2Þ=2; n ! 1:

ð94Þ

From equation (87), a suitable estimate of crþ1;rþ2 is

ĉcrþ1;rþ2 ¼
1� 2

Pr

i¼1 �̂�i þ
Pr

i¼1

Pr

j¼1 ĉcij

ðp� rÞðp� rþ 2Þ
; ð95Þ

where

�̂�i ¼ ti; i ¼ 1; . . . ; r;

ĉcij ¼
1
n

Pn
k¼1

ðxTktiÞ
2
ðxTktjÞ

2
; i; j ¼ 1; . . . ; r;

ð96Þ

with t1; . . . ; tp being the unit eigenvectors of T.

A3.1. The case r = 0. This gives Bingham’s (1974) test of

uniformity (see p. 232 of Mardia & Jupp, 2000). Uniformity is

rejected for large values of

pðpþ 2Þ

2
nkT � p�1Ipk

2 ¼
pðpþ 2Þ

2
n
Xp

i¼1

t
2
i �

1

p

 !
; ð97Þ

where t1; . . . ; tp denote the eigenvalues of T. Under unifor-

mity,

pðpþ 2Þ

2
n
Xp

i¼1

t
2
i �

1

p

 !
:��2

ðpþ2Þðp�1Þ=2; n ! 1: ð98Þ

A3.2. The case r = 1. This gives Prentice’s (1984) test of

symmetry about an axis (see p. 235 of Mardia & Jupp, 2000).

Symmetry about the major axis �1 is rejected for large values

of

1

2ĉc23
T22 �

trðT22Þ

p� 1
Ip�1

����
����
2

¼

nðp2 � 1Þ½
Pp

i¼2 t
2
i � ð1� t1Þ

2
=ðp� 1Þ


2ð1� 2t1 þ ĉc11Þ
; ð99Þ

where t1; . . . ; tp (with t1 � � � � � tp) denote the eigenvalues of

T corresponding to eigenvectors t1; . . . ; tp and

ĉc11 ¼
1

n

Xn

i¼1

xTi t1
� �4

: ð100Þ

Under symmetry,

nðp2 � 1Þ½
Pp

i¼2 t
2
i � ð1� t1Þ

2
=ðp� 1Þ


2ð1� 2t1 þ ĉc11Þ
:��2

ðpþ1Þðp�2Þ=2; n ! 1:

ð101Þ

Similarly, symmetry about the minor axis �p is rejected for

large values of

1

2ĉc23
T22 �

trðT22Þ

p� 1
Ip�1

����
����
2

¼

nðp2 � 1Þ½
Pp�1

i¼1 t
2
i � ð1� tpÞ

2
=ðp� 1Þ


2ð1� 2tp þ ĉcppÞ
; ð102Þ

where

ĉcpp ¼
1

n

Xn

i¼1

ðxTi tpÞ
4
: ð103Þ

Under symmetry,

nðp2 � 1Þ½
Pp�1

i¼1 t
2
i � ð1� tpÞ

2
=ðp� 1Þ


2ð1� 2tp þ ĉcppÞ
:��2

ðpþ1Þðp�2Þ=2; n ! 1:

ð104Þ

A3.3. The case r = 2. We consider the prolate and oblate

cases in turn.

(a) Prolate case

Oðp� 2Þ symmetry of the distribution about the plane

spanned by �1 and �2 is rejected for large values of

1

2ĉc34
T22 �

trðT22Þ

p� 2
Ip�2

����
����
2

¼

npðp� 2Þ½
Pp

i¼3 t
2
i � ð1� t1 � t2Þ

2
=ðp� 2Þ


2½1� 2ðt1 þ t2Þ þ ĉc11 þ 2ĉc12 þ ĉc22

; ð105Þ

where t1; . . . ; tp (with t1 � � � � � tp) denote the eigenvalues of

T corresponding to eigenvectors t1; . . . ; tp and

ĉcij ¼
1

n

Xn

k¼1


xTkti

�2
xTktj

�2
: ð106Þ

Under symmetry,

npðp� 2Þ½
Pp

i¼3 t
2
i � ð1� t1 � t2Þ

2
=ðp� 2Þ


2½1� 2ðt1 þ t2Þ þ ĉc11 þ 2ĉc12 þ ĉc22

:��2

pðp�3Þ=2; n !1;

ð107Þ

and this statistic is asymptotically equal to wprolate of equation

(69).

(b) Oblate case

Similarly, Oðp� 2Þ symmetry of the distribution about the

plane spanned by �1 and �p is rejected for large values of
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1

2ĉc23
T22 �

trðT22Þ

p� 2
Ip � 2

����
����
2

¼

npðp� 2Þ½
Pp�1

i¼2 t
2
i � ð1� t1 � tpÞ

2
=ðp� 2Þ


2½1� 2ðt1 þ tpÞ þ ĉc11 þ 2ĉc1p þ ĉcpp

: ð108Þ

Under symmetry,

npðp� 2Þ½
Pp�1

i¼2 t
2
i � ð1� t1 � tpÞ

2
=ðp� 2Þ


2½1� 2ðt1 þ tpÞ þ ĉc11 þ 2ĉc1p þ ĉcpp

:��2

pðp�3Þ=2; n !1;

ð109Þ

and this statistic is asymptotically equal to woblate of equation

(70).

APPENDIX B

Computations and asymptotics

B1. Numerical computations

In order to solve the nonlinear equation (36) we used a

modified Newton method. For brevity we write this equation

as f ð�Þ ¼ �, with � ¼ ð�1; �2; �3; �4Þ and � ¼ ð�1; �2; �3; �4Þ.

Recall that a solution exists only if 0<�j < 1 (j ¼ 1; 2; 3; 4)

and
P4

1 �j ¼ 1, and then �1; �2; �3; �4 are determined up to an

additive constant. This implies that the Jacobian Df of f is not

invertible, and thus we modified Newton’s method by using

the pseudo-inverse of Df . The initial values for Newton’s

iteration were chosen according to equation (38), i.e.

~�1�1 ¼ 0; ~�j�j ¼ �ð2�jÞ
�1

ðj ¼ 2; 3; 4Þ: ð110Þ

During the computations the approximate solutions were

normalized such that
P4

1 �j ¼ 0.

The Jacobian Df involves not only the hypergeometric

function 1F1ð1=2; 2;KÞ but also its first and second derivatives.

When we performed the experiments we were not aware of

the Kume–Wood formula (Kume & Wood, 2007), which

expresses the derivatives of 1F1ð1=2; 2;KÞ by the values of a

higher-dimensional hypergeometric function, and thus we

approximated the derivatives numerically.

The range of � we were mainly interested in is

1� 3" � �1 < 1; 0<�2; �3; �4 � "; ð111Þ

with small ". In this range the function f is rather flat. For

example, at � ¼ ð1� 3"; "; "; "Þ we observed the asymptotic

behaviour

Df ’
1

2"2

3 �1 �1 �1

�1 1 0 0

�1 0 1 0

�1 0 0 �1

0
BB@

1
CCA ð112Þ

as " ! þ0. In practice, computations had to be performed in

the range of �j between �1000 and 1000. Since it was impos-

sible to meet the required accuracy with existing Matlab code

(we are grateful to Raymond Kan) we transferred parts of this

code into Mathematica (Wolfram Research, Champaign, IL,

USA) and used high-precision arithmetic.

Note that, in the present case of highly concentrated

distributions, it may be advantageous to evaluate

1F1ð1=2; 2;KÞ using the asymptotic formula, equation (9) of

Bingham et al. (1992), for the normalizing constant of

concentrated Bingham distributions, which gives for

p ¼ 1; 2; . . .

1F1 1=2; 2;Að Þ ¼ expð�1Þ�
�1=2jT0j

�1=2
2F0 1=2; 1=2;T�1

0

� �

¼ expð�1Þ�
�1=2jT0j

�1=2

�
Xp�1

k¼0

½ð1=2Þk

2
CðkÞðT

�1
0 Þ

k!
þOð�pÞ

( )
ð113Þ

as  ! 1, where �1; . . . ; �4 are the eigenvalues (assumed to

be distinct) of A, T0 ¼ diagð�1 � �2; �1 � �3; �1 � �4Þ, CðkÞ is

the top-order zonal polynomial corresponding to the single-

element partition of k, and  ¼ minð�1 � �2; �1 � �3; �1 � �4Þ.

Here it is assumed that �1; �2; �3; �4 are distinct; an extension

to the general case is given in Appendix 2 of Bingham et al.

(1992).

Taking �1 ¼ 0 (which we may do without loss of generality)

and p ¼ 2 gives

1F1ð1=2; 2;AÞ ¼ ��1=2ð��2�3�4Þ
�1=2

1�
1

2

X4

j¼2

1

�j
þOð�2Þ

" #
:

ð114Þ

Then

@1F1ð1=2; 2;AÞ

@�j
¼ �

1

2�j
þ

1

2�j
2
þOð�3Þ; j ¼ 2; 3; 4:

ð115Þ

Combining equation (115) with equation (36) shows that the

maximum likelihood estimates �̂�2; �̂�3 and �̂�4 of �2; �3 and �4
satisfy

�j ¼ �
1

2�̂�j
1�

1

�̂�j

� �
þOð�3Þ; j ¼ 2; 3; 4: ð116Þ

Hence

�̂�j 1�
1

�̂�j

� ��1

¼ �
1

2�j

þOð�1Þ; j ¼ 2; 3; 4; ð117Þ

and so

�̂�j þ 1 ¼ �
1

2�j

þOð�1Þ; j ¼ 2; 3; 4: ð118Þ

Define ���2; ���3 and ���4 by

���j ¼ �
1

2�j

� 1; j ¼ 2; 3; 4: ð119Þ

Then equation (118) shows that

���j ¼ �̂�j þOð�1Þ; j ¼ 2; 3; 4: ð120Þ

From
P4

j¼1 �j ¼ 1 and equation (116) we have

�1 ¼ 1þ
X4

j¼2

1

2�̂�j
1�

1

�̂�j

� �
þOð�3Þ; ð121Þ

so that
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1

2�1

¼
1

2
�
1

4

X4

j¼2

1

�̂�j
þOð�2Þ: ð122Þ

Setting

~��1 ¼ 0; ~��j ¼ �ð2�jÞ
�1

� ð2�1Þ
�1
; j ¼ 2; 3; 4; ð123Þ

and combining equation (122) with equation (118) gives

~��j ¼ �
1

2�j

�
1

2�1

¼ �̂�j þ
1

2
þOð�1Þ; j ¼ 2; 3; 4: ð124Þ

Let �
�

2; �
�

3 and �
�

4 be the estimators [motivated by the argu-

ments leading to equation (38) and given in equation (110)]

defined by

�
�

j ¼ �
1

2�j

; j ¼ 2; 3; 4: ð125Þ

Combining equations (120), (124), (125) and (119) gives

���j ¼ �̂�j þOð�1Þ;

~��j ¼ �̂�j þ
1

2
þOð�1Þ;

�
�

j ¼ �̂�j þ 1þOð�1Þ:

ð126Þ

Thus, for concentrated distributions, ���j will tend to be closer to

�̂�j than ~��j is, which in turn will tend to be closer to �̂�j than �
�

j is.

B2. Asymptotic formulae

In order to check the quality of the approximation equation

(44) we did 1000 tests with randomly chosen values of � in the

range given by equation (111), computed the corresponding

approximate values ~�� by equation (44) and checked the

corresponding values ~�� ¼ f ð ~��Þ against �. Since we are only

interested in �j and �j for j ¼ 2; 3; 4, we measure the discre-

pancy in terms of the absolute and relative errors

�� ¼ max j ~�j�j � �jj; �� ¼
max j ~�j�j � �jj

max j�jj
: ð127Þ

For " ¼ 0:003 (which was satisfied for the data in Table 1) we

obtained the upper bounds��< 0:000041, ��< 0:015, and for

" ¼ 0:01 we still had ��< 0:00058, ��< 0:058.

Moreover, we confirmed empirically that the solution to

equation (36) is even better approximated by equation (123)

instead of equation (110). Here 1000 random tests with

" ¼ 0:003 gave ��< 1:5� 10�7, ��< 5:0� 10�5, for " ¼ 0:01

we obtained ��< 6:1� 10�6, ��< 6:1� 10�4, and even for

" ¼ 0:1 the estimated errors were ��< 0:0076, ��< 0:092.

Since the test statistics [equations (39), (42), (43)] involve

only differences of �2; �3; �4 and �2; �3; �4, which are not

influenced by the additional term ð2�1Þ
�1

in equation (123), we

obtain the same approximations [equations (45), (46), (47)]

also for the modified values of �j. Thus treating our experi-

mental data with the simple approximate formulae [equation

(110)] amounts to a smaller effect than perturbing the

measured values of � by 0:005%.

Special thanks are due to Raymond Kan and Joseph L.

Rotman of the School of Management, University of Toronto,

Ontario, Canada, for contributing a Matlab script file to

evaluate 1F1ð1=2; 2;KÞ, and to Plamen Koev, Department of

Mathematics, San Jose State University, CA, USA, for intro-

ducing us to Raymond Kan and pointing out the particularly

simple form of 1F1ð1=2; 2;KÞ in terms of top-order zonal

polynomials (cf. Hillier et al., 2009; Koev & Edelman, 2006).

WP gratefully acknowledges the Danish National Research

Foundation for supporting the Center for Fundamental

Research: Metal Structures in Four Dimensions, within which

part of this work was performed. HS would like to thank

Fundação Coordenação de Aperfeiçoamento de Pessoal de

Nı́vel (CAPES) and the German Academic Exchange Service

(DAAD) for funding a three-month research stay at Centro de

Microscopia da Universidade Federal de Minas Gerais in Belo

Horizonte, Brazil, during which time this paper was

completed. All authors would like to thank David Mainprice,
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