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The heart of the scientific enterprise is a rational effort to understand the causes behind

the phenomena we observe. In large-scale complex dynamical systems such as the Earth

system, real experiments are rarely feasible. However, a rapidly increasing amount of

observational and simulated data opens up the use of novel data-driven causal methods

beyond the commonly adopted correlation techniques. Here, we give an overview of causal

inference frameworks and identify promising generic application cases common in Earth

system sciences and beyond. We discuss challenges and initiate the benchmark platform

causeme.net to close the gap between method users and developers.

S
ince Galileo Galilei, insight into the causes behind the phenomena we observe has come
from two strands of modern science: observational discoveries and carefully designed
experiments that intervene in the system of interest under well-controlled conditions.

In one of Galilei’s early experiments—albeit a thought experiment1—, the law of falling bodies
is discovered by dropping two cannonballs of different masses from the tower of Pisa and
measuring the effect of mass on the rate of fall to the ground. Discovering physical laws this way
is a challenging problem when studying large-scale complex dynamical systems such as the Earth
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system, because replicated interventional experiments are either
infeasible or ethically problematic2. Surely, we should not conduct
large-scale experiments on the Earth’s atmosphere: anthropogenic
climate change already represents a rather uncontrolled long-
term experiment. While randomized controlled experiments are
a standard approach in medicine and the social sciences3,4, the
main current alternative within most disciplines of Earth sciences
are computer simulation experiments. However, these are very
expensive, time-consuming, and require substantial amounts of
expert knowledge, which in turn may impose strong mechanistic
assumptions on the system2. Fortunately, recent decades have
seen an explosion in the availability of large-scale time series data,
both from observations (satellite remote sensing5, station-based,
or field site measurements6), and from Earth system model out-
puts2. Such data repositories, together with increasing computa-
tional power7, open up novel ways to use data-driven methods for
the alternative strand of modern science: observational causal
discoveries.

In recent years, rapid progress has been made in computer
science, physics, statistics, philosophy, and applied fields to infer
and quantify potential causal dependencies from time series data
without the need to intervene in systems. Although the truism
that correlation does not imply causation holds, the key idea
shared by several approaches follows Reichenbach’s common
cause principle8: if variables are dependent then they are either
causal to each other (in either direction) or driven by a common
driver. To estimate causal relationships among variables, different
methods take different, partially strong, assumptions. Granger9

addressed this question quantitatively using prediction, while in
the last decades a number of complementary concepts emerged,
from nonlinear dynamics10,11 based on attractor reconstruction,
to computer science exploiting statistical independence relations
in the data4,12. More recently, research in statistics and machine
learning utilizes the framework of structural causal models
(SCMs)13 for this purpose. Causal inference is growing to become
a mature scientific approach14.

In contrast to data-driven machine learning methods such as
probabilistic modeling15, kernel machines16, or in particular deep
learning17, which mainly focus on prediction and classification,
causal inference methods aim at discovering and quantifying
the causal interdependencies of the underlying system. Although
interpreting deep learning models is an active area of research18,
extracting the causes of particular phenomena, e.g., hurricanes,
from a deep learning black box is usually not possible. Therefore,
causal inference methods are crucial in complementing predictive
machine learning to improve our theoretical understanding of
the underlying system19.

Unfortunately, many causal inference methods are still only
known within a small community of methodological developers
and rarely adopted in applied fields like Earth system sciences.
Yet, data-based inference of causation was already proposed in
the early 20th century by the geneticist Wright20, but it has
not been widely adopted partly due to the fierce opposition of
statisticians like Pearson14. In Earth system sciences, besides
simulation experiments, (Pearson) correlation and regression
methods are still the most commonly used tools. However, causal
inference methods do have the potential to substantially advance
the state-of-the-art—if the underlying assumptions and metho-
dological challenges are taken into consideration.

With this Perspective, we aim to bridge the gap between
potential users and developers of methods for causal inference.
We discuss the potential of applying causal inference methods to
four key generic problems that are also common in other fields:
causal hypothesis testing, causal network analysis, exploratory
causal driver detection, and causal evaluation of physical models.
First, we provide examples where causal inference methods have

already led to important insights in Earth system sciences before
giving an overview of different methodological concepts. Next,
we highlight key generic problems in Earth system sciences and
outline new ways to tackle these within causal inference frame-
works. These problems are translated into challenges from a
methodological perspective. Finally, as a way forward, we give
recommendations for further methodological research as well as
new ways in which causal inference methods and traditional
physical modeling can complement each other, in particular in
the context of climate change research. This Perspective is
accompanied by a website (causeme.net) hosting a causality
benchmark platform to spur more focused methodological
research and provide benchmarks useful not only in Earth system
sciences, but also in related fields with similar methodological
challenges.

Example applications of causal inference methods
As in many other fields, methods based on correlation and uni-
variate regression are still the most common data-based tools to
analyze relationships in Earth system sciences. Such association
approaches are useful in daily practice, but provide few insights
into the causal mechanisms that underlie the dynamics of a sys-
tem. Causal inference methods can overcome some of the key
shortcomings of such approaches. In this section, we discuss
application examples where causal inference methods have already
led to important insights before providing a systematic overview.

Concurrently to Wright’s20 seminal works on causation in the
1920s, Walker was the first to introduce systematic correlation
and regression analysis into climate science21. He discovered the
temperature and pressure relationships between the East and
West Pacific giving rise to the Walker circulation, which has by
now been established not only from observational studies, but
also detailed physical simulation experiments22. In Fig. 1a, we
illustrate these relationships using different methods: classical
correlation, standard bivariate Granger causality (GC), and
PCMCI23,24 (described later) that is better suited to this problem.
Whereas GC and standard correlation analysis results in
unphysical links, the example demonstrates that with the correct
application of an appropriate method the Walker circulation can
be inferred from data alone.

Similary, Kretschmer et al.25 investigated possible Arctic
mechanisms which could be pivotal to understand northern
hemisphere mid-latitude extreme winters in Eurasia and North
America. Arctic teleconnection patterns are much less understood
than tropical ones and data-driven causality analyses are espe-
cially important because different climate models partly give
conflicting results26,27. In Fig. 1b we highlight the Arctic tele-
connection pathways of the stratospheric Polar vortex that were
extracted from observational data alone: here causal inference
methods have confirmed previous model simulation studies,
finding that Arctic sea ice extent in autumn is an important driver
of winter circulation in the mid-latitudes28.

Finally, Fig. 1c shows an example from ecology demonstrating
that traditional regression analysis is unable to identify the
complex nonlinear interactions among sardines, anchovy, and
sea surface temperature in the California Current ecosystem. A
nonlinear causal state-space reconstruction method11 here
extracts the underlying ecologically plausible network of inter-
actions, revealing that sea surface temperatures are a common
driver of both sardine and anchovy abundances.

These examples demonstrate how causal inference methods
can help in distinguishing direct from indirect links and common
drivers from observational time series, while classical correlation
methods are ambiguous to interpret and can lead to incorrect
conclusions.
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Next to Granger’s seminal works in economics9,29, observa-
tional causal inference methods have mostly been applied in
neuroscience30,31 and bioinformatics32,33 where observational
causal inference can also be combined with interventional
experiments. The challenges for causal inference on Earth system
data, especially the spatio-temporal and nonlinear nature of the
system, are more similar to those in neuroscience as further
discussed in the application and challenges sections.

Overview of causal inference methods
Observational causal inference from time series has come a long
way since Wiener’s34 and Granger’s9 seminal works in the 1950s
and 1960s and a plethora of different methods have been devel-
oped since then. Importantly, in the past few decades the
works of Pearl, Spirtes, Glymour, Scheines, and Rubin3,4,12,35

have grounded causal reasoning and inference as a rigorous
mathematical framework, elucidating the conditions under which
discovering causal graphical models, also called Bayesian net-
works36, from purely observational data is at all possible. These
are known as identifiability conditions in the field of statistics and

causal inference. Many causal inference methods for time series
are grounded on the assumptions of time-order (causes precede
effects), Causal Sufficiency, meaning that all direct common
drivers are observed, and the Causal Markov Condition, stating
that in a graphical model a variable Y is independent of every
other variable (that is not affected by Y) conditional on Y’s direct
causes, among other, more technical, assumptions12,24. However,
recent work shows that some of these assumptions can be relaxed.
Peters et al.13 summarize recent progress of methods that utilize
assumptions on the noise structure and dependency types in the
framework of SCMs. Many causal inference methods are not
restricted to time series to infer causal relations.

Granger causality. The concept of Granger causality9 was the
first formalization of a practically quantifiable causality definition
from time series. The original idea, based on work by Wiener34, is
to test whether omitting the past of a time series X in a time series
model including Y’s own and other covariates’ past increases the
prediction error of the next time step of Y (Fig. 2a). The concept
of GC can be implemented with different time series models.
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Fig. 1 Example applications of causal inference methods in Earth system sciences. a Tropical climate example of dependencies between monthly surface

pressure anomalies in the West Pacific (WPAC, regions depicted as shaded boxes below nodes), as well as surface air temperature anomalies in the

Central Pacific (CPAC) and East Pacific (EPAC). Correlation analysis and standard bivariate Granger causality (GC) result in a completely connected graph

while a multivariate causal method (PCMCI)23,24 better identifies the Walker circulation: Anomalous warm surface air in the East Pacific is carried

westward by trade winds across the Central Pacific. Then the moist air rises towards the upper troposphere over the West Pacific and the circulation is

closed by the cool and dry air sinking eastward across the entire tropical Pacific. PCMCI systematically identifies common drivers and indirect links among

time-lagged variables, in this particular example based on partial correlation tests. Details on data in ref. 53. b Application of a similar method to Arctic

climate25: Barents and Kara sea ice concentrations (BK-SIC) are detected to be important drivers of mid-latitude circulation, influencing winter Arctic

Oscillation (AO) via tropospheric mechanisms and through processes involving vertical wave activity fluxes (v-flux) and the stratospheric Polar vortex

(PoV). Details on methodology and data in ref. 25. ©American Meteorological Society. Used with permission. c Application from ecology (details in ref. 11):

dependencies between sea surface temperatures (SST), and California landings of Pacific sardine (Sardinos sagax) and northern anchovy (Engraulis

mordax). Granger causality analysis only detects a spurious link, while convergent cross mapping (CCM) shows that sardine and anchovy abundances are

both affected by SSTs
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Classically, the Granger causality test is based on linear auto-
regressive modeling (see Box 1), but nonlinear dependencies can
be modeled with more complex time series models or even the
information-theoretic analog transfer entropy37. While bivariate
time series models do not explicitly account for indirect links or
common drivers as shown in Fig. 1a, more variables can be
included in multivariate extensions of GC. Nevertheless, as illu-
strated in Box 1 GC is limited to lagged causal dependencies and,
furthermore, has known deficiencies in the presence of sub-
sampled time series and other issues38. GC has a long history of
applications across a wide range of scientific domains, including
Earth system science39–41.

Nonlinear state-space methods. While GC and also the other
frameworks discussed here view systems as having interactions
that arise from an underlying stochastic process, convergent
cross-mapping11 (CCM) and related methods10,42 take a different
dynamical systems perspective. These methods assume that
interactions occur in an underlying dynamical system and
attempt to uncover causal relationships based on Takens’

theorem and nonlinear state-space reconstruction. Thus, for these
methods to apply it is necessary to demonstrate that a determi-
nistic nonlinear attractor can be recovered from the data. In this
sense it is thought to be complementary to the more statistical
approaches discussed here. As illustrated in Fig. 2b, a causal
relationship between two dynamical variables X and Y can be
established if they belong to a common dynamical system, which
can be reconstructed from time-delay embedding of each of the
observed time series. More specifically, if variable X can be pre-
dicted using the reconstructed system based on the time-delay
embedding of variable Y, then we know that X had a causal effect
on Y. Nonlinear state-space methods have been applied to
ecology11,43 as shown in Fig. 1c, as well as in climate science44.

Causal network learning algorithms. For time series that are of
a stochastic nature, CCM is less well suited. Multivariate exten-
sions of GC fail if too many variables are considered or depen-
dencies are contemporaneous due to time-sampling24 and in
other cases (see also the challenges section). Causal network
learning algorithms of various types have been developed for the
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Fig. 2 Overview of causal inference methods. a Multivariate Granger causality tests whether omitting the past of a time series X (black dashed box) in a

time series model including Y’s own and other covariates’ past (blue solid box) increases the prediction error of Y at time t (black node). Hence, only time-

lagged causal relations can be found. b The nonlinear state-space method convergent cross-mapping (CCM), illustrated for the chaotic Lorenz system,

reconstructs the variables’ state spaces (MX, MY) using time-lagged coordinate embedding and concludes on X→Y if points on MX can be predicted using

nearest neighbors in MY (orange ellipse) and the prediction improves the more points on the attractor are sampled. c Causal network learning algorithms

cope well with high dimensionality and can often also identify the direction of contemporaneous links. Exemplified on the model of Box 1, the PC

algorithm12, adapted to time series, starts from a graph where all unconditionally (p= 0) dependent variable pairs (assuming stationarity, only links ending

at time t are represented) are connected and iteratively tests conditional independence with increasing number of conditions p. Lagged links are oriented

forward in time (causes precede effects), while contemporaneous links are left undirected (circle marks at the ends) in this skeleton discovery phase. For

example, Xt−1 and Zt (black nodes) are correctly identified as independent already in the second iteration step (p= 1) where the dependence through Yt-1

(blue box) is conditioned out, while we need to condition on two variables to detect that Zt−2 andWt are independent (p= 2). In contrast to GC, PC avoids

conditioning on the whole past leading to lower estimation dimensions. Contemporaneous links are then oriented by applying a set of rules in the

orientation phase. Here the finding that Wt-1 and Zt are independent conditional on Zt−1, but not conditional on Wt, allows to identify Zt→Wt because the

other causal direction is not consistent with the observed conditional independencies. However, for the link between Xt and Yt no such rule can be applied

since all conditional-independence based algorithms resolve causal graphs only up to a Markov equivalence class. d Structural causal models utilize

different assumptions than the previous approaches to detect causal directions within Markov equivalence classes by exploiting asymmetries between

cause and effect (principle of independence of mechanisms13). Shown is the LiNGAM method54 (assuming a linear model with non-Gaussian noise) which

can identify Yt!Xt since the residual of the model for this direction (black fit line) is independent of Y (top subplot), while this is not the case for Xt!Yt

(red line)
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reconstruction of large-scale causal graphical models. They can be
classified by their search architecture, that is, whether they start
with an empty or fully connected graph, and the statistical cri-
terion for removing or adding an edge. The common feature of
these algorithms is that they assume the Markov condition

mentioned above together with the Faithfulness assumption,
which requires that all observed conditional independencies arise
from the causal structure12. Taken together, these two conditions
allow to infer information about causal interactions from testing
which conditional independencies hold true for the observed

LiNGAM A | very short introduction to causal inference
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Xt ¼ aYt þ EXt

Yt ¼ EYt

Zt ¼ bZt�1 þ cYt�1 þ EZt

Wt ¼ dWt�1 þ eZt þ EWt ;

ð1Þ

with nonzero coefficients and where the noise terms Et
Z, Et

W are standard normal and Et
X, Et

Y uniformly distributed. The causal relations of this model

are visualized in a time series graph (see Figure, panel a) with the repeated grey links indicating stationarity. The model features autocorrelation, lagged,

and contemporaneous links that can emerge due to time aggregation (Fig. 4).

Lagged correlation (see Figure, panel b) here yields spurious associations between X and Z due to Y acting as a common driver. Furthermore, Y and

W are correlated via an indirect path Y!Z!W, and X and W are also spuriously correlated. Multivariate Granger causality is designed to account for

common drivers and indirect links and can be implemented as a vector autoregressive model. In the present example (see Figure, panel c), Y Granger-

causing W is concluded by evaluating the two models

Wt ¼
Xτmax

τ¼1

β
τ
Vt�τ

þ α
τ
Yt�τ

þ errort ð2Þ

Wt ¼
Xτmax

τ¼1

~β
τ
Vt�τ

þ errort ð3Þ

with V= (W, Z, X) and establishing that the residual variance of model (2) is smaller than that of model (3). Put more generally, the information in the

past of Y helps in predicting W beyond the remaining past (Fig. 2a). However, the link Y!W is spurious since Yt−1 improves predicting Wt only

indirectly via the contemporaneous Zt and GC does not account for contemporaneous confounders or mediating variables. Furthermore, GC misses the

contemporaneous causal relation Yt!Xt because only information from the past is tested.

The PC algorithm represents the framework of causal network learning algorithms12 and overcomes some of these shortcomings. As explained in Fig. 2c

the PC algorithm, adapted to time series, detects common drivers and indirect links also between contemporaneous variables. It unveils all spurious

links and identifies the links Yt−1!Zt and Zt!Wt (see Figure, panel d), while the link between Xt and Yt cannot be oriented since the PC algorithm, and

conditional independence-based network learning algorithms in general, can only detect causal graphs up to their Markov equivalence class (marked

by circles at the end of links).

SCMs allow to identify causal directions also within a Markov equivalence class, if certain assumptions on the structural form of the underlying process

are fulfilled. Shown here (see Figure, panel e) is the LiNGAM approach (explained in Fig. 2d) which can be adapted to time series and assumes that the

model is linear and at least one of the noise terms is non-Gaussian. Here, LiNGAM can identify the linear causal influence Yt!Xt because X and Y are

driven by non-Gaussian noise. Note that already the presence of autocorrelation in either X or Y would allow the PC algorithm (but not GC) to identify

the causal direction between the two. CCM, as a method that does not explicitly condition on other variables, is not well suited for multivariate, purely

stochastic processes24.

The preceding analysis was based on methods whose output can be interpreted in a causal sense only under the assumption of Causal Sufficiency, that

is, that no unobserved common drivers exist. The Fast Causal Inference (FCI) algorithm12,47 belongs to the class of network learning algorithms that do

not require Causal Sufficiency. Like the PC algorithm, FCI is based on iterative conditional independence tests followed by (more involved) additional

phases. Suppose FCI outputs the causal graph shown in the Figure in panel f. Here, the link between Xt and Yt still cannot be oriented, and also for the

link Yt−1!Zt we cannot exclude the possibility that a common driver induced this link (as marked by the circle at the tail of the link which stands for the

two possibilities ! and $, the latter denoting a common driver link). However, the FCI output Zt!Wt (without a circle at the tail) tells us that Zt
causesWt, potentially indirectly, but there cannot be a common driver since such a confounder would induce dependencies that are not consistent with

the observation that here Yt−1 is conditionally independent of Wt given Zt (or also that Zt−1 is conditionally independent of Wt given Zt and Wt−1).

This example demonstrates that even for very general cases, and without assuming away unobserved drivers, causal inference methods can extract

causal information from observed conditional independencies and potentially further model assumptions. In practice, however, for short sample sizes

some methods may strongly suffer from unreliable graph estimates.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10105-3 PERSPECTIVE

NATURE COMMUNICATIONS |         (2019) 10:2553 | https://doi.org/10.1038/s41467-019-10105-3 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


data. For example, the PC algorithm45 (named after its inventors
Peter and Clark) and related approaches23,24,46,47 start with a
fully connected graph and test for the removal of a link between
two variables iteratively based on conditioning sets of growing
cardinality (Fig. 2c). In this way also causal directions for con-
temporaneous links can often be assessed. Greedy equivalence
search48, on the other hand, starts with an empty graph and
iteratively adds edges. The statistical criterion for removing or
adding an edge can either be a conditional independence test or a
properly defined score function that quantifies the likelihood of a
particular graph structure given the data. Conditional inde-
pendencies can flexibly be tested with different types of tests:
Linear conditional independence can be assessed with partial
correlation, while a wealth of recent machine learning approaches
on nonparametric tests addresses a wide range of independence
and dependence types24,49,50. Score functions can be based on
Bayesian or information-theoretic approaches. Sun et al.51, for
example, cast causal network learning as an information-theoretic
optimization problem. Causal network learning algorithms can
incorporate time-order as a constraint (causes precede effects)
and utilize a set of causal orientation rules to identify causal
directions. The PC-based method PCMCI23,24 applied in Fig. 1a
addresses the particular challenges of autocorrelated high-
dimensional and nonlinear time series data based on a
condition-selection step (PC), followed by the momentary con-
ditional independence (MCI) test. As illustrated in Box 1, some
network learning approaches, e.g., FCI12, account for unobserved
direct common drivers and can still partially identify which links
must be causal. Causal network learning algorithms have started
to be applied in Earth system sciences only recently, mainly
focusing on climate science23,25,52,53.

Structural causal model framework. GC requires a time delay
between cause and effect to identify causal directionality. If cau-
sation occurs almost instantaneously, or at least faster than the
observable sampling interval, then causal directions cannot be
identified in general. Many causal network learning algorithms,
on the other hand, are also applicable to contemporaneous
dependencies, but they can only identify causal graphs up to a
Markov-equivalence class. For example, under the Faithfulness
assumption, measuring that X is conditionally independent of Y
given Z, while all other (conditional) relationships are dependent,
gives rise to three different causal graphs that are Markov-
equivalent if no additional information about time-order is
available: X Z→Y, X→Z→Y, or X Z Y. As illustrated in
Box 1, the simplest example of Markov equivalence are two
contemporaneously dependent variables where the causal direc-
tion cannot be inferred with conditional independence-based
methods. Structural causal models (SCMs) (Fig. 2d) can identify
causal directions in such cases because they permit assumptions
about the functional class of models (e.g., linear or nonlinear,
additivity, noise distributions)54–56. Other methods exploit het-
erogeneity in the data by searching for models that are invariant
over space or time57–61. For an overview see references13,38. Most
of these principles extend to settings with temporal dependence
as further elaborated in the Way forward section. SCMs have not
yet been applied in Earth system sciences except for one work in
remote sensing62.

Key generic problems in Earth system sciences
Causal hypothesis testing. We start by illustrating the challenges
associated with a key causal hypothesis testing problem in climate
research. Mid-latitude weather (including extreme events) is
largely determined by nonlinear dynamical interactions between
jet streams, storm tracks, and low-frequency teleconnections63.

These dynamical processes are partially not well represented in
the latest climate models. Hence, understanding drivers and
favorable boundary conditions of weather-determining circula-
tion regimes is crucial to improve (sub-)seasonal predictions,
evaluate climate models, and reduce uncertainty in regional cli-
mate projections64. Important questions (Fig. 3a) in this context
include: what drives the strength, position, and shape of the jet
stream? What is the relative importance of tropical and Arctic
processes26,28,65? Uncovering causal relations from the observa-
tional record here raises a number of challenges. To name just a
few, first, time series representing the climatologically relevant
subprocesses need to be extracted from typically gridded spatio-
temporal datasets25,66, as illustrated in Fig. 3a. This can, for
example, be achieved by averaging over corresponding regions,
defining an index describing the jet stream position, or a more
data-driven approach using dimension-reduction methods66.
Secondly, reconstructing the causal relations between these
extracted variables is challenging because different nonlinear
processes can interact on vastly different time scales from fast
synoptic and cloud-radiative processes to multi-year variability
driven by slow oceanic processes67. Last, the distributions of
climate variables, for example precipitation, are often non-
Gaussian. Similar data characteristics also occur in neuroscience
where first different subprocesses of the brain need to be recon-
structed, e.g., from spatio-temporal electroencephalography
measurements, and time series reflect a multitude of processes
operating on different frequencies30,68.

Causal complex network analysis. Network analysis of complex
systems is a rapidly growing field69 and the network perspective
may help to identify aggregate and emergent properties of the
human brain68 or the Earth system66. For example, a phenom-
enon such as El Niño results from the complex interplay between
multiple processes in the tropical Pacific70 and has a large effect
on the global climate system. In standard approaches68,71, nodes
are defined as the time series at different grid locations and links
are typically based on correlations between the grid point time
series. A common network measure is the node degree, which
quantifies the number of processes linked to a node. However,
defined based on correlations, network measures69 do not allow
for a causal interpretation such as the information flow within the
system71. Grounding network theory in causal networks allows to
better interpret network measures66,72: an example for linear
measures is reproduced in Fig. 3b. Like for the other generic
problems, the challenges lie in high-dimensional nonlinear
spatio-temporal data, and here also in a proper definition of
network measures that takes into account causal interactions and
accounts for the spatial definition of nodes. Causal network
comparison metrics can then be utilized for a causal evaluation of
physical models (see last paragraph in this section).

Exploratory detection of causes of extreme impacts. In the
Earth system, as well as in many other complex systems, the most
devastating impacts are often related to multiple, compound or
synergistic drivers73. For instance, devastating wildfires need dry
and hot conditions, available fuel, and an ignition source. Many
impacts are related to threshold behavior74, and multiple drivers
contribute to the tipping of the system75,76. Consider the example
shown in Fig. 3c where only the synergistic combination of
extreme inland precipitation and extreme storm surge leads to
coastal floods77. Causal inference methods can be helpful in
identifying the relevant drivers from a typically large number of
potential drivers that may be correlated with impacts78. Causal
methods further allow us to identify regime shifts in functional
relationships that are, e.g., triggered by extreme conditions.
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The challenges here include high-dimensionality, synergistic
effects, and the often small sample size of observed impacts, and
are relevant also in other fields such as neuroscience68.

Causal evaluation of physical models. In many disciplines of
Earth system sciences, models of the system or subsystem play a
fundamental role in understanding relevant processes. Models
differ regarding which subprocesses are resolved and the type of
parametrization used. Biogeochemical models, for instance, help
to understand element cycles and are a crucial basis for carbon-
climate feedbacks in the coupled Earth system. At a higher level,
climate models2,79 simulate the interactions of the atmosphere,
water bodies, land surface and the cryosphere. In all cases, and
at all levels, models are based partly on differential equations

representing known processes and partly on semi-empirical
relationships representing unknown processes or approximating
known processes that cannot be resolved at the global scale due
to numerical issues80. Due to the nonlinear nature of the system,
small differences in parameterization can potentially lead to large
deviations in overall model characteristics. A key task is to
evaluate which model better simulates the real system. Currently,
such evaluations are based on simple descriptive statistics like
mean and variance, climatologies, and spectral properties of
model output and observations2,79. However, even though a
particular model might well fit descriptive statistics of the
observational data, for example, the global distribution of gross
primary production (GPP) (Fig. 3d), the model might not well
simulate the physical mechanisms affecting GPP, given that
multiple model formulations and parameterizations, even when
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Fig. 3 Key generic problems in Earth system sciences. a Causal hypothesis testing in climate research. The question of how the position of the jet stream

depends on Arctic and tropical drivers is challenging due to different temporal scales and the spatial definition of variables (hatched regions). b Climate

network analysis attempts to describe dynamics of the Earth system using complex network theory. Basing this theory on causal network measures allows

one to better interpret network properties. Here major tropical atmospheric uplifts were identified as causal gateways with strong average causal effect and

average causal susceptibility in the network (more details in ref. 66). Nodes correspond to climatic subprocesses in different regions and the lower right

graph illustrates the causal network metrics for a variable X: the average causal effect is the average change in any other component (node) induced by a

one-standard-deviation increase (perturbation) in X. Conversely, the average causal susceptibility is the average change in X induced by perturbations in

any other component. Here, the Out-Degree refers to the fraction of components significantly (at 5% level) affected by a component and correspondingly

for the In-Degree. c Identifying drivers of extreme impacts is challenging due to the typically large amount of correlated drivers compared to much fewer

causally relevant drivers, that, furthermore, may only in combination have a large effect (synergy). For example, a flood might require both storm surges

and precipitation to be in an extreme state. Such types of dependencies are difficult to represent with a pairwise network. d Basing model evaluation on

causal statistics allows to better identify models with similar causal interaction structure as observational data, rather than comparing averages and

climatologies. Shown is gross primary production (GPP) from observations and four illustrative models where the challenge lies in the extraction of

variables (X1, X2, …), here shown by some red encircled regions, as well as defining suitable network comparison metrics (panel b) based on causal link

weights (edge colors) and aggregate node measures (node colors)
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wrong, can fit the observations equally well, a problem known as
underdetermination or equifinality81. As a complementary cri-
terion we propose to compare reconstructed causal dependencies
of models and observational data (Fig. 3d). The underlying
premise is that causal dependencies are more directly linked to
the physical processes and are, therefore, more robust against
overfitting than simple statistics and, hence, models that are
causally similar to observations will also yield more reliable
future projections. As for the previous example, also here the
challenges lie in extracting suitable causal variables from often
noisy station-based measurements or high-dimensional spatio-
temporal fields and also the fact that processes can interact
nonlinearly involving different spatio-temporal scales. In addi-
tion, model output may not satisfy the conditions underlying
some causal inference methods, e.g., if dependencies are purely
deterministic. Finally, suitable evaluation and comparison statis-
tics based on causal networks need to be defined (see paragraph
on causal complex network analysis). In Earth system sciences,
model evaluation can help to build more realistic models to
improve projections of the future, which is highly relevant for
policy making82.

Challenges from a methodological perspective
Process challenges. At the process level, a number of challenges
arise due to the time-dependent nature of the processes giving
rise to strong autocorrelation (Fig. 4, point 1) and time delays
(Fig. 4, point 2). Next, ubiquitous nonlinearity (Fig. 4, point 3),
also in the form of state-dependence (Fig. 4, point 4) and synergy
(see Fig. 3c), requires a careful selection of the estimation method
(see nonlinear methods in method overview section). Note that
sometimes variables from model output can be deterministically
related via a set of equations, which poses a serious problem for
many, but not all, causal methods12,24. As mentioned in the jet
stream example, a geoscientific time series will typically contain
signals from different processes acting on vastly different time
scales, e.g., oceanic and atmospheric ones, which may need to be
disentangled to better interpret causal links (Fig. 4, point 5). A
basic assumption in a number of statistical methods used in
causal inference frameworks (e.g., linear regression) is the
assumption that the noise distribution is Gaussian, which is
violated by processes featuring heavy tails and extreme events
(e.g., precipitation; Fig. 4, point 6). On the other hand, some
methods turn non-Gaussianity into an advantage54 (Fig. 2d).
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Fig. 4 Methodological challenges for causal discovery in complex spatio-temporal systems such as the Earth system. At the process level, autocorrelation

(1), time delays (2), and nonlinearity (3), also in the form of state-dependence and synergistic behavior (4), require a careful selection of the estimation

method. Further, a time series might contain signals from different processes acting on vastly different time scales (5). Noise distributions (6) can feature

heavy tails and extreme-values which challenges the ubiquitous methodological Gaussian assumption. At the data aggregation level, the most basic

challenge is the definition of the causally relevant variables (7) representing the subprocesses of interest from spatio-temporally gridded data (e.g., from

satellites) or station data measurements. Unobserved variables (8) need to be taken into account regarding a causal interpretation of the estimated graph.

Time sub-sampling (9) and aggregation (10) can make causal links appear contemporaneous and even cyclic due to insufficient time resolution (e.g., due

to the standard practice of time averaging depicted here in a time series graph24). Causal inferences are degraded due to measurement errors (11) such as

observational noise, systematic biases (first few samples), or even missing values (grey samples), that may be causally related to the measured process,

constituting a form of selection bias (12). Some datasets are of a discrete type (13), either due to quantization, or as categorical data, e.g., an index

representing different weather regimes, and require methods that deal with discrete, and also mixed data types. Next to measurement value uncertainties,

for paleo-climatic data even the measurement time points typically are given only with uncertainty (14), which especially challenges methods exploiting

time-order. At the computational and statistical level, the scalability of methods, regarding both sample size (15) and high dimensionality (16) due to the

number of variables as well as large time delays, is of crucial practical relevance for computational run-time and detection power. Finally, uncertainty

estimation (17, width of links), also taking into account data uncertainties, poses a major challenge
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Data challenges. At the data aggregation level, our generic
examples demonstrate that a major challenge is to define and
reconstruct the causally relevant variables that represent the
subprocesses of interest (Fig. 4, point 7). These variables have to
be extracted from typically high-dimensional spatio-temporal
gridded datasets (e.g., from satellite observations or model out-
put) or station data measurements, which can be done by
dimensionality reduction methods. Moreover, these extracted
variables should be interpretable and represent physical sub-
processes of the system.

Often, relevant drivers cannot be measured, which requires to
consider the possibility of unobserved variables (Fig. 4, point 8)
regarding a causal interpretation of the estimated graph, since
they may render detected links spurious (see also Box 1).
Arguably, identifying the absence of a causal link, implying that a
physical mechanism is unlikely24, is a more robust finding, which
requires less strong assumptions (no Causal Sufficiency). Another
aspect of Causal Sufficiency is that not taking into account
important drivers, such as anthropogenic climate forcings, may
render time series nonstationary. Time series pose a particular
challenge regarding time-subsampling (Fig. 4, point 9), which can
also be considered as a case of unobserved samples of a variable,
and time-aggregation (Fig. 4, point 10) which can let causal
dependencies appear contemporaneous or even cyclic. The
standard GC cannot deal with contemporaneous links, which
can be identified using network learning algorithms or SCMs (see
also Box 1).

On the data quality side, satellites, as well as station instruments,
are plagued by all kinds of measurement errors (Fig. 4, point 11)
such as observational noise, systematic biases, and also missing
values (notably cloud occlusions or sensor malfunctioning). These
may also be causally related to the measured process, constituting a
form of selection bias (Fig. 4, point 12).

While in Earth system sciences the data will often attain a
continuous range of values (e.g., temperature), variables can also be
of a discrete type (Fig. 4, point 13), either due to quantization, or as
categorical data. For example, one may be interested in causal
drivers of an index representing different weather regimes or a time
series of rarely occurring extreme events, which additionally raises
the challenge of class imbalance—many 0 and few 1. Causal
inference problems with such data require a suitable choice of
methods, for example, conditional independence tests adapted to
mixed data types. For paleo-climate data, the assumption of a time
order is challenged since the measurement time points typically are
given only with uncertainty (Fig. 4, point 14).

Computational and statistical challenges. From a computational
and statistical point of view, scalability is a crucial issue, both
regarding sample size (Fig. 4, point 15) and high dimensionality
(Fig. 4, point 16). While larger sample sizes (long time series) are
typically always beneficial for more reliable causal inferences, the
computational time of methods may scale unfavorably with
sample size (e.g., cubically for some kernel methods16). The more
variables are taken into account for explaining a potentially
spurious relationship, the more credible a causal discovery
becomes. However, many variables together with large time lags
to account for physical time delays (e.g., to identify atmospheric
teleconnections), lead to high dimensionality which may strongly
affect statistical reliability. This compromises statistical power,
that is, the probability to detect a true causal link, and potentially
also the control of false positives at a desired significance
level23,24. Low-statistical power implies that, especially, weak
causal effects with low signal-to-noise ratio, which are sometimes
of interest, are not well detected. Last, uncertainty estimation
(Fig. 4, point 17) that also takes into account potentially available
data uncertainties (measurement value as well as dating

uncertainties, see points 11 and 14), poses a major challenge for
causal inference methods.

Most of the challenges discussed in this section are the same
for correlation or regression methods which are, in addition,
ambiguous to interpret and often lead to incorrect conclusions as
shown in the examples section. We therefore emphasize that
there is no strong reason to avoid adoption and exploration of
modern causal inference techniques. Each of the methods
summarized in the method overview section addresses one or
several of these challenges. We list key strengths and suggest
future research directions further discussed in the next section.

Finally, a crucial challenge when interpreting the output of
causal inference methods is that causal conclusions are based on
the assumptions underlying the different methods12,13,24. These
assumptions should, but often cannot, be tested and it is
important to make them transparent and discuss how different
assumptions would alter conclusions for a particular application.

Way forward
Avenues of further methodological research. The preceding
Earth system sciences challenges (Fig. 4 and Table 1) are rather
generic for complex dynamical systems and apply to many other
fields. The challenges point to a way forward to advance causal
inference methods for such systems. In the short term, our
example applications demonstrate that the existing methods
already address some of the mentioned challenges. For example,
PCMCI was developed to address high-dimensional time-lagged
linear and nonlinear causal discovery and takes into account
autocorrelation23,24 and CCM11 was specifically built to account for
nonlinear state-dependent relationships. The largest potential for
short-term methodological advancements lies in combining differ-
ent conceptual approaches in order to address multiple challenges.

First, to give some examples, such as those listed in Table 1,
causal network learning algorithms that deal well with high-
dimensional data are limited by their inability to identify causal
directionality among Markov equivalence classes12. This short-
coming can be alleviated by combining causal network learning
algorithms with the SCM framework and making additional
assumptions on (independence of) mechanisms4,13,57,83 that
permits to identify causal directions in these cases. Secondly,
novel methods can incorporate ideas from theory on causal
discovery in the presence of unobserved variables and selection
bias12,47, time-sub-sampling84,85, time-aggregation and cyclic
feedbacks86, and measurement error87. Thirdly, filtering methods
as preprocessing steps, e.g., based on wavelets88, can help to
disentangle causal relations on different time scales, in the
simplest example by filtering out a confounder like the seasonal
cycle.

In the mid-term, it is worth exploring methods that have
not been applied to Earth system data, but whose theoretical
properties may render them suitable for the challenges at
hand. For example, further methods that are based on the
principle of independent mechanisms4,13,57,83 such as prediction
invariance13,58,59,61 or causal discovery from non-stationary
data60 can potentially make use of the ubiquitously present
nonstationarity and external perturbations in Earth system data
to infer causal structure. While the black-box character of most
machine learning algorithms and deep learning in particular
does not lend itself directly to causal discovery, such tools can
nevertheless be useful in many aspects of causal discovery.
For example, Chalupka et al.89 use neural networks to reconstruct
causal features from gridded time series datasets. Also conditional
independence tests can be based on deep learning90 and causal
inference can be phrased as a classification problem91. And the
other way around: causal knowledge, as argued by Pearl, should
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be incorporated into machine learning to yield more robust
predictions and classifications, for example, in such unresolved
problems as extrapolation and domain adaptation14.

Validation and a benchmark platform. Method development
and comparison require benchmark datasets with known causal
ground truth for validation. Ideally, such ground truth comes
from expert knowledge on real data or real experiments that can
also be used for falsification of causal relationships predicted from
observational causal inference methods. Unfortunately, in Earth
system sciences such datasets currently exist only for expert-
labeled causal relations among few variables (e.g., some bivariate
examples in ref. 92). To some extent, out-of-sample predictions
can provide partial validation, but the main alternative in Earth
system sciences is experiments from physical simulation models.
Such experiments, however, are computationally expensive and
carry the challenge how these have to be designed. A more
tractable approach is to generate synthetic data with simple
model systems that mimic properties and challenges of geos-
cientific data, but where the underlying ground truth is known.
These can then be used to study the performance of causal
inference methods for different challenges in realistic finite
sample situations. From a practitioner’s perspective, it is impor-
tant to find out which method is best suited for a particular task
with particular challenges and for a particular set of assumptions.
Synthetic data, adapted to the problem at hand, can be used to
choose the right method including method parameters. As a first
step to close the gap between method users and developers, we
accompany this Perspective by a causality benchmark platform
(causeme.net) with synthetic models mimicking real data chal-
lenges on which causal inference methods can be compared. Next
to method comparison, the platform also calls for submissions of
real and modeled data sets where the causal structure is known
with high confidence. Insights from such benchmark studies are
relevant also for many other fields.

Combining observational causal inference and physical mod-
eling. In the long term, we envision that the two main approaches

to understand the Earth system (observational data analysis and
Earth system modeling) should become more and more inte-
grated. On the one hand, the generic problem of model evaluation
has outlined ways on how causal inference methods can be used
to identify weaknesses of physical models and guide model
improvement. Furthermore, the currently often heuristic para-
metrization schemes in physical models can be guided by causal
analyses of the respective variables, similar to the proposal to
utilize machine learning to systematically replace parametrization
schemes19,93. Causal discovery can also help to design compu-
tationally expensive physical model experiments more efficiently:
causal relationships estimated from climate model control runs79

(long model runs with fixed pre-industrial conditions) can pro-
vide guidance on where numerical experiments are useful and
where causal effects are not to be expected.

On the other hand, physical constraints, either from theoretical
knowledge or from experimental (modeling) results, can be used
to regularize causal inference methods, for example, by defining
variables, restricting functional classes, identifying expected noise
distributions, time lags and time aggregation, or general data
preprocessing. Even more integrated, novel causal inference
methods can make combined use of observational as well as
experimental data94,95 which has already led to fruitful insights in
genetics. In Earth system sciences, also information from real
experiments on subsystems can be incorporated, not on a large
climatic scale2, but for example from ecosystem96 and mesocosm
experiments97 in ecological labs.

Detecting and attributing climate change. Detection and attri-
bution approaches quantify the evidence for a causal link between
external drivers of climate change and long-term changes in cli-
matic variables2. The goal is to first detect a change and then
attribute this change to the contributions of multiple anthro-
pogenic and natural forcings, and from internal variability2.
Importantly, the focus lies on the effects of long-term forcings on
long-term climatic trends or also changes in, e.g., the frequency of
extreme weather events. Such research questions require coun-
terfactual worlds, which can only be constructed with climate

Table 1 List of methods, key strengths, and further research directions addressing current limitations

Method Key strengths Further research directions

Granger causality and nonparametric

extensions9,37,99
Significance assessment; nonparametric

versions

Dealing with contemporaneous effects and feedback cycles;

high-dimensionality; deterministic dependencies; synergistic

effects; time scales; unobserved variables

Nonlinear state-space methods10,11 State-dependent nonlinear systems;

contemporaneous effects

Significance assessment; high-dimensionality; highly

synchronous dynamics; high stochasticity; time scales;

unobserved variables

Conditional independence-based

algorithms12
High-dimensionality; unobserved variables;

nonparametric tests

Significance assessment; deterministic effects; synergistic

effects; time scales; contemporaneous feedback cycles

PCMCI23,24 High-dimensionality; time delays; strong

autocorrelation; nonparametric tests

Unobserved variables; deterministic effects; synergistic effects;

time scales; contemporaneous feedback cycles

Information-theoretic

algorithms23,24,51
High-dimensionality; nonparametric; time

delays; information-theoretic interpretation

Significance assessment; unobserved variables; deterministic

effects; synergistic effects; time scales; contemporaneous

feedback cycles; efficient entropy estimation

Structural causal models13,38 Contemporaneous effects; nonparametric

versions

High-dimensionality; synergistic effects; time scales;

unobserved variables; time delays

Invariance-based

methods4,13,57,58,60,61
Utilizes heterogeneity in space and time Causality in stationary regimes; same as for SCMs

Bayesian score-based approaches48 Bayesian uncertainty assessment; inclusion

of expert knowledge

High-dimensionality; nonlinearity; deterministic effects;

synergistic effects; time scales; contemporaneous feedback

cycles; unobserved variables; combine with cond.

independence-based methods100

This table is intended to be a rough method guide. A detailed overview is beyond the scope of this Perspective and hardly possible because comparison studies are currently largely lacking. Spurring

research to overcome this lack is a goal of this Perspective and the accompanying platform causeme.net. The terms used in this table are explained in the challenges section and illustrated in Fig. 4
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models, that are then statistically analyzed. For example, the
optimal fingerprinting method2 is based on attributing detected
long-term responses to fingerprint patterns using multiple linear
regression. Hannart et al.98 discuss the inclusion of Pearl’s4 causal
counterfactual theory for a more rigorous foundation of detection
and attribution studies.

Nevertheless, observational causal inference methods can help
to improve climate models as discussed above and can also
directly be used to analyze climate feedbacks in paleo-climate
data44, which is still challenging due to scarce available data and
dating uncertainties (Fig. 4). Furthermore, the recent concept of
emergent constraints attempts to identify an observable statistical
relationship between a feature of interest and a future climate
change signal. For example, climate sensitivity, i.e., the response
of global mean temperature to greenhouse gas emissions, can be
constrained this way82. The underlying premise is, however, that
today’s dependencies between the predictors and climate
sensitivity represent actual physical processes that also hold
under future climate change. Here causal discovery can give more
robust insights by identifying causal predictors that are more
likely to hold under future climate change scenarios.

Conclusions
The current state-of-the-art in data analysis of the Earth system is
still dominated by correlation and regression methods, despite the
fact that these methods often lead to ambiguous and confounded
results. Existing causality methods can already yield deeper
insights from hypothesis testing to the causal evaluation of phy-
sical models—if the particular challenges of Earth system sciences
are properly addressed. A major impediment to a much wider
adoption of causal inference methods is the lack of a reliable
benchmark database. We aim to fill this gap by the accompanying
platform causeme.net which also includes links to accessible
software packages. Applying and interpreting causal inference
methods and integrating these with physical modeling, however,
will also require more in-depth training on methods in Earth
system sciences. Moreover, data-driven causality analyses need to
be designed carefully: They should be guided by expert knowledge
of the system (requiring expertise from the relevant field) and
interpreted based on the assumptions and limitations of the
causality method used (requiring expertise from the causal
inference method). Sensibly applied causal inference methods
promise to substantially advance the state-of-the-art in under-
standing complex dynamical systems from data also in many
other fields with similar challenges as in Earth system sciences, if
domain scientists and method developers closely work together—
and join the ‘causal revolution’14.

Data availability
This Perspective is accompanied by a website hosting a causality benchmark platform.

causeme.net runs a fair use data policy by which data are made freely available to the

public and the scientific community in the belief that their dissemination will lead to

greater understanding and new scientific insights and that global scientific problems

require international cooperation. Open access means that data are freely distributed

without charge. Data download is unrestricted and requires only a free registration for

web security reasons. The platform is intended as a system for causal inference method

intercomparison in a consistent data environment.
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