
Inferring Applications at the Network Layer

using Collective Traffic Statistics

Yu Jin∗, Nick Duffield†, Patrick Haffner†, Subhabrata Sen†, Zhi-Li Zhang∗

∗Computer Science Dept., University of Minnesota †AT&T Research

Abstract—Operating, managing and securing networks require
a thorough understanding of the demands placed on the network
by the endpoints it interconnects, the characteristics of the traffic
the endpoints generate, and the distribution of that traffic over
the resources of the network infrastructure. A major differen-
tiator in the types of resource required by traffic is the class of
endpoint application that generates it. Service providers deter-
mine the application mix present in traffic via measurements,
e.g., flow measurements furnished by routers. Previous work has
shown that a fairly accurate determination of application type
can be made from this data. However, protocol level information,
such as TCP/UDP ports and other parts of the transport header,
and also parts of the network header in some cases, may not
be accessible due to the use of encryption or tunneling protocols
by endpoints or gateways. Furthermore, the utility of ports as
signifiers of application type has some limitations due to abuse
and non-standard usage, amongst other reasons. These factors
reduce the classification accuracy. In this paper, we propose
a novel technique for inferring the distribution of application
classes present in the aggregated traffic flows between endpoints,
that exploits both the measured statistics of the traffic flows,
and the spatial distribution of those flows across the network.
Our method employs a two-step supervised model, where the
bootstrapping step provides initial (inaccurate) inference on the
traffic application classes, and the graph-based calibration step
adjusts the initial inference through the collective spatial traffic
distribution. In evaluations using real traffic flow measurements
from a large ISP, we show how our method can accurately classify
application types within aggregate traffic between endpoints, even
without knowledge of ports and other traffic features. While the
bootstrap estimate classifies the aggregates with 80% accuracy,
incorporating spatial distributions through calibration increases
the accuracy to 92%, i.e., roughly halving the number of errors.

I. INTRODUCTION

Today’s Internet connects hundreds of millions of endpoints

such as computer servers, desktops, laptops, smartphones, and

so forth. The management of communication networks that

interconnect these hosts requires a detailed understanding of

the traffic demands, both their spatial distribution over the

network and the manner in which they use network resources.

A major differentiator amongst the type of resources used

comes from the class of applications that generates the traffic,

for example, web access, VoIP or teleconferencing, email, on-

line gaming, multimedia downloads or streaming, and peer-to-

peer file sharing. Resource demands typically differ between

application classes, e.g., VoIP sessions are low bandwidth

but delay sensitive vs. high bandwidth downloading that is

delay-elastic. Providers need to understand the traffic mix in

order that the appropriate resource can be allocated to each

application class. Service providers also need to characterize

traffic presenting security threats (such as malware propagation

and network attacks) in order that resources can be denied.

Thus we can summarize the demand characterization problem

as being to determine the spatial disposition and mix of

resource demands across different application classes.

Service providers commonly characterize demands by

means of traffic flow measurements provided by routers. These

produce flow records, i.e., summaries of flows of packets

with common header properties (IP source and destination

addresses, TCP/UDP ports if visible, IP protocol) together

with count and total bytes of the flows packets, and timing

information. The network path taken by such traffic can be

determined either directly by correlation of multiple measure-

ments at separate locations, or indirectly by combining with

network routing state [1].

Application class is commonly attributed to flow records on

the basis of the reported TCP/UDP port numbers, sometimes

in conjunction with traffic features such as total packets, bytes,

duration, or combinations thereof. Attribution through port

numbers has several shortcomings. First, this approach would

only work for applications with well-known reserved ports [2],

such as HTTP, Email, DNS; many applications either do not

have well-known reserved ports (e.g., some chat or gaming

applications), or may select ports arbitrarily (e.g., some peer-

to-peer file sharing applications) or vary port usage in order

to hinder detection (e.g., some network attacks). Second,

even well-known ports may be mis-used or abused by other

applications (e.g., some peer-to-peer applications use TCP port

80 to circumvent firewalls). Third, we would like to be able

to attribute applications more finely that is generally possible

by ports alone. For example, we would like to be able to

separate multimedia streaming or downloads from general web

accesses, both of which are typically performed through TCP

port 80. Fourth, in some cases, UDP/TCP ports and some or all

other transport layer header information may be absent from

flow records, either because they are offset within the packet

by encapsulation protocols and thus not reported (for example

with GRE [3]), or because they are obscured by encryption

(such as by IPSec [4]). Network-level header fields may also

be absent (e.g., the IP protocol field with IPSec). Together,

these factors motivate us to develop a worst-case approach

to application identification that can function with only what

we term the basic flow features in flow records: source and

destination IP address, together with aggregate flow statistics

of number of packets, their total bytes, and flow duration.

To solve the problem of application attribution knowing only

basic flow features, we are inspired by two strands of recent

related work. First, the accuracy of port-based application

classification is increased by including precisely the basic

aggregate flow statistics as features on which to classify: a

number of recent works have use machine learning techniques

to construct flow based classifiers from training datasets of

application-labeled flows through supervised learning [5], [6],

or semi-supervised learning [7]. Second, the statistics of spatial

features of the network flows of a given application, as char-

acterized e.g., by the distribution of the number of different

endpoints exchanging traffic with a given endpoint, depend

strongly on the application class [8]. Therefore, in the case

that port information is not available, we propose to classify

application traffic based upon the both traffic features and

the spatial features of the traffic disposition. Specifically, we

propose a machine learning approach to derive a set of rules

to classify from these features.

We now set up our framework to discuss the spatial prop-

erties of application traffic. First we adapt from [8] the notion

of a traffic activity graph (TAG for short). The nodes of a

TAG correspond to network endpoints, with two endpoints

joined by an (undirected) edge if there is any traffic between

them. To each edge we wish to associate a label that encodes

the application class of the traffic. In the context of a set

of flow measurement data, the existence of a flow between

two endpoint implies the existence of an edge between the

corresponding nodes; we will also associate with each edge a

set of traffic features derived from all the flows between those

nodes. Our problem then is to derive the set of edge labels

from the TAG topology and the traffic features of the edges.

We propose a novel two-step approach to solving the edge

label inference problem. In the first bootstrapping step, we

apply a standard supervised machine learning algorithm to

classify the edges of the TAG based on solely the traffic

attributes associated with each edge, without using any struc-

tural properties of the TAG. The results of the bootstrapping

step therefore gives us an initial edge labeling of the TAG. In

the second graph-based calibration step, we then incorporate

the inherent neighborhood and local properties of the edges in

the TAG to calibrate (re-enforce or re-label) the edge labeling.

Both two steps can be formulated as classical multi-class clas-

sification problems. We break down each multi-classification

problem into a series of binary classification sub-problems.

The decomposition into multiple binary subproblems that runs

through our method has been used in [9] to make learning scale

to very large data volumes, in the sense of achieving realistic

learning times and classification throughput.

We validate the proposed approach through the application

of traffic classification using flow records gathered over a pe-

riod of a year from a large ISP. For the purpose of establishing

ground truth, the flow records are annotated with application

labels derived by an operational packet-level classification

system that utilizes application protocol level information. As

test data for classification we used the same flow records,

stripped off application labels and all information relating

to protocols above the network layer; hence all TCP/UDP

protocol information, such as port numbers, is stripped. The

evaluation result shows that our method can reduce 50% of

the errors from the best results in the bootstrapping step,

and hence increase the overall accuracy from 80% to 92%.

More importantly, the accuracy is improved for all application

classes. We also study the temporal persistence of the accuracy

enhancement over the year. Our proposed inference method

exhibits strong temporal stability. When the training time for

the collaborative prediction model and the testing time is one

month apart, we can achieve 40% reduction in the errors from

the bootstrapping step. Even when the time gap extends to 1

year, a noticeable error reduction of 23% is still observed.

The remainder of the paper is organized as follows. Sec-

tion II introduces the datasets and the notion of colored TAGs

for visualizing the spatial distribution of traffic classes in the

network. The TAG edge label inference problem is defined

formally in Section III and the related work is discussed at

the end of Section III. We then propose a two-stage model for

solving the TAG edge label inference problem in Section IV,

and evaluate the performance our method in Section V. Finally,

Section VI concludes the paper.

II. DATASETS, APPLICATION CLASSES AND Colored TAGS

In this section we first describe the network datasets, and

present the application classes and traffic statistics that will

be used for our study. We then formally introduce the new

notion of colored TAGs (traffic activity graphs). The colored

TAGs provide us a tool to visualize the spatial distribution

of applications in the network. This motivates our work of

inferring network applications using collective traffic statistics.

TABLE I
TCP/UDP BROAD APPLICATION CLASSES

ID TCP/UDP Class/Label Example Applications

1 TCP/UDP Business Middleware, VPN, etc.
2 TCP/UDP Chat Messengers, IRC, etc.
3 TCP/UDP DNS DNS application
4 TCP/UDP FileSharing P2P applications
5 TCP FTP FTP application
6 TCP/UDP Games Everquest, Xbox, etc.
7 TCP Mail SMTP and POP
8 TCP/UDP Multimedia RTSP, MS-Streaming, etc.
9 TCP/UDP NetNews News
10 TCP SecurityThreat Worms and trojans
11 TCP/UDP VoIP SIP application
12 TCP Web HTTP application

A. Datasets and Application Classes

The datasets used for our study are network flow records

from a large ISP over the time period of a year. A flow

is a sequence of packets with a common key – namely,

the standard 5-tuple of IP protocol, source and destination

IP addresses, and TCP/UDP ports – that are localized in

time. Flow measurements comprise summary statistics that

aggregate information derived from a flow’s packet headers

(including the key, aggregate packet and byte counts for the

flow, and timing information) that are exported as IP flow

records to a collector. The flow records are collected by

special purpose traffic measurement devices operating at two

geographically dispersed sites of the ISP. Due to the huge

traffic volume, sampling is employed in the creation of flow

records, with 1 out of 20 flows reported on, sampling over

the standard flow level 5-tuples. However, for each sampled

flow, the flow record aggregates header information from all its

packets, without further sampling. The datasets contain flow

records from approximately 40,000 ISP network endpoints

gathered at two sites, representing several hundred Terabytes

of network traffic. No endpoint is represented at both sites.

Serving as the ground truth for both training and testing

purposes, the flow records in the data set are annotated with

a number of broad “application class” labels, which are then

used to define edge types (or edge labels), representing the

dominant application between two endpoints. Similar to [10],

[11], the labels are generated in an automated way by the

measurement devices, using a set of packet-level rules based

on combinations of packet signatures that operate on layer-

4 packet header information, and layer-7 application protocol

signatures. The flow records do not include any application

data; neither do they report any user identity information.

Motivated by the network management tasks of the large

ISP, we define twelve (12) broad application class labels, as

shown in Table I. We note that these 12 application classes

are not defined uniquely by transport protocols and port

numbers; i.e., there is no one-to-one correspondence between

application labels and port numbers. For instance, while HTTP

and TCP port 80 are often used by the four classes, we

separate the more specific NetNews, Multimedia (as well

as some Business) applications from general Web accesses.

Furthermore, Multimedia and Business may use port

numbers other than TCP port 80.

The distribution of flows over the application classes of

Table I is highly unbalanced. The largest two classes, Web and

FileSharing, account for 60% to 80% of the total flows in

different weeks, while the smallest classes (e.g., NetNews and

SecurityThreat) contain only a few thousand flows out

of millions. In addition, a portion of the flows (29.4% of total

flows representing 19.9% of total bytes) cannot be classified

using the packet-based classifier, i.e., they do not match any

rule. This can be caused by encryption of application level

information, or the presence of new applications or security

threats for which signatures are not yet developed. We call

these flows Unknown, and exclude them from the datasets

used in our study, for lack of ground truth.

Using the application class labels of the flows, we now

examine how many pairs of endpoints generate only one type

of application traffic, i.e., whether all flows between them fall

within a single application class. We vary the time windows

for constructing the TAG from 1 hour to 1 day. We observe

that in all cases, even when extending the time window to

an entire day, for a predominant majority (nearly 99.5% or

more) of the edges, all flows between the two endpoints of

an edge fall within a single application class. Thus the edge

can be assigned a single label. Further analysis shows that

even among the remaining edges with flows belonging to

multiple classes, one class dominates, and thus the edge can

TABLE II
FLOW-LEVEL FEATURES

Name Type Name Type

duration numeric (*) packet numeric
mean packet size (mps) numeric (*) byte numeric
mean packet rate (mpr) numeric (*) tos numeric
toscount numeric numtosbytes numeric
tcpflags text srcinnet {0,1}
dstinnet {0,1}

be labeled by the dominant application class. Therefore in the

remainder of this paper we will often use the term “application

class/label” and “edge type/label” interchangeably, choosing

the term that best suits the context. We note that although in

terms of the number of flows in the corresponding dataset,

the FileSharing and Web flows are of roughly similar

proportions, there are far more FileSharing edges (75%)

than Web (20%) edges. This in fact is not surprising, as a) there

are far more client endpoints than server endpoints; and b) a

FileSharing flow typically involve two client endpoints,

while a Web flow typically involves a client and a server.

Finally, as part of the edge color inference problem, we

augment each edge with an attribute set. The attribute set

used is a set of flow-level traffic statistics derived from flows

between the two endpoints of an edge. These attributes are

listed in Table II1. Duration, packet and byte represent the

length of the flow, number of packets and bytes in the flow,

respectively. Mean packet size is the average bytes per packet,

and mean packet rate is the average packet interarrival time

in seconds. The tcpflag feature contains all possible TCP flags

in the packets. The TOS (type of service) related features tos,

toscount and numtosbytes are the predominant TOS byte, the

number of packets that were marked with tos, and the number

of different tos bytes seen in a flow, respectively. The last

two features srcinnet/dstinnet equals 1 if the source/destination

address belongs to the ISP network, and 0 otherwise.

B. Colored TAGs: Definition and Properties

Given the datasets, we now introduce the notion of col-

ored traffic activity graph (or colored TAG in short) which

embodies both the spatial disposition of traffic as well as the

applications used. As in [8], a TAG (traffic activity graph) is

a bi-partite graph defined using the flows (with known class

labels) from a specific time window T (e.g., 1 hour or 1

day), and describes endpoint pairs represented in the flows.

Formally, let H = IH ∪ OH denote the set of observed

endpoints, where IH is the set of all endpoints (hosts) internal

to the ISP network, and OH is the set of endpoints (hosts)

external to the ISP that exchange traffic with those in IH.

We first construct the (uncolored) TAG, G = (H, E), as

follows: we include an edge eij in the edge set E if and

only if we observe at least one flow between an internal

and external endpoints pair, hi ∈ IH and hj ∈ OH. (For

topological reasons the dataset does not include any flows

exchange between pairs of internal nodes). We then define

1The features marked (*) are not reported directly in the flow record, but
computed from quantities thereof.

(a) all applications (b) FileSharing removed (c) FileSharing and Web removed
Fig. 1. TAGs containing 2000 edges, where different applications are represented with different colors.

the colored TAG by coloring each edge of the TAG using the

(dominant) application class label of the flows between the

two endpoints of the edge. Formally, for each edge eij ∈ E ,

we define L(eij) as the (dominant) application class label

associated with the edge.

As an example, Fig. 1[a] displays a (small) TAG constructed

using the first 2000 edges starting at 10AM on 05/03/2008.

The dominance of FileSharing edges obscures most Web

and other edges in Fig. 1[a]. In Fig. 1[b], we illustrate the

resulting colored TAG after removing FileSharing traffic.

We now see that the Web edges now dominate. In Fig. 1[c],

we remove both the FileSharing and Web traffic (the two

dominant application classes) to better visualize the spatial

distribution of traffic for less used application classes.

This small example helps illustrate several salient local

properties of a colored TAG, which motivates the TAG edge

label inference problem addressed in this paper. We see that

the edge labels tend to be clustered together – where edges

incident on some nodes are all of the same color – and

hence regions of the TAG seem to have the same color. This

seems to suggest that certain groups of hosts tend to generate

application traffic in a similar way (e.g., exchanging traffic

with the same set of web servers), thereby showing up with

the same color on the TAG. On the other hand, local graph

structures do not appear to be indicative of the color of the

edge clusters. For instance, many edge clusters have a similar

“star-like” structure, but with different colors. We also see

many edges of different colors incident on the same nodes.

These observations indicate that the spatial distribution of

application classes can provide useful information for inferring

the edge labels. However, to utilize such information is a non-

trivial task. In the next section, we formally define the edge

label inference problem and present our solution in Section IV.

III. INFERRING TAG EDGE LABEL

In this section we provide a mathematical formulation

of the application inference problem, given an augmented

(and initially unlabeled) TAG, with a set of traffic statistics

attributes associated with each edge.

A. Mathematical Formulation

Let G := {H, E} denote a particular TAG constructed over

a specific time period T , where H denote the set of all hosts in

the network and each edge eij ∈ E represents the aggregation

of all traffic between the endpoints hi and hj . In our edge

label inference problem, we assume that each edge eij ∈ E
belongs to one of K pre-defined application classes, Ck , 1 ≤
k ≤ K (with K = 12). However, what class eij belongs to

is unknown and to be determined. Let L : E → {Ck, 1 ≤
k ≤ K} denote the edge class mapping, L(eij) = Ck for

some k. Our problem is to infer this edge class mapping L,

given the unlabeled G and the collection of the edge attribute

sets, {xij : eij ∈ E}. To solve this problem, we assume a

supervised machine learning environment, where we are given

a training dataset, i.e., a labeled G (constructed from the traffic

within a certain time period) where the class of each edge is

given. The inference problem becomes the following learning

problem: can one learn a function f which returns an estimate

of the edge class mapping each edge eij (Eq. 1)?

L̃(eij) = f (xij , L(ei·), L(e
·j)) , (1)

where the traffic features xij contain the traffic statistics

for edge eij ; ei·, e·j ⊂ E represent the edges incident on

hi and those incident on hj , respectively; the neighborhood

features L(ei·) and L(e
·j) are obtained through aggregation

of the corresponding edge classes.

Eq.(1) indicates that the edge label inference problem de-

pends not only on the traffic statistics on each edge eij , but

also on the collective distribution of all traffic exchanged with

the two endpoints hi and hj , as reflected by the edge labels

within a neighborhood of these two endpoints on G. Without

the knowledge of G, the problem reduces to a classic multi-

class classification problem, where one learns f that returns an

estimate of the edge label based purely on the traffic statistics

attributes, i.e., L̃(eij) = f(xij). The main question we are

interested in exploring in this paper is whether–and how–the

spatial disposition of traffic embodied by the TAG can be

exploited in inferring the dominant application classes between

two endpoints. Before we introduce the proposed two-step

method in Section IV, we first discuss the related work.

B. Related Work

The problem of network traffic classification has been

widely studied. Most solutions fall into one of the two general

approaches (or a combination thereof): the signature-based

approach using deep packet inspection, or statistical/machine-

learning based approach that utilizes only traffic statistics de-

rived from packet/flow-level header fields and timing informa-

tion [5]–[7], [12]. All these solutions focus almost exclusively

on classification of packet- or flow-level traffic. At the other

end of the spectrum, several recent studies [11], [13]–[15] have

examined the problems of endpoint traffic characterization

from on network traffic data as well as other information.

Of particular interest is the multi-level traffic classification

scheme (called BLINC) proposed in [11]. Nonetheless, the

goal of BLINC is primarily on characterizing the traffic of

endpoints. To the best of our knowledge, our work is the first

to advocate the analysis of “edge relations” between endpoints,

and show it can be applied to the traffic classification problem.

In terms of analyzing spatial patterns from network traffic

data, [16] uses host-level “communities-of-interest” (COIs) as

reference profiles for detecting propagation of malware. The

notion of traffic activity graphs (TAGs) come from the two

recent studies [8], [17] which investigate the properties of

various application-specific TAGs. In particular, [8] proposes a

novel nonnegative matrix tri-factorization (tNMF) method for

decomposing spatial interaction patterns, and illustrates how

these interaction patterns discerned from application-specific

TAGs can be interpreted. Inspired by the findings in [8], in this

paper we study generic TAGs with mixed application classes,

introduce the notion of colored TAGs, and formulate the TAG

edge label inference problem and solve it effectively with the

proposed two-step model.

In the machine learning domain, the TAG edge label in-

ference problem has been recently studied under the term

collective classification, with techniques ranging from iterative

classification to Gibbs sampling (see [18] for an overview).

In particular, iterative classification consists of applying Eq.1

several times, using the previously computed L̃(eij) as an

approximate input. Compared to iterative classification, our

proposed two-step method is significantly simpler and works

very well for our problem, as we shall see in Section V.

IV. METHODOLOGY

In this section, we propose a novel two-step approach which

employs the state-of-the-art machine learning algorithms for

solving the edge label inference problem using both traffic

attributes and neighborhood information in TAGs2.

A. Two-step Model

Recall that for the edge label inference problem, our

purpose is to find the edge label mapping: L̃(eij) =
f(xij , L(ei·), L(e

·j)), where xij is the vector of traffic at-

tributes associated with edge eij , and L(ei·) and L(e
·j) are

the labels for the edges connected to both endpoints hi and

hj of edge eij , respectively.

Direct learning of L̃(eij) is difficult since it requires the

knowledge of all the labels of the neighborhood edges, which

2We note that the model defined in this section is corresponding to the
situation where only one label is associated with each edge. However, the
proposed model can be easily extended for inference on multi-labeled edges.

are obtainable only when the model L̃(eij) is known. In

this paper, we propose a streamlined variant of the classical

collective classification algorithm [18], which we call the two-

step model. Although the traditional collective classification

algorithms are known to suffer from serious instability and

overfitting issues, in the application scenarios of this paper,

we found that our two-step model offers excellent results. The

schematic view of the training phase and the testing phase for

the proposed model is depicted in Fig. 2.

The proposed model consists of two components. The first

step, which we refer to as bootstrapping, treats structural

properties of the TAG (the neighborhood information of edges)

as unknown and infers edge labels according to only the

traffic attributes xij associated with each edge. The initial

classification from the bootstrapping step is in Eq. 2.

L̃0(eij) := f0(xij) (2)

Bootstrapping provides us with the initial labels for all

edges, though the accuracy of these labels depend on the

available traffic information in different application scenarios

and hence can be inaccurate in certain situations. For example,

as we shall see in Section V, in the application of traffic

classification at the network layer where most traffic attributes

(e.g., port numbers, protocol number, etc.) are absent, the

accuracy after bootstrapping can only reach around 80%. In

a study where all flow level attributes are accessible, the

bootstrapping step can achieve an accuracy of over 96% [9].

The second step, referred to as graph-based calibration or

calibration in short, incorporates the inherent neighborhood

and local properties of the edges in the TAG to re-enforce or

re-label the initial edge labeling provided by the bootstrapping

step. For example, given an edge labeled as Business and

all the neighborhood edges labeled as Web, the calibration step

may follow the edge clustering rule and change the edge label

into Web. The calibration process is expressed in Eq. 3:

L̃(eij) := f1

(

L̃0(ei·), L̃0(e·j)
)

(3)

Why do we deprive classifier f1 from traffic features xij?

The explanation is that we want the classifier to focus on

the neighborhood features, which, for a given endpoint, only

change slowly over time. This means that if we use the

neighborhood features only, test data that has been collected

from the same graph as the training data (but later in time) may

still have a distribution that is close to the training data. On

the other hand, the traffic features suffer from a much greater

time variability, and can become undesirable noise when one

has access to neighborhood features. In a preliminary study,

we always obtain a higher error rate by incorporating traffic

features in the calibration step.

In addition, we found that a single calibration step was

enough to obtain the best performance, hence the simplifi-

cation of the algorithm into a two-step approach. Therefore,

from Eq. 3, the edge classification from the proposed model

is expressed as a combination of the bootstrapping step and

the calibration step. We note that the inference on the class

(a) Training phase (b) Testing/operating phase

Fig. 2. Architectures for training and operating of the proposed two-step model.

of a particular edge eij is based on the initial (inaccurate)

classification of the neighborhood edges (L̃0(ei·), L̃0(e·j))
from the bootstrapping step. Therefore, the training of the

calibration function f1 also depends on the initial classification

provided by the function f0 in the bootstrapping step, instead

of depending on the ground truth. In the following, we discuss

the training and operating of the proposed two-step model.

B. Training and Operating the Two-step Model

Taking advantage of the ground truth that we have for the

network flow data, we formulate both the bootstrapping step

and the calibration step as classical multi-class classification

problems. Hence, the bootstrapping function f0 and the cali-

bration function f1 correspond to two multi-class classifiers,

and we apply the state-of-the-art machine learning techniques

to learn these two classifiers and hence to solve the edge label

inference problem.

Overall Training and Operating Architecture. The training

architecture is presented in Fig. 2[a]. Given the ground truth

of edge labels in the training data, we first learn a multi-class

classifier f0, which maps traffic features xij corresponding to

each edge eij to the initial labeling L̃0(eij). We then generate

initial labeling for the entire TAG, L̃0(G) and learn the

classifier f1 for the calibration step, which maps initial labeling

to the true labeling based on the labels of the neighbors of

individual edges.

After learning two classifiers f0 and f1, at the operating time

(Fig. 2[b]), given a TAG G created from the test dataset, we

first apply f0 to obtain the initial labeling for all the edges in

the TAG, namely, L̃0(G). We then encode the neighborhood

information of all the edges into histograms and apply the

classifier f1 for the calibration purpose, which will produce

the final prediction L̃(G) after calibration.

We note that these two classifiers (f0 and f1) only differ

in the feature sets. f0 uses traffic features associated with

individual edges. The available traffic features depend on

specific applications scenarios. We next explain how to encode

the neighborhood information as features for constructing f1.

Encoding Neighborhood Information for Graph-based

Calibration. Given the fact that an edge may have an un-

bounded number of neighborhood edges connected to the end

nodes, we encode the neighborhood information as histograms.

More specifically, for an edge eij , let |Ck| denote the number

of edges connected to hi which are labeled as Ck , 1 ≤ k ≤ K .

We then define K features corresponding to the neighbor-

hood edges connected to the endpoint hi as |Ck|/
∑

j |Cj |,
representing the percentage of edges connected to hi that are

labeled as Ck. Similarly, we define K features to encode the

neighborhood edges connected to hj . In addition, we include

the degrees of hi and hj as two additional features. Therefore,

for K = 12 (the number of predefined application classes

in Table I), we create a total of 26 features to encode the

neighborhood information of individual edges. Despite the loss

of structural information, encoding objects as histograms has

enabled a fast deployment of machine learning solutions to

many real world problems, with surprisingly good results.

C. Implementing the Two-step Model

In this section, we discuss the details of implementation

and training of the two classifiers, f0 and f1. We use f0 as an

example for illustration, since f1 is implemented in the same

way and only differs in the selected feature set.

Due to the huge amount of data during both training and

testing in the application of network traffic classification,

compared to a direct training of a K-class classifier, the

decoupled approach, i.e., training K binary classifiers and then

assembling them for the K-class classification, has shown

to be superior in both accuracy and scalability [9]. In this

paper, we adopt the same decoupled approach for building f0.

In particular, we train K binary classifiers, corresponding to

K posterior probabilities, P (Ck|xij), where 1 ≤ k ≤ K .

Given such a model, we then compare the K posterior

probabilities, and assign the example to the class (label)

f0(eij) = argmaxCk
P (Ck|xij). In the ideal case, this as-

signment exactly corresponds to the Bayes optimum for the

multi-class classification problem [19].

We implement the K (K = 12) binary classifiers using the

Adaboost [20] algorithm, which applies a greedy incremental

approach that can be restricted to learn a limited number

of features (with implicit L1 regularization). The output of

Adaboost classifiers are further remapped to approximate

P (Ck|xij), using univariate logistic regression [9]. To strike

a balance between accuracy and scalability, we choose the

decision stump (the simplest decision tree, having one level)

as the weak learner. In the previous studies, this classifier has

proved to attain the best scalability while having an accuracy

comparable to sophisticated non-linear classifiers [9].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed two-step model

for classifying traffic at the network layer. All the metrics

for evaluation are based on counting edges. For example, the

accuracy is defined as the number of correctly classified edges

divided by the total number of edges.

TABLE III
EDGE TRAFFIC FEATURES DERIVED FROM BASIC FLOW FEATURES.

Name Type Name Type

min duration numeric max duration numeric
min pkt size numeric max pkt size numeric
min pkt rate numeric (*) max pkt rate numeric
symmetry numeric

Bootstrapping. As motivated in Section I, our evaluation

focuses on the worst-case scenario where both the network-

level header and transport layer header are absent (e.g., the

IPSec traffic where the entire IP packet is encrypted). To

simulate this application scenario with existing flow data, this

evaluation uses only basic features from the flow records,

namely, IP addresses (which are attributed as internal or

external), flow packets, bytes and duration. In particular, there

are no fields that related to the transport layer, such as protocol,

port numbers or ToS bytes. However, other flow features are

either unchanged, like packets, or can be derived by adding a

constant length of the outer header, like bytes.

Prior to bootstrapping, we aggregate the traffic flows associ-

ated with each direction in an edge between two endpoints into

a set of edge level traffic features, listed in Table III. In order

to simulate the effect of flow records formed when UDP/TCP

ports are not available for the flow key, we first temporally

aggregate flow records of the same source and destination IP

address, using a 30 second inactive timeout. This done, we

then compute the traffic duration (i.e. sum of flow duration),

the average packet size, the average packet inter-arrival rate

for the bi-directional traffic on each edge separately. The

min duration and max duration represent the minimum and

the maximum traffic durations of the bi-directional traffic.

Similarly, the min pkt size and max pkt size are the minimum

and the maximum average packet sizes; the min pkt rate and

max pkt rate are the minimum and the maximum average

packet inter-arrival rates. We define the symmetry of an edge

as the minimum number of bytes divided by the maximum

number of bytes of the bidirectional traffic.

Overall Accuracy. Our first evaluation focuses on the overall

classification accuracy. We use a one-hour data set (from

05/03/2008 10-11AM) to train both the bootstrapping step

and the calibration step. We then evaluate the accuracy of

the two-step model at different times of the day, using three

one-hour data sets from 05/05/2008 (2-3AM, 11-12AM and

6-7PM). For a larger scale evaluation, we also use one whole-

day training data from (05/03/2008) and use the entire day

data from (05/05/2008) for testing.

Fig. 3 displays the overall accuracy for the four experiments

mentioned above. We observe that the classification accuracy

using one-hour time window varies between 79.5% and 83.3%

after bootstrapping possibly due to the fluctuation of traffic

mix due to the time-of-the-day effect. However, in all cases,

the accuracy increases substantially to around 90% after the

graph-based calibration. When the length of the time window

extends to one day, we have access to both more edges, and

more accurate traffic statistics (especially for smaller traffic

classes). In this case, the accuracy for the bootstrapping step

increase to 84%, and, again, the calibration step improves

the accuracy to 91.3%. This means that by applying the

graph information, we can reduce close to 50% of all the

classification errors made by the bootstrapping step!

Per-Class F1 Score. We next zero-in on individual traffic

classes to evaluate how the calibration step improves the per-

class classification accuracy. Due to the highly unbalanced

traffic class distribution, the error rate for smaller traffic classes

are generally small and hence hard to compare. We instead

use the F1 score which is defined as the harmonic mean of

precision and recall. The F1 score ranges between 0 and 1,

and a higher F1 score indicates a better classification result.

Fig. 4 displays the F1 scores for different traffic classes

on the whole-day data set. The traffic classes are ordered

decreasingly by the F1 scores before calibration. Obviously,

the F1 scores are increased for all the traffic classes after

calibration. This indicates that the enhancement of the overall

accuracy is not an artifact of the accuracy improvement of

a few large traffic classes, like Web and FileSharing,

instead, it is the result of a universal accuracy increase for

all traffic classes. Even when the F1 scores are low or close

to zero for certain classes before calibration, such as Chat
and FTP, the calibration step can still significantly improve

the per-class F1 scores. This demonstrates the effectiveness of

graph-based calibration which infers the colors of such edges

solely based on the structural properties in TAGs.
Temporal and Spatial Stability. In practice, temporal and

spatial stability is an important requirement for a traffic

classification system. Temporal stability means the system can

be trained once and run without human intervention for a long

time period. Spatial stability means the system can be trained

at one site and run at a second site without re-training.

We evaluate the stability of the proposed method using data

sets collected at two geographically separated sites for one

year. The training data is from 05/03/2008 10-11AM and four

one-hour datasets for the temporal stability test are used, which

are 2 days, 1 week, 1 month and 1 year later from the time

when the training data is collected, respectively. In addition,

we use a one-hour dataset collected at the second site where

there is also a one-month gap between the training data and

the test data. We note that all the test datasets are from 6-7PM

of the corresponding day.

We first observe that the bootstrapping step is very stable

across time and space. Within one month time period at the

same site, the calibration process consistently reduces the error

rate by 50% and boosts the accuracy from around 80% to

Fig. 3. DNS failure graph properties Fig. 4. F1 scores for different traffic classes Fig. 5. Stability of the calibration results

around 90%. The calibration step still reduces significantly

the error rate (by around 30%) after one year time period or

at the second site.

Real-time Classification. So far, our evaluation is in an offline

manner. However, the proposed method can also be imple-

mented as a real-time system. The basic idea is to maintain

a historical TAG for the calibration step. More precisely, let

T be the time window length to construct the TAG for the

calibration step. To classify an edge eij in real-time at t0, we

need to maintain the traffic statistics and neighborhood edges

of eij in a past time window from t0 − T to t0.

Fig. 6. Real-time classification results

Fig. 6 shows the real-time classification results, where the

x-axis represents the index of 30-minute time intervals of the

day (05/05/2008) and the y-axis is the edge accuracy for the

corresponding 30-minute time interval. We use a one-hour

dataset from (05/03/2008 10-11AM) to train the system and

apply T = 1 hour and T = 1 day to illustrate the impact of

the history length on the calibration performance.

From Fig. 6, the calibration performance is persistent and

reduces the error rate by at least 50% throughout the day. A

low accuracy after bootstrapping usually leads to a low accu-

racy after calibration, however, the fluctuation of accuracy after

calibration is not as significant as the one after bootstrapping.

This indicates the calibration also helps the whole system to

achieve a more persistent classification accuracy. In addition,

a longer history for calibration increases the overall accuracy

by 3% in general.

VI. CONCLUSIONS

In this paper, we proposed a two-step supervised model

which utilizes collective traffic statistics in the traffic activity

graphs (TAGs) for solving the application inference problem

at the network layer, where the available traffic features are

limited. The bootstrapping step provides initial labels (traffic

class assignments) of the edges purely based on available

traffic statistics and the graph-based calibration step utilizes

inherent neighborhood and local properties of edges in the

TAG to re-label or re-enforce the initial labels to achieve

much better accuracy. Using flow records from a large ISP

network, our evaluation results showed that the calibration step

consistently reduced the error rate from the bootstrapping step

by 50% and improved the accuracy for all traffic classes.

REFERENCES

[1] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving traffic demands for operational ip networks: Method-
ology and experience. IEEE/ACM Trans. Netw., 9(3):265–280, 2001.

[2] Port numbers, http://www.iana.org/assignments/port-numbers.
[3] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina. Generic Routing

Encapsulation (GRE). RFC 2784, 2000.
[4] S. Kent and K. Seo. Security architecture for the internet protocol. RFC

4310, December 2005.
[5] A. W. Moore and D. Zuev. Internet traffic classification using bayesian

analysis techniques. In Proc. of ACM SIGMETRICS’05, 2005.
[6] H. Jiang, A. W. Moore, Z. Ge, S. Jin, and J. Wang. Lightweight

application classification for network management. In Proc. of INM

’07, 2007.
[7] J. Erman, A. Mahanti, M. F. Arlitt, I. Cohen, and C. L. Williamson.

Offline/Realtime traffic classification using semi-supervised learning.
Perform. Eval., 64(9–12):1194–1213, 2007.

[8] Y. Jin, E. Sharafuddin, and Z-L. Zhang. Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition. In Proc. of SIGMETRICS ’09, pages 49–60, 2009.

[9] Y. Jin, N. Duffield, J. Erman, P. Haffner, S. Sen, and Z.-L. Zhang. A
modular machine learning system for flow-level traffic classification in
large networks. Technical report, 2009.

[10] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. ACAS: Automated
construction of application signatures. In Proc. of MineNet, 2005.

[11] T. Karagiannis, K. Papagiannaki and M. Faloutsos. BLINC: Multilevel
traffic classification in the dark. In Proc. of ACM SIGCOMM, 2005.

[12] T. Nguyen and G. Armitage. A survey of techniques for internet
traffic classification using machine learning. Communications Surveys

& Tutorials, IEEE, 10(4), 2008.
[13] K. Xu, Z.-L. Zhang and S. Bhattacharyya. Profiling Internet backbone

traffic: behavior models and applications. In Proc. of ACM SIGCOMM,
August 2005.

[14] I. Trestian, S. Ranjan, A. Kuzmanovi, and A. Nucci. Unconstrained
endpoint profiling (Googling the Internet). In Proc. of ACM SIGCOMM

’08, Seattle, USA, 2008.
[15] M. Iliofotou, M. Faloutsos, and M. Mitzenmacher. Exploiting dynamic-

ity in graph-based traffic analysis: techniques and applications. In Proc.

of CoNext’09, 2009.
[16] P. McDaniel, S. Sen, O. Spatscheck, J. Van der Merwe, B. Aiello,

and C. Kalmanek. Enterprise security: a community of interest based
approach. In Proc. NDSS, 2006.

[17] M. Iliofotou, P. Pappu, M. Faloutsos, M. Mitzenmacher, S. Singh, and
G. Varghese. Network monitoring using traffic dispersion graphs (tdgs).
In Proc. of ACM IMC, 2007.

[18] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-
Rad. Collective classification in network data. AI Magazine, 2008.

[19] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience, 2000.

[20] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for
text categorization. Mach. Learn., 39(2-3):135–168, 2000.

