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Abstract

Background: High-throughput sequencing allows the detection and quantification of frequencies of somatic single

nucleotide variants (SNV) in heterogeneous tumor cell populations. In some cases, the evolutionary history and

population frequency of the subclonal lineages of tumor cells present in the sample can be reconstructed from these

SNV frequency measurements. But automated methods to do this reconstruction are not available and the conditions

under which reconstruction is possible have not been described.

Results: We describe the conditions under which the evolutionary history can be uniquely reconstructed from SNV

frequencies from single or multiple samples from the tumor population and we introduce a new statistical model,

PhyloSub, that infers the phylogeny and genotype of the major subclonal lineages represented in the population of

cancer cells. It uses a Bayesian nonparametric prior over trees that groups SNVs into major subclonal lineages and

automatically estimates the number of lineages and their ancestry. We sample from the joint posterior distribution

over trees to identify evolutionary histories and cell population frequencies that have the highest probability of

generating the observed SNV frequency data. When multiple phylogenies are consistent with a given set of SNV

frequencies, PhyloSub represents the uncertainty in the tumor phylogeny using a “partial order plot”. Experiments on

a simulated dataset and two real datasets comprising tumor samples from acute myeloid leukemia and chronic

lymphocytic leukemia patients demonstrate that PhyloSub can infer both linear (or chain) and branching lineages and

its inferences are in good agreement with ground truth, where it is available.

Conclusions: PhyloSub can be applied to frequencies of any “binary” somatic mutation, including SNVs as well as

small insertions and deletions. The PhyloSub and partial order plot software is available from https://github.com/

morrislab/phylosub/.

Background
Cancer is a complex disease often associated with a char-

acteristic series of somatic genetic variants [1,2]. Substan-

tial effort has been devoted to genetic profiling of tumors

in hopes of identifying these driver mutations and study-

ing how they drive tumor development and resistance

to treatment [3]. Tumors often contain multiple, genet-

ically diverse subclonal populations of cells [4], and in

some cases it is possible to reconstruct the evolutionary

history of the tumor, thereby aiding in the identifica-

tion of driver mutations, by computing the population
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frequencies of mutations that distinguish the subclonal

populations [5-13].

Somatic mutations can be detected, and roughly quanti-

fied, using exome and whole genome sequencing of a sam-

ple from a bulk tumor [14]. However, recent attempts to

reconstruct subclonal phylogenies have employed much

deeper targeted sequencing [15] of tumor-associated sin-

gle nucleotide variants (SNVs) to achieve higher accuracy

in estimated SNV frequencies [9,10,16,17]. These SNV

frequencies were then used to partially reconstruct the

evolutionary history of tumors based on a single [10,16]

or multiple [9] samples of same tumor. However, due to

short read sequencing, the frequencies of different SNVs

are measured independently, so linkage between the SNVs

in subclones is unavailable and standard phylogenetic

methodology can not be used to construct evolution-

ary histories (as done in [18] or [17]). However, if one
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makes the infinite sites assumption about tumor evolu-

tion, namely that every SNV only appeared once, then

it is possible to use SNV frequencies to automatically

reconstruct full or partial subclonal phylogenies while

also inferring the multiple SNV genotypes of the major

subclonal lineages in the tumor.

Here we describe a new method that automatically per-

forms this phylogenetic reconstruction. First, we demon-

strate that an unambiguous reconstruction is possible by

describing topological constraint rules that are sufficient

conditions to infer whether a triplet of SNV frequencies

is consistent with only a chain or a branching phylogeny.

We then describe a new method, PhyloSub, that auto-

matically infers tumor phylogenies from SNV allele fre-

quencies measured in single or multiple tumor samples.

PhyloSub is based on a generative probabilistic model,

inference in which implicitly implements the two rules by

inferring the hidden phylogenies that have high probabil-

ities of generating the observed SNV frequencies. It uses

Bayesian inference, based on Markov Chain Monte Carlo

(MCMC) sampling, to infer a distribution over phyloge-

nies that incorporates uncertainty due to multiple phy-

logenies being consistent with the SNV frequencies and

also noise in the measurement of the SNV frequencies.

PhyloSub uses a Dirichlet process prior over phylogenies

[19] to group SNVs into major subclonal lineages.

Model assumptions

We assume that the tumor evolution proceeds according

to the clonal evolution theory, namely that all tumor cells

are derived from ancestors that gain growth advantages

over normal tissue and begins to expand [18]. Subsequent

mutations can provide a further fitness or survival advan-

tage to their subclonal lineage [20] which subsequently

increases in frequency compared to cells containing only

the SNVs in the parental lineage. A given tumor sample is

a snapshot of this evolutionary process and may contain,

at non-negligible frequency, cells from multiple major

subclonal lineages, each containing a different assortment

of these advantageous mutations. We make the infinite

sites assumption [21,22], namely that each SNV appears

only once and furthermore that once it appears, it does not

revert back to its original state. As we describe below and

illustrate in Figure 1, in some circumstances, this assump-

tion highly constrains the phylogenies that are consistent

with the SNV allele frequency data, especially if SNV fre-

quencies from multiple samples from the same tumor

are available. Finally, to make our model robust to low

tumor cellularity, we assume that each tumor is derived

from a single clone, however, this assumption is not crit-

ical in modeling tumor evolution and we revisit this

assumption in the discussion section where we describe

how to generalize our model to multicentral tumors

(e.g., [23]).

To simplify our initial discussion, we will assume that

the exact population frequencies of the cells containing

each SNV (i.e., the SNV population frequency) are avail-

able before discussing how we estimate these frequencies

from deep sequencing data of the SNV locus. Note, we

assume that the copy number of a locus is available as

per [10]. In the datasets that we considered, most SNVs

are heterozygous at a normal copy number locus and

the population frequency of other SNVs is easily inferred

from their allele frequencies. In more complex situations,

a number of tools are available to infer copy number

changes associated with specific subclonal lineages from

whole genome sequencing data [11,13].

An important consequence of the infinite sites assump-

tion is that if SNV B occurred in a cell that contained

SNV A, then all cells that have B also have A and thus the

population frequency of A must always be greater than or

equal to that of B, regardless of where and when the tumor

sample was taken. However, a given set of three SNV

population frequencies can still be consistent with two

different phylogenies: a linear phylogeny or a branching

phylogeny (see Figure 1A).

Topological constraint rules

One can distinguish linear or branching descent under

some circumstances. For example, if we have already

established that SNV A is ancestral to both B and C (i.e.,

that all cells with B or C also contain A), then if the popu-

lation frequency of B plus the population frequency of C is

greater than the population frequency of A, then the phy-

logeny must be linear. This is true because in a branching

phylogeny, there are no cells that contain both B and C,

so the population frequency of A must be at least as large

as sum of the frequencies of B and C (see Figure 1B). We

call this the “sum rule”. However, because a linear phy-

logeny is consistent with any set of SNV frequencies from

a single sample, without making any further assumptions

about the tumor evolution process, one needs at least two

tumor samples to be able to rule out a linear phylogeny.

However, given two samples and again assuming that SNV

A is ancestral to both B and C, if the population frequency

of B is larger than that of C in one sample, and vice versa

in the other, than neither B nor C can be ancestral to the

other, and the only phylogeny consistent with both sets

of SNV frequencies is the branching one. We call this the

“crossing rule” because the frequencies of B and C cross

(see Figure 1C for an example). However, there is no guar-

antee that one can apply either rule to any set of SNV

frequencies for all triplets of SNVs, although increasing

the number of tumor samples does make it more likely

that either the sum or crossing rule will be applicable for

one or a pair of tumor samples, respectively. Furthermore,

one needs to also consider the possibility of estimation

error in the SNV population frequencies because these are
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Figure 1 Visualization of topological constraint rules. (A) A, B, C are three SNVs, each of which represents a set of SNVs with similar SNV

population frequencies. When the SNV population frequencies are 0.8, 0.4, 0.2 (left panel), there might be two possible phylogenies that are

consistent with these frequencies (middle panel). The two solutions estimate same number of clonal populations but different genotypes for each

clone. The decomposition of the clonal population frequencies are shown on the right panel. (B) Because of the sum rule, for this given set of SNV

population frequencies 0.8, 0.6, 0.4, a chain structure may be the only possible phylogeny to explain the frequency changes. (C) Under the crossing

rule, when multiple samples from the same patient are taken, we would expect the phylogenies are shared between samples. When another set of

frequencies are observed 0.8, 0.2, 0.4, the branching structure is the only possible phylogeny to explain the frequencies changes for both sample 1

and 2.

inferred from discrete read counts. Note that these two

rules also apply where SNV A is a mock SNV represent-

ing the wildtype state and having population frequency of

100%; as such these two rules also apply for multicentral

tumors.

The PhyloSub algorithm

To explicitly model uncertainty in estimates of the SNV

population frequencies and the precise tumor phylogeny,

we have developed the PhyloSub model that we describe

here. PhyloSub attempts to explain the observed read

counts in terms of a latent phylogeny that associates SNVs

with particular subclonal lineages. We provide software

that takes as input a set of read counts for a set of

SNVs and the copy number status of each SNV, performs

inference in the PhlyoSub model to estimate the num-

ber of major subclonal lineages, the mutational profile of

each lineage, and the proportion of each lineage within

the tumor cell population from which the read data was

drawn. PhyloSub implements the parsimony assumptions

detailed above using a non-parametric prior over tree

structures. It is “generative” in that it attempts to explain

the observed SNV frequencies in terms of an unobserved

phylogeny; our model is also “Bayesian” in that it infers

a posterior distribution over phylogenies and associated

subclonal lineage frequencies. We introduce a new visu-

alization, the partial order plot, to represent the posterior

uncertainty in the phylogeny when the SNV frequencies

alone do not provide sufficient information to uniquely

reconstruct the phylogeny (Figure 2). The sum and cross-

ing rule described above are implicitly incorporated into

our generative model – our model assigns very low proba-

bility to any read counts that reflect deviations from either

rule.

In the following, we provide a brief introduction to

the PhyloSub model (see Section “Methods” for the full

model) and we demonstrate its application to datasets

where a single sample is profiled [17] and those where

multiple samples are profiled [9].We also report the appli-

cation of the model on a simulated dataset to show that

its prior parameterization allows it to represent a wide

variety of phylogenies.

Results and discussion

PhyloSub

PhyloSub represents the major subclonal lineages and

their evolutionary relationships using a directed tree in

which each node is associated with a subclonal lineage

and the edges connect parental lineages to their direct

child lineage. Each subclonal lineage is associated with a
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Figure 2 Derivation of partial order plot. (Left column) Posterior

distribution over trees, each tree has a 0.5 probability under the

posterior. (Right column) Derived partial order plot. Nodes correspond

to SNVs. Edge thickness is proportional to the posterior probability

that parent SNVs is in a subclonal lineage that is the parent of the one

containing the child SNV. SNV nodes are ordered based on a

topological sort implemented as the “layered graph drawing method”

in Graphviz [24]. In this example, SNV A is always in a subclonal lineage

that is the parent of B but the same is true with probability 0.5 for C.

distinct subset of the SNVs input to the model, we call this

subset the genotype of the lineage. Each node is also asso-

ciated with (i) a set of SNVs that are present in this lineage

but not its parent lineage and (ii) the population frequency

of cells with the lineage genotype (and with no other SNVs

from the input set). A subclonal lineage contains all of the

SNVs associated with its parent, so its full genotype can

be reconstructed by taking the union of the SNVs associ-

ated with its node and all of its ancestral nodes. Similarly,

the population frequency of an SNV is the sum of the

subclonal lineage frequencies of the lineage it appeared in

and all of its descendent lineages. So, the subclonal lineage

tree can be used to compute the population frequencies

of each SNV and the genotype of each subclonal lineage.

Associated with each SNV is a variable that indicates its

zygosity and copy number in the cells that it appears (e.g.,

Aa indicating heterozygous and normal copy number), we

assume all cells with the SNV have the same zygosity and

copy number, and that all other cells have normal copy

number at the SNV locus. The SNV genotype variable

along with the population frequency is used to compute

the allelic frequency of the SNV i, pi. The data input to

the model for each SNV is the number of reads mapping

to the SNV locus, di, and the number of these reads that

do not contain the SNV, ai. We evaluate the likelihood of

a given subclonal lineage tree (including the lineage pop-

ulation frequencies and the SNV genotype variables) by

taking the product of the read count probabilities for each

SNV, where the probability for the locus of SNV i is com-

puted using a binomial distribution whose parameter is

derived from pi and an estimate of the error rate of the

sequencer. PhyloSub also contains a vague prior over tree

structures that is parameterized by three hyperparameters

(α0, γ , λ) (see Section “Methods”) that govern how the

prior scores trees with more or fewer nodes, and differ-

ent average numbers of siblings. We use ranges for these

hyperparameters that in simulations have a slight prefer-

ence for trees with fewer nodes but a limited preference

for sibling numbers (see below for details).

Simulations

PhyloSub’s Dirichlet process prior over tree structures

depends on three hyperparameters: α0, γ , and λ. The

hyperparameters α0 and λ determine the number of nodes

(subclones) in the tree, λ also affects the height of the tree

and γ affects the number of siblings in the tree which

in turn affects the width of the tree. In all the experi-

ments, we sample these hyperparameters [19] as part of

theMCMC sampling from a range whose upper and lower

bounds we establish in this section.

To establish the ranges that we use for the hyperpa-

rameters in PhyloSub, we simulated read counts from

clusters with an average of nine SNVs per cluster with

SNV population frequencies {1.0, 0.85, 0.6, 0.35, 0.2, 0.08},

with a read depth of ≈ 10, 000× which is a typical

read depth for the targeting deep sequencing data that

PhyloSub is designed for. We simulated heterozygous

SNVs at loci with normal copy number and sample

read counts for each SNV from a Binomial distribution

(see Section “Methods”). The hyperparameter settings

we used in the simulations are all possible combinations

of α0 ∈ {1, 2, 4, 10, 20, 50}, γ ∈ {1, 2, 4, 6, 8} and λ ∈

{0.25, 0.5, 1}. The SNV population frequencies are con-

sistent with many different tree structures and Figure 3

shows that the tree structures with highest complete-data

likelihoods varies in the expected way for different set-

tings of the tree prior hyperparameters. Although the

preferred structure varies, the inferred SNV frequencies

remain well-correlated with the baseline values (Pearson

correlation > 0.99) for these hyperparameter ranges, so

the prior is not over-regularizing the SNV frequencies

for these settings. To allow a range of tree structures, we

integrate over these ranges by placing a uniform prior on

the choice of these settings in our MCMC simulations

(c.f., [19]).

Although we focused on high read depths in the above

simulation, we found that PhyloSub works well for read

depths≈ 1, 000X and was able to recover the clusters sim-

ilar to the ones reported above and the SNV frequencies

are well-correlated with the baseline values (Pearson cor-

relation > 0.99). However, we found that the performance

of the model degrades slightly at a read depth of ≈ 200X,
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Figure 3 Results on simulated dataset. Best tree structures, i.e., the ones with the highest complete-data likelihood, estimated by PhyloSub with

varying hyperparameters for the simulated dataset. We only show a subset of the trees from 90 MCMC runs corresponding to all possible

combinations of the hyperparameters used in the simulation.

due to merging of clusters whose nearby SNV frequen-

cies could not be distinguished. Nonetheless, we note that

the inferred SNV population frequency estimates remain

well-correlated (Pearson correlation > 0.96) and that the

majority of the clusters were recovered at read depth ≈

200×.

The simulation as described above has no clear phy-

logeny by design. The SNV frequencies were consistent

with multiple phylogenies and the main goal of this simu-

lation was to establish the ranges for our hyperparameters

that permit a wide variety of tree structures. We integrate

over these parameter ranges on the real data in order to

remove any prior bias towards particular structures. To

determine whether PhyloSub can correctly recover the

phylogenies from a single sample of SNV frequencies, we

simulated read data from a chain phylogeny with SNV

population frequencies 0.9 → 0.75 → 0.55 → 0.4 →

0.25. By the sum rule, these frequencies are only consis-

tent with a chain phylogeny. PhyloSub was able to reliably

recover this chain. The real datasets described in the

later sections are representative of the types of problems

that our methodology could be applied to as they con-

tain single andmultiple samples, some of which have clear

phylogenies and some do not.

Results on AML datasets

To assess PhyloSub on single samples, we applied it to data

from Jan et al. [17] who reported the coexistence of mul-

tiple subclonal lineages in hematopoietic stem cells (HSC)

from acute myeloid leukemia (AML) patient samples. The

deep-targeted sequencing of all SNV candidates identified

by exome sequencing identified SNVs with differing allelic

frequency, suggesting multiple clonal populations in the

HSC cells. An independent single-cell assay confirmed the

existence of multiple clones, and thus provides a ground

truth tree that shows some of the major subclonal lin-

eages within the populations. Here we apply PhyloSub

to the two samples profiled by Jan et al. that had three

or more SNVs profiled in a single-cell assay. These sam-

ples are SU048 and SU070 which have 6 and 10 SNVs in

the single-cell assay, respectively. Although this assay con-

firmed the presence of some of the subclonal lineages,

only 100-200 cells were assayed, so lineages with low pop-

ulation frequency in the sample (e.g., < 1%) may not be

detected.

We applied PhyloSub providing it with the copy num-

ber and zygosity of each SNV (results were similar if we

assume normal copy number and have a uniform prior

on zygosity). For both SU048 and SU070, a number of

different phylogenies were consistent with the SNV read

counts, and we developed the “partial order plot” to rep-

resent the posterior uncertainty in the phylogeny (see

Figure 2 and Section “Methods”).

Figure 4 shows that partial order plot for SU070. The

ordering of the nodes in the partial order plot can also

be used to infer ancestry via transitivity, for example, in

Figure 4, the SNV CXorf66 has high probability of being

in the subclonal lineage that is the direct parent of the one

that DOCK9 is in, however, because the TET2-T1884A

SNV is sorted before CXorf66 (and has a small probability

of being a direct parent of it), then in the PhyloSub poste-

rior over lineages, TET2-T1884A has a high probability of

being in an ancestral lineage to the one CXorf66 is in.

Furthermore, one can interpret the partial order plot

to indicate that both CXorf36 and CXorf66 are in the

same lineage because they are both direct parents of

DOCK9 (with high probability) and there are no edges

between them. For reference, in Figure 4 we have included

the results of the single-cell assay for SU070 in the par-

tial order plot representation – Jan et al. report three

subclonal lineages for SU070, as indicated by the SNV

colorings [17]. We note that these plots are largely consis-

tent. Indeed, we assign high posterior probability > 0.96,

to two of the three subclonal lineages detected by Jan

et al. (see Additional file 1: Table S3 for full lineage geno-

type probabilities). For reference, we also provide the list
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BA

Figure 4 Clonal evolutionary structures of tumor sample SU070. (A) Ground truth from Jan et al. [17]. (B) PhyloSub’s output summarized using

a partial order plot. For clarity, we removed edges with probability less than 0.1 before laying out the nodes and we only show SNVs for which

single-cell data is available. However, all the SNVs whose frequencies were reported in this study were used in the inference and (Additional file 2:

Figure S1) shows the full partial order plot. The color of the border of the SNVs represents the subclonal lineage cluster that the SNV is placed into by a

graph-based clustering algorithm that takes as input the co-clustering frequencies from the MCMC samples (see Section “Methods”). Note that unlike

the thickness of the edges, this is simply a visualization aid, and does not fully represent the model’s posterior uncertainty in the SNV clusterings.

of the subclonal lineage trees along with their posterior

probabilities in see (Additional file 1: Table S1).

The one major difference between PhyloSub’s estimates

and the single-cell data from Jan et al. is that PhyloSub

switches the order of the appearance of SNVs CXorf36

and TET2-T1884A. In fact, there was not a single sub-

clonal lineage that contained CXorf36 but not TET2-

T1884A in 5,000 subclonal lineage trees sampled from

PhyloSub’s posterior. This switch is likely due to the

observed SNV frequencies, indeed the 95% confidence

intervals of the SNV frequencies of these two SNVs do

not overlap (Table 1). One explanation for this difference

is a systematic bias in the measurement of one or both of

these SNVs; it is also possible that the labels of these two

SNVs were switched in Jan et al.. We also note, however,

that in Jan et al., the existence of the lineage that contains

only CXorf36, TET2-Y1649stop, and CACNA1H is only

supported by 2 of the 189 clones that they profiled.

For the tumor sample SU048, both the partial order plot

and the single-cell assay agree on TET2-E1357stop event

occurring early (at the root of the tree), and all other SNVs

are secondary mutational events as shown in Figure 5B.

Note that the partial order plot shows a large uncertainty

in the structure for the rest of the SNVs and this is also

reflected in the posterior over subclonal lineage trees and

genotypes (see Additional file 1: Tables S2 and S4, respec-

tively). There is no strong evidence for either a linear or

branching lineage or for particular clustering among these

SNVs. Also, from Table 2, we see a lot of variation in the

allele frequencies of these SNVs suggesting that they may

not belong to the same subclonal lineages. The subclonal

lineage inferred by Jan et al.’s single-cell assay is shown

in Figure 5A and only contains two lineages, one with

only TET2-E1357stop and the other with the other five

SNVs. The TET2-E1357stop lineage genotype has proba-

bility 0.81 in our posterior, however the second genotype

has a relatively small probability (0.06) under the poste-

rior although we note that the genotype that contains all

SNVs but ZMYM3 has a posterior probability of 0.32 (see

Additional file 1: Table S4). For reference, we also pro-

vide the list of the subclonal lineage trees along with their

posterior probabilities in (Additional file 1: Table S2 ).

In summary, the subclonal lineage trees inferred by

PhyloSub on single samples of SNV frequencies are largely

consistent with ground truth but there remains substan-

tial uncertainty in SU048 about whether there was a linear

or chain lineage. On the other hand, the SNV frequen-

cies in SU070 were only consistent with a linear lineage

and PhyloSub almost perfectly reconstructed the results

of the single-cell assay with one misordering of the SNVs.

This difference may be explained by unmodeled system-

atic biases in the deep sequencing data or experimental

error. Nonetheless, we have shown that in some cases,

it is possible to achieve a good estimate of the genotype
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Table 1 Allelic counts for tumor sample SU070 from Jan et al. [17]

SNV Variant allele read counts Read depth Allele frequency Cluster ID

CACNA1H 12,085 24,860 0.486 (95% CI: 0.481-0.491) A

TET2-T1884A 4,220 8,772 0.481 (95% CI: 0.472-0.490) B

TET2-Y1649stop 7,792 16,211 0.481 (95% CI: 0.474-0.487) A

CXorf66 3,684 8,150 0.452 (95% CI: 0.443-0.461) B

CXorf36 3,523 8,060 0.437 (95% CI: 0.428-0.446) A

DOCK9 3,391 8,676 0.391 (95% CI: 0.382-0.400) C

NCRNA00200 9,201 25,413 0.362 (95% CI: 0.357-0.367) C

CTCF 10,558 30,119 0.351 (95% CI: 0.346-0.355) C

GABARAPL1 1,648 4,992 0.330 (95% CI: 0.319-0341) C

SCN4B 5,113 16,386 0.312 (95% CI: 0.306-0.318) C

of multiple subclonal lineages as well as their evolution

from a single, targeted deep sequencing sample of SNV

frequencies.

Results on CLL datasets

To evaluate PhyloSub on a multiple sample dataset, we

used data from a study of chronic lymphocytic leukemia

(CLL) by Schuh et al. [9] which quantified SNV frequen-

cies of a set of SNVs during different time points spanning

the patient therapy cycle. The candidate SNVs were iden-

tified by exome sequencing and then subjected to targeted

resequencing. The tumor samples from the three patients

in the study labeled CLL077, CLL006 and CLL003 have

11, 16 and 20 SNVs respectively with SNV frequencies

for five different time points. Originally, Schuh et al.

reconstructed the evolutionary histories of each cancer

by a semi-manual procedure in which they first automati-

cally grouped SNVs into subclonal lineages using k-means

clustering on the allele frequencies and the differences

in allele frequencies between the time points for each

patient and then reconstructed the evolutionary struc-

ture of those lineages using a procedure that they do not

describe in the paper. In PhyloSub, we model multiple

samples from the same cancer as sharing the same evo-

lutionary history but we allow subclonal frequencies to

change between samples.

We applied PhyloSub to the SNV read count data, pro-

viding the algorithm with the likely zygosity estimates –

in most cases, SNVs appeared to be heterozygous with

normal copy number but in a few cases, SNVs appeared

to be hemizygous and were input to the model as such.

For these data, because of the multiple samples per tumor,

there is very little posterior uncertainty in the best fitting

tree – as such, we only show the best single tree struc-

ture corresponding to theMCMC sample with the highest

complete-data likelihood [19].

A B

Figure 5 Clonal evolutionary structures of tumor sample SU048. (A) Ground truth from Jan et al. [17]. (B) PhyloSub’s output summarized using

a partial order plot. See Figure 4 legend for more details on partial order plot.
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Table 2 Allelic counts for tumor sample SU048 from Jan et al. [17]

SNV Variant allele read counts Read depth Allele frequency Cluster ID

TET2-E1357stop 7,436 19,553 0.380 (95% CI: 0.375-0.386) A

SMC1A 182,974 660,069 0.277 (95% CI: 0.276-0.278) B

ACSM1 17,149 127,236 0.135 (95% CI: 0.133-0.136) B

OLFM2 13,828 122,523 0.113 (95% CI: 0.111-0.114) B

TET2-D1384V 1,833 17,687 0.104 (95% CI: 0.100-0.107) B

ZMYM3 18,536 307,346 0.060 (95% CI: 0.060-0.061) B

For the tumor samples CLL077 and CLL003, the best

tree structure estimated by PhyloSub and the tree struc-

ture from Schuh et al. [9] are in exact agreement and

the population frequencies of the subclonal lineages are

well-correlated. Figures 6 and 7 compare the PhyloSub

estimates with those reported by Schuh et al. [9].

For the tumor sample CLL006, PhyloSub inferred a

chain structure similar to the chain structure from Schuh

et al., but the major difference in PhyloSub’s best esti-

mate of the tree structure is the splitting of cluster A

into two clusters as shown in Figure 8. However, we

found that the complete-data log likelihood of PhyloSub’s

best estimate of the tree structure is higher than the

one for the chain structure of Schuh et al. and therefore

PhyloSub prefers the splitting of the cluster A into two

clusters.

In the CLL dataset, there is no ground truth but to allow

the reader to compare the two estimates of the evolution-

ary history, Figure 9 plots the frequency of each SNV in

the three samples, and we have colored SNVs according to

their subclonal lineage assignments by Schuh et al. These

SNV frequencies are not corrected for copy number, how-

ever, the hemizygous SNVs are clear from examination of

the figure.

In summary, having multiple samples of SNV fre-

quencies greatly reduces the posterior uncertainty in

the evolutionary history of the tumor and PhyloSub is

able to reconstruct histories produced by a semi-manual

procedure.

Conclusions
We presented a nonparametric Bayesian model called

PhyloSub that uses a Dirichlet process prior over trees [19]

to model the clonal evolutionary structure of tumors from

next generation sequencing data. We also introduced a

new visualization method, the partial order plot, to rep-

resent the posterior uncertainty in the phylogeny when

the clonal frequencies alone do not provide sufficient

information to uniquely reconstruct the phylogeny and

mutational profiles of each subclonal lineage represented

Figure 6 Clonal evolutionary structures of tumor samples from patient CLL077. (Left) Baseline tree structure from Schuh et al. [9]. (Right)

Best tree structure estimated by PhyloSub. The SNV population frequencies and the cluster assignments are also shown in the figure.
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Figure 7 Clonal evolutionary structures of tumor samples from patient CLL003. (Left) Baseline tree structure from Schuh et al. [9]. (Right)

Best tree structure estimated by PhyloSub. The SNV population frequencies and the cluster assignments are also shown in the figure.

in the tumor. By enforcing a set of structural constraints

on the SNV population frequencies using MCMC meth-

ods, we were able to infer the phylogenetic relationships

between subclones from both single and multiple tumor

samples.

We have demonstrated that it is possible, in some cases,

to detect a linear lineage from a single, high cellularity

sample of the tumor. We have also shown that multi-

ple samples highly constrain the possible lineages that

are consistent with the SNV frequency data. PhyloSub’s

inferred subclonal lineage trees were in good agreement

with single cell assays on single sample data and with an

expert-driven, semi-manual reconstruction procedure on

multiple sample data.

PhyloSub’s ability to detect and characterize subclonal

lineages depends on the frequency of the lineage in the

population (compared to its descendant lineages), the num-

ber of SNVs that define the lineage, as well as the accu-

racy with which the SNV population frequencies are

estimated which depends on both the sequencing depth

as well as uncertainty about the copy number of the SNV.

Simply put, for lineages defined by a single SNV, the

read depth has to be high enough that the uncertainty in

the estimated SNV frequency is less than the frequency

of the subclonal population. Having more lineage-

defining SNVs can relax this hard constraint. As such,

the phylogenies of tumors with large numbers of sub-

clonal lineages, each defined by a small number of SNVs

(possibly due to a pronounced hypermutability pheno-

type), will be hard to reconstruct with PhyloSub, or any

other method, unless the SNV frequencies are very accu-

rately estimated. Indeed, it is not clear how ground truth

could be uncovered in such a case: the gold standard

of single cell sequencing would require an exceptionally

large number of single cells to survey this highly hetero-

geneous population, and each of these cells would need

to be sequenced deeply in order to ensure precise somatic

variant calling.

Figure 8 Clonal evolutionary structures of tumor samples from patient CLL006. (Left) Baseline tree structure from Schuh et al. [9]. (Right)

Best tree structure estimated by PhyloSub. The SNV population frequencies and the cluster assignments are also shown in the figure.
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Figure 9 Allele frequencies in the CLL datasets. Changes in allele frequency with time point for the multiple tumor samples in CLL077, CLL006,

CLL003 datasets from Schuh et al. [9]. Colors indicate SNV clusters. The dotted line in the middle panel plot indicates the SNV that formed its own

cluster in PhyloSub’s estimate of the tree structure.

One potential difficulty in scaling our approach to

orders of magnitude more SNVs is that the Markov chain

may not mix in a timely manner, in other words, may

get stuck in local minima. We note that finding subopti-

mal solutions is an issue for any method based on these

data. In our case, the mixing time of the chain would

depend largely on the number of subclones represented

in the population with less of a dependence on the num-

ber of SNVs. There are various techniques for determining

whether or not a Markov chain is well-mixed and we refer

the reader to a recent excellent review [25].

PhyloSub extends recent work on inferred cellularity and

subclonal structure from somatic mutations. ABSOLUTE

uses whole genome sequence data or array CGH data to

identify regions of copy number change in the tumor and

based on this infers cellularity and copy number changes

associated with different subclones [11]. THetA [13] also

attempts to infer both the copy number profiles and their

relative proportions using the whole genome sequencing

data based on an infinite sites assumptions. Neither of

these algorithms explicitly reconstructs tumor phyloge-

nies. Our work is closest to PyClone [10] which uses a

flat Dirichlet process mixture model to group SNVs into

subclonal lineages based on their frequencies; PhyloSub

extends this work by reconstructing the phylogenetic rela-

tionships among these lineages and, in doing so, allows

the full SNV genotype of each subclonal population to be

reconstructed.

We designed PhyloSub to assume a single clonal origin

for the cancerous cells in the sample. We made this deci-

sion to increase the applicability of the sum rule for low

cellularity tumors (i.e., tumors with high normal contam-

ination). However, removing this assumption would be a

simple change to the model, which we have not evaluated.

Another area of future innovation would be in mod-

eling sequencing biases and uncertainty in SNV allele

frequencies resulting from them. We did not evaluate

replacing our binomial model with a negative binomial

one that would have allowed greater variability in the

observed read counts for a given SNV allele frequency

[26].

Methods

Dirichlet process mixture models

Consider the problem of clusteringN objects {xi}
N
i=1 using

a Bayesian finite mixture model of K components (clus-

ters) with the following generative process [27]:

ω ∼ Dirichlet(α/K , . . . ,α/K); zi ∼ Multinomial(ω);

φk ∼ H ; xi ∼ F(φzi),

(1)

where ω are the mixing weights such that
∑K

k=1 ωk = 1, α

is the concentration parameter of the symmetric Dirich-

let prior placed on the mixing weights, zi ∈ {1, . . . ,K}

is the cluster assignment variable, H is the prior distri-

bution from which the component parameters {φk} are

drawn, F(φ) is the component distribution parameter-

ized by φ. The finite mixture model can be extended to a

model with an infinite number of mixture components by

replacing the Dirichlet prior with a Dirichlet process (DP)

prior resulting in what is known as the DP mixture model

(DPMM) [28].

Unlike finite mixture models, DPMMs automatically

estimate the number of components from the data thereby

circumventing the problem of fixing the number of com-

ponents a priori. The stick-breaking construction [29]
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given below provides a precise recipe to draw samples

from a Dirichlet process:

βk ∼ Beta(1,α); ω1 = β1; ωk = βk

k−1
∏

ℓ=1

(1 − βℓ);

φk ∼ H ; G =

∞
∑

k=1

ωkδφk
,

(2)

where δφ is a point mass centered at φ and G ∼ DP(α,H),

i.e., G is a draw from a DP with base distribution H and

concentration parameter α. The stick-breaking process

can be viewed as recursively breaking sticks of length
∏k−1

ℓ=1(1 − βℓ), starting with a stick of unit length. The

beta variates {βk} determine the random location at which

the stick is broken. The concentration parameter α deter-

mines the number of clusters with high values resulting

in large number of clusters. Let GEM(α) denote the stick-

breaking process over ω. Replacing the Dirichlet prior in

the finite mixture model 1 with the stick-breaking pro-

cess prior results in the following generative process for

infinite mixture models:

ω ∼ GEM(α); zi ∼ Multinomial(ω);

φk ∼ H ; xi ∼ F(φzi).

An alternative view of the above generative process pro-

duces component parameters {φ̃i} by drawing samples

from G resulting in the following generative process:

G ∼ DP(α,H); φ̃i ∼ G; xi ∼ F(φ̃i). (3)

Note that in the above process every object {xi}
N
i=1 is

associated with a component parameter {φ̃i}
N
i=1 and that

all objects assigned to the same cluster will have the same

component parameter. In other words, multiple elements

in the set {φ̃i}
N
i=1 will take on the same value from the set

{φk}
K
k=1 of unique parameters.

Tree-structured stick-breaking process

The stick-breaking construction (2) described above can

be used to produce a flat clustering of objects, where the

clusters are independent of each other. Adams et al. [19]

extended this construction for hierarchical clustering by

interleaving two stick-breaking processes. This construc-

tion results in a relational clustering of objects where

the clusters are connected to form a rooted tree struc-

ture. Unlike classical hierarchical clustering algorithms

such as agglomerative clustering, this construction allows

data to reside in the internal nodes of the tree; a fea-

ture we exploit to model the association of SNVs with

subclonal lineages.

We borrow notation from Adams et al. [19]. Let ǫ =

(ǫ1, . . . , ǫp) denote a sequence of positive integers used to

index the nodes of the tree. Let ǫ = κ denote the zero-

length string, i.e., the root of the tree. Let |ǫ| indicate the

length of the sequence ǫ and therefore the depth of node

ǫ. Let ǫǫi denote the sequence formed by appending ǫi to

ǫ. The children of node ǫ is the set {ǫǫi : ǫi ∈ 1, 2, . . .} and

let the ancestors of ǫ be denoted by the set {ǫ′ : ǫ′ ≺ ǫ}.

The interleaved, two-layered stick-breaking construction

is as follows:

νǫ ∼ Beta(1,α(|ǫ|)); ψǫ ∼ Beta(1, γ ); ωκ = νκ ;

ωǫ = νǫϕǫ

∏

ǫ′≺ǫ

ϕǫ′(1 − νǫ′); ϕǫǫi = ψǫǫi

ǫi−1
∏

j=1

(1 − ψǫj).

(4)

The νǫ and (1− νǫ) determine the amount of mass allo-

cated to ǫ and its descendants respectively, whereas {ϕǫ}

determines the probability of a particular sequence of chil-

dren. The construction ensures that the mixing weights

{ωǫ} sum to one. The parameters α and γ control the

height and the width of the tree respectively. Note that the

concentration parameter α(·) is a function of the depth of

the tree (α(·) : N → R
+) and is defined to be α(j) = λjα0

with α0 > 0 and λ ∈ (0, 1] [19].

PhyloSubmodel

We follow Shah et al. [10,30] to model the allelic count

data. For each genetic variant that is detected by high-

throughput sequencing methods, cells containing the

genetic variant are referred to as variant population and

those without the variant as reference population. Let

� = {A,C,G,T} denote the set of nucleotides. Let ai
and bi denote the number of reads matching the ref-

erence allele A ∈ � and the variant allele B ∈ �

respectively at position i, and let di = ai + bi. The

genotype g ∈ {A, B, AA,AB, BB, AAA, . . .} would depend

on the copy number at the variant location. Let μr
i ∈

{μA
i ,μ

AA
i ,μAAA

i , . . .} denote the probability of sampling a

reference allele from the reference population. This value

depends on the error rate of the sequencer. Let μv
i denote

a vector whose entries, μ
v:g
i ∈ {μB

i ,μ
AB
i ,μBB

i , . . .}, are

the probabilities of sampling a reference allele from the

variant population with genotype g at position i. Let πi

denote the vector whose entries, π
g
i ∈ {πB

i ,π
AB
i ,πBB

i , . . .},

are the probabilities of the variant population at posi-

tion i to have the genotype g. Let δi denote the pseudo-

count parameters of the Dirichlet prior over πi. Let Gi

denote the genotype of the variant population at posi-

tion i. Let φ̃i denote the fraction of cells from the variant
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population, i.e., the SNV population frequency at posi-

tion i, and 1 − φ̃i denote the fraction of cells from

the reference population at position i. The observation

model for allelic counts has the following generative

process [10]:

G ∼ DP(α,H); φ̃i ∼ G;

π i ∼ Dirichlet(δi); Gi ∼ Categorical(π i);

ai |di,Gi=g, φ̃i,μ
r
i ,μ

v
i ∼Binomial(di, (1−φ̃i)μ

r
i + φ̃iμ

v:g
i ).

(5)

The posterior distribution of φ̃i is

p(φ̃i |ai, di,μ
r
i ,μ

v
i ,π i, δi) ∝

∑

g

p(ai | di,Gi= g, φ̃i,μ
r
i ,μ

v
i )

× p(Gi | π i)p(π i | δi)p(φ̃i).

Each of the terms appearing inside the summation over

genotypes is the probability distribution of a Dirichlet

compound multinomial (with a single draw) [31]. The

posterior distribution can thus be rewritten as

p(φ̃i | ·) ∝
∑

g

⎡

⎣

∏

g′ 
=g Ŵ(δ
g′

i ) × Ŵ(δ
g
i + 1)

Ŵ(
∑

g′ δ
g′

i + 1)

⎤

⎦

× Binomial(ai; di, (1 − φ̃i)μ
r
i + φiμ

v:g
i )p(φ̃i),

(6)

where Ŵ(·) is the Gamma function.

The Dirichlet process prior DP(α, H) in the obser-

vation model of allelic counts (5) is useful to infer

groups of mutations that occur at the same SNV popula-

tion frequency [10]. Furthermore, being a nonparametric

prior, it is useful to avoid the problem of selecting the

number of groups of mutations a priori. However, it

cannot be used to model the clonal evolutionary struc-

ture which takes the form of a rooted tree. In order

to model this, we propose to use the tree-structured

stick-breaking process prior (4) described in the previous

section.

The probabilistic graphical model for allelic counts with

the tree-structured stick-breaking process prior is shown

in Figure 10. Inputs to the model including the hyperpa-

rameters are indicated in shaded nodes, whereas the latent

variables including the set of SNV population frequen-

cies {φ̃i} are indicated in unshaded nodes. The prior/base

distribution H of the SNV population frequencies is the

uniform distribution Uniform(0, 1) for the root node and

Uniform(0,φpar(v) −
∑

w∈S(v) φw) for any other node v

in the tree, where par(v) denotes the parent node of v

and S(v) is the set of siblings of v. This ensures that

Figure 10 PhyloSub graphical model for single sample.

Probabilistic graphical model for allelic counts with tree-structured

stick-breaking process prior. Observed variables and hyperparameters

(inputs to the model) are indicated in shaded nodes.

the clonal evolutionary constraints (discussed in the next

section) are satisfied when adding a new node in the

tree. The crucial difference between our model and the

model of Shah et al. [10] is that we use a tree-structured

stick-breaking process instead of a Dirichlet process (cf.

5) to generate the set of SNV population frequencies

{φ̃i}. Given this model and a set of N observations/inputs

{(ai, di,μ
r
i ,μ

v
i , δi)}

N
i=1, the tree structure and the SNV pop-

ulation frequencies {φ̃i} are inferred using Markov chain

Monte Carlo sampling. In particular, we use Gibbs sam-

pling [19] to generate posterior samples of the SNV pop-

ulation frequencies 6. Each iteration of the Gibbs sampler

involves multiple subsampling procedures: sampling clus-

ter assignments {zi}, sampling stick lengths νǫ and ψǫǫi ,

sampling stick-breaking hyperparameters α0, γ and λ, and

sampling the SNV population frequencies {φ̃i}. Our main

algorithmic contribution, described below, is a method to

sample SNV population frequencies in such a way that

the tumor evolution proceeds according to the assump-

tions from the clonal evolutionary theory. The rest of the



Jiao et al. BMC Bioinformatics 2014, 15:35 Page 13 of 16

http://www.biomedcentral.com/1471-2105/15/35

subsampling procedures follow directly from Adams et al.

[19] and we refer the reader to it for further technical

details.

Sampling SNV population frequencies

Given the current state of the tree structure, we sam-

ple SNV population frequencies in such a way that the

SNV population frequency φv of every non-leaf node v in

the tree is greater than or equal to the sum of the SNV

population frequencies of its children. To enforce this

constraint, we introduce a set of auxiliary weights {ηv},

one for each node, that satisfy
∑

v ηv = 1, and rewrite

the observation model for allelic counts 5 explicitly in

terms of these weights resulting in the following posterior

distribution:

p(η̃i |ai, di,μ
r
i ,μ

v
i ,π i, δi) ∝

∑

g

p(ai | di,Gi= g, η̃i,μ
r
i ,μ

v
i )

× p(Gi | π i)p(π i | δi)p(η̃i),

(7)

where we have used {η̃i} to denote the auxiliary weights

for each SNV. The prior/base distribution of the auxil-

iary weights is defined such that it is 1 for the singleton

root node and Uniform (0, ηpar(v)) for any other node v

in the tree, where par(v) denotes the parent node of v.

When a new node w is added to the tree, we sample ηw ∼

Uniform (0, ηpar(w)) and update ηpar(w) ← ηpar(w) − ηw.

This ensures that
∑

v ηv = 1.

This change is crucial as it allows us to design a Markov

chain that converges to the stationary distribution of {ηv}.

The SNV population frequency for any node v can then be

computed via

φv = ηv +
∑

w∈D(v)

ηw = ηv +
∑

w∈C(v)

φw, (8)

where D(v) and C(v) are the sets of all descendants and

children of node v respectively. This construction ensures

that the SNV population frequencies of mutations appear-

ing at the parent node is greater than or equal to the sum

of the frequencies of all its children. The procedure to gen-

erate a random sample of SNV population frequencies is

given in Algorithm 1 where we generate (ηv,φv) for every

node v by traversing the tree in a breadth-first fashion.

The input to this algorithm is the current state of the tree

T = (V ,E) where V is the set of vertices and E is the

set of edges, and the output is a multi-dimensional sam-

ple of SNV population frequencies φ = {φ1,φ2, . . . ,φ|V |}

(where |V | = K) and the corresponding auxiliary weights

η = {η1, η2, . . . , η|V |} . A sample from this algorithm is

shown in Figure 11.

Algorithm 1 Algorithm to generate SNV population

frequencies satisfying the assumptions from clonal

evolutionary theory.

Input: Rooted tree T = (V ,E) with root node r

Output: η = {η1, η2, . . . , η|V |}, φ = {φ1,φ2, . . . ,φ|V |}

1: create a queue Q

2: Q.enqueue(r)

3: while Q is not empty do

4: v = Q.dequeue()

5: if v is root then

6: φv = 1

7: sv ∼ Uniform(0, 1)

8: ηv = φv · sv
9: end if

10: mv = φv − ηv {mass assigned to children of v}

11: for c in children of v do

12: rc ∼ Uniform(0, 1) {distribute mass}

13: end for

14: r = mv · r/
∑

c rc
15: for c in children of v do

16: φc = rc
17: sc ∼ Uniform(0, 1)

18: ηc = φc · sc
19: Q.enqueue(c)

20: end for

21: end while

22: return η, φ

We use Metropolis-Hastings algorithm to sample from

the posterior distribution of the auxiliary weights {η̃i} 7

as shown in Algorithm 2 and derive the SNV population

frequencies from these samples. We use an asymmetric

Dirichlet distribution as the proposal distribution. This

ensures that the Markov chain converges to the stationary

distribution of {η̃i}. The inputs to the sampling algorithm

are the current state of the tree T = (V ,E), a scaling factor

Figure 11 Example of SNV population frequencies generated

using Algorithm 1. The labels of the nodes are its corresponding

SNV population frequencies and auxiliary weights (φ | η). Note that
∑

v∈V ηv = 1 and φv ≥
∑

w∈C(v) φw for every non-leaf node v.
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σ , and the number of iterations T. The output is a sample

from the posterior distribution of η = {η1, η2, . . . , η|V |}

and its corresponding φ = {φ1,φ2, . . . ,φ|V |}.

Algorithm 2Metropolis-Hastings algorithm to sample

from the posterior distribution of the auxiliary weights

{ηv} and compute the SNVpopulation frequencies {φv}.

Input: Rooted tree T = (V ,E), σ , T

Output: η = {η1, η2, . . . , η|V |}, φ = {φ1,φ2, . . . ,φ|V |}

1: Initialize η(0) using Algorithm 1

2: for t = 1 : T do

3: //draw a proposal state from the Dirichlet distribu-

tion with density function Q(·)

4: η′ ∼ Dirichlet(ση(t−1) + 1)

5: // accept/reject state

6:
a= log p(η′ | ·)−log p(η(t−1) | ·)+logQ(η(t−1); η′, σ)

− logQ(η′; η(t−1), σ)

7: r ∼ Uniform(0, 1)

8: if log(r) < a then

9: η(t) ← η′

10: else

11: η(t) ← η(t−1)

12: end if

13: end for

14: Compute φ from η 8

15: return η(T),φ(T)

Extension to multiple tumor samples

PhyloSub (cf. Figure 10) can be easily extended for mul-

tiple tumor samples. We allow the tree-structured stick-

breaking process prior 4 to be shared across all the

samples. Let ati and bti denote the number of reads match-

ing the reference and the variant allele respectively at

position i for sample t ∈ {1, . . . , S}, and let dti = ati + bti .

Let φ̃t
i denote the fraction of cells from the variant popu-

lation, i.e., the SNV population frequency at position i for

sample t, and η̃ti denote its corresponding auxiliary weight.

The graphical model of PhyloSub for multiple tumor sam-

ples is shown in Figure 12. The main technical difference

between the single and the multiple sample models lies in

the sampling procedure for SNV population frequencies.

In the multiple sample model, we ensure that the clonal

evolutionary constraints described in the previous section

are satisfied separately for each tumor sample and then

make a global Metropolis-Hastings move based on the

distribution
∏S

t=1 p(η
t | ·), where {η1, η2, . . . , ηS} is the set

of auxiliary weights for all the tumor samples.

Partial order plot

We construct a partial order plot to summarize and visu-

alize the trees from all the posterior MCMC samples. It is

Figure 12 PhyloSub graphical model for multiple samples.

Probabilistic graphical model for allelic counts from multiple samples

with a shared tree-structured stick-breaking process prior. Observed

variables and hyperparameters (inputs to the model) are indicated in

shaded nodes.

important to note that the nodes of this partial order plot

are the SNVs and not the SNV clusters. The thickness of

a directed edge P → Q in the tree is proportional to the

fraction of MCMC samples in which SNV P first appears

in a subclonal lineage that was the parent of the subclonal

lineage that Q first appears in. The color of the border

of the SNVs represents the subclonal lineage cluster that

the SNV is placed into post hoc using an algorithm called

correlation clustering [32]. Note that the main purpose

of this clustering algorithm is only to color the nodes in

the partial order plot by aggregating the clustering infor-

mation from all the MCMC samples obtained from our

model; this clustering is a summary but does not repre-

sent any (possibly quite large) uncertainty in the cluster

assignments. The input to this algorithm is a symmetric

N × N co-clustering matrix C, whose elements Cij is the

difference between the number of samples in which i and

j were assigned to the same SNV cluster and the num-

ber of samples in which i and j were assigned to different

SNV clusters. The algorithm estimates a symmetricN×N
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cluster indicator matrix Y, whose elements Yij = 1 if i and

j are assigned to the same cluster and Yij = 0 otherwise.

This cluster indicator matrix Y has all the information

about the number of SNV clusters as well as the SNVs

assigned to each of them.

MCMC settings

In all the experiments, we fix the number of MCMC iter-

ations to 5,000 with a burn-in of 100 samples. We also fix

the number of iterations in the Metropolis-Hastings algo-

rithm to 5,000 and set the scaling factor for the Dirichlet

proposal distribution to σ = 100. We run the MCMC

samplers multiple times with different random initializa-

tions and pick a single run based on the complete-data

likelihood trace and its auto-correlation function. We use

all the 5,000 samples without thinning [33] to construct

the partial order plots. We use the CODA R package [34]

for MCMC diagnostics to monitor the convergence of

the samplers. The complete-data log likelihood traces and

the corresponding autocorrelation function plots after the

burn-in period of 100 samples for all the experiments on

AML and CLL datasets are shown in (Additional file 2:

Figures S3 to S7).

Datasets and inputs to PhyloSub

All datasets used in the experiments, including details

about the inputs to PhlyoSub, i.e., the set of observations

{(ai, di,μ
r
i ,μ

v
i , δi)}

N
i=1, are provided in the (Additional

file 1: Tables S5 – S10).

Additional files

Additional file 1: Supplementary tables. This file contains

supplementary Tables S1 to S10.

Additional file 2: Supplementary figures. This file contains

supplementary Figures S1 to S7.
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