
Inferring Chemical Reaction Patterns Using Rule

Composition in Graph Grammars

Jakob Lykke Andersen1, Christoph Flamm2, Daniel Merkle1, Peter F. Stadler2−7

1 Department for Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M,

Denmark 2 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria. 3 Bioinformatics

Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Härtelstraße 16-18, D-04107, Leipzig,

Germany. 4 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22 D-04103 Leipzig, Germany. 5 Fraunhofer Institute

for Cell Therapy and Immunology, Perlickstraße 1, D-04103 Leipzig, Germany. 6 Center for non-coding RNA in Technology and

Health, University of Copenhagen, Grønneg̊ardsvej 3, DK-1870 Frederiksberg C, Denmark. 7 Santa Fe Institute, 1399 Hyde Park

Rd, Santa Fe, NM 87501, USA

Email: jakan06@student.sdu.dk; CF∗:xtof@tbi.univie.ac.at; DM∗:daniel@imada.sdu.dk; PFS:studla@bioinf.uni-leipzig.de;

∗Corresponding author

Abstract

Background: Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is
a natural and convenient approach to modeling chemistry. Graph grammar rules are most naturally employed
to model elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in
particular in the analysis of larger systems, to summarize several subsequent reactions into a single composite
chemical reaction.
Results: We introduce a generic approach for composing graph grammar rules to define a chemically useful rule
compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically
infer complex transformation patterns. As an application we automatically derive the overall reaction pattern of the
Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde.
Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction
schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost
pharmaceutical interest that can be understood as “generalized polymers” consisting of five-carbon (isoprene) and
two-carbon units, respectively.
Conclusion: The framework of graph transformations provides a valuable set of tools to generate and investigate
large networks of chemical networks. Within this formalism, rule composition is a canonical technique to obtain
coarse-grained representations that reflect, in a natural way, “effective” reactions that are obtained by lumping
together specific combinations of elementary reactions.

1

Introduction
Directed hypergraphs [1] are a suitable topologi-
cal representation of (bio)chemical reaction networks
where (catalytic) reactions are hyperedges connect-
ing substrate nodes to product nodes. Such net-
works require an underlying Artificial Chemistry [2]
that describes how molecules and reactions are mod-
eled. If molecules are treated as edge and vertex la-
beled graphs, where the vertex labels correspond to
atom types and the edge labels denote bond types,
then structural change of molecules during chemical
reactions can be modeled as graph rewrite [3]. In
contrast to many other Artificial Chemistries this
approach allows for respecting fundamental rules
of chemical transformations like mass conservation,
atomic types, and cyclic shifts of electron pairs in
reactions. In general, a graph rewrite (rule) trans-
forms a set of substrate graphs into a set of product
graphs. Hence the graph rewrite formalism allows
not only to delimit an entire chemical universe in
an abstract but compact form but also provides a
methodology for its explicit construction.

Most methods for the analysis of this network
structure are directed towards this graph (or hy-
pergraph) structure [1, 4], which is described by
the stoichiometric matrix S of the chemical system.
Since S is essentially the incidence matrix of the
directed hypergraph, algebraic approaches such as
Metabolic Flux Analysis and Flux Balance Analy-
sis [5] have a natural interpretation in terms of the
hypergraph. Indeed typical results are sets of pos-
sibly weighted reactions (i.e., hyperedges) such as
elementary flux modes [6], extreme pathways [7],
minimal metabolic behaviors [8] or a collection of
reactions that maximize the production of a desired
product in metabolic engineering. The net reaction
of a given pathway is simply the linear combination
of the participating hyperedges.

In the setting of generative models of chemistry,
each concrete reaction is not only associated with
its stoichiometry but also with the transformation
rule operating on the molecules that are involved
in a particular reaction. Importantly, these rules
are formulated in terms of reaction mechanisms that
readily generalize to large sets of structurally related
molecules. It is thus of interest to derive not only the
stoichiometric net reaction of a pathway but also the
corresponding “effective transformation rule”. In-
stead of attempting to address this issue a posteri-
ori, we focus here on the possibility of composing
the elementary rules of chemical transformations to

new effective rules that encapsulate entire pathways.

The motivation comes from the observation
that string grammars are meaningfully characterized
and understood by investigating the transformation
rules. Consider, as a trivial example, the context-
free grammar G with the starting symbol S and the
rules S → aS′a, S′ → aS′a | B and B → ǫ | bB. In-
specting this grammar we see that we can summarize
the effect of the productions as B → bk, k ≥ 0, and
S → anBan, n ≥ 1. The language generated from
G is thus {anb∗an|n ≥ 1}. Here we explore whether
a similar reasoning, namely the systematic combina-
tion of transformation rules, can help to character-
ize the language of molecules that is generated by
a particular graph rewriting chemistry. Similar to
the example from term rewriting above, we should
at the very least be able to recognize the regulari-
ties in polymerization reactions. We shall see below,
however, that the rule based approach holds much
higher promises.

Chemical reactions can be readily composed to
“overall reactions” such as the net transformation
of metabolic pathways. This observation is used
implicitly in flux balance analysis at the level of
the stoichiometric matrix. Recently, [9] considered
the composition of concerte chemical reactions, i.e.,
transformations of complete molecules, as a means
of reconstructing metabolic pathways. In this con-
tribution we take a different point of view: instead
of asking for concrete overall reactions, we are con-
cerned with the composition of the underlying reac-
tion mechanisms themselves. As we will see, these
can be applied to arbitary molecule contexts. We
therefore address two issues: First we establish the
formal conditions under which chemical transforma-
tion rules can be meaningfully composed. To this
end, we discuss rule composition within the frame-
work of concurrency theory in the following section.
We then investigate the specific restrictions that ap-
ply to chemical systems, leading to a constructive
approach for inferring composite rules.

The basic computational task we envision starts
from an unordered set R of reactions such as those
forming a particular metabolic reaction pathway. To
derive the effective transformation rule describing
the pathway we need to find the correct ordering π in
which the transformation rules pi, underlying the in-
dividual chemical reactions ρi, have to be composed.
We illustrate this approach in some detail using the
Formose reaction as an example in the Results sec-
tion.

2

Graph Grammars and Rule Composition
Graph grammars, or graph rewriting systems, are
proper generalizations of term rewrite systems. A
wide variety of formal frameworks have been ex-
plored, including several different algebraic ones
rooted in category theory. We base our conceptual
developments on the double pushout (DPO) formu-
lation of graph transformations. For the compre-
hensive treatise of this framework we refer to [10].
In the following sections we first outline the basic
setup and then introduce full and partial rule com-
position. Alternative approaches to graph rewrit-
ing in the context of (artificial) chemistry have been
based on the single pushout (SPO) model of graph
transformations, see e.g. [11, 12]. We briefly discuss
the rather technical difference between the DPO and
SPO framework in Appendix A, where we also briefly
outline our reasons for choosing DPO.

Double Pushout and Concurrency

The DPO formulation of graph transformations con-

siders transformation rules of form p = (L
l
←− K

r
−→

R) where L, R, and K are called the left graph, right
graph, and context graph, respectively. The maps l
and r are graph morphisms. The rule p transforms

G to H, in symbols G
p,m
==⇒ H if there is a pushout

graph D and a “matching morphism” m : L → G
such that following diagram is valid:

L K R

G D H

l r

ρ λ

m k n (1)

The existence of D is equivalent to the so-called glu-
ing condition, which determines whether the rule p is
applicable to a match in G. In the following we will

also write G
p
=⇒ H and G⇒ H for derivations, if the

specific match or transformation rule is unimportant
or clear from the context.

Concurrency theory provides a canonical frame-
work for the composition of two graph transforma-

tions. Given two rules pi = (Li
li←− Ki

ri−→ Ri),

i = 1, 2, a composition (L
ql←− K

qr

−→ R) = p1 ∗E p2

can be defined whenever a dependency graph E ex-
ists so that in the following diagram:

L1 K1 R1 L2 K2 R2

(1) (2)

L C1 E C2 R

(3)

K

l1 r1

s1 t1

ul v1 e1

l2 r2

s2 t2

e2 v2 u2

w1 w2

(2)

the cycles (1) and (2) are pushouts, and (3) is a
pullback, see e.g., [13]. We then have ql = s1 ◦ w1

and qr = t2 ◦ w2. The concurrency theorem [14]
ensures that for any sequence of consecutive direct

transformations G
p1,m1

===⇒ H
p2,m2

===⇒ G′ a graph E,
a corresponding E-concurrent rule p1 ∗E p2, and a

morphism m can be found such that G
p1∗Ep2,m
======⇒ G′.

In order to use graph transformation as a model
for chemical reactions additional conditions must be
enforced. Most importantly, atoms are neither cre-
ated, nor destroyed, nor transformed to other types.
Thus only graph morphisms whose restriction to the
vertex sets are bijective are valid in our context. In
particular, the matching morphism m always corre-
sponds to a subgraph isomorphism in our context.
The context graph K thus is (isomorphic to) a sub-
graph of both L and R, describing the part of L
that remains unchanged in R. Conservation of atoms
means that the vertex sets of L, K, and R are linked
by bijections known as the atom-mapping. When
the atom mapping is clear, thus, we do not need to
represent the context explicitly.

It is important to note that the existence of the
matching morphism m : L → G alone is not suffi-
cient to guarantee the applicability of the transfor-
mation. In our context, we require in addition that
the transformation rule does not attempt to intro-
duce an edge in R that has been present already
before the transformation is applied. Formally, the
gluing condition requires that (l(x), l(y)) /∈ L and
(r(x), r(y)) ∈ R implies (m(l(x)), m(r(y))) /∈ G.

Full Rule Composition

In the following we will be concerned only with spe-
cial, chemically motivated, types of rule composi-
tions. In the simplest case the dependency graph
E is isomorphic to R1, later we will also consider
a more general setting in which E is isomorphic to
the disjoint union of R1 and some connected com-
ponents of L2. For the ease of notation from now
on we only refer to a rule composition, and not to a
composition of morphisms as in the Graph Grammar
section, i.e., p1 ∗E p2 will be denoted as p2 ◦ p1 (note
the order of the arguments changes). If E ∼= R1,
then L2

∼= e2(L2) is a subgraph of R1. Omitting the
explicit references to the subgraph matching mor-
phism e2 we can simply view L2 as subgraph of R1

as illustrated in Figure 1.

The rule composition thus amounts to a rewrit-

3

L1 R1 L2 R2

p1 p2

=⇒

L1 R3 R2

p3

Fig. 1: Full composition of two rules requires that L2 is (iso-
morphic to) a subgraph of R1.

ing R1
p2,e2

===⇒ R, while the left side L1 is preserved.

We will use the notation p2 ◦ p1 and G′ p2◦p1

===⇒ G′

for this restricted type of rule composition, and call
it full composition as the complete left side of p2

is a subgraph of R1. Note that L2 may fit into R1

in more than one way so that there may be more
than one composite rule. Formally, the alternative
compositions are distinguished by different match-
ing morphisms e2 in the diagram (2); we will return
to this point below.

Partial Rule Composition

An important issue for the application to chemical
reactions is that the graphs involved in the rules are
in general not connected. Typical chemical reactions
combine molecules, split molecules or transfer groups
of atoms from one molecule to another. The trans-
formation rules for all these reactions therefore re-
quire multiple connected components. For the pur-
pose of dealing with these rules, we introduce the
following notation for graphs and derivations.

Let Q be a graph with #Q connected compo-
nents Qi, i = 1, . . . ,#Q. It will be convenient to
treat Q as the multiset of its components. A typ-
ical chemical graph derivation, corresponding to a
bi-molecular reaction can be written in the form
{G1, G2}

p,m
==⇒ {H1, H2, H3}, where we take the

notation to imply that all graphs Gi and Hj are
connected. We will furthermore insist that rep-
resentations of chemical reactions are minimal in
the following sense: If the left graph of the rule
p = (L ← K → R) matches entirely within G1,
i.e., m(L) ∩ G2 = ∅, then G2 can be omitted. (In
a chemical rewriting grammar, then, one of the
Hi must be isomorphic to G2, becoming redun-
dant as well.) More formally, we say that a deriva-

tion {G1, G2, . . . , G#G}
p,m
==⇒ {H1, H2, . . . ,H#H} is

proper if

∀i, j : Gi
∼= Hj ⇒ Gi ∩m(L) 6= ∅

That is, a proper derivation cannot be simplified. If

the derivation G
p
=⇒ H is proper then #G ≤ #L.

The inequality comes from that fact that multiple
components of L may easily be matched to a single
component of G while each component of L must
match within a component of G.

The conditions for the ◦ composition of rules are
a bit too strict for our applications. We thus relax
them respect the component structure of left and
right graphs. More precisely, we require that E is
isomorphic to a disjoint union of a copy of R1 and
some connected components of L2 so that for ev-
ery connected component Li

2 of L2 holds that either
e2(L

i
2) ⊆ e1(R1) or e2(L

i
2) is a connected compo-

nent of E isomorphic to Li
2. For a rule composition

of this type to be well defined we need that ∃i such
that e2(L

i
2) ⊆ e1(R1) holds. We remark that the

latter condition could be relaxed further to lead to
additional compositions for which left and right sides
are disjoint unions.

The composition of p1 = (L1, K1, R1) and p2 =
(L2, K2, R2) now yields p2 ◦ p1 = ({L1, L

2
2}, K3, R3)

(cmp. Figure 2). Note that right graph R3 cannot
no longer be regarded simply as a rewritten version
of R1 because rule p2 now adds additional vertices
to both the left and the right graph. The composite
context K3 contains only subsets of K1 and K2, but
it is expanded by the vertices of L2

2 and the edges of
L2

2 that remain unchanged under rule p2.

An example of a full rule composition is shown in
Fig. 3. The two rules in the example, which in this
case are also chemical reactions, are part of the For-
mose grammar. The Formose grammar consists of
two pairs of rules. The first pair of rules, (from now
on denoted as p0 and p1), implements both direc-
tions of the keto-enol tautomerism. One direction,
p1, is visualized in Fig. 3. The second pair, (from
now on denoted as p2, p3) is the aldol-addition and
its reverse respectively. The reverse (p3) is also vi-
sualized in Fig. 3. We see that the left side of p1 is
isomorphic to a subgraph of one of the components
of the right side of p3. Composing the two rules by
subgraph matching yields a third rule, p1 ◦ p3.

In general, we require here that the connected
components of R1 and L2 satisfy either e2(L

i
2) ⊆

4

L1 R1 L1

2

p2

L2

2

R2

p1

=⇒

L1

p3

L2

2

R3 R2

Fig. 2: Partial rule composition requires that at least one con-
nected component (here L1

2
) is isomorphic to R1. Additional

components of of the second rule may remain unmatched.

p3

H

O

O

C

C

H

C

H

H

O

O

C

H

C

C

H

p1

H

O

C

C H

C

O

C

p1 ◦ p3

H

O

O

C

C

H

C

H

H

C

O

O

C

H

H

C

Fig. 3: Composition of two rules from the Formose reaction (p1 and p3); the following rule names will be used: p0: forward
keto-enol tautomerism (which corresponds to the reverse of p1), p1: backward keto-enol tautomerism, p2: forward aldol addition
(which corresponds to the reverse of p3), and p3: backward aldol addition. The atom mapping and matching morphism are
implicitly given in these drawings by corresponding positions of the atoms. The context K thus consists of all the atoms as
well as the chemical bonds (edges) shown in black in both the left and the right graph of each rule.

e1(R
j
1) or e1(R

j
1) ∩ e2(L

i
2) = ∅. We furthermore ex-

clude the trivial case of parallel rules in which only
the second alternative is realized. In other extreme,
if all components Li

2 satisfy e1(L
i
2) ⊆ e2(R1), the

partial composition becomes a full composition. For-
mally, these alternatives are described by different
dependency graphs E and/or different morphisms
e1 and e2. Pragmatically we can understand this as
a matching µ of L2 and R1 as in Fig. 4. Specifying µ
of course removes the ambiguity from the definition
of the rule composition; hence we write p2 ◦µ p1 to
emphasize the matching µ.

Constructing Rule Compositions
Given two rules, p1 and p2, it is not only interesting
to know if a partial composition is defined, but also
to create the set of all possible compositions

{p2 ◦µ1
p1, p2 ◦µ2

p1, . . . , p2 ◦µk
p1}

explicitly. This set in particular contains also all full
compositions. The following describes an algorithm
for enumerating all partial compositions.

Enumerating the Matchings µ

The key to finding all compositions is the enumer-
ation of all matchings µ that respect out restric-
tions on overlaps between connected components.

We thus start from the sets
{

R1
1, R

2
1, . . . , R

#R1

1

}

and
{

L1
2, L

2
2, . . . , L

#L2

2

}

of connected components of R1

and L2, resp. In the first set we find all subgraph
matches Li

2 ⊆ Rj
1 (represented as the corresponding

matchings µij) and arrange the result in a matrix of
lists of subgraph matches, Fig. 5a.

The matching matrix is extended by a virtual
column to account for the possibility that Li

2 is not
matched with any component of R1. Every partial
(and full) composition is now defined by a selection
of one submatch from each row of the matrix, see
Supplemental Material for an example. The con-
verse is not true, however: Not every selection of
matches correspond to a partial composition. In par-
ticular, we exclude the case that only entries from
the virtual column are selected. In addition, the
sub-matches must be disjoint to ensure that the com-
bined match is injective. The latter conditions needs
to be checked only when more than one submatch is

5

L2

e2e1

R1 E

µ
Fig. 4: The (partial) composition of two rules is mediated by the dependency graph E and
the two matching morphisms e1 and e2. Since these are subgraph isomorphisms in our case,
E is simply the union e1(R1) ∪ e2(L2). The (partial) match e1(R1) ∩ e2(L2) can be under-
stood as a matching µ between R1 and L2, i.e., as a 1-1 relation of the matching nodes and

edges. Whenever an edge is matched, then so are its incident vertices.

R1
1 R2

1 R3
1

L1
2 1 2

L2
2 1 1

(a) Match matrix

R1
1 R2

1 R3
1 R∅

1

L1
2 1 2 1

L2
2 1 1 1

(b) Extended match matrix

Fig. 5: Example of a match matrix and the same
matrix with its virtual extension. The top row
specifies 1 possibility for L1

2
⊆ R1

1
and 2 for

L1

2
⊆ R3

1
. The extended matrix further specifies

that L1

2
can be unmatched. The bottom rows can

be interpreted similarly. We display the number
of matchings instead of a representation of the
matchings themselves.

selected from the same column.

Composing the Rules

The construction of the composition p2 ◦µ p1 of two
rules p1 and p2 does not explicitly depend on the
component structure of R2 and L1 because it is
uniquely defined by the matching µ and the bijec-
tions of the nodes of Li, Ki, and Ri for each of the
two rules. We obtain L by extending L1 with un-
matched components of L2 and R by extending R2

by the unmatched components of R1. The corre-
sponding extension of µ to a bijection µ̂ of the ver-
tex sets of L and R is uniquely defined. The context
K of the composite rule simply consists the com-
mon vertex set of L and R and all edges (x, y) of
L for which (µ̂(x), µ̂(y)) is an edge in R. We note
in passing that µ̂ defines the atom mapping of the
composite transformation. The explicit construction
of (R,K, L) is summarized as Algorithm 0.1.

The implementation of the algorithm naturally
depends heavily on the representation of transfor-
mation rules, which in our implementation is the
representation from the Graph Grammar Library
(GGL) [15]. The representation is a single graph,
with attached vertex and edge properties defining
membership of L, K and R, as well as the needed
labels.

Not all matchings define valid rule composition.
For instance, consider an edge (u, v) that is present
in R1 and R2 but not in L2 and both u and v are

in L2. This would amount to creating the edge by
means of rule p2 which was already introduced by p1.
Since we do not allow parallel edges and thus regard
such inconsistencies as undefined cases and reject the
matching. Note that a parallel edge does not corre-
spond to a “double bond” (which essentially is only
an edge with a specific type).

Graph Binding

The composition of transformation rules, and
thereby chemical reactions, makes it possible to cre-
ate abstract meta-rules in a way that is similar to
the combination of multiple functions into more ab-
stract functions in functional programming. A re-
lated concept from (functional) programming that
seems useful in the context of graph grammars is
partial function application. Consider, for example,
the binding of the number 2 to the exponentiation
operator, yielding either the function f(x) = 2x or
f(x) = x2. In the framework of rule composition,
we define graph binding as a special case.

Let G be a graph and p2 = (L2, K2, R2) be a
transformation rule. The binding of G to p2 results
in the transformation rule p = (L, K,R) which im-
plements the partial application of p2 on G. This is
accomplished simply by regarding G as a rule p1 =
(∅, ∅, G), and using partial composition; p = p2 ◦ p1.
Note that if p2 ◦ p1 is a full composition, then p can

be regarded as a graph H and G
p2

=⇒ H holds.

Graph binding allows a simplified representation

6

Algorithm 0.1: Composing p1 and p2 to p, by a given partial mapping

Input: p1 = (L1, K1, R1)
Input: p2 = (L2, K2, R2)
Input: µ, a partial matching between L2 and R1

Output: p = (L, K,R)
1 p← empty rule
2 Copy vertices of p1 to p
3 foreach vertex v ∈ p2 do

4 if v is not mapped by µ then

5 Copy v to p
6 else

7 Change membership in L, K and R for vertex µ(v)

8 Copy edges of p1 to p
9 foreach Edge e ∈ p2 do

10 if e is not mapped by µ then

11 Copy e to p
12 else

13 Change membership in L, K and R for edge µ(e)

14 Delete edges and vertices created by p1, but deleted by p2

15 if matching condition not satisfied then abort

16 return p

of reactions. For instance, we can use this for-
mal construction to omit uninteresting ubiquitously
present molecules such as water by binding the graph
of the water molecule to the transformation rule of
a reaction that requires water. Similarly, graph un-
binding can be defined as a transformation rule that
destroys graphs. In a chemical application it can be
used to avoid the explicit representation of uninter-
esting ubiquitous molecules such as the solvent.

Ordering Rules

A wide variety of methods, including flux balance
analysis, can be used to identify pathways or other
subsets of reactions that are of interest. Adjacency
of reactions in the original networks as well as their
directionality can be used efficiently to prune the
possible orders of rule compositions. The fact that
multiple reactions are instantiations of the same
transformation rule, as in the example discussed in
detail in the next section, further reduces the search
spaces.

Results and Discussion
We illustrate the use of transformation rule com-
position by deriving of meta-rules from the graph

grammar consisting of the four rules necessary to
represent the complete Formose reaction, see Fig. 3.
The overall reaction pattern of the Formose cycle
is 2g0 + g1 → 2g1 with g0 being formaldehyde and
g1 being glycolaldehyde. It amounts to the linear
combination

∑9
i=1 ρi of the eight reactions and the

influx ρ1 of g0 listed in Fig. 3. It is important to no-
tice that several of these reactions are instantiations
of the same, well-known chemical transformations.
We have forward keto-enol tautomerism (p0: ρ2, ρ4,
ρ6), backward keto-enol tautomerism (p1: ρ7, ρ9),
forward aldol addition (p2: ρ3, ρ5), and backward
aldol addition (p3: ρ8). The composite rule models
the complete autocatalytic cycle shown in Fig. 6 as
a single meta-rule.

Throughout this section we will not explicitly dis-
tinguish between partial composition and full com-
position, and we interpret the composition operator
◦ as right-associative to simplify the notation. Thus
pi ◦ pj ◦ pk means pi ◦ (pj ◦ pk).

The rules are used in the autocatalytic cycle in
the following order (starting with an keto-enol tau-
tomerisation p0):

p0, p2, p0, p2, p0, p1, p3, p1

As it is not possible to compose this sequence of rules
directly, we start by binding glycolaldehyde g1 to

7

CH2O

3, p2

5, p2

OHO

OHHO

2, p0

1

 9, p1

OH

OH

O

OH

OH

HO

4, p0

OH

OH

OH

O

8, p3

OH

OH

OH

HO
 7, p1

OH

O

OH

HO

6, p0

O

H

C

H

H

C

H

O

O

H

C

H

C

H

O

H

O

H

C

H

C

H

O

H
O C

H

O

H

C

C

H

O

H

H

O

C

H

O
C

C

H

O

H

H

O

H

O

C

H

C
H

1

2

O C

H

3

O

C

H4

O

C

H

O

H

C
H

5

Li Ri

O

H

C

C

H

O

H

H

O

H

O
C

C
H

O

H

C
H

C

H

O

H

H

O

O

C

C H

O

H

C

H

C

H O

H

O

H

O

C
C

H

O

C

H

C

H O

H

O

H

O

C
H

C

H

H

O
C

O

C
H

6

O

O

C H

H

O

O

C

7

H

O

C

O

C

H

8

O

C
H

O

C

H

9

Li Ri

Fig. 6: Above: Chemical reaction network for the Formose reaction; hyperedges are labeled with (i, pj) where i is the i-th re-
action ρi in the rule composition. pj, 0 ≤ j ≤ 3, refers to a specific rule from the Formose reaction; Right: Resulting composed
rule after the composition of the first i rules along the Formose cycle, context shown in black.

reaction p0, as the before-mentioned keto-enol tau-
tomerisation is applied to molecule g1. The resulting
rule is denoted as g1. The hyperedges in the chemi-
cal reaction network depicted in Fig. 6 are numbered
according to the sequence that reflects in which order
the Formose reaction takes place and consequently
the order in which the rule composition subsequently
is done. The first composition refers to the binding
operation. This binding of glycolaldehyde results in
a graph grammar rule, which is depicted in row 1 in
the table depicted in Fig. 6, i.e., the rule (∅, ∅, g1)
(see “Graph Binding”). The numbers at the hyper-
edges (2, 3, . . . 9) refer to the second, third, . . ., ninth

reaction in the sequence of reactions given above.
The graph grammar rule pi, 0 ≤ i ≤ 3, used for the
corresponding hyper-edge is given next to the se-
quence number. The rules inferred by a subsequent
rule composition are given in rows 2 to 9 of the table.

The application of the final rule results in the
composed meta-rule p1 ◦ p3 ◦ . . . ◦ p0 ◦ g1. This rule
precisely covers the reaction pattern of the Formose
reaction, namely how two formaldehyde molecules
and one (bound) glycolaldehyde are transformed to
two glycolaldehyde molecules. However note, that
the rule is general enough such that any pair of
molecules with aldehyde groups can be used, i.e., the

8

inferred reaction pattern refers to a class of overall
reactions and the product does not necessarily need
to be glycolaldehyde.

The practical computation of these compositions
takes less than a second in the current implemen-
tation. Even for substantially more general com-
position sequences the running time remains man-
ageable. For instance, it takes less than 1 minute
to compute all composition sequences with a length
k ≤ 10 of the form pi1 ◦ pi2 ◦ · · · ◦ pik

◦ gq with
ij ∈ {0, 1, 2, 3}, based on the binding of one of the
influx molecules g0 or g1. This results in 1875 differ-
ent inferred composite rules.

Polymerization can also be viewed as a pathway
in a chemical reaction network, albeit one of poten-
tially infinite size. The same methods applied to the
automatic inference of the overall reaction pattern of
the Formose cycle can be directly applied to detect-
ing composition rules for polymerization reactions.
Importantly, even if a chemical reaction network is
not given, the approaches presented in this paper can
be used to automatically find sequences of reactions
that will lead to polymerization. This can be real-
ized by a straight-forward post-processing step: all
that needs to be done is to check whether an inferred
composite rule exhibits a replicated functional unit.
Such polymerization meta-rules also enable the anal-
ysis of chemical systems with highly complex carbon
skeletons such as the natural compound classes of
the terpenes or the polyketides.

Conclusions

Graph grammars provide a convenient framework
for modeling chemistries on different levels of ab-
straction. A chemically valid approach is to see any
chemical reaction as a bi-molecular reaction. This
requires graph grammar rules that cover changes of
molecules in an rather explicit and detailed way.
Understanding chemical reaction patterns usually
requires spanning the chemical reaction networks
based on such rules. Obviously, this approach suf-
fers the inherent potential of an immense combina-
torial explosion. In this paper we introduced the
automatic inference of such higher-level chemical re-
action pattern based on a formal approach for graph
grammar rule combination. We analyzed the auto-
catalytic cycle of the Formose reaction and inferred
its overall reaction pattern as a rule composition of
nine rules. Rule composition is also naturally ap-

plicable to inferring patterns of polymerization re-
actions. Future work will include e.g. the analysis
of terpene-based and hydrogen cyanide-based poly-
merization chemistry. Many of the enzyme reactions
collected in metabolism databases such as KEGG [16]
or MetaCyc [17] are in fact overall reactions of multi-
step mechanisms. The enzyme D-alanine transami-
nase (EC 2.6.1.21), for instance, achieves its chemi-
cal transformation in 12 elementary steps. Generat-
ing chemically correct atom-mappings of such overall
reactions, a very important step e.g. in the inter-
pretation of isotope tracer experiments, is infeasible
with the currently available methods. In contrast a
composite rule constructed from the individual en-
zymatic steps, as found for instance in the MACiE

database [18], is guaranteed to yield the chemically
correct atom mapping for the overal enzyme reac-
tion.

Authors contributions
J.L.A. implemented the rule composition system.
All authors contributed to the theory, the writ-
ing of the manuscript and approved the submitted
manuscript.

Acknowledgments

This work was supported in part by the Volkswa-
gen Stiftung proj. no. I/82719, the COST-Action
CM0703 “Systems Chemistry”, and the Danish
Council for Independent Research, Natural Sciences.

References
1. Klamt S, Haus UU, Theis F: Hypergraphs and Cellu-

lar Networks. PLoS Comput Biol 2009, 5(5):e1000385.

2. Dittrich P, Ziegler J, Banzhaf W: Artificial chemistries
- a review. Artificial life 2001, 7(3):225–275.

3. Benkö G, Flamm C, Stadler PF: A graph-based toy
model of chemistry. J Chem Inf Comput Sci 2003,
43(4):1085–1093.

4. Aittokallio T, Schwikowski B: Graph-based methods
for analysing networks in cell biology. Brief Bioin-

form 2006, 7(3):243–255.

5. Orth JD, Thiele I, Palsson BØ: What is flux balance
analysis? Nature Biotech. 2010, 28:245–248.

6. Schuster S, Fell DA, Dandekar T: A general defini-
tion of metabolic pathways useful for systematic
organization and analysis of complex metabolic
networks. Nature Biotech. 2000, 18:326–332.

9

7. Price ND, Reed JL, Papin JA, Wiback SJ, Palsson BØ:
Network-based analysis of metabolic regulation
in the human red blood cell. J. Theor. Biol. 2003,
225:185–194.

8. Larhlimi A, Bockmayr A: A new constraint-
based description of the steady-state flux cone
of metabolic networks. Discr. Appl. Math. 2009,
157:2257–2266.

9. Félix L, Rosselló F, Valiente G: Efficient Recon-
struction of Metabolic Pathways by Bidirectional
Chemical Search. Bull. Math. Biol. 2009, 71:750–769.

10. Ehrig H, Ehrig K, Prange U, Taenthzer G: Fundamentals

of Algebraic Graph Transformation. Berlin, D: Springer-
Verlag 2006.

11. Rosselló F, Valiente G: Graph grammars and molec-
ular biology. Lect. Notes Comp. Sci. 2005, 3393:116–
133.

12. Danos V, Feret J, Fontana W, Harmer R, Hayman J,
Krivine J, Thompson-Walsh C, Winskel G: Graphs,
Rewriting and Pathway Reconstruction for Rule-
Based Models. Leibniz International Proceedings in In-

formatics 2012. in press.

13. Golas U: Analysis and Correctness of Algebraic

Graph and Model Transformations. Wiesbaden, D:
Vieweg+Teubner 2010.

14. Ehrig H, Habel A, Kreowski HJ, Parisi-Presicce F: Par-
allelism and Concurrency in High-Level Replace-
ment Systems. Math. Struct. Comp. Science 1991,
1:361–404.

15. Flamm C, Ullrich A, Ekker H, Mann M, Hogerl D,
Rohrschneider M, Sauer S, Scheuermann G, Klemm K,
Hofacker I, Stadler PF: Evolution of metabolic net-
works: A computational frame-work. Journal of

Systems Chemistry 2010, 1(4).

16. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M:
KEGG for integration and interpretation of large-
scale molecular data sets. Nucleic Acids Res. 2012,
40:D109–D114.

17. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti
P, Keseler IM, Kothari A, Krummenacker M, Laten-
dresse M, Mueller LA, Ong Q, Paley S, Pujar A,
Shearer AG, Travers M, Weerasinghe D, Zhang P, Karp
PD: The MetaCyc database of metabolic pathways
and enzymes and the BioCyc collection of path-
way/genome databases. Nucleic Acids Res. 2012,
40:D742–D753.

18. Holliday GL, Andreini C, Fischer JD, Rahman SA, Al-
monacid DE, Williams ST, Pearson WR: MACiE: ex-
ploring the diversity of biochemical reactions. Nu-

cleic Acids Research 2012, 40:D783–D789,.

19. Ehrig H, Heckel R, Korff M, Löwe M, Ribeiro L, Wag-
ner A, Corradini A: Algebraic Approaches to Graph
Transformation Part II: Single Pushout Approach
and Comparison with Double Pushout Approach.
In Handbook of Graph Grammars and Computing by

Graph Transformations. Edited by Rozenberg G, Singa-
pore: World Scientific 1997:247–312.

20. Löwe M: Algebraic approach to single-pushout
graph transformation. Theor. Comp. Sci. 1993,
109:181–224.

21. H E: Introduction to the Algebraic Theory of
Graph Grammars. Lect. Notes Comp. Sci. 1979,
13:169.

Appendix A: SPO and DPO in Artificial

Chemistry Models
In the double pushout (DPO) framework a produc-

tion L
l
←− K

r
−→ R is defined by three graphs (the

left graph L, the right graph R, and the context
graph K) and two graph morphisms l : K → L and
r : K → R. In the single pushout (SPO) formal-

ism, L
p

֌ R is specified by only two graphs L and
R and a partial graph morphism p. In other words,
the production is specified by a total graph mor-
phism dom(p) → R, where dom(p) is a subgraph of
L. While DPO lives on the category of graphs and
graph morphisms, SPO is built upon the category of
graphs and partial graph morphisms, see [19] for a
detailed comparison of the two approaches.

There is no real difference between the rules
themselves since DPO and SPO productions can be

translated into each other: L
p

֌ R translates to
L

l
←− dom(p)

r
−→ R where l is the inclusion of dom(p)

in L and r is the domain restriction of p to dom(p).

Conversely, L
l
←− K

r
−→ R translates to L

p
֌ R where

the partial morphism p = r ◦ l−1 is well-defined pro-
vided l is injective and dom(p) = l(K) [20].

The main difference between the two frameworks
lies in the application of the productions, i.e., in the
resulting (direct) graph derivations. SPO deriva-
tions are complete, that is, for each production

L
p

֌ R and each match m : L
m
−→ G there is a

derivation G
p,m
==⇒ H. In contrast, in DPO the cor-

responding derivation exists if and only if the gluing
condition is satisfied:

(I) There are not distinct elements x, y of L with
m(x) = m(y) and y /∈ l(K).

(D) No edge e of G \m(L) is incident to a node in
m(L \ l(K)).

SPO is therefore more powerful than DPO in the
sense that more general transformations can be im-
plemented. On the other hand, the gluing condi-
tion ensures that there are no “side effects” such
as dangling edges (which have to be eliminated by
construction in SPO). These side effects make SPO
transformation more difficult to understand and con-
trol in practical applications.

10

A useful feature of DPO derivations is that pro-
ductions are invertible [21]. As in chemical reactions,
it suffices to exchange the roles of the left and the
right graph, i.e., of products and educts. In contrast,
the more general SPO derivations are not invertible
in general.

In applications of graph transformation systems
to modelling chemical reactions further restrictions
are needed to account for the peculiarities of chemi-
cal transformation systems:

(i) Reaction rules specify subgraphs. Therefore,
the matching morphisms m and n are injec-
tive.

(ii) Since atoms are conserved in chemical reac-
tions, the restrictions lV and rV to the vertex
set are bijections and determine the atom map-
ping. Edges model chemical bonds specified
by electron pairs. These can only be moved
around in the molecules but not collapsed onto
the same bond with the same type. The mor-
phisms l and r therefore must be injective.

Lemma 1. Conditions (i) and (ii) imply the gluing
condition.

Proof. Since m is injective, i.e., m(x) = m(y) im-
plies x = y, condition (I) is satisfied. Condition (ii)
implies that lV (K) is the vertex set of L, i.e., L\l(K)
contains no vertices. Thus m(L \ l(K)) is empty so
that condition (D) is trivially satisfied.

As far as models of chemistry are concerned, there-
fore, SPO and DPO graph transformations are
equivalent.

We prefer to work with the DPO framework for
several reasons. First, the explicit exposure of the
context graph K provides a convenient starting point
for considering transition states e.g. in terms of the
pair of subgraphs (L \ l(K), R \ r(K)). In addition,
in our experience it is helpful to explicitly construct
K in the process of designing rule sets of particular
types of chemistry such as Diels Alder reactions or
aldol condensations appearing in this contribution.
Maybe more importantly, the DPO framework ap-
pears more convenient when building analysis tools
such as coarse graining operations into the rewriting
system. Finally, the framework of (injective) graph
morphisms, in our view, is a more convenient ba-
sis for mathematical investigations than the partial
graph morphisms on which SPO is built.

11

Appendix B: Example of Enumeration of Compositions
In this Appendix we show the complete result of the composition of two (artificial) rules, p1 and p2, including
the selection of submatches from the match matrix. The two rules are depicted in Fig. 7 with the extended
match matrix of the composition p2 ◦ p1, that corresponds to the example of an extended match matrix as
given in the paper. The rules in this section are all depicted with vertices that have an additional index. The
numbering of the components is in increasing order wrt. to these indices, e.g., L1

2 denotes the component
connecting nodes A, 0 and B, 1 and L2

2 denotes the component connecting nodes B, 2 and C, 3.

Q, 0A, 1

P, 3

B, 2

C, 10

C, 4

R, 6

B, 5

B, 7

A, 8

B, 9

Q, 0A, 1

P, 3

B, 2

C, 10

C, 4

R, 6

B, 5

B, 7

A, 8

B, 9

(a) p1

A, 0

B, 1

B, 2

C, 3

A, 0

B, 1

B, 2

C, 3

(b) p2

R1
1 R2

1 R3
1 R∅

1

L1
2 1 2 1

L2
2 1 1 1

(c) Extended match matrix

Fig. 7: The two rules p1 and p2, and the extended match matrix of the composition p2 ◦ p1. The components of both R1 and
L2 are numbered in the same order as the vertex indices.

In the following we will enumerate all valid selections of submatches based on the extended match matrix
and give the corresponding resulting rule composition. The chosen matches are depicted as • in the extended
match matrix. If several matches can be found (in our example this is true for the component L1

2, that can
be matched twice in R3

1), the • has an index.

Composition 1

R1
1 R2

1 R3
1 R∅

1

L1
2 •

L2
2 •

Q, 0

A, 1
P, 3

B, 2
C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

Q, 0

A, 1
P, 3

B, 2
C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

Result of composition 1

Composition 2

R1
1 R2

1 R3
1 R∅

1

L1
2 •1

L2
2 •

12

Q, 0

A, 1

P, 3

B, 2

C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

Q, 0

A, 1

P, 3

B, 2

C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

Result of composition 2

Composition 3

R1
1 R2

1 R3
1 R∅

1

L1
2 •2

L2
2 •

Q, 0
A, 1

P, 3

B, 2

C, 4

R, 6

B, 5
B, 7

B, 9

C, 10

A, 8 Q, 0
A, 1

P, 3

B, 2

C, 4

R, 6

B, 5
B, 7

B, 9

C, 10

A, 8

Result of composition 3

Composition 4

R1
1 R2

1 R3
1 R∅

1

L1
2 •

L2
2 •

Q, 0

A, 1
P, 3

B, 2

C, 10

A, 11

C, 4

R, 6

B, 5

B, 12

B, 7

A, 8
B, 9

Q, 0

A, 1
P, 3

B, 2

C, 10

A, 11

C, 4

R, 6

B, 5

B, 12

B, 7

A, 8
B, 9

Result of composition 4

Composition 5

R1
1 R2

1 R3
1 R∅

1

L1
2 •

L2
2 •

13

Q, 0A, 1

P, 3

C, 10B, 2

C, 4

R, 6

B, 5

B, 7

A, 8B, 9

Q, 0A, 1

P, 3

C, 10B, 2

C, 4

R, 6

B, 5

B, 7

A, 8B, 9

Result of composition 5

Composition 6

R1
1 R2

1 R3
1 R∅

1

L1
2 •1

L2
2 •

Q, 0A, 1

P, 3

B, 2

C, 10

C, 4

R, 6

B, 5

B, 7

A, 8B, 9

Q, 0A, 1

P, 3

B, 2

C, 10

C, 4

R, 6

B, 5

B, 7

A, 8B, 9

Result of composition 6

Invalid Selection
R1

1 R2
1 R3

1 R∅
1

L1
2 •2

L2
2 •

This selection of submatches is invalid, as they are not disjoint (node B, 9 would be matched twice).

Composition 7

R1
1 R2

1 R3
1 R∅

1

L1
2 •

L2
2 •

Q, 0

A, 1

P, 3

B, 2

C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

B, 12

A, 11

Q, 0

A, 1

P, 3

B, 2

C, 4

R, 6

B, 5

B, 7

C, 10

A, 8

B, 9

B, 12

A, 11

Result of composition 7

14

Composition 8

R1
1 R2

1 R3
1 R∅

1

L1
2 •

L2
2 •

Q, 0

A, 1

P, 3

B, 2

C, 10

C, 4

R, 6
B, 5

B, 7

A, 8

B, 9

B, 11

C, 12

Q, 0

A, 1

P, 3

B, 2

C, 10

C, 4

R, 6
B, 5

B, 7

A, 8

B, 9

B, 11

C, 12

Result of composition 8

Composition 9

R1
1 R2

1 R3
1 R∅

1

L1
2 •1

L2
2 •

Q, 0

A, 1

P, 3

B, 2

B, 5

C, 4

R, 6

B, 7

C, 10

A, 8

B, 9

C, 12

B, 11

Q, 0

A, 1

P, 3

B, 2

B, 5

C, 4

R, 6

B, 7

C, 10

A, 8

B, 9

C, 12

B, 11

Result of composition 9

Composition 10

R1
1 R2

1 R3
1 R∅

1

L1
2 •2

L2
2 •

Q, 0

A, 1

P, 3

B, 2

B, 5

C, 4

R, 6

B, 7

C, 10

A, 8

B, 9

C, 12

B, 11

Q, 0

A, 1

P, 3

B, 2

B, 5

C, 4

R, 6

B, 7

C, 10

A, 8

B, 9

C, 12

B, 11

Result of composition 10

15

