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Abstract
A novel approach for estimating articulated body pos-
ture and motion from monocular video sequences is pro-
posed. Human pose is defined as the instantaneous two
dimensional configuration (i.e.,the projection onto the im-
age plane) of a single articulated body in terms of the po-
sition of a predetermined set of joints. First, statistical
segmentation of the human bodies from the background is
performed and low-level visual features are found given
the segmented body shape. The goal is to be able to map
these, generally low level, visual features to body configu-
rations. The system estimates different mappings, each one
with a specific cluster in the visual feature space. Given
a set of body motion sequences for training, unsupervised
clustering is obtained via the Expectation Maximization al-
gorithm. For each of the clusters, a function is estimated to
build the mapping between low-level features to 2D pose.
Given new visual features, a mapping from each cluster is
performed to yield a set of possible poses. From this set,
the system selects the most likely pose given the learned
probability distribution and the visual feature similarity
between hypothesis and input. Performance of the pro-
posed approach is characterized using real and artificially
generated body postures, showing promising results.

1 Introduction
In recent years, there has been a great deal of interest in
methods for tracking and analysis of human body motion
by computer [1, 5, 21, 18, 22, 12, 15, 8, 19, 14, 20, 6].
Effective solutions would lead to breakthroughs in areas
such as video coding, visual surveillance, human motion
recognition, ergonomics, video indexing and retrieval, and
human-computer interfaces, among others.

If the basic structure of the tracked body (its configu-
ration) is reconstructed, motion analysis would be greatly
simplified. In our everyday life, humans can easily esti-
mate body part location and structure from relatively low-
resolution images of the projected 3D world (e.g.,watching
a video). Unfortunately, this problem is inherently difficult
for a computer. The difficulty stems from the number of
degrees of freedom in the human body, the complex under-
lying probability distribution, ambiguities in the projection
of human motion onto the image plane, self-occlusion, in-
sufficient temporal or spatial resolution, etc.

In this paper, we develop an approach for estimating hu-
man body pose given a single image or a monocular image
sequence containing unoccluded bodies. Human pose is

defined as the instantaneous two dimensional configuration
(i.e.,the projection onto the image plane) of a single artic-
ulated body in terms of the position of a predetermined set
of joints. Given a set of body motion sequences for train-
ing, a set of clusters is built in which each has statistically
similar configurations according to a given measure and
model. Then, for each of the clusters, a function that maps
visual features to body pose is acquired via machine learn-
ing. Given new visual features, a mapping from each clus-
ter is performed providing a set of possible poses. From
this set, we extract the most likely pose given the learned
probability distribution and the visual feature similarity be-
tween hypothesis and input.

In experiments, the resulting method efficiently learns
from data sets of body configurations, and using this prior
knowledge, how to map low-level visual features to a
higher level representation like a set of joint positions of
the body. This is a very important step considering that
low-level visual features are relatively easily obtained us-
ing current vision techniques.

2 General Problem Definition
The problem of obtaining body pose (either 2D or 3D)
from visual features can be thought of as an instance of the
more general problem of estimating the function that maps
elements of a given (cue) space to another (target) space
from data. In our case this function seems to be highly
complex, and the mapping is many to many (e.g.,same vi-
sual features can represent different body pose configura-
tions and same body configurations can generate different
visual features due to clothing, view-point, etc.).

Let us define	 � <t to be the set of sample data points
from the target space and� � <c, with the same cardinal-
ity as	, to be the set of sample data points from the cue
space. Assume that for each element i 2 	 we know its
counterpart�i 2 � (i.e.,the data is labeled), or that there is
a way to generate�i, for example�i = �( i). Note that if
� is many-to-one, its inverse does not exist.

The problem is to approximate a function that we will
call � : <c ! <t (not necessarily the inverse of�) that
when givenx 2 <c, such that�(y) = x, with x possibly
not in�, �(x) estimateŝy 2 <t such that̂y is close toy or
x is close to�(ŷ), according to some distance measures.

This problem can be approached by minimizing:

�� = argmin
�

lX

i=1

�(�(�i)�  i); (1)



wherel is the cardinality of	 or� [2, 9, 16], and� is an
error function, i.e., a Euclidean norm or robust error norm.

The problem of function approximation from sparse
data, sometimes regarded as the general machine learning
problem, is known to be ill-posed [9, 2] if no further con-
straints are added, for example on the function space of�
(e.g.,if � is constrained to be linear, a unique best solution
exists).

In our case,	 represents the set of example human body
poses, and� is the corresponding set of visual features
taken from image projections under certain viewing con-
ditions. We do not intend to solve the general problem of
function approximation; instead, we address the specific
problem of recovering pose parameters of an articulated
body (the human body) from monocular visual features.

2.1 Body Pose from Visual Features
As stated above, our goal is to map visual features to likely
body pose configurations. For training, motion capture can
provide 3D marker positions and orientation of the human.
Following a similar notation to that used above, the set of
marker positions is denoted	3d � <t.

Visual features generated by the three-dimensional ob-
ject can be obtained by pointing a video camera at the
given object, and analyzing the captured images. It is clear
that these visual features depend on the camera parameters
(e.g.,camera orientation, location, focal length, etc).

Alternatively, a computer graphics model of the 3D ob-
ject (in our case, a human body model) can be used to ren-
der a set of images. These images simulate the visual ap-
pearance of the object in question, given pose and camera
parameters. We call the rendering functionR : <t ! I,
whereI is set of images at a given resolution. Optionally
R can take a parameter� indicating the camera point of
view (or object orientation).

Images are an intermediate representation from which
we can extract visual features using a function we denote
byV : I ! <c. Following the definitions above, we have:

�( ) = V (R( )); � : <t ! <c: (2)

The set�3d � <c is formed by the visual features ex-
tracted from the images of	3d, using�. Our goal is to
estimate the function denoted�, as defined above.

An alternative problem is to recover 2D marker posi-
tions, instead of 3D positions, from image features. By
2D marker positions, we mean the projection of the 3D
markers onto the image plane. The 2D projections of the
markers can be obtained from	3d to generate a data set
	2d;� � <s of all frames viewed from camera orientation
�, and a distance to the object.

In the same way as in the 3D case, we can render 2D
marker positions to form an image, this rendering function
will be denotedR̂ : <s ! I, which is a 2D approximation
of R. Note that having the set	3d from which	2d;� was

generated, we can obtain a more accurate rendering by us-
ing R on	3d at the appropriate orientation�. When this
is possible, we will useR instead ofR̂. To generate visual
features from images, we can proceed as before, usingV
to generate the set�2d;� � <c, which contains the visual
features corresponding to the rendering of the set	2d;�.
For notational convenience, we define	2d =

S
� 	2d;�,

�2d can be defined similarly. We also have:

�2d( ) = V (R̂( )); �2d : <
s ! <c; (3)

with 2 	2d. The problem is then to approximate�2d (the
2D version of�)from data. In other words, given visual
features, we want to find the likely 2D marker projections
that generated them.

3 Related Work
One of the fundamental ideas in perception of human mo-
tion is the was of Johansson's moving light displays [13],
where it was demonstrated that relatively little information
(motion of a set of selected points on the body) is needed
for humans to perform reconstruction of the body config-
urations. One of the first approaches related with walking
people in real environments is due to [10]. The basic de-
tection and registration technique used commonly is based
on background segmentation, related to the work of Baum-
berg and Hogg [1], Bichsel [3], and others [22].

In order to find body parts using visual cues, [22] em-
ployed blob statistics and contour descriptions to roughly
indicate where hands, feet, and torso were located. The
system needed to be initialized with a certain configuration
in which body part identification was easy to achieve. Af-
ter this, their part labeling relied mostly on tracking blobs.
In [12], some simple heuristics about body part relations
were used to assist labeling and tracking.

In an alternative approach, model-based representations
like [15, 8, 19, 14, 20, 7, 6], have been used. The mod-
els are generally articulated bodies comprised of 2D or 3D
solid primitives. Most of these techniques require the use
of multiple cameras, controlled viewing conditions, and/or
user initialization. Also, model-based methods generally
cannot recover from tracking errors in the middle of a se-
quence because they rely strongly on the accurateness of
the estimate at the previous frame. Tracking errors may
be common in real scenes due to low contrast, occlusions,
changes in brightness, etc.

The main difference in our proposed approach with re-
spect to the techniques mentioned above is that we do not
try to match a body model to an image. We do not match
image features from frame to frame;e.g.,image regions,
points, articulated models. Therefore, we do not refer to
our approach as tracking,per se. Instead, machine learning
is used to map visual features to likely body configurations.
Due to this, the pose estimation may not be as exact as
the best performance of model-based tracking techniques;
however, our approach tends to be more robust.



Previous learning based approaches include [18], where
a statistical approach was taken for reconstructing the
three-dimensional motions of a human figure, but assum-
ing that 2D tracking of joints is given. They used a set of
motion capture examples to build a Gaussian probability
model for short human motion sequences.

The work most closely-related to our approach is [5],
where the manifold of human body configurations was
modeled via a hidden Markov model and learned via en-
tropy minimization [5]. Because it models the dynamics
of the time series (i.e.,human motion), the amount of data
needed to create a good model (i.e.,approximate the man-
ifold) is markedly larger than that needed when modeling
single configurations.

Unlike previous learning based methods, our method
does not attempt to model the dynamical system; instead,
it relies only on instantaneous configurations. Even though
this ignores information (i.e.,motion components) that can
be useful for constraining the reconstruction process, it
provides invariance with respect to speed (i.e.,sampling
differences) and direction in which motions are performed.
Furthermore, fewer training sequences are needed in learn-
ing a model. Finally, it should be noted that we employ a
new step of feedback matching, which transforms the re-
constructed configuration back to the visual cue space to
choose among the set of reconstruction hypotheses.

4 Approach Overview
For clarity, we very briefly enumerate every step of the

proposed approach. The steps are as follows:

1. A set of motion 3D capture sequences is obtained,
	3d � <t. A set of visual features�3d is computed
from images that the 3D body generated (using a com-
puter graphics rendering function or simply captured by
a video camera). By projecting the elements of	3d onto
the image plane over a given number of views, we obtain
as set of 2D marker positions	2d.

2. The set	2d is partioned into several exclusive subsets
via unsupervised clustering. This yields a set
 of m
clusters. Each cluster corresponds to a group of similar
pose parameters.

3. Given	2d and�2d, for each clusteri, we approximate
a mapping functionPi. By clustering our target space,
the mapping can be approximated with simple functions,
each responsible for a subset of the domain. We would
hope that linear functions could do the mapping, but de-
cided to estimate nonlinear functions; a multi-layer per-
ceptron is trained for each cluster.

4. Novel data is presented in the form of human silhouettes.
For each frame, visual features are extracted usingV :
I ! <c. Then, usingPi, a set ofm projected marker
positions per frame are estimated.

5. The series of possiblem solutions provided for each
frame is rendered to achieve images and their visual fea-
tures are extracted. The best match with respect to the
presented data can then be found via the maximum like-
lihood criterion. As an optional step, consistency in time
can be enforced by observing some frames ahead.

5 Modeling the Configuration Space
Motion capture data	3d will be used to train our model.
Motion capture data provides 3D position information
about the location of a set of markers. In the case, the
set of markers roughly corresponds to a subset of major
human body joints. This set of marker is fixed and deter-
mined beforehand.

3D marker positions are projected into 2D marker po-
sitions	2d, using a perspective camera located at a fixed
height and distance from the center of the body. This pro-
jection is repeated by rotating the camera around the main
axis of the human, at fixed increments of�. In our exper-
imentsd� = �=16. Note that we can make the set	2d

as dense as we want by sampling at more camera orienta-
tions. To account for a wider variety of viewing conditions,
we could sample the whole viewing sphere. Differences in
the camera-object distance could be avoided in principle
by choosing scale invariant image features.

Given marker positions for a human body in a particular
frame, we can render its visual appearance using computer
graphics techniques. In our case, we specify the structure
of the connections between markers, and use cylinders to
connect them. Fig. 1 shows two elements of the set	2d,
and the corresponding rendered binary images from which
visual features�2d are extracted. For this implementation
we chose Hu moments [11] as our visual features, mainly
due to their ease of computation and their invariance to
translation, scaling and rotation on the image plane.

Formally, we have the following data sets:

1. 	3d is the set of 3D body configurations expressed in
marker positions, obtained using motion capture.

2. 	2d = f 2d 2 <sjC( 3d; �) =  2dg, with � varying
from 0 to 2� using a fixed increment, andC the trans-
formation that projects spatial coordinates to the image
plane, using viewpoint�.

3. �2d = f�2d 2 <cj�( 3d; �) = �2dg, with � = V � R,
mapping 3D marker positions to image features.

5.1 Clustering body configurations
It would be ideal if the mapping from�2d to	2d were sim-
ple. Unfortunately this mapping is highly ambiguous. For
example, if moments on binary images (e.g.,body silhou-
ettes) are used as visual features, a person facing forward
would generate very similar image moments to another fac-
ing backwards. Image moments provide a descriptor that
does not encode many of the degrees of freedom of 2D



(a) 2d = C( 3d; 0) 2 	2d;0

(a)R(	3d; 0)) 2 I

(b) 2d = C( 3d; 3�=16) 2 	2d;3�=16

(b)R(	3d; 3�=16)) 2 I

Figure 1:The data used for training is formed by 2D, projected marker positions	2d and the visual features extracted from the binary
masks obtained via rendering of a 3D computer graphics model�2d. This rendering is repeated by rotating the virtual camera around the
main axis of the human, at fixed increments of�. The binary masks are used to obtain visual features. Here we show some frames from
the same sequence viewed from two different camera locations: (a)� = 0 rads, (b)� = 6�=32 rads.

Figure 2: The cluster means obtained after performing unsu-
pervised clustering of the data points in 2D marker space. Note
that opposite configurations are clustered separately. For exam-
ple, one can see that there is a cluster for the figure facing forward,
and another one backward. This separation is important because
visual features alone cannot resolve this ambiguity. Complexity
of the mapping is reduced if clusters are trained separately.

markers. Therefore, it is possible that drastically different
body configurations have similar image moments.

The way we approach the problems mentioned above is
by first creating clusters of statistically homogeneous data
points in the marker space. We used 2D projected mark-
ers to try to generate clusters that can be described by a
Gaussian probability distribution. This is an unsupervised
clustering task, for which we use the EM algorithm.

Let us denote�i = (�i;�i) to be the learned distribu-
tion parameters for clusteri. For each data point 2 	,
we can assign it to a cluster, by just finding the ML (Max-
imun Likelihood) estimate.

i = argmax
j

(P (�j j )) = argmax
j

(N ( ; �j ;�j)); (4)

wherei is the label of the cluster to which we assigned this
data point .

Fig. 2 shows the mean configuration of a set of 15 clus-
ters found by this method using the set	2d. By splitting
the body configuration space into homogeneous regions, it
becomes feasible to approximate a more specialized (and
simpler) map from a visual feature space. This will reduce
the ambiguities mentioned above. For example, in Fig. 2
we can see that there are mean configurations facing for-
ward and backward.

5.2 Training the Map from Visual Features to
Body Configurations

Once data points are divided into clusters, the system must
learn cluster-dependent mappings that take visual features
to body configurations. For each cluster, we used a neural
network to train how to map inputs (from�2d) to outputs
(from	2d) in a supervised fashion. A multi-layer percep-
tron with one hidden layer is chosen to do this [4]. The
explicit expression for this function is:

ŷk = g2(

l2X

j=0

w
(2)
kj g1(

l1X

i=0

w
(1)
ji xi)); (5)

wherex̂ 2 	 is the visual feature vector at a given instant,
y is the estimated marker configuration,w(1) andw(2) are
each layer's synaptic weights and biases,g 1 andg2 are a
sigmoidal and linear function respectively.

This architecture was chosen because it can approxi-
mate some non-linear mappings [17] instead of just lin-
ear ones, and the training is relatively simple, given the
data. The parameters of this network were estimated via
Levenberg-Marquardt optimization to update the weights
and biases. The system creates a set
 = fP1; P2; :::; Pmg
of m multi-layer perceptrons, each trained to a particular
cluster of body configurations.



6 Synthesizing Body Configurations
When novel datax 2 <c is presented (i.e.,features com-
puted from an image frame), the likely 2D marker posi-
tions are estimated using the cluster-dependent functions
Pi. This yields a set of hypothetical body configurations
Ŷ = fŷkg. There is a total ofm hypotheses per framex.
The question is, how to choose from this set of hypotheses?
We approach this problem by creating another mapping or
functionPb that estimates visual features from 2D marker
positions. There are different alternatives for doing this.

One alternative is to simply use eachŷk to render an
image usingPb = R̂ (i.e.,using computer graphics), and
then find its visual features viaV . Recall thatR̂ is a 2D
approximation of the 3D rendering functionR. It is an
approximation because the object to be rendered is three-
dimensional, and here the hypothesesŶ are 2D markers.

Another alternative is to approximate the functionPb

from data (i.e.,�2d and 	2d). That is, we could esti-
mate the parameters ofPb using the approach outlined
in Sec. 5.2. Then given̂yk, we can obtain an estimate
x̂k = Pb(yk). This functionPb would avoid the need of a
probably expensive rendering of them hypotheses.

In our system, we chose the second alternative. This
was done using the sets�2d and	2d. Because this map-
ping uses data rendered with knowledge of 3D information,
it is very likely to have accuracy advantages over the sim-
pler transformation̂R.

Given the set̂Y of hypotheses about the body configura-
tion, we find the most accurate hypothesis by minimizing:

i = argmin
j
(Pb(ŷj)� xj)

>��1� (Pb(ŷj)� xj); (6)

where�� is the covariance matrix of the elements in the
set�2d andi is the neural network label that best matched
the visual feature observed.

As a further refinement step, because neighboring
frames are generally from similar configurations, we have
obtained slightly better performance if consistency in time
is enforced. Therefore, after we obtain the bestPk to use
for a given frame, if this network differs from that chosen
in the previous frame, we wait for the next frames to arrive
(generally 2 or 3) to decide whether to use this newPk .
If within this window the new frames are consistent with
the change (use the samePk), then the newPk is used; if
not, then the previous network is used instead. Although
a probabilistic dynamical model would be advantageous,
this proved to be an effective culling mechanism to avoid
spurious individual reconstructed frames.
7 Experiments
In order to evaluate the performance of our approach, we
first conducted experiments in which we had knowledge
of the best reconstruction. Using the data sets	2d and
�2d, we performed clustering and training, taking out the
sequence with the specific orientation that would be used
for testing. We also took out its neighboring views, the

opposite view and its neighbors. View orientations were
sampled every2�=32 radians, for a total of 32 orientations.

The training data set consisted of five sequences
with an average of about 200 frames each, sampled at
the orientations above mentioned and at 30 frames/sec.
The activities include dance, walking/grabbing/throwing,
walking/crouching-down/turning/walking, and walking in
circle. The 3D motion-capture data was obtained from
http://www.biovision.com. This data consisted of position
information of 37 markers, from which we chose a subset
of 11 considered by us the most informative ones.

Fig. 3 shows the reconstruction obtained by our ap-
proach when images of thedestroy sequence were shown.
This sequence exhibits very challenging configurations and
orientations. The view angles used were0 and 12�=32
radians respectively. The agreement between reconstruc-
tion and ground-truth is easy to perceive for all sequences.
Note that for self-occluding configurations, reconstruction
is harder, but still the estimate is close. The error is mainly
due to the inadequacy of the feature and image represen-
tation to separate configurations that are different in the
marker space, but similar in feature space.

Using the training and testing procedure described
above, we measured the average marker error (measured as
the distance between reconstructed and ground-truth pro-
jected marker position). After testing all the sequences,
the mean and variance marker displacement was 0.0428
and 0.0011 units respectively. As a point or reference, the
height of the figure was approximately 1.4 units on aver-
age. Therefore, the mean marker displacement was ap-
proximately 3% and its variance 0.07% of the body height.
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Figure 4: Measure of the mean marker error per view angle.
Figures were aligned to always face forward for the 0 radians
view angle. This was done so that we could measure the error
with respect to body orientation, not camera orientation. Recall
that bodies can turn in a sequence. Angles are sampled every
2�=32 radians starting at2�=32 radians. Note that the error is
bigger for orientations close to�=2 and3�=2 radians.

We also measured the average marker error per body
orientation. For this we have to rotate the 3D figures so
that their orientation corresponds to the orientation tested.
Recall that in the original sequences, bodies are not always



Figure 3:Example reconstruction of thedestroy sequence, each set (3 rows each) consists of input images, reconstruction, and ground-
truth. Results are shown every 25th frame. View angles are 0 and12�=32 radians. The obtained reconstruction visually agrees with the
perfect output for all views. Note that this sequence has challenging configurations, body orientation is also recovered correctly.

facing a fixed point. Angles are sampled every�=16 radi-
ans starting at 0 radians, which corresponds to the person
always facing to the camera. Note that the error is big-
ger for orientations closer to�=2 and3�=2 radians. This
intuitively agrees with the notion that at those angles (side-
view), there is less visibility of the body parts. This perfor-
mance is very promising considering the complexity of the
task and the simplicity of the approach.

7.1 Experiments using Real Visual Cues

For our next example, in Fig. 5 we now test the system
against real segmented visual data, obtained from observ-
ing and tracking and human subject. Reconstruction for
several relatively complex action sequences are shown be-
low each sequence. Note that even though the character-
istics of the segmented body differ from the ones used for
training, good performance is achieved. Most frames are
visually close to what can be thought as the right pose re-
construction. Body orientation also is correct not just for
frontal views.

However, it is possible to see some erroneous config-
urations. We believe the source of error is mainly due to
several reasons: 1.) insufficient data to account for given
configurations that cannot just be obtained by interpolat-
ing surrounding ones (e.g.,raising arms up / pointing both
arms to same direction), 2.) possible need of more clusters
or approximating functions with more specialized domains
(in cue space), 3.) differences in body characteristics used
for training/testing, and 4.) little discriminative power of
the chosen image features (Hu moments, which reduce the
image interpretation to a 10-dimensional vector). Despite
these errors, the experimental results are encouraging when

compared with previous results.

8 Conclusion

We have presented a novel technique that allows the recon-
struction of human body pose from low-level visual fea-
tures. Because of the complexity of the mapping, we clus-
tered the space of body configurations into approximately
homogeneous configurations, showing improved results.
The proposed approach is both simple and powerful. Our
ideas are different from tracking approaches in that we do
not try to match body parts from frame to frame.

Human pose reconstruction is a particularly hard prob-
lem because this mapping is highly ambiguous. We have
obtained excellent results even using a very simple set of
image features, such as image moments. Choosing the best
subset of image features from a given set is by itself a com-
plex problem, and a topic of on-going research.

The implemented algorithm for reconstruction runs in
linear timeO(M) with respect to the number of clusters
M . Also it scales linearly for sequences, for a sequence
of lengthN , the complexity isO(NM). The method is
by itself causal, but performance improved slightly when
looking two or three frames ahead.

The current implementation was tested in recovering the
pose for both generated and real visual data. The artifi-
cially generated data was used for measuring the perfor-
mance of the approach, real data showed its applicability.
The results are encouraging in considering the complex-
ity of the task and in comparison with results reported for
previous methods.



Figure 5:Reconstruction for three different real action sequences obtained from tracking a human subject(every 30th frame shown).
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