
Inferred Dependence Coverage
to Support Fault Contextualization

Fang Deng
Department of Informatics

University of California, Irvine
Irvine, California 92617-3440

Email: fdeng@ics.uci.edu

James A. Jones
Department of Informatics

University of California, Irvine
Irvine, California 92617-3440

Email: jajones@ics.uci.edu

Abstract—This paper provides techniques for aiding develop-
ers’ task of familiarizing themselves with the context of a fault.
Many fault-localization techniques present the software developer
with a subset of the program to inspect in order to aid in the
search for faults that cause failures. However, typically, these
techniques do not describe how the components of the subset
relate to each other in a way that enables the developer to
understand how these components interact to cause failures.
These techniques also do not describe how the subset relates
to the rest of the program in a way that enables the developer to
understand the context of the subset. In this paper, we present
techniques for providing static and dynamic relations among
program elements that can be used as the basis for the exploration
of a program when attempting to understand the nature of faults.

I. INTRODUCTION

Recent years have seen a plethora of techniques proposed
by researchers for identifying likely locations of faults in
software. These fault-localization techniques use information
about how the software was executed, both when it behaved as
expected and when it behaved erroneously to suggest locations
in the program whose execution correlate with software failure.
These techniques suggest locations or sequences of locations
that are most likely to comprise the fault. A typical scenario is
that a programmer starts from one of the results of the fault-
localization technique (whether a location, such as a statement
or branch, or a sequence of statements, such as a acyclic path
or disjoint path). From there, the developer must build an
understanding and context of that result to help determine
if this was the correct result of the localization or if this
result was a false positive and the next should be utilized.
Programmers rely on their experience and intuition to guide
their continued exploration.

The result of fault-localization techniques is a (sometimes
ranked) list of locations or sequences of locations within
a program that are identified as potentially faulty. Several
techniques consider these locations to be “suspicious of” or
“blamed for” causing test-case failures. Often, these suspicious
locations are scattered throughout the program.

Results from techniques such as TARANTULA [8], [9] or
SBI [11] label source-code components belonging to multiple
functions, classes, and files as suspicious. The source-code
entities at these potentially disparate locations may or may not

be related. Often the relationship among these locations in the
code is not immediately obvious — it is the developers’ job to
manually inspect and determine their relations and the func-
tionality that it describes. Upon inspection, the developer may
determine that the identified source-code entities are, indeed,
related. Some ways in which we have witnessed these relations
are through control relationships (e.g., a suspicious method
call to a suspicious method) or through data relationships
(e.g., a global variable is defined at a suspicious location and
referenced at another suspicious location). In our experience
with these techniques, we have found that the suspicious
locations often constitute a logical coherence, performing
some particular functionality involved in the failures despite
the code being scattered.

More recently researchers have proposed failure-correlated
paths (e.g., [2], [3], [6], [7], [12]), which can provide some
context in aiding the understanding of faults. In these works,
sets of sequences or paths of execution are presented to
the developer as a set of potential fault diagnoses. These
techniques perform fault localization while giving context
within the diagnoses. In this spirit, we wish to extend and
further inform these forms of context by providing more ex-
plicit relationships among the locations within the diagnoses,
guidance to understand the relationships and context around
the diagnoses.

It is this problem that we are addressing in this work:
contextualizing the fault diagnosis from any automated fault-
localization technique and supporting exploration, both within
the diagnosis and around it — a process that we are re-
ferring to as fault contextualization. To support this task,
we propose a technique to augment static dependency with
dynamic coverage information in an effort to provide guid-
ance to the developer (or automated client analyses) as to
which static relationships are most related in actual execution.
The coverage inference is realized by utilizing lightweight
information gathered from test cases. We envision that the
hybrid static/dynamic model could serve as an augment to
the traditional debugging interfaces, enabling developers to
determine the context of the faults and the relations among
the failure-correlated code.



II. BACKGROUND

To provide the necessary background to motivate and ex-
plain our approach, we overview some existing static analyses
(Section II-A), an existing fault localization technique (Sec-
tion II-B), and the existing models for exploring a program
given a fault-localization result (Section II-C).

A. Program and System Dependence Graphs

The model of the program by which we determine which
instructions in a program are related to the other instructions
is the system dependence graph. To describe a system de-
pendence graph, we first describe the program dependence
graph (or, PDG) on which it is built. The program dependence
graph [15] is an intraprocedural model of a procedure. It
captures both control and data dependencies among instruc-
tions within the procedure. Control dependencies capture the
relationship between two instructions when one conditionally
guards execution from another. In other words, if instruction A
may not be executed because of a predicate in instruction B,
A is said to be control dependent on B. Data dependence
captures the relationship between two instructions when a
value may propagate from one to another. For example, if
instruction C has a variable assignment (e.g. x=5) that over
some path can reach, without redefinition, instruction D that
has a reference of that variable (e.g. print(x)), D is said
to be data dependent on C for the variable x. The PDG for
a procedure is composed of all instructions, represented as
nodes, and all control and data dependencies, represented as
edges.

The system dependence graph (or SDG) [5] enables efficient
analysis and slicing of dependencies across procedural bound-
aries. The SDG is an interprocedural model that is built on
the basis of the PDGs of individual procedures. In this graph,
nodes are the instructions of the program, and edges are the
control and data dependence relationships among the instruc-
tions. In addition, additional edges, called summary edges, are
introduced to enable accurate graph walking and slicing to
account for procedure calling context. In this discussion, we
will focus primarily on the control and data dependence edges.

B. Statistical, Coverage-based Fault Localization

Our contextualization approach is applicable to the results
of any fault-localization technique (including manual ones).
However, we briefly describe one such technique upon which
our implementation is built. A plethora of statistical fault
localization techniques have been proposed by researchers.
One such technique, TARANTULA [9], utilizes whole test
suites (or any subset thereof) to infer likely locations for
faults based upon the relative participation of the passing and
failing test cases and the events that occurred during execution.
This work originally was presented to target instruction-level
coverage, and that is the level at which we will apply our
localization.

The main insight of each of this (and many other) coverage-
based techniques is that, when running a test suite, execution
events that correlate with failures are more likely to be the

cause (i.e. fault or bug) of those failures. Said differently,
events that occur mostly in failing test cases, but rarely in
passing test cases, are more suspicious of being the fault. This
inferencing examines the event similarities among the failing
test cases and differentiates those similarities from the events
occurring in the passing test cases.

This original approach has been improved by the replace-
ment of the original suspiciousness metric with a similarity
coefficient borrowed from the molecular biology field. Abreu
and colleagues [1] proposed the use of the Ochiai coefficient.
The equation for Ochiai can be represented as

suspiciousness(i) =
failed(i)√

totalfailed ∗ (failed(i) + passed(i))
(1)

where passed(i) is the number of passed test cases in which
instruction i is executed, failed(i) is the number of failed test
cases in which i is executed, and totalfailed is the number of
failed test cases in the test suite.

By assessing the suspiciousness of each instruction of the
program, we can identify those instructions that are the most
suspicious of being faulty to begin our search for the true
cause of the testing failures (i.e., fault).

C. Traditional Models of Exploration

Multiple techniques have been proposed by researchers to
extend the search from the predicted location of the fault (or
most suspicious) to the actual fault. Jones and colleagues [8]
proposed a process of examining the instructions in the
program in the order of decreasing suspiciousness: that is,
first examine those instructions that are most suspicious, then
examine the next most suspicious instruction, and so on, until
the fault is found and understood. In contrast, Renieris and
Reiss [16] and Cleve and Zeller [4] proposed a process of
examining first those instructions that are predicted to be the
location of the fault, and then extending that search through
the use of the system-dependence graph. This SDG exploration
proceeds in a breath-first fashion from the predicted fault
locations across all dependency edges in concentric rings.
Figure 1 depicts this process, where the developer starts his
search for the fault at the predicted fault location in the center
node, and then examines all nodes in the first concentric ring
(all at a distance of 1 from the predicted fault), and then to the
next concentric ring where the fault is found. Color is used in
this figure to represent potential relevance to the propagation
of the fault’s effects and to demonstrate how irrelevant nodes
may be examined in this process.

Both of these exploration models (in the order of decreasing
suspiciousness and in the breadth-first order of the SDG) are
simplified models of actual human behavior given the results
of the fault-localization techniques. Neither were meant to be
prescriptive or even as a guideline or advice — their purpose is
only to facilitate a quantitative evaluation of fault-localization
techniques.

In each of these exploration models, we can identify some
key ways in which they are not likely to be an accurate



x

Predicted fault Actual fault

Fig. 1: Order of search as defined by Cleve and Zeller from the
predicted location of the fault and proceeding outward in a breadth-
first search. Figure is adapted from Reference [4].

model of human behavior. In fact, the authors of each of
the articles that introduced of these models admitted as much
as a threat to validity. With the decreasing-suspiciousness
model, the structure of the code is ignored. This inattention
to the structure of the code may cause developers to examine
instructions in isolation and to jump their search from one
location in the program to another, perhaps disparate location
in the program. The order prescribed by a strict most-to-least
suspiciousness sequence is likely to be unrealistic as it ignores
the need for the developer to understand the surrounding code
and the relationships both with the immediate surrounding
code in the code listing and those that exist across modules.

Conversely, with the breadth-first SDG model, the structure
of the code is the only contributing factor to the search. The
developer is more likely to explore in a fashion that follows
similar code features. Remember, that the SDG is a static
model of the program, which means that the model over-
approximates the possible dependencies that occur in practice.
In practice, many of the dependencies are never or rarely
fulfilled.

III. APPROACH

To address some of the key limitations of each of the
exploration models described in Section II-C, we developed
a new model that bridges the static representation of the SDG
with dynamic information. The goal of this new hybrid model
is to serve as a foundation for interfaces that can help guide
developers in their search for faults and in their exploration
to understand those faults: a process that we are calling fault
contextualization.

Our approach leverages both the static information from an
SDG and the dynamic information about the program and its
execution. The general idea of our approach is to inform the
SDG of a faulty program with dynamic coverage information
by assigning each dependency (i.e., an edge in the SDG) with
a variable weight. The weight implies the degree to which
a dependency is actually covered in executions. The weight
provides additional information by conveying which path may
be more likely to have propagated either the effects of a fault
or the necessary preconditions to trigger the fault. Unlike

dynamic slicing, the weight of the dependency is inferred
by considering the coverage of all test cases rather than a
single execution path. Thus, the SDG is able to convey the
execution information related to an entire test suite through a
single model.

To calculate the weight, the traversal or realization of control
and data dependencies need to be gathered from executions,
either by direct instrumentation (i.e., modifying the program
to keep track of which were executed) or by inference from
the instruction-level coverage that is currently being gathered
for the fault localization. Direct instrumentation of control
and data dependencies can be done, however, this type of
instrumentation is not commonplace in practice. One reason
is that data-flow instrumentation is known to impose a higher
runtime overhead on the subject program [13], [17], and is sub-
ject to complications such as aliasing [10], [14]. Instruction-
coverage instrumentation is much more common in software-
development practice, as it is used to determine white-box
testing adequacy. It imposes a low runtime overhead, and
many tools currently exist to gather this information about
a program. As such, in our approach, we infer the traversal of
a dependency from instruction coverage.

t1, 
t2, 

t3, t4

t2, 
t3, t4

t4, 
t5, 

t6, t7

Fig. 2: Three instruction nodes labeled by the test cases that covered
them. A dependency edge whose incident nodes have a higher set
similarity of the test cases that executed them is treated as more
likely to have been executed.

To infer dependency traversal from instruction-level cover-
age, each node can be labeled with the test cases that executed
it (i.e., the instruction that it represents). A set similarity
metric is utilized to determine a relative likelihood that that
dependency was executed. For example, in Figure 2, each
SDG node is labeled with the test cases that executed it.
The dependency from the node labeled “t2,t3,t4” to the node
labeled “t1,t2,t3,t4” can be thought to be more likely to have
been executed than the other because the set of test cases on
each node incident on that dependency edge is more similar. In
our approach, we use Jaccard similarity coefficient to compute
the set similarity, presented in Equation 2. In Equation 2, A
and B represent the sets of test cases that executed the two
nodes of an edge respectively.

J (A,B) =
|A

⋂
B|

|A
⋃
B|

(2)

We then model the weight of an edge using the set similarity
as the weight. As a result, some dependencies are assigned
a greater weight than others. A greater weight of dependence
can be interpreted as a shorter distance between the two nodes



that the dependence connects. Users can use the distance to
determine which node should be visited first before others
when familiarizing themselves with the context.

IV. EXPERIENCE

We evaluated the effectiveness of our approach in terms of
its ability of clustering failure-correlated effects. We extracted
SDGs of multiple faulty versions of two C programs — each
program was over 7KLOC, and each version contained one
fault. We executed test suites on the programs and captured
instruction coverage. We then used our approach described
in Section III to infer the weight of each dependency in the
SDGs. We also calculated suspiciousness of all instructions
using the approach described in Section II-B. As a result, we
observed in both programs that nodes (i.e., instructions) with
similar suspiciousness formed clusters in terms of distance
(the inverse of weight). And, we found that the clusters were
not obvious if we assigned each dependence with a same
value (i.e., if no dynamic coverage information was used).
This phenomenon provides initial evidence that our approach
is effective on clustering failure-correlated effects which are
scattered across various locations in the source code and thus
informing and guiding developer attention in their debugging
investigation.

V. CONCLUSIONS

In this paper, we presented a technique that augments a
static-analysis model of the program—the system-dependence
graph—with dynamic information gathered from the execu-
tion of the program under test. The dynamic information
is gathered from commonplace, lightweight instruction-level
coverage, and that is used to infer coverage of program
dependences. The result of the technique is a static/dynamic
hybrid model of the program. Some dependencies are assigned
a greater weight than others, which may be used to inform and
guide developer attention when investigating and understand-
ing faulty behavior to ultimately debug the program.

Our experience shows that the technique and model suc-
cessfully highlight and associate relevant and failure-related
program context, even when that context is scattered across
various locations in the source code. Our hybrid model per-
formed more effectively to cluster the failure-related context
than the static model, and has thus demonstrated that it is
a suitable model on which to build contextualization client
applications.

In future work, we will extend our studies to include more
programs and faults. We will also investigate the factors that
enable only some faults to be clustered independently. In
addition, we will develop client analyses and applications that
support program exploration, contextualization, querying, and
identification of failure-related cross-cutting concerns in a way
that can leverage dynamic information from the entire test
suite.

VI. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable and
thorough comments. This material is based upon work sup-
ported by the National Science Foundation under award CCF-
1116943, and by a Google Faculty Research Award.

REFERENCES

[1] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy
of spectrum-based fault localization. In Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques,
pages 89–98, Washington, DC, USA, 2007. IEEE Computer Society.

[2] H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug
signatures using discriminative graph mining. In Proceedings of the
eighteenth international symposium on Software testing and analysis,
ISSTA ’09, pages 141–152, New York, NY, USA, 2009. ACM.

[3] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani.
Holmes: Effective statistical debugging via efficient path profiling. In
Proceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, pages 34–44, Washington, DC, USA, 2009. IEEE
Computer Society.

[4] H. Cleve and A. Zeller. Locating causes of program failures. In Pro-
ceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 342–351, New York, NY, USA, 2005. ACM.

[5] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., 12:26–60,
January 1990.

[6] H.-Y. Hsu, J. A. Jones, and A. Orso. Rapid: Identifying bug signatures
to support debugging activities. In Proceedings of the 2008 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’08, pages 439–442, Washington, DC, USA, 2008. IEEE
Computer Society.

[7] L. Jiang and Z. Su. Context-aware statistical debugging: from bug
predictors to faulty control flow paths. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’07, pages 184–193, New York, NY, USA, 2007. ACM.

[8] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’05,
pages 273–282, New York, NY, USA, 2005. ACM.

[9] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In Proceedings of the 24th
International Conference on Software Engineering, ICSE ’02, pages
467–477, New York, NY, USA, 2002. ACM.

[10] W. A. Landi. Interprocedural aliasing in the presence of pointers. PhD
thesis, Rutgers University, New Brunswick, NJ, USA, 1992. UMI Order
No. GAX92-19944.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable
statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI ’05, pages 15–26, New York, NY, USA, 2005. ACM.

[12] W. Masri. Fault localization based on information flow coverage. Softw.
Test. Verif. Reliab., 20:121–147, June 2010.

[13] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa.
Demand-driven structural testing with dynamic instrumentation. In Pro-
ceedings of the 27th International Conference on Software Engineering,
ICSE ’05, pages 156–165, New York, NY, USA, 2005. ACM.

[14] A. Orso, S. Sinha, and M. J. Harrold. Effects of pointers on data
dependences. International Conference on Program Comprehension,
0:0039, 2001.

[15] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. SIGPLAN Not., 19(5):177–184,
1984.

[16] M. Renieris and S. Reiss. Fault localization with nearest neighbor
queries. In Proceedings of the 18th IEEE International Conference
on Automated Software Engineering, ASE ’03, pages 30–39, Montreal,
Quebec, October 2003.

[17] R. Santelices and M. J. Harrold. Efficiently monitoring data-flow
test coverage. In Proceedings of the 22nd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 343–
352, New York, NY, USA, 2007. ACM.


	Introduction
	Background
	Program and System Dependence Graphs
	Statistical, Coverage-based Fault Localization
	Traditional Models of Exploration

	Approach
	Experience
	Conclusions
	Acknowledgments
	References

