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Abstract- This paper describes an evolutionary method
for identifying the gene regulatory network from the ob-
served time series data of the gene’s expression. We use a
system of ordinary differential equations as a model of the
network and infer their right-hand sides by using Genetic
Programming (GP). To explore the search space more ef-
fectively in the course of evolution, the least mean square
(LMS) method is used along with the ordinary GP. We ap-
ply our method to three target networks and empirically
show how successfully GP infers the systems of differen-
tial equations.

1 Introduction

Technologies such as DNA microarrays have seen rapid de-
velopment in recent years [DeRisi97], allowing large quanti-
ties of gene’s expression data to become more available. As
a result, many researchers are interested in inferring the gene
regulatory network from the observed time series and it has
become one of the major topics in the field of bioinformatics.

Many models have been proposed to describe the net-
work, among them is the Boolean network [Akutsu99]. In
this model, the expression level is either 1 (on) or 0 (off) and
the difference in expression levels is not taken into consid-
eration. The relationship among genes is represented in the
form of Boolean functions. This modeling is relatively so
simple though it suffers from being too coarse. The weighted
matrix model which considers the continuous level of the ex-
pression was also proposed by Weaver et.al. [Weaver99]. The
coefficients and the topology of this model were successfully
acquired by using Genetic Algorithms (GA) [Ando00].

Another candidate is the system of differential equations,
which is a very powerful and flexible model to describe com-
plex relations among components. Some researchers stud-
ied the learning of the gene regulatory network by using
the system of differential equations as the model [Chen99]
[Tominaga00] [Sakamoto00]. But it is not necessarily easy
to determine the suitable form of equations which represent
the network. Thus, the form of the differential equation had
been fixed during the learning phase in previous studies. As
a result, their goal was to simply optimize parameters, i.e.,
coefficients in the fixed equations. For example, the fixed
form of the system of differential equations named S-system1

1S-system is a type of power-law formalism. The concrete form of S-

was proposed as the model and parameters were optimized
by using GA [Tominaga00]. Furthermore, they integrated the
Boolean network model and S-system to treat a large-scale
genetic network [Maki01].

In this paper, we deal with an arbitrary form in the right-
hand side of the system of differential equations to allow flex-
ibility of the model. More precisely, we consider the follow-
ing general form:

dXi

dt
= fi(X1,X2, . . . ,Xn) (i = 1, 2, . . . , n) (1)

whereXi is the state variable andn is the number of the com-
ponents in the network. In terms of the gene regulatory net-
work, Xi is the expression level of theith gene andn is the
number of genes in the network.

For the sake of identifying the system of differential equa-
tions, we use Genetic Programming (GP) to evolve the right-
hand side of the equation from the observed time series of the
gene’s expression.

Although GP is effective in finding the suitable structure,
it is sometimes difficult to optimize the parameters, such as
constants or coefficients of the polynomials. This is because
the ordinary GP searches for them simply by combining ran-
domly generated constants. To avoid this difficulty, we intro-
duce the least mean square (LMS) method.

This paper describes how successfully GP is applied to the
inference of the systems of differential equations. More pre-
cisely, we empirically show the following points by several
experiments:

• The success in the acquisition of the system of equa-
tions which is very close to the observed time series.

• The inference of the exact equation form, i.e., the exact
causal relationship between the genes.

• The robustness of the acquired system.

system is given as follows:

dXi

dt
= αi

n∏
j=1

X
gij

j − βi

n∏
j=1

X
hij

j (i = 1, 2, . . . , n)

whereXi is a state variable. The first term represents all influences that
increaseXi, whereas the second term represents all the influences that de-
creaseXi [Savageau76].



• The effectiveness of the LMS method.

The rest of this paper is organized as follows. In Section 2,
we describe the details of our method, i.e., how GP and LMS
methods work in the course of evolution. Three examples of
the target networks are used to examine the effectiveness of
our method. Their experimental results are shown in Section
3. Then, we discuss the results in Section 4 and give conclu-
sions in Section 5.

2 Method

2.1 Optimization of models using GP

We use GP to identify the gene regulatory network in the form
of the system of differential equations. For this purpose, we
encode right-hand sides of the equations into a GP individ-
ual. Each individual contains a set ofn trees, i.e., an n-tuple
of trees(f1, . . . , fn). For example, consider the following sys-
tem of differential equations:

{
Ẋ1 = 0.3X1X2 + X2

Ẋ2 = 0.5X1X2
(2)

This is represented as two trees in Fig.1.

Figure 1: Example of GP individual

Each equation uses a distinct program. A GP individ-
ual maintains multiple branches, each of which serves as the
right-hand side of a differential equation. Crossover opera-
tions are restricted to correspondent branch pairs and muta-
tion is applied to only one randomly selected tree of the indi-
vidual.

The fitness of each individual is defined as the sum of the
squared error and the penalty for the degree of the equations:

fitness =
n∑

i=1

T−1∑
k=0

(x′
i(t0+k∆t)−xi(t0+k∆t))2+

∑
j=0

ajbj

(3)


t0 : the starting time
∆t : the stepsize
n : the number of the components in the network
T : the number of the data points




wherexi(t0 + k∆t) is the given target time series (k =
0, 1, · · · , T − 1). x′

i(t0 + k∆t) is the time series acquired by
calculating the system of differential equations represented
by a GP individual. All these time series are calculated by

using the forth-order Runge-Kutta method.aj is the penalty
coefficient forjth degree, andbj is the sum of the absolute
value of coefficients ofjth degree.ai must be smaller than
aj when i < j so that the penalty for the higher degree is
larger than that for the lower degree. In other words, the indi-
vidual which is of lower degree and closer to the target time
series has the higher possibility to be selected and inherited
to the next generation. This fitness derivation is based on the
MDL (Minimum Description Length) criterion, which was
often used in GP (see [Iba94] and [Zhang95] for examples).
When calculating the time series, some individuals may go
overflow. In this case, the individual’s fitness value gets so
large that it will be weeded out from the population.

We use several sets of time series as the training data for
GP. This is to acquire the equations as close to the target as
possible. Each data set was generated from the same target
by using different initial values.

2.2 Optimization of models using LMS method

GP is capable of finding a desirable structure effectively.
However, when it comes to optimizing the constants or co-
efficients, the ordinary GP can not always be effective in the
sense that it relies mainly on the combination of randomly
generated constants. Thus, we use the least mean square
(LMS) method to explore the search space more effectively.
More precisely, some individuals are created by the LMS
method at some intervals of generations as follows:

1. Choose some data points from the target time series
randomly.

2. Derive the coefficients of the approximate expressions
of the right-hand sides of the system of differential
equations by using the LMS method (The detail of
the LMS method is mentioned in 2.3). The approxi-
mate expression forms forn = 3 are either linear or
quadratic as described below:

Ẋi = aiX1 + biX2 + ciX3 + di (4)

Ẋi = aiX
2
1 + biX

2
2 + ciX

2
3 + diX1X2 + eiX2X3

+fiX1X3 + giX1 + hiX2 + jiX3 + ki

(5)

3. Replace the worst individuals in the population with the
new ones generated above.

2.3 Detail of LMS

In this subsection, we explain the details of the LMS method.
Assume that we want to acquire the approximate expression
in the following form.

y(x1 , . . . , xL) =
M∑

k=1

akFk(x1, . . . , xL) (6)

whereFk(x1, . . . , xL) is the basis function,x1, . . . , xL are
the independent variables,y(x1 , . . . , xL) is the dependent



variable, andM is the number of the basis functions. Let
a be the vector of coefficients, i.e., (a1, . . . , aM ). Then, our
purpose is to minimizeχ2 described in (7) to acquirea.

χ2 =
N∑

i=1

(
y(i) −

M∑
k=1

akFk(x1(i), . . . , xL(i))
)2

(7)

wherex1(i), . . . , xL(i) andy(i) are data given for the LMS
method andN is the number of data points. Letb be the vec-
tor of (y(1), . . . , y(N)) andA be theN×M matrix described
below:


F1(x1(1), . . . , xL(1)) . . . FM (x1(1), . . . , xL(1))
F1(x1(2), . . . , xL(2)) . . . FM (x1(2), . . . , xL(2))

...
. . .

...
F1(x1(N), . . . , xL(N)) . . . FM (x1(N), . . . , xL(N))




Then, (8) should be satisfied to minimizeχ2.

(AT · A) · a = AT · b (8)

Thus,a can be acquired by solving this equation.
When applying to the time-series problem,y(i) for the

jth equation of the system of differential equations is cal-
culated according to the following discrete difference of the
time-seriesxj(t):

y(i) = Ẋj |t=ti =
xj(ti + ∆t) − xj(ti)

∆t
(9)

whereti is the time of theith selected data point. For exam-
ple, consider the system of differential equations (4), in which
the number of the network components is three (L = n = 3).
In this case, we are using four basis functions, i.e.,M = 4
and (F1, F2, F3, F4)=(X1,X2,X3, 1). Then, theith row of
the matrixA is determined as (x1(ti), x2(ti), x3(ti),1).

The coefficients in the approximate expressions of the
right-hand sides of the equations can be derived by usingA
andb(y(1), . . . , y(N)) acquired above.

2.4 Overall algorithms

Overall algorithms can be summarized as shown below:

1. Initialization, i.e., creation of the population.

2. Fitness derivation according to (3) by using the Runge-
Kutta method.

3. Replacement with offspring newly generated by means
of the LMS method at some interval of generations.

4. Selection and genetic recombination.

5. Go to 1.

Population 1000
Generation 300
Crossover rate 0.70
Mutation rate 0.20
LMS method every 30 generations

2%
Stepsize 0.05
Datapoint 100

Table 1: Experimental parameters for Eg.1

3 Experimental results

We have prepared three networks as the target tasks to test
the effectiveness of our method. For each target, three sets
of time series with a different initial value were used for the
training of GP. Function set F and Terminal set T are as fol-
lows:

F = {+,−, ∗}
T = {X1, . . . ,Xn, c}

wherec is a random constant.

3.1 Example 1: Simple case

In the first experiment, we used a simple system of differen-
tial equations shown in (10) as the target model.


Ẋ1 = −0.9X2 + X3

Ẋ2 = 0.2X1X2

Ẋ3 = X3 − 0.5X1

(10)

Experimental parameters are shown in Table 1 and initial
values of the target data sets are (X1,X2,X3) = (0.2,0.1,0.3),
(0.1,0.1,0.1), (0.2,0.2,0.2). The LMS method is applied every
30 generations and 2% of the worst individuals are replaced
by the newly generated ones.

The model we have obtained in a typical run is shown in
(11) and the mean squared error (MSE) of this model was
6.088 ∗ 10−5. Its time series is shown in Fig.2 (predXi)
along with that of the target (Xi).


Ẋ1 = 0.0400X2
2 + 0.0184X1X2 − 0.0200X2X3

−0.9020X2 + 1.0000X3

Ẋ2 = 0.0369X2
2 + 0.1920X1X2

Ẋ3 = −0.0012X3
1 + 0.0024X2

1X3 + 0.0004X1X3

−0.5200X1 + 1.0208X3 − 0.0006
(11)

As we compare the acquired system of equations (11) with
the target (10), we can confirm that the two systems are al-
most coincident. For instance, the first equation in (11) is
almost equal to

Ẋ1 = −0.9020X2 + 1.0000X3, (12)

considering that the very small coefficients, e.g. 0.0184, are
regarded as zeros.
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Figure 2: Time series of the acquired model for Eg.1

3.2 Example 2 : Fertility equation

Next, consider the fertility equation in the field of biology
[Hofbauer88]. This is the model of the natural selection
which takes the following facts into consideration:

1. Mating is not random.

2. Fertilities of mating pairs are different.

3. Viabilities of genotypes are different.

For two allelesA1 and A2, there are three genotypes,
i.e., A1A1, A1A2, andA2A2. Thus, there are nine different
mating types and each of them has an average fertility. Let
X1,X2,X3 be the frequencies ofA1A1, A1A2 andA2A2,
respectively. Then, the typical example model is described as
shown below:



Ẋ1 = 2.0X2
1 + 2.5X1X2 + 0.375X2

2

−X1P (X1,X2,X3)

Ẋ2 = 0.75X2
2 + 2.5X1X2 + 2.5X2X3 + 3.0X1X3

−X2P (X1,X2,X3)

Ẋ3 = 1.5X2
3 + 2.5X2X3 + 0.375X2

2

−X3P (X1,X2,X3)
(13)

where

P (X1,X2,X3) = 2.0X2
1 + 5.0X1X2 + 1.5X2

2

+3.0X1X3 + 5.0X2X3 + 1.5X2
3 .

(14)
Each coefficient in (13) and (14) is derived from the average
fertilities of nine mating types.

We used (13) as the target model. Experimental param-
eters are shown in Table 2 and the initial values of the tar-
get data sets are (X1,X2,X3) = (0.5,0.5,0.0), (0.5,0.0,0.5),
(0.0,0.5,0.5).

The average MSE of 10 runs is6.225 ∗ 10−5. The best
model we have obtained is seen in (15) and the MSE of this
model was2.942 ∗ 10−5. Its time series is shown in Fig.3

Population 3000
Generation 900
Crossover rate 0.70
Mutation rate 0.20
LMS method every 30 generations

2%
Stepsize 0.25
Datapoint 40

Table 2: Experimental parameters for Eg.2 and Eg.3
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Figure 3: Time series of the best evolved model for Eg.2

along with that of the target.



Ẋ1 = 1.0000X3
3 − 0.0160X2

1

+0.2000X1X2 − 0.0936X2X3 − 0.7000X1X3

−0.2400X1 + 0.3964X2 − 0.4800X3 + 0.0200

Ẋ2 = −0.5624X2
2 − 3.0520X2

3

−0.9620X1X2 − 2.3680X2X3

+0.2812X1 − 0.2288X2 + 2.7380X3 + 0.1036

Ẋ3 = 0.1052X1X2X3

−0.6400X2
1 + 0.7400X2

2 − 0.0057X2
3

−0.4200X1X2 + 0.7391X2X3 − 2.2597X1X3

+0.6800X1 − 0.2800X2 − 0.2017X3 − 0.0400
(15)

As can be seen from the Fig.3, the two curves, i.e., the one
from target (13) and the other from the acquired system (15),
show almost coincident behaviors. Thus, we can confirm the
success in the acquisition of the system to be very close to the
target.

3.3 Example 3 : Weighted gene regulatory network

A weighted network was proposed to represent the gene reg-
ulatory network [Weaver99]. The example of this model is
shown in Fig.4. In this network, each node represents the
gene. The arrow and value indicate the regulatory relation
and its level. Positive values represent the promotion while
negative ones the repression.

In this model, the gene expression level(xj(t)) is calcu-
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0% noise 5% noise 10% noise
Linear LMS 0.0100 0.0123 0.0153
Quadratic LMS 0.0107 0.0226 0.0267

Table 3: The average MSE of Eg.3

lated by the following equations:

si(t) =
n∑

j=0

ωjixj(t) (16)

xi(t + 1) =
mi

1 + e−si(t)
(17)

whereωij is the weight on genei from genej, si(t) is the
regulation state of genei at stept, andmi is the maximum ex-
pression level of genei. For instance,ω31=-0.8 andω11=0.9
for the network shown in Fig.4. Ifωij=0, then the correspon-
dent arrow is omitted for the simplicity.

We used the model shown in Fig.4 as the target. Ex-
perimental parameters are shown in Table 2 and initial val-
ues of the target data sets are (X1,X2 ,X3) = (0.5,0.0,0.0),
(0.0,0.5,0.0), (0.0,0.0,0.5).

The average MSE of 10 runs is 0.0100. The best model
we have obtained is (18) and MSE of this model was 0.0039.
Its time series is shown in Fig.5 along with that of the target.




Ẋ1 = −0.1159X1X
2
3 − 0.0023X2

3 + 0.1974X1X3

−0.6010X3 + 3.0344

Ẋ2 = −0.0200X3
1 − 0.0017X2

1X2

−0.0173X2
1 − 0.2109X2

2 + 0.1750X1X2

+0.4138X1 − 0.5144X2 + 2.6125

Ẋ3 = −0.0151X2X
2
3 − 0.0135X1X2X3

+0.0352X2
3 + 0.0593X2X3

−0.0135X1 + 0.9008X2 − 1.2917X3 + 3.0039
(18)

It can be said from Fig.5 that the time series of the acquired
system (18) fits that of the target system quite well.

To test the robustness of our method to the real noisy
world, we have conducted the experiment with noise-added
data sets. 5% and 10% random noises were added to the target
time series. The averaged MSE values of 10 runs are shown
in Table 3.

We have also experimented without the LMS method to
confirm its effectiveness. The average MSE of 10 runs is
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Figure 5: Time series of the best evolved model for Eg.3

0.0262 while that of the experiment with the LMS method
is 0.0100. From this result, we can see that the LMS method
worked effectively to acquire the better individual. The typi-
cal case of the evolution is shown in Fig.6.
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Figure 6: Effectiveness of LMS method

4 Discussion

Previous experimental results have shown that the acquired
time series fit the target ones quite well in all the target tasks.
Thus, our method is supposed to derive the causal relationship
among the components for the gene networks.

In the above experiments, the number of the genes we
chose was around three and seems far less than the total num-
ber in the real network. To tackle the identification of a large-
sized network, some other method should be used for the pur-
pose of pre-processing, i.e., reducing the network into a set
of small-sized sub-networks. For instance, the network was
devided into moderate-sized subnetworks by using the static
Boolean network model [Maki01]. We will work on the inte-
gration of some methods.

The LMS method has played a significant role in search-
ing for better individuals effectively in the course of the evo-
lution. As can be seen from Fig.6, the fitness values with the
LMS method decrease more quickly in the early phase than
that without the LMS method. The LMS method seems to



provide a better seed for the GP search, in the sense that the
better offspring are created from those of better seeds. This
explains why the effect of the LMS method is not only re-
stricted to the generation when the LMS method is applied.
In other words, the fitness values keep decreasing, i.e., im-
proving, even after the generation of the LMS method.

As a related work, Cao et. al. also proposed to acquire the
system of differential equations in a arbitrary form from the
target time series using GP [Cao00]. In this method, GA is
used for the optimization of parameters. On the other hand,
the salient features of our approach is (1) the LMS method
for the parameter tuning, and (2) the MDL criterion to de-
rive the fitness value along with the error of the acquired
time series. The comparative experiments between the two
approaches will be conducted in our future research.

We will work on the following extensions of the current
method in our future works:

1. The choice of the appropriate degree for the LMS
method.

2. The setting of the penalty function.

3. The presentation of multiple data sets for the GP train-
ing.

First, the proper degree of the approximate expression
may depend on the target time series. However, we don’t
know the appropriate degree for the LMS method beforehand.
Moreover, there is another factor to be considered, i.e., the
robustness. Though we cannot draw any concluding remarks
only from the above-mentioned experimental results, it seems
that using the linear expression results in the acquisition of a
more robust system than using the quadratic expression, espe-
cially with the noise-added data (see Table 3). The overfitting
seems to have occurred with the quadratic expression. We
will examine the robustness of our method on more networks
and will try to achieve more robust systems by extending the
LMS algorithms. One possible solution will be to change the
degree automatically according to the evolution speed.

Second, the penalty coefficients, i.e.,ai in (3), should be
carefully determined. In general,ai must be smaller thanaj

wheni < j so that the penalty for the higher degree is larger
than that for the lower degree. However, their absolute values
are heuristically given for a specific task. The more algorith-
mic determination of these values is our current research con-
cerns. For instance, the assignment algorithm using the radius
of curvature is proposed by Nikolaev et.al. [Nikolaev00].

Third, we used several sets of time series as the training
data for GP. Each data set was generated from the same net-
work with different initial values. We provided all of them
as the training data throughout the whole generation. This is
to enhance the robustness of the acquired system. However,
there can be other ways to the provision. For example, the
whole generation is divided into a set of segments. In the
first segment, one time series is used for the training of GP.
In the second segment, another time series as well as the first

one is used as the training data for GP. In the same way, the
third set of time series is used in addition to the above two
sets as the training data for GP in the third segment. Clearly
the computational burden is reduced with the latter provision
method and the learning is expected to proceed gradually and
reasonably. We have conducted the experiments using this
latter method, and found that in some cases the average of
MSE values were not necessarily better. We are working on
this extension as our current research topic.

5 Conclusion

We have proposed the method of inferring the right-hand
sides of the system of differential equations from the observed
time series by using GP along with the LMS method. We
showed how successfully our method can infer the network
by several experiments.

As with many other proposed models, the solution which
fits the given time series quite well is not necessarily de-
termined uniquely. In other words, there may exist more
than one solution which behave consistently with the tar-
get. Therefore, even if one system of differential equations
is acquired as a solution, we cannot disregard other candi-
dates. Our aim is to obtain the candidates scattered in the
huge search space and to propose to users the possible causal
relationship among the network components. Therefore, as
future works, we will concentrate on the construction of the
interactive system, which proposes the possible solutions and
tells users what kinds of data are needed to determine the re-
lationship among the components. By using this interactive
system, users will be able to pick up the biologically correct
equations or discard the biologically meaningless equations
from the suggested ones. We will also try to solve some of
the real biological problems.
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