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We derive here two new estimators of admixture proportions based on a coalescent approach that explicitly takes
into account molecular information as well as gene frequencies. These estimators can be applied to any type of
molecular data (such as DNA sequences, restriction fragment length polymorphisms [RFLPs], or microsatellite data)
for which the extent of molecular diversity is related to coalescent times. Monte Carlo simulation studies are used
to analyze the behavior of our estimators. We show that one of them (mY) appears suitable for estimating admixture
from molecular data because of its absence of bias and relatively low variance. We then compare it to two con-
ventional estimators that are based on gene frequencies. mY proves to be less biased than conventional estimators
over a wide range of situations and especially for microsatellite data. However, its variance is larger than that of
conventional estimators when parental populations are not very differentiated. The variance of mY becomes smaller
than that of conventional estimators only if parental populations have been kept separated for about N generations
and if the mutation rate is high. Simulations also show that several loci should always be studied to achieve a
drastic reduction of variance and that, for microsatellite data, the mean square error of mY rapidly becomes smaller
than that of conventional estimators if enough loci are surveyed. We apply our new estimator to the case of admixed
wolflike Canid populations tested for microsatellite data.

Introduction

Over the course of evolution, populations that have
remained isolated from one another for a long period
because of geographical, ecological, or cultural barriers
are occasionally brought into contact. They then have
the possibility of exchanging genes, leading to admixed
or hybrid populations presenting some characteristic ge-
netic features, such as gene frequencies that are inter-
mediate between those of the parental populations (Cav-
alli-Sforza and Bodmer 1971), as well as linkage dis-
equilibrium between independent loci (Nei and Li
1973). The problem of estimating the relative genetic
contribution of the parental population to the admixed
populations has been discussed repeatedly in the litera-
ture for more than 60 years (since Bernstein 1931). Even
so, the term ‘‘admixture’’ can refer to quite distinct evo-
lutionary processes. For some people, it specifically re-
fers to the process described above, whereas for some
others it refers to a special case of gene flow between
populations.

Although most of the methodological develop-
ments concerning admixed populations have arisen in
the human context, admixture is also very frequent in
other species, involving not only different populations
but also different interfertile groups or subspecies. The
analysis of the composition of hybrid populations using
observed genetic data has been the subject of many stud-
ies, and several estimators of the relative contributions
of the source populations to the admixed population (the
admixture coefficients) have been proposed (see Chak-
raborty 1986 for a review). All of these estimators are
based on the comparison of allele or phenotype fre-
quencies between the source population and the ad-
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mixed populations. They rely on the simple fact that
allele frequencies observed in the admixed population
should be linear combinations of allele frequencies in
the source populations, assuming that the effect of ran-
dom drift occurring after the admixture event is negli-
gible.

With the advent of molecular techniques, poten-
tially more refined information has been made avail-
able to those interested in disentangling the respective
contributions of founder populations to a given gene
pool. However, even though they deal with molecular
information, recent admixture studies (e.g., Hammer
and Horai 1995; Horai et al. 1996) or mixed-popula-
tion stocks studies (Xu, Kobak, and Smouse 1994)
have used estimators of population contributions
based only on allele frequencies. It appears important,
therefore, to develop estimators of admixture that use
molecular information explicitly because the number
of evolutionary steps separating different alleles can
also be meaningful. For instance, a hybrid population
might be considered very close to one potential source
population on the basis of its gene frequencies, but if
the hybrid and a different source population share
some very divergent alleles, the first conclusion would
probably be altered.

We propose here two new estimators of admix-
ture coefficients based on the mean coalescent time of
genes drawn either within or between admixed and
parental populations. Our estimators can be applied to
any type of molecular data for which the amount of
molecular diversity is related to those coalescent
times, including DNA sequences, restriction fragment
length polymorphisms (RFLPs), or microsatellite data.
The behavior of our estimators is evaluated and com-
pared with that of two conventional estimators (Rob-
erts and Hiorns 1965; Chakraborty et al. 1992) by the
use of Monte Carlo simulation studies. Finally, we
apply our methodology to the case of hybrid wolf and
coyote populations tested for 10 microsatellite loci
(Roy et al. 1994).
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Inferring Admixture from Molecular Data 1299

FIG. 1.—Demographic model of admixture used throughout this
study. See text for description.

Materials and Methods
Derivation of the Estimators

Here, we introduce two estimators of the admixture
coefficient based on the average coalescence times be-
tween pairs of genes sampled within and between pop-
ulations. We consider the simple model of admixture
shown in figure 1. An ancestral haploid population P0
of size N splits into two parental populations P and91
P , which evolve independently for t generations. At92
that point, a hybrid population P is instantaneously cre-9h
ated by combining Nm genes taken at random from P91
and N (1 2 m) genes taken at random from P . From92
then, and for tA generations until the present time, the
three populations are kept separate and do not exchange
genes. During the whole process, all populations are as-
sumed to have the same constant size, N. The parameter
m is thus the genetic contribution of population P to91
the hybrid. This is the parameter we will try to estimate
from samples of genes taken from three populations: P1,
P2, and Ph.

The first estimator, mX, is derived from the expected
coalescence time between two genes sampled in the hy-
brid population Ph. Replacing the parameters with their
estimations in equation (A4), derived in the Appendix,
the estimator takes the form of

1 1 a
m 5 6 1 2 2 , (1)X !2 2 b

where a 5 h 2 0, and b 5 (2t̂A/ 0). Here, 0 isˆ ˆ ˆ ˆt t t̂ exp t t¯ ¯ ¯ ¯
an estimator of the mean coalescence time between two
genes drawn from the same parental population, simply
obtained as 0 5 ( 11 1 22)/2. An estimator of t can beˆ ˆ ˆt t t¯ ¯ ¯
obtained as 5 12 2 t̂A 2 0. Finally, t̂A can be roughlyˆ ˆt̂ t t¯ ¯
computed as the smallest coalescence time observed
among all pairs of genes in which one gene of the pair
is sampled from the hybrid and the other is sampled
from one of the parental populations (Takahata and Nei
1985).

Even though quite simple, the use of equation (1)
is not straightforward for several reasons. First, one can
get negative terms under the square root if a/b is larger
than 0.5, making expression (1) impossible to evaluate.
This can happen in several instances: when the diver-

gence between parental populations is recent (i.e., t is
small), when the admixture event is old (i.e., tA is large),
and when the contribution of each of the two parental
populations is almost equal (when the true m value is
close to 0.5). Second, when the term under the square
root is strictly positive, some external information, such
as the genetic distance between the hybrid and parental
populations, is needed to choose the correct solution for
mX. For example, if the hybrid population is genetically
closer to population 1 than to population 2, one should
take the larger of the two solutions as the correct solu-
tion.

A second estimator of m, mY, can be inferred by
considering the coalescent times of genes drawn from
the admixed populations and from the parental popula-
tions P1 and P2 (see Appendix). The estimator mY can be
derived from equation (A8) by replacing the parameters
with their estimators, as follows:

2ˆ ˆ ˆ ˆ ˆct 2 dt 1 d 1 t (t 2 t 1 e)¯ ¯ ¯ ¯ ¯h1 h2 12 h2 h1m 5 , (2)Y 2 2 ˆc 1 d 1 2et̄12

where c 5 t̂A 1 11, d 5 t̂A 1 22, and e 5 12 2 (c 1ˆ ˆ ˆt t t¯ ¯ ¯
d).

Admixture Proportions from Molecular Data

When dealing with molecular data, the coalescence
times between two genes are not directly available, and
mean coalescence times, t̄’s, must be estimated from the
genetic variability. Here, we consider two possible es-
timates based on two mutation models: the infinite-site
model for DNA sequences and the single-step stepwise
model for microsatellite loci.

For DNA sequences (or RFLPs), assuming that
each new mutation occurs at a previously monomorphic
site (the infinite-site model), mean coalescence times
can be estimated from the mean number of pairwise
differences, p, as 5 p/2u, where u is the global mu-t̄̂
tation rate. It follows that all the coalescence times used
to compute mX and mY can simply be replaced by their
corresponding p’s because the mutation rate cancels out,
as it appears in both numerators and denominators in
equations (1) and (2). For instance, the estimator mY now
takes the form

2cp̂ 2 dp̂ 1 d 1 p̂ (p̂ 2 p̂ 1 e)h1 h2 12 h2 h1m 5 . (3)Y 2 2c 1 d 1 2ep̂12

where c 5 t̂ 1 11, d 5 t̂ 1 22, e 5 12 2 (c 1 d),9 9p̂ p̂ p̂A A

and 11, 22, 12, h1, h2, are the mean number of pair-p̂ p̂ p̂ p̂ p̂
wise differences within P1, within P2, between P1 and
P2, between the admixed population and P1, and be-
tween the admixed population and P2, respectively.
Here, t̂ (which is now the age of the admixture event9

A

expressed in units of 1/(2u) generations) can be esti-
mated, in practice, by the minimum number of pairwise
differences observed between a gene drawn from the
admixed population and a gene drawn from a parental
population. It will thus have a value of zero if at least
one sequence is found both in the admixed population
and in the parental population. This situation can occur
often if the admixture event is recent, implying that this
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1300 Bertorelle and Excoffier

FIG. 2.—Results of the simulation study when the admixture coefficient (m) is estimated directly from the coalescence times. Each graph
reports the average of the coefficients computed from 1,000 iterations (central lines with markers), and the average 61 SD within the range [0;
1] (external lines), as a function of the divergence time between parental populations (t). Solid line: mY. Dashed line: mX. tA 5 age of the
admixture event; n 5 sample size. (a) m 5 0.2. (b) m 5 0.5.

estimator of t̂ is certainly biased downward. Of course,9A
external information (e.g., historical data) can also be
used to estimate t̂ if the mutation rate is known.9A

When the molecular information comes from mi-
crosatellite loci, and the single-step stepwise model of
mutation is assumed, the mean coalescent times can be
estimated from the mutation rate and average squared
difference in allele size, S̄, as 5 S̄/2u (Slatkin 1995).t̄̂

The single-step stepwise mutation model, under which
each mutation can increase or decrease the allele size
by a single repeat, has been widely used as an approx-
imation of the process underlying the genetic diversity
at microsatellite loci (e.g., Goldstein et al. 1995; Slatkin
1995; Zhivotovsky and Feldman 1995). The expression
for mY based on microsatellite variability therefore be-
comes:
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FIG. 2 (Continued)

2ˆ ˆ ˆ ˆ ˆcS̄ 2 dS̄ 1 d 1 S̄ (S̄ 2 S̄ 1 e)h1 h2 12 h2 h1m 5 , (4)Y 2 2 ˆc 1 d 1 2eS̄12

where c 5 t̂ 1 11, d 5 t̂ 1 22, e 5 12 2 (c 1 d),ˆ ˆ ˆ9 S̄ 9 S̄ S̄A A

and 11, 22, 12, h1, h2, are the average squared differ-ˆ ˆ ˆ ˆ ˆS̄ S̄ S̄ S̄ S̄
ence in allele size within P1, within P2, between P1 and
P2, between the admixed population and P1, and between
the admixed population and P2, respectively. In this case,
t̂ can be replaced by the minimum number of squared9A
difference in allele size observed between a gene drawn
from the admixed population and a gene from a parental
population.

Multilocus Data
If data at more than one locus are available, a mul-

tilocus estimator of the admixture components can be
constructed. As is advocated for computing means of
ratios (see, e.g., Rice 1995, p. 206) and as has been done
for other estimators of ratios, such as multilocus esti-
mates of FST (e.g., Reynolds, Weir, and Cockerham
1983; Michalakis and Excoffier 1996), we propose to
estimate the coalescence times separately for each locus
and to use their average values in equations (1) and (2)
to compute multilocus weighted averages m̄X and m̄Y,
instead of computing an average of mX and mY values
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1302 Bertorelle and Excoffier

over all loci. This approach is possible only when all
loci have approximately the same mutation rate. Oth-
erwise, the admixture coefficients should be computed
separately for classes of loci with similar mutation rates,
and a final estimate can be obtained from the average
over classes, weighted by the number of loci involved
in each class.

Monte Carlo Simulations

The statistical behavior of mX and mY has been an-
alyzed by simulation. Following a coalescent approach
(Hudson 1990) and assuming the population model in
figure 1, the genealogies of three samples of n genes
(one sample from each of the populations P1, P2, and
Ph) were reconstructed until the most recent common
ancestor of all 3n genes. Poisson-distributed mutations
were then introduced in the tree, assuming either the
infinite-site model (ISM), for the simulation of DNA
sequences, or the stepwise-mutation model (SMM), for
the simulation of microsatellite data. Finally, the esti-
mators mX and mY were computed from equations (1)
and (2), either directly with the mean coalescence times
from the simulated genealogies or after replacement (as
explained above) with the mean number of pairwise dif-
ferences for the DNA sequences or with the mean square
difference between number or repeats for microsatellite
data.

We generated 1,000 random trees for each set of
parameters to get an empirical distribution of our esti-
mators, from which the means and the standard devia-
tions of mX and mY were computed. In some cases, it
was necessary to generate more trees to end up with
1,000 values of mX, because, as discussed above, there
are cases where mX cannot be computed. The multilocus
estimators were computed for different numbers of loci
(L). In this case, 1,000 3 L independent genealogies
were generated for each set of parameters, thus assum-
ing free recombination between loci.

Extensive simulations were performed to study the
relative behavior of mX and mY under different combi-
nations of n, m, t and tA when the mean coalescence
times obtained from these simulated data were used di-
rectly to get the different estimators of the admixture
coefficients. The molecular estimator with the most de-
sirable statistical properties (which turned out to be mY)
was then analyzed with the mean coalescence times es-
timated from the number of nucleotide differences or
from the squared microsatellite allele size differences.
Different values of the mutation parameter u 5 2Nu
were considered, and the influence of the number of
sampled loci was also analyzed. In these cases, we also
compared the behavior of the molecular estimator mY

with the behavior of two admixture coefficient estima-
tors based on the frequencies of alleles present in pop-
ulations P1, P2, and Ph. The first frequency-based esti-
mator has been proposed by Roberts and Hiorns (1965)
and will be designated mR. It is a least-squares estimator.
The second conventional estimator has been proposed
by Chakraborty et al. (1992) as a closed-form expression
of the maximum-likelihood estimator derived by Long
(1991). It will be designated mC.

Results
Results of the Simulation Study

Estimations based on Coalescence Times

The expected values of mX and mY estimated from
a single locus, together with their standard deviations,
are reported in figure 2a for m 5 0.2 and for different
combinations of t, tA (both in N generations) and sample
size n. In general, the standard deviations are very large
unless the parental populations have differentiated for
about N generations, and they are always larger for mX

than for mY. The effect of sample size on the estimators
seems less important than the effect of t and seems
mostly appreciable when tA 5 0. On the other hand, if
admixture is not recent (tA . 0), the variance of the
estimators remains large even when the parental popu-
lations have been separated for a long time.

In figure 2a, there is a bias towards 0.5 for mY for
very small values of t, but this bias is almost negligible
for t . 0.1. The cause of this bias can be easily under-
stood: for very small values of t, the genetic constitution
of the parental populations is almost identical, and thus,
irrespective of their true contribution to the hybrid, the
estimated admixture coefficient will tend to values close
to 0.5. The absence of such a bias when m 5 0.5 in
figure 2b seems to confirm this view.

The behavior of the estimator mX is not as good as
that of mY, as mX appears biased for most of the range
of t, tA, and n, when m 5 0.2 (fig. 2a), and has a larger
associated variance. The systematic bias observed for
small parental divergence times seems related to the
noninclusion of the cases leading to negative arguments
under the square root of equation (1). The bias of mX

becomes small only for very large values of t (t . 2N
generations), making it practically unsuitable for the
analysis of admixture between recently diverged popu-
lations. The estimator mY, however, performs consis-
tently better than mX, almost always having smaller vari-
ance and a low level of bias, even when parental pop-
ulations have diverged for only 0.1N generations.

When more loci are used to estimate the admixture
proportions, the standard deviations of both estimators
decrease rapidly (fig. 3, left). The estimator mY still per-
forms better than mX for increasing values of L, with
less bias and a smaller associated variance. We can see,
for instance, that 10 loci seem sufficient to reduce the
standard deviation of the estimator mY by one order of
magnitude. In that case, the standard deviation evaluated
for t 5 0.2 becomes approximately as small as that of
a single locus when t 5 1 (see fig. 2a). Again, the es-
timator mY is nearly unbiased when more than five loci
are considered, whereas mX seems biased irrespective of
the number of loci considered, passing from an under-
estimation of m toward a slight overestimation with in-
creasing values of L.

On the right side of figure 3, we report the expected
values and standard deviations of the estimators ob-
tained after an a posteriori selection of loci. We wanted
to study the effect of selecting loci, whether those clear-
ly indicating that parental populations are differentiated
or those for which the hybrid sample presents a genetic
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Inferring Admixture from Molecular Data 1303

FIG. 3.—Results of the simulations for m 5 0.2, t 5 0.2, tA 5 0, and n 5 20, as a function of different number of loci (L). On the left,
there is no selection of loci for the analyses. On the right, loci are incorporated into the analysis only if they meet some criterion defined in the
text. Solid line: mY. Dashed line: mX. m 5 average over 1,000 iterations; s.d.m 5 standard deviation of 1,000 iterations. The admixture coefficient
is estimated directly from the coalescence times.

constitution intermediate between those of the parental
populations, on the potential usefulness of those loci in
admixture studies. Therefore, we computed multilocus
estimators by including only the loci for which the av-
erage coalescence time between two genes sampled in
different parental populations was equal to or larger than
any other average coalescence time (i.e., t̄12 $ t̄11, t̄22,
t̄h, t̄h1, t̄h2). Our results, reported in figure 3, right, show
that this kind of selection does not provide better esti-
mators but rather introduces a systematic bias for both
mX and mY. Note, however, that when only one locus is
considered for selection, this selection has a positive ef-
fect by greatly reducing the variance of the estimator.
When more than two loci are considered for selection,
the bias remains but the variance increases as compared
with the case of an absence of selection of the markers.
The effect of the locus selection on mX is even worse,
as the amount of bias seems here to increase with L.

Estimations Based on the Number of Nucleotide
Differences

The comparison between mY, computed from the
average number of nucleotide differences shown in
equation (3), and two frequency-based estimators, mR

and mC, is reported in figure 4 for m 5 0.2, tA 5 0, and
n 5 50, with t 5 0.2 or t 5 2. If parental populations
have recently diverged (t 5 0.2), frequency-based es-

timators clearly have a smaller mean square error (MSE;
MSE 5 Variance 1 bias2) than mY. However, the max-
imum-likelihood estimator mC clearly increasingly over-
estimates m with larger values of u. This is probably
because of the increase in the number of different alleles
and because of the fact that the alleles absent in the
hybrid populations are not considered by this estimator.
When parental populations are more differentiated (t 5
2), the molecular estimator mY has a smaller MSE than
the others when u . 5. It is virtually unbiased for all
possible mutation rates, which is clearly not the case for
conventional estimators, and particularly for mC, which
is increasingly biased with u.

In general, the stochastic errors introduced by the
mutation process do increase the variance of mY, as com-
pared with the case where we estimated mY directly from
the coalescence times, but this increase becomes almost
negligible for large values of u. For example, when t 5
0.2 and u 5 25, or when t 5 2 and u . 5, the standard
deviations of mY are almost identical to those estimated,
assuming that the coalescence times were directly avail-
able.

Estimations Based on the Number of Repeat
Differences

In figure 5, we show the results of estimating ad-
mixture coefficients from microsatellite-like single locus
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1304 Bertorelle and Excoffier

FIG. 4.—Results of the simulations for m 5 0.2, tA 5 0, n 5 50, t 5 0.2 (left) or t 5 2 (right), and for different values of the mutation
parameter u 5 2Nu (N is the population size, and u is the global mutation rate). Here, the admixture coefficient is estimated from the average
pairwise differences between 400-bp sequences. m 5 average over 1,000 iterations; MSE 5 mean square error of 1,000 iterations; (solid circle
intersected by solid line) 5 mY; (open triangle intersected by dashed line) 5 mR; (open diamond intersected by dashed and dotted line) 5 mC.

data, using our molecular estimator mY, and two con-
ventional estimators based only on allele frequencies.
While having less bias than conventional estimators, the
variance of mY is much larger than that of conventional
estimators, contributing to the large MSE of mY over the
whole range of parameters simulated here. Thus, in con-
trast with DNA data, and even though they appear to be
biased, the conventional estimators here seem superior
to ours when applied to a single locus, even in cases of
large differentiation time between parental populations
and high mutation rates at microsatellite loci. Note that
the bias of mR and mC increases with the mutation rate,
reflecting further departure from the assumption of al-
lelic identity-by-descent on which these estimators are
based. In contrast, the amount of bias of mY seems in-
dependent of the mutation rate and seems much less
than that for the conventional estimators. These results
suggest that for loci with very high mutation rates, our
estimator may begin to perform quite well because of
the high bias of conventional estimators. Finally, it
should be noted that when the admixture coefficient m
is set to 0.8, mR and mC underestimate m (results not
shown). In other words, frequency-based estimators
seem biased towards the central value of 0.5.

When several loci are used simultaneously to es-
timate the admixture coefficient from microsatellite-like
data (fig. 6), the molecular estimator mY becomes essen-
tially unbiased and its variance approaches that of con-

ventional estimators, whereas mR and mC remain biased
upward. It can be seen that the MSE of mY eventually
becomes smaller than that of either mR or mC with in-
creasing number of loci surveyed. For short divergence
times between parental populations (t , 0.2), 50 loci
need to be surveyed for our estimator to perform better
than conventional ones, whereas only 5 to 10 loci are
required when t . 2. Conventional estimators appear
very sensitive to changes in sample size, as they show
large bias with small samples. This is especially true for
the maximum-likelihood estimator mC, whose bias de-
creases remarkably when the sample size increases from
20 to 50.

Application to North American Wolflike Canids

We have applied the estimator mY to a study of
North American wolflike Canids analyzed for microsat-
ellite loci by Roy et al. (1994). In this paper, 10 loci
were typed in seven populations of gray wolf, six pop-
ulations of coyote, and one captive population of red
wolf. Hybridization between gray wolf and coyote
seemed to have occurred in two gray wolf populations
and in two coyote populations, and past hybridization
between these two species has been proposed to account
for the origin of the red wolf (Roy et al. 1994).

Here we have pooled the samples of nonhybridized
gray wolf populations and the samples of nonhybridized
coyote populations to act as the parental population sam-
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Inferring Admixture from Molecular Data 1305

FIG. 5.—Results of the simulations for m 5 0.2, tA 5 0, n 5 50, t 5 0.2 (left) or t 5 2 (right), and for different values of the mutation
parameter u 5 2Nu (N is the population size, and u is the global mutation rate). Here, the admixture coefficient is estimated from the average
squared difference in allele size at a microsatellite-like locus following a single-step stepwise mutation model. m 5 average over 1,000 iterations;
MSE 5 mean square error of 1,000 iterations; (solid circle intersected by solid line) 5 mY; (open triangle intersected by dashed line) 5 mR;
(open diamond intersected by dashed and dotted line) 5 mC.

ples (P1 and P2 in the model of fig. 1). The genetic
contribution of the gray wolf was then estimated in three
hybrid samples: the hybridized gray wolf sample, the
hybridized coyote sample, and the red wolf sample. The
hybridized gray wolf and coyote samples were obtained
by pooling the data of the corresponding original sam-
ples.

The sampling error of mY was estimated by boot-
strap technique (Efron 1982): for each parental and hy-
brid sample and independently for each locus, 1,000 ran-
dom samples of size identical to the original were gen-
erated by drawing, with replacement, the chromosomes
from the original samples. The estimators mY, mR, and
mC were then computed in each random sample and
used to get their bootstrap average and standard devia-
tion.

The results presented in table 1 show that the es-
timated contribution of the gray wolf to the hybridized
gray wolf populations and to the hybridized coyote pop-
ulations are approximately 50% and 10%–15%, respec-
tively. The average bootstrap values of the three esti-
mators are similar, with standard deviations between
0.05 and 0.14.

Interestingly, the inferred genetic contribution of
the gray wolf to the red wolf gene pool was estimated
to lie between 17% and 33% by frequency-based esti-

mators, but we obtained a negative contribution (233%)
using the molecular estimator mY. This result could be
the simple consequence of the large variance associated
with the estimator, based on the average squared differ-
ence in allele size. However, our simulation results sug-
gest that if the divergence time between parental pop-
ulations is longer than 0.2N generations (which is prob-
ably the case; see, e.g., Lehman et al. 1991), then a
negative admixture coefficient equal to or smaller than
20.33 is very unlikely (P , 0.05) to result from data
on 10 microsatellite loci. In other words, the present
microsatellite data do not seem compatible with the hy-
pothesis that red wolves originated through hybridiza-
tion between the gray wolf and the coyote during the
past 300 years, as previously advocated (Roy et al.
1994). Alternatively, the admixture and/or the mutation
models on which our methodology is based might not
reflect the true processes that affected the genetic vari-
ability of wolflike Canids.

In order to see if negative admixture coefficients
could be obtained for mY under alternative evolutionary
models, we have simulated the evolution of gray wolf,
red wolf, and coyote populations under three competing
historical demographic scenarios, as described in figure
7. The results of the simulations of these three models
are reported in table 2. Negative admixture coefficients
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1306 Bertorelle and Excoffier

FIG. 6.—Results of the simulations for m 5 0.2, for tA 5 0, n 5 20 or n 5 50, and t 5 0.2 (left) or t 5 2 (right), as a function of the
number of microsatellite loci surveyed. For each locus, the mutation rate u was set to 10. m 5 average over 1,000 iterations; MSE 5 mean
square error of 1,000 iterations; (solid circle intersected by solid line) 5 mY; (open triangle intersected by dashed line) 5 mR; (open diamond
intersected by dashed and dotted line) 5 mC.

are never observed in a pure admixture model (model
a, fig. 7). They are seen at low frequencies for our mo-
lecular estimator mY in a model where an independent
red wolf population would have incorporated gray wolf
and coyote genes in the recent past (model c, fig. 7).
Interestingly, negative estimates become quite common
in a scenario where the red wolf and the coyote popu-
lations are sister species that diverged only recently

(model b, fig. 7). In that case, 31.7% of the simulations
led to negative mY estimates, whereas negative mC and
mR estimates were only observed in less than 3% of the
cases. The results for the red wolf, shown in table 1
(regarded as a hybrid between the gray wolf and the
coyote), are thus quite compatible with model b. This
does not necessarily mean that model b is true for wolf-
like Canids nor that model b is the most likely one.
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Table 1
Contribution of the Grey Wolf Population to Different
Hybrid Populations

Case Estimator

Estimated
admixture
coefficient

Bootstrap
averagea

Bootstrap
standard
deviation

Gray wolf hybrid . . . . mY

mR

mC

0.468
0.481
0.641

0.478
0.486
0.507

0.120
0.051
0.130

Coyote hybrid . . . . . . mY

mR

mC

0.157
0.091
0.112

0.147
0.107
0.137

0.137
0.048
0.089

Red wolf hybrid . . . . mY

mR

mC

20.343
0.170
0.331

20.333
0.187
0.258

0.172
0.050
0.190

a Gray wolf contribution to the admixed hybrid population, computed as an
average over 1,000 random bootstrap samples.

FIG. 7.—Simple alternative historic demographic scenarios con-
sidered for the origin of the red wolf. (a) The red wolf species as a
hybrid of the gray wolf and the coyote. Both parental populations have
contributed equally to the red wolf population. (b) The red wolf as a
sister species to the coyote. The separation of the gray wolf lineage is
10 times older than the separation of the red wolf lineage. (c) The gray
wolf, the red wolf, and the coyote diverged simultaneously from a
common stock t generations ago. t/10 generations ago, the red wolf
population received 30% of its current genes from both gray wolf and
coyote populations.

However, it shows that a plausible departure from a pure
admixture model can generate values for the three es-
timators close to our observation. There is thus no need
to assume a flaw in our estimator mY. On the contrary,
it appears interesting that this estimator is more sensitive
to departures from the pure admixture model than are
estimators based on allele frequencies. This suggests
that negative estimates of mY obtained from several in-
dependent loci are indicative of evolutionary processes
other than a simple admixture event.

Discussion

In this paper, we have shown how molecular data
can be simply used to efficiently estimate admixture pro-
portions. Two new estimators have been introduced that
explicitly consider not only the frequencies of different
alleles, but also their level of divergence. While the mo-
lecular estimators presented here have been derived for
haploid populations of size N, they can be used as well
in diploid populations of the same size, with N being
replaced by the number of gene copies, 2N. The admix-
ture model we have adopted here (fig. 1) may seem im-
practical, as the admixture event is usually not instan-
taneous and can last for much more than one generation.
Although we did not study this case of long-lasting ad-
mixture, such a departure from our model should not
drastically alter our conclusions if the number of gen-
erations taken to form the hybrid population is small
compared with the divergence time between the parental
populations. While these molecular estimators have
been derived in the context of admixture analysis, we
note that our estimator mY could easily be extended to
a different demographic model involving several paren-
tal populations contributing to the hybrid, thus making
it suitable also for mixed stock analysis based on mo-
lecular markers (Ferris and Berg 1987; Xu, Kobak, and
Smouse 1994; Brown et al. 1996).

The first estimator we considered, here called mX,
is based mainly on the mean coalescence time within a
hybrid population. The second estimator, mY, depends
instead on mean coalescence times, both within the pa-
rental populations and between the parental and the hy-
brid populations. Despite its simplicity, mY seems to per-

form better than mX under most conditions. The variance
of mX is always larger than that of mY, probably because
the former estimator does not consider directly the high-
ly informative distances between hybrid and parental
populations. Moreover, mX cannot be computed for all
data sets, which is not only a serious limitation in itself
but also a possible source of bias. The use of mY instead
of mX therefore seems highly recommendable when mo-
lecular information is available; this is why we have
focused on mY when comparing our molecular estimator
to conventional ones.

One of the most important factors affecting the ef-
ficiency of mY in recovering the true admixture coeffi-
cient m is the level of divergence between the parental
populations. If the parental populations have been iso-
lated for only a few generations (say, t , 0.1), our sim-
ulations show that mY is biased toward 0.5 and has a
huge associated variance (fig. 2). In such cases, these
unfortunate properties cannot be alleviated by simply
increasing the sample size (fig. 2). Note, however, that
the bias described here should also be expected for any
other estimator. This is because an absence of differ-
entiation between the parental populations will prevent
a correct inference of their respective contribution to the
hybrid, whatever the method used to estimate this con-
tribution. While quite obvious, this bias does not seem
to have been described before for conventional estima-
tors based on allele frequencies. In addition, because the
estimator mY depends on the comparison of average co-
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Table 2
Estimated Proportions of Grey Wolf Genes in the Red Wolf Populations Obtained Under Three Possible Historical
Demographic Scenarios Accounting for the Origin of Wolflike Canids

DEMOGRAPHIC

MODELa

mY

Averageb SD

Negative
Estimates

(%)

mR

Averageb SD

Negative
Estimates

(%)

mC

Averageb SD

Negative
Estimates

(%)

a) . . . . . . . . . . . . . . .
b) . . . . . . . . . . . . . . .
c) . . . . . . . . . . . . . . .

0.500
0.052
0.490

0.033
0.129
0.222

0.0
31.7

1.6

0.502
0.184
0.501

0.029
0.101
0.110

0.0
2.8
0.0

0.501
0.437
0.500

0.038
0.136
0.122

0.0
0.1
0.0

NOTE.—In each case, the admixture coefficients were estimated from 10 independent microsatellite loci. The simulation conditions were the following: sample
size 5 50 haploid individuals per population; divergence time t 5 2.0; and mutation parameter u 5 10 per locus (single-step mutation model assumed).

a The demographic models are those reported in figure 7.
b Obtained from 1,000 simulations.

alescence within and between populations, which are
quantities known to have large variances (Tajima 1983),
the information contained in average coalescence times
is limited by the stochasticity of the genealogical pro-
cess. Therefore, the applicability of mY to single-locus
data sets seems restricted to two particular situations.
First, when parental populations have been isolated for
more than N generations (or 2N for diploids), the vari-
ance of mY becomes reasonably low, making it well
adapted for estimating introgression coefficients be-
tween subspecies. Second, in the case of a relatively
short divergence time between parental populations and
when the mutation rate is extremely high at a given
locus following the stepwise mutation model, the con-
ventional estimators become increasingly biased (fig. 5),
whereas mY remains unbiased despite a large variance,
making it more likely to be suitable than conventional
estimators. High mutation rates and quite long diver-
gence times between parental populations are the con-
ditions under which our molecular estimator should per-
form best as compared with conventional estimators,
whatever the mutation model (infinite-site, fig. 4; or
stepwise, fig. 5). Under these conditions, the mutational
process probably becomes more important and infor-
mative than genetic drift (which, supposedly, is the main
process affecting the classical estimators). In other
words, if the parental populations are different in mu-
tational terms, mY should perform better, whereas clas-
sical estimators should perform better when the parental
populations had the time to differentiate only through
genetic drift.

As observed before (e.g., Thompson 1973; Wijs-
man 1984; Chakraborty 1986; Cavalli-Sforza, Menozzi,
and Piazza 1994), the estimation of admixture propor-
tions when the hybrid population is not recent (tA . 0)
can be very problematic, and this effect also applies to
mY. Our simulations confirm that stochastic factors oc-
curring after the admixture event, such as genetic drift
and mutations, lead to biased estimations of admixture
coefficients, much more so if parental populations have
diverged recently (fig. 2). Roughly speaking, the use of
mY should be avoided if the admixture is older than
0.01N generations. It should be noted, however, that the
estimator mY, unlike most conventional estimators, in-
cludes the age of the admixture event in its computa-
tional expression. This implies that the effect of postad-

mixture stochastic factors can be explicitly accounted
for if one gets an external estimation of the age of the
admixture event.

When more independent loci are considered, both
the bias (observed for small t) and the variance of mY

rapidly decrease (fig. 3). Multilocus data therefore seem
suitable for estimating admixture proportions with mY,
and they really are necessary when the parental popu-
lations are not strongly differentiated. For example, if
the parental populations have remained isolated for only
0.2N generations and the admixture event is recent, 10
loci are enough to reduce the standard deviation of the
estimator to the level obtained in the single-locus case
for parental populations separated for N generations. In
general, however, it seems more difficult to reduce vari-
ance of the estimator by studying more loci when the
admixture event is not recent. For instance, when tA 5
0.1 and t 5 5, five loci are enough to obtain a variance
of mY similar to the single-locus case for tA 5 0.01, but
more than 50 loci are needed to approach the variance
obtained when tA 5 0 for the single-locus case (data not
shown). Interestingly, our results strongly suggest that
if one does not want to introduce a bias, all loci should
be considered when inferring admixture coefficients,
without a priori consideration of their usefulness in such
studies (fig. 3). However, we have studied here cases
where differences in the amount of observed polymor-
phism were due to the stochasticity of the coalescent
process and not due to differences in mutation rates
among loci. Although this latter case has not been ex-
plicitly studied here, it might be safer to estimate ad-
mixture coefficients separately for classes of loci with
similar mutation rates and then to compute an average
estimate weighted by the number of loci involved in
each class. The combination of information gathered
from nuclear autosomal DNA, cytoplasmic DNA, and
sex chromosomes may prove difficult, as individuals
from different sexes may not have contributed equally
to the admixed population. The comparison of estimates
obtained from maternally and paternally transmitted
genes may, however, provide interesting insights on the
admixture process.

Generally, mY is clearly less biased than frequency-
based estimators for most of the cases considered here.
In particular, when highly variable markers are used
(such as mitochondrial DNA or microsatellites), the two
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Table 3
Effect of Unequal Population Sizes on Estimators of Admixture Coefficients

mY

Average sqrt(MSE)

mR

Average sqrt(MSE)

mC

Average sqrt(MSE)

N2 5 15,000
tA 5 0.00 . . . . . . . .
tA 5 0.01 . . . . . . . .

0.201
0.203

0.035
0.121

0.217
0.232

0.049
0.194

0.249
0.331

0.085
0.288

N2 5 50,000:
tA 5 0.0 . . . . . . . . .
tA 5 0.1 . . . . . . . . .

0.194
0.198

0.087
0.201

0.268
0.271

0.091
0.235

0.243
0.237

0.082
0.334

NOTE.—The average values of the estimators were obtained after 1,000 simulations. The true admixture coefficient was set to m 5 0.2. In all cases, the
population size of the admixed population was fixed to Nh 5 10,000 haploid individuals, like that of the ancestral population (N 5 10,000). The size of the first
parental population was set to N1 5 5,000. The divergence time between parental populations was set to t 5 2.0N generations. The mutation parameter u for a
DNA sequence of 400 bp is here equal to 5, and the sample sizes are all equal to 50.

classical estimators often appear biased toward 0.5,
whereas mY is always unbiased. This result might be
explained by the fact that if the number of alleles is
high, some of them will be sampled in the hybrid pop-
ulation but not in the parental populations. They there-
fore will not be informative for estimators based on fre-
quencies only, whereas they will still be informative for
the molecular estimator mY, which takes into consider-
ation their molecular distance from other alleles.

The admixture model we considered here assumed
that the sizes of all populations were identical, which
may not hold true in practical cases. We therefore car-
ried out some additional simulations to analyze the in-
fluence of unequal population sizes on the admixture
estimators. The results, summarized in table 3, show that
the MSE of all estimators tends to increase (even if not
dramatically) with the difference between the sizes of
the parental populations. As for the equal population
size simulations, however, the molecular estimator mY

had smaller bias than the frequency-based estimators;
this was also the case when the parental population sizes
differed by an order of magnitude.

Finally, it is important to remember that any meth-
od of estimation of admixture proportions relies on the
correct identification of the hybrid and parental popu-
lations. A potential hybrid population can sometimes be
detected by its genetic heterogeneity or by its interme-
diacy between the putative parental populations, but the
parental populations are almost always defined a priori
and are assumed to be the true parental populations. Al-
though we have not specifically addressed the problem
of deciding whether a genetically intermediate popula-
tion really is an admixed population, the results of an
admixture analysis obtained on populations that have
experienced evolutionary processes other than a pure ad-
mixture model (table 2) suggest that the estimator mY is
quite sensitive to departure from the admixture model.
This property, which certainly deserves further analysis,
might prove useful in preventing biologically meaning-
less computations of the admixture proportions.
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APPENDIX

Following the population differentiation scheme
shown in figure 1, the coalescence time of two genes
drawn from the admixed population Ph can be estimated
by assuming a continuous time approximation (see, e.g.,
Hudson 1990) and by considering three distinct periods
in the coalescent process, as

t t 1tA A1 1
2t/N 2 2 2t/Nt̄ 5 e t dt 1 (m 1 (1 2 m) ) e t dth E EN Nt50 t5tA

` 1
2 2 2t/N1 (m 1 (1 2 m) ) e t dtE Nt5t 1tA

` 1
2 2 2(t2t)/N1 (1 2 m 2 (1 2 m) ) e t dt, (A1)E Nt5t 1tA

where m is the contribution of P1 to the hybrid popu-
lation. The first term of the second member of equation
(A1) considers the coalescent events that will occur
from the present time until the admixture event. The
second term considers the coalescent events during the
period when the parental populations were kept sepa-
rated. During that time, the coalescent events can occur
only between genes that comigrated in the same parental
population. Finally, the third and fourth terms consider
the coalescences occurring in the ancestral population.
These events have different probabilities depending on
whether the two genes comigrated in the same popula-
tion or not. Equation (A1) reduces to

2t /NAt̄ 5 N 1 2m(1 2 m)te , (A2)h

showing that the mean coalescence time in an admixed
population is increased by the factor 2 m(1 2 m) t e2tA/N,
as compared with t̄0 5 N, the mean coalescence time in
an isolated and stationary population of size N (King-
man 1982). Note that by a similar way of reasoning, we
can obtain the second moment of the coalescent time,
and, therefore, its variance, as
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2 2t /NAV (t) 5 N 1 2m(1 2 m)teh

2t /NA· (2t 1 t 2 2m(1 2 m)te ). (A3)A

Solving equation (A2) for m leads to
2t /N 2t /NA AÏte (te 1 2N 2 2t )¯1 h

m 5 6 . (A4)X 2t /NA2 2te

To derive another estimator of m, we consider now
the coalescent times of genes drawn from the admixed
populations and from the parental populations P1 and
P2. A gene sampled from the admixed population may
originally come from P1 or P2, with probabilities of m
and 12m, respectively. In the first case, its mean co-
alescence time with a gene from P1 is simply the mean
coalescence time between two genes drawn from P1
(t̄11), plus the time elapsed since the admixture (tA). In
the second case, its mean coalescence time with a gene
from P1 is just the mean coalescence time between a
gene drawn from P1 and a gene drawn from P2 (t̄12), a
quantity equal to t̄12 5 tA 1 t 1 t̄0, the sum of time
since admixture, divergence time, and the mean coales-
cence time between two genes drawn from the ancestral
population. Therefore, the mean coalescence time t̄h1 be-
tween a gene sampled in the hybrid population Ph and
a gene sampled in population P1 is simply

t̄ 5 m(t̄ 1 t ) 1 (1 2 m)t̄ . (A5)h1 11 A 12

Similarly, t̄h2 is simply

t̄ 5 mt̄ 1 (1 2 m)(t̄ 1 t ). (A6)h2 12 22 A

Much in the same way as has been done for allele
frequencies (Roberts and Hiorns 1965; Chakraborty
1986), a least-squares estimator of m resulting from the
combination of (A5) and (A6) can be found by mini-
mizing the MSE

2(t̄ 2 m(t̄ 1 t ) 2 (1 2 m)t̄ )h1 11 A 12

21 (t̄ 2 (1 2 m)(t̄ 1 t ) 2 mt̄ ) , (A7)h2 22 A 12

and solving for m. This leads to
2ct̄ 2 dt̄ 1 d 1 t̄ (t̄ 2 t̄ 1 e)h1 h2 12 h2 h1m 5 . (A8)Y 2 2c 1 d 1 2et̄12

where c 5 tA 1 t̄11, d 5 tA 1 t̄22, and e 5 t̄12 2 (c 1
d). We note here that by taking into account mean co-
alescence times between the hybrid and additional pop-
ulations and adding terms to equation (A7), this least-
squares estimator can be readily extended to the case
where more than two populations have contributed to
the hybrid population.
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