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Inferring collective dynamical states from widely
unobserved systems
Jens Wilting1 & Viola Priesemann 1,2

When assessing spatially extended complex systems, one can rarely sample the states of all

components. We show that this spatial subsampling typically leads to severe under-

estimation of the risk of instability in systems with propagating events. We derive a

subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness

of various diseases under subsampling, making it particularly useful in countries with unre-

liable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the

subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain’s

collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for

rat, cat, and monkey a state that combines features of both and allows input to reverberate in

the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel

estimator paves the way to novel insight for the study of spatially extended dynamical

systems.
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H
ow can we infer properties of a high-dimensional dyna-
mical system if we can only observe a very small part of it?
This problem of spatial subsampling is common to almost

every area of research where spatially extended, time evolving
systems are investigated. For example, in many diseases the
number of reported infections may be much lower than the
unreported ones1, or in the financial system only a subset of all
banks is evaluated when assessing the risk of developing system
wide instability2 (“stress test”). Spatial subsampling is particularly
severe when recording neuronal spiking activity, because the
number of neurons that can be recorded with millisecond preci-
sion is vanishingly small compared to the number of all neurons
in a brain area3–5.

Here, we show that subsampling leads to a strong over-
estimation of stability in a large class of time evolving systems,
which include epidemic spread of infectious diseases6, cell pro-
liferation, evolution (see ref. 7 and references therein), neutron
processes in nuclear power reactors8, spread of bankruptcy9,
evolution of stock prices10, or the propagation of spiking activity
in neural networks11,12. However, correct risk prediction is
essential to timely initiate counter actions to mitigate the pro-
pagation of events. We introduce a novel estimator that allows
correct risk assessment even under strong subsampling. Mathe-
matically, the evolution of all these systems is often approximated
by a process with a 1st order autoregressive representation (PAR),
e.g., by an AR(1), branching, or Kesten process. For these pro-
cesses, we derive first the origin of the estimation bias and
develop a novel estimator, which we analytically prove to be
consistent under subsampling. We then apply the novel estimator
to models and real-world data of disease and brain activity. To
assure that a PAR is a reasonable approximation of the complex
system under study, and to exclude contamination through
potential non-stationarities, we included a set of automated, data-
driven tests.

Results
In a PAR (Supplementary Notes 1–4), the activity in the next time
step, At+1, depends linearly on the current activity At. In addition,
it incorporates external input, e.g., drive from stimuli or other
brain areas, with a mean rate h, yielding the autoregressive
representation

Atþ1jAt

� �

¼ mAt þ h; ð1Þ

where 〈· | ·〉 denotes the conditional expectation. The stability of
At is solely governed by m, e.g., the mean number of persons
infected by one diseased person13. The activity is stationary
if m < 1, while it grows exponentially if m > 1. The state
m= 1 separates the stable from the unstable regime. Especially
close to this transition, a correct estimate of m is vital to assess the
risk that At develops a large, potentially devastating cascade or
avalanche of events (e.g., an epidemic disease outbreak or an
epileptic seizure), either generically or via a minor increase in m.

A conventional estimator14,15 m̂C of m uses linear regression of
activity at time t and t+ 1, because the slope of linear regression
directly returns m owing to the autoregressive representation in
Eq. (1). This estimation of m is consistent if the full activity At is
known. However, under subsampling it can be strongly biased, as
we show here. To derive the bias quantitatively, we model sub-
sampling in a generic manner in our stochastic framework: we
assume only that the subsampled activity at is a random variable
that in expectation it is proportional to At, at jAth i ¼ αAt þ β
with two constants α and β (Supplementary Note 3). This
represents, for example, sampling a fraction α of all neurons in a
brain area. Then the conventional estimator is biased by m(α2Var
[At]/Var[at]− 1) (Supplementary Corollary 6). The bias vanishes

only when all units are sampled (α= 1, Fig. 1c–e), but is inherent
to subsampling and cannot be overcome by obtaining longer
recordings.

Kalman filtering16–18, a state-of-the-art approach for system
identification, cannot overcome the subsampling bias either,
because it assumes Gaussian noise for both the evolution of At

and the sampling process for generating at (Supplementary
Note 7). These assumptions are violated under typical sub-
sampling conditions, when the values of at become too small, so
that the central limit theorem is not applicable, and hence Kal-
man filtering fails (Fig. 1d). It is thus applicable to a much nar-
rower set of subsampling problems and in addition requires
orders of magnitude longer runtime compared to our novel
estimator (Supplementary Fig. 7).

Our novel estimator takes a different approach than the other
estimators (Supplementary Note 4). Instead of directly using the
biased regression of activity at time t and t+ 1, we perform
multiple linear regressions of activity between times t and t+ k
with different time lags k= 1,…, kmax. These return a collection
of linear regression slopes rk (note that r1 is simply the conven-
tional estimator m̂C). Under full sampling, one expects an
exponential relation19 rk=mk (Supplementary Theorem 2).
Under subsampling, however, we showed that all regressions
slopes rk between at and at+k are biased by the same factor b=
α2Var[At]/Var[at] (Supplementary Theorem 5). Hence, the
exponential relation generalizes to

rk ¼ α2
Var½At �

Var½at �
mk ¼ bmk ð2Þ

under subsampling. The factor b is, in general, not known and
thus m cannot be estimated from any rk alone. However, because
b is constant, one does not need to know b to estimate m̂ from
regressing the collection of slopes rk against the exponential
model bmk according to Eq. (2). This result serves as the heart of
our new multiple-regression (MR) estimator (Fig. 1f, Supple-
mentary Figs. 1 and 2, Supplementary Corollary 3).

In fact, MR estimation is equivalent to estimating the auto-
correlation time of subcritical PARs, where autocorrelation and
regression rk are equal: we showed that subsampling decreases the
autocorrelation strength rk, but the autocorrelation time τ is
preserved. This is because the system itself evolves independently
of the sampling process. While subsampling biases each regres-
sion rk by decreasing the mutual dependence between subsequent
observations (at, at+k), the temporal decay in rk ~mk

= e−kΔt/τ

remains unaffected, allowing for a consistent estimate of m even
when sampling only a single unit (Fig. 1d). Here, τ=−Δt/log m
refers to the autocorrelation time of stationary (subcritical) pro-
cesses, where autocorrelation and regression rk are equal, and Δt
is the time scale of the investigated process. Particularly close to
m= 1 the autocorrelation time τ=−Δt/log m diverges, which is
known as critical slowing down20. Because of this divergence, MR
estimation can resolve the distance to criticality in this regime
with high precision. Making use of this result allows for a con-
sistent estimate of m even when sampling only a single unit
(Fig. 1d).

PARs are typically only a first order approximation of real
world event propagation. However, their mathematical structure
allowed for an analytical derivation of the subsampling bias and
the consistent estimator. To show that the MR estimator returns
correct results also for more complex systems, we applied it to
more complex simulated systems: a branching network12 (BN)
and the non-linear Bak–Tang–Wiesenfeld model21 (BTW, see
Supplementary Note 8). In contrast to generic PARs, these
models (a) run on recurrent networks and (b) are of finite size. In
addition, the second model shows (c) completely deterministic
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propagation of activity instead of the stochastic propagation that
characterizes PARs, and (d) the activity of each unit depends on
many past time steps, not only one. Both models approximate
neural activity propagation in cortex3,4,11,12,22,23. For both models
the numerical estimates of m were precisely biased as analytically
predicted, although the models are only approximated by a PAR
(dashed lines in Fig. 1c, Supplementary Eq. (4)). The bias is
considerable: for example, sampling 10% or 1% of the neurons in
a BN with m= 0.9 resulted in the estimates m̂C = r1= 0.312, or
even m̂C = 0.047, respectively. Thus a process fairly close to
instability (m= 0.9) is mistaken as Poisson-like (m̂C = 0.047 ≈ 0)
just because sampling is constrained to 1% of the units. Thereby
the risk that systems may develop instabilities is severely
underestimated.

MR estimation is readily applicable to subsampled data,
because it only requires a sufficiently long time series at, and the
assumption that in expectation at is proportional to At. Hence, in
general it suffices to sample the system randomly, without even
knowing the system size N, the number of sampled units n, or any
moments of the underlying process. Importantly, one can obtain
a consistent estimate of m, even when sampling only a very small
fraction of the system, under homogeneity even when sampling

only one single unit (Fig. 1c, d, Supplementary Fig. 6). This
robustness makes the estimator readily applicable to any system
that can be approximated by a PAR. We demonstrate the bias of
conventional estimation and the robustness of MR estimation at
the example of two real-world applications.

Application to disease case reports. We used the MR estimator
to infer the “reproductive number” m from incidence time series
of different diseases24. Disease propagation represents a non-
linear, complex, real-world system often approximated by a
PAR25,26. Here, m determines the disease spreading behavior and
has been deployed to predict the risk of epidemic outbreaks6.
However, the problem of subsampling or under-ascertainment
has always posed a challenge1,27.

As a first step, we cross-validated the novel against the
conventional estimator using the spread of measles in Germany,
surveyed by the Robert-Koch-Institute (RKI). We chose this
reference case, because we expected case reports to be almost fully
sampled owing to the strict reporting policy supported by child
care facilities and schools28,29, and to the clarity of symptoms.
Indeed, the values for m̂ inferred with the conventional and with
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returns the correct estimate, even when sampling only 10 or 1 out of all N= 104 units. d For a BN with m= 0.99, the conventional estimator infers m̂=

0.37, m̂= 0.1, or m̂= 0.02 when sampling 100, 10, or 1 units, respectively. Kalman filtering based estimation returns approximately correct values under

slight subsampling (n= 100), but is biased under strong subsampling. In contrast, MR estimation returns the correct m̂ for any subsampling. e MR

estimation is exemplified for a subcritical branching process (m= 0.9, h= 10), where active units are observed with probability α. Under subsampling

(gray), the regression slopes r1 are smaller than under full sampling (blue). f While conventional estimation of m relies on the linear regression r1 and is

biased under subsampling, MR estimation infers m̂ from the exponential relation rk∝mk, which remains invariant under subsampling
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the novel estimator, coincided (Fig. 2d, Supplementary Note 9).
In contrast, after applying artificial subsampling to the case
reports, thereby mimicking that each infection was only
diagnosed and reported with probability α < 1, the conventional
estimator severely underestimated the spreading behavior, while
MR estimation always returned consistent values (Fig. 2d). This
shows that the MR estimator correctly infers the reproductive
number m directly from subsampled time series, without the need
to know the degree of under-ascertainment α.

Second, we evaluated worldwide measles case and vaccination
reports for 124 countries provided by the WHO since 1980
(Fig. 2a, Supplementary Note 9), because the vaccination
percentage differs in each country, and this is expected to impact
the spreading behavior through m. The reproductive numbers m̂
ranged between 0 and 0.93, and in line with our prediction clearly
decreased with increasing vaccination percentage in the respective
country (Spearman rank correlation: r=−0.342, p < 10−4).

Third, we estimated the reproductive numbers for three
diseases in Germany with highly different infectiousness: noro-
viral infection27,30, measles, and invasive meticillin-resistant
Staphylococcus aureus (MRSA, an antibiotic-resistant germ
classically associated with health care facilities31, Fig. 2b, c), and
quantified their propagation behavior. MR estimation returned
the highest m̂= 0.98 for norovirus, compliant with its high
infectiousness32. For measles we found the intermediate
m̂= 0.88, reflecting the vaccination rate of about 97%. For
MRSA we identified m= 0, confirming that transmission is still
minor in Germany33. However, a future increase of transmission
is feared and would pose a major public health risk34. Such an

increase could be detected by our estimator, even in countries
where case reports are incomplete.

Reverberating spiking activity in vivo. We applied the MR
estimator to cortical spiking activity in vivo to investigate two
contradictory hypotheses about collective spiking dynamics. One
hypothesis suggests that the collective dynamics is “asynchronous
irregular” (AI)35–38, i.e., neurons spike independently of each
other and in a Poisson manner (m= 0), which may reflect a
balanced state39–41. The other hypothesis suggests that neuronal
networks operate at criticality (m= 1)3,11,42–44, thus in a parti-
cularly sensitive state close to a phase transition. These different
hypotheses have distinct implications for the coding strategy of
the brain: Criticality is characterized by long-range correlations in
space and time, and in models optimizes performance in tasks
that profit from long reverberation of the activity in the net-
work12,45–48. In contrast, the typical balanced state minimizes
redundancy49 and supports fast network responses39.

Analyzing in vivo spiking activity from Macaque monkey
prefrontal cortex during a memory task, anesthetized cat visual
cortex with no stimulus (Fig. 3a, b), and rat hippocampus during
a foraging task (Supplementary Note 10) returned m̂ to be
between 0.963 and 0.998 (median m̂= 0.984, Fig. 3e, Supple-
mentary Fig. 5), corresponding to autocorrelation times between
100 and 2000ms. This clearly suggests that spiking activity
in vivo is neither AI-like (m= 0), nor consistent with a critical
state (m= 1), but in a reverberating state that shows autocorrela-
tion times of a few hundred milliseconds. We call the range of the
dynamical states found in vivo reverberating, because input
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reverberates for a few hundred millisecond in the network, and
therefore enables integration of information50–52. Thereby the
reverberating state constitutes a specific narrow window between
AI state, where perturbations of the firing rate are quenched
immediately, and the critical state, in which perturbations can in
principle persist infinitely long (for more details, see Wilting and
Priesemann53).

We demonstrate the robustness to subsampling for the activity
in cat visual cortex: we chose random subsets of n neurons from
the total of 50 recorded single units. For any subset, even for
single neurons, MR estimation returned about the same median
m̂ (Fig. 3c). In contrast, the conventional estimator misclassified
neuronal activity by strongly underestimating m̂: instead of m̂=
0.984, it returned m̂C = 0.271 for the activity of all 50 neurons.
This underestimation gets even more severe when considering
stronger subsampling (n < 50, Fig. 3c). Ultimately, for single
neuron activity, the conventional estimator returned m̂C =

0.057 ≈ 0, which would spuriously indicate dynamics close to
AI instead of the reverberating state (inset of Fig. 3b, c and
Supplementary Fig. 6). The underestimation of m̂C was present in
all experimental recordings (r1 in Supplementary Fig. 5).

On first sight, m̂= 0.984 may appear close to the critical state,
particularly as physiologically a 1.6% difference to m= 1 is small
in terms of the effective synaptic strength. However, this
seemingly small difference in single unit properties has a large
impact on the collective dynamics and makes AI, reverberating,
and critical states clearly distinct. This distinction is readily
manifest in the fluctuations of the population activity (Fig. 3f).
Furthermore, the distributions of avalanche sizes clearly differ
from the power-law scaling expected for critical systems11, but are
well captured by a matched, reverberating model (Fig. 3d).

Because of the large difference in the network dynamics, the MR
estimator can distinguish AI, reverberating, and critical states
with the necessary precision. In fact, the estimator would allow
for 100 times higher precision when distinguishing critical from
non-critical states, assuming in vivo-like subsampling and mean
firing rate (sampling n= 100 from N= 104 neurons, Fig. 3e).
With larger N, this discrimination becomes even more sensitive
(detailed error estimates: Supplementary Fig. 4 and Supplemen-
tary Note 6). As the number of neurons in a given brain area is
typically much higher than N= 104 in the simulation, finite size
effects are not likely to account for the observed deviation from
criticality ϵ= 1−m ≈ 10−2 in vivo, supporting that in rat, cat,
and monkey the brain does not operate in a critical state. Still,
additional factors like input or refractory periods may limit the
maximum attainable m to quasi-critical dynamics on a Widom
line54, which could in principle conform with our results.

Discussion
Most real-world systems, including disease propagation or cor-
tical dynamics, are more complicated than a simple PAR. For
cortical dynamics, for example, heterogeneity of neuronal mor-
phology and function, non-trivial network topology, and the
complexity of neurons themselves are likely to have a profound
impact onto the population dynamics55. In order to test for the
applicability of a PAR approximation, we defined a set of con-
servative tests (Supplementary Note 5 and Supplementary
Table 1) and included only those time series, where the approx-
imation by a PAR was considered appropriate. For example, we
excluded all recordings that showed an offset in the slopes rk,
because this offset is, strictly speaking, not explained by a PAR
and might indicate non-stationarities (Supplementary Fig. 3).
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Even with these conservative tests, we found the exponential
relation rk= bmk expected for PARs in the majority of real-world
time series (Supplementary Fig. 5, Supplementary Note 9). This
shows that a PAR is a reasonable approximation for dynamics as
complex as cortical activity or disease propagation. With using
PARs, we draw on the powerful advantage of analytical tract-
ability, which allowed for valuable insight into dynamics and
stability of the respective system. It is then a logical next step to
refine the model by including additional relevant parameters56.
However, the increasing richness of detail typically comes at the
expense of analytical tractability.

By employing for the first time a consistent, quantitative esti-
mation, we provided evidence that in vivo spiking population
dynamics reflects a stable, fading reverberation state around
m= 0.98 universally across different species, brain areas, and
cognitive states. Because of its broad applicability, we expect that
besides the questions investigated here, MR estimation can sub-
stantially contribute to the understanding of real-world dynami-
cal systems in diverse fields of research where subsampling
prevails.

Data availability. Time series with yearly case reports for measles
in 194 different countries are available online from the World
Health Organization (WHO) for the years between 1980 and
2014. Weekly case reports for measles, norovirus, and invasive
meticillin-resistant Staphylococcus aureus in Germany are avail-
able through their SURVSTAT@RKI server of the Robert-Koch-
Institute. The data from rat hippocampus (https://doi.org/
10.6080/K0Z60KZ9) and cat visual cortex (https://doi.org/
10.6080/K0MW2F2J) are available from the CRCNS.org data-
base. Python code for basic MR estimation and branching process
simulation is available from github (https://github.com/jwilting/
WiltingPriesemann2018). Any additional code is available from
the authors upon request.

Received: 25 September 2017 Accepted: 9 May 2018

References
1. Papoz, L., Balkau, B. & Lellouch, J. Case counting in epidemiology: limitations

of methods based on multiple data sources. Int. J. Epidemiol. 25, 474–478
(1996).

2. Quagliariello, M. Stress-testing the banking system: methodologies and
applications. (Cambridge University Press, NY, 2009).

3. Priesemann, V., Munk, M. H. J. & Wibral, M. Subsampling effects in neuronal
avalanche distributions recorded in vivo. BMC Neurosci. 10, 40 (2009).

4. Ribeiro, T. L. et al. Spike avalanches exhibit universal dynamics across the
sleep-wake cycle. PLoS ONE 5, e14129 (2010).

5. Ribeiro, T. L. et al. Undersampled critical branching processes on small-world
and random networks fail to reproduce the statistics of spike avalanches. PLoS
ONE 9, e94992 (2014).

6. Farrington, C. P., Kanaan, M. N. & Gay, N. J. Branching process models for
surveillance of infectious diseases controlled by mass vaccination. Biostatistics
4, 279–295 (2003).

7. Kimmel, M. & Axelrod, D. E. Branching processes in biology, interdisciplinary
applied mathematics 19 (Springer New York, NY, 2015).

8. Pazy, A. & Rabinowitz, P. On a branching process in neutron transport theory.
Arch. Ration. Mech. Anal. 51, 153–164 (1973).

9. Filimonov, V. & Sornette, D. Quantifying reflexivity in financial markets:
toward a prediction of flash crashes. Phys. Rev. E 85, 056108 (2012).

10. Mitov, G. K., Rachev, S. T., Kim, Y. S. & Fabozzi, F. J. Barrier option pricing by
branching processes. Int. J. Theor. Appl. Financ. 12, 1055–1073 (2009).

11. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J.
Neurosci. 23, 11167–11177 (2003).

12. Haldeman, C. & Beggs, J. Critical branching captures activity in living neural
networks and maximizes the number of metastable states. Phys. Rev. Lett. 94,
058101 (2005).

13. Heathcote, C. R. A branching process allowing immigration. J. R. Stat. Soc. B
27, 138–143 (1965).

14. Heyde, C. C. & Seneta, E. Estimation theory for growth and immigration rates
in a multiplicative process. J. Appl. Probab. 9, 235 (1972).

15. Wei, C. & Winnicki, J. Estimation of the means in the branching process with
immigration. Ann. Stat. 18, 1757–1773 (1990).

16. Hamilton, J. D. Time series analysis 2 (Princeton university press, Princeton,
1994).

17. Shumway, R. H. & Stoffer, D. S. An approach to time series smoothing and
forecasting using the EM algorithm. J. Time Ser. Anal. 3, 253–264 (1982).

18. Ghahramani, Z. & Hinton, G. E. Parameter estimation for linear dynamical
systems. Technical Report (University of Toronto, 1996).

19. Statman, A. et al. Synaptic size dynamics as an effectively stochastic process.
PLoS Comput. Biol. 10, e1003846 (2014).

20. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348
(2012).

21. Bak, P., Tang, C. & Wiesenfeld, K. Self-organized criticality: an explanation of
the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987).

22. Priesemann, V., Valderrama, M., Wibral, M. & Le Van Quyen, M. Neuronal
avalanches differ from wakefulness to deep sleep-evidence from intracranial
depth recordings in humans. PLoS Comput. Biol. 9, e1002985 (2013).

23. Priesemann, V. et al. Spike avalanches in vivo suggest a driven, slightly
subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014).

24. Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. On the definition and the
computation of the basic reproduction ratio R0 in models for infectious
diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990).

25. Earn, D. J. A simple model for complex dynamical transitions in epidemics.
Science 287, 667–670 (2000).

26. Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel.
Nature 439, 462–465 (2006).

27. Hauri, A. M. et al. Electronic outbreak surveillance in germany: a first
evaluation for nosocomial norovirus outbreaks. PLoS ONE 6, e17341 (2011).

28. Hellenbrand, W. et al. Progress toward measles elimination in Germany. J.
Infect. Dis. 187, S208–S216 (2003).

29. Wichmann, O. et al. Further efforts needed to achieve measles elimination in
Germany: results of an outbreak investigation. Bull. World Health Organ. 87,
108–115 (2009).

30. Bernard, H., Werber, D. & Höhle, M. Estimating the under-reporting of
norovirus illness in Germany utilizing enhanced awareness of diarrhoea
during a large outbreak of Shiga toxin-producing E. coli O104:H4 in 2011 a
time series analysis. BMC Infect. Dis. 14, 1–6 (2014).

31. Boucher, H. W. & Corey, G. R. Epidemiology of methicillin–resistant
Staphylococcus aureus. Clin. Infect. Dis. 46, S344–S349 (2008).

32. Teunis, P. F. et al. Norwalk virus: how infectious is it? J. Med. Virol. 80,
1468–1476 (2008).

33. Köck, R. et al. The epidemiology of methicillin-resistant Staphylococcus aureus
(MRSA) in Germany. Dtsch. Arztebl. Int. 108, 761–767 (2011).

34. DeLeo, F. R., Otto, M., Kreiswirth, B. N. & Chambers, H. F. Community-
associated meticillin-resistant Staphylococcus aureus. Lancet 375, 1557–1568
(2010).

35. Burns, B. D. & Webb, A. C. The spontaneous activity of neurones in the cat’s
cerebral cortex. Proc. R. Soc. B Biol. Sci. 194, 211–223 (1976).

36. Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J. Neurosci. 13,
334–350 (1993).

37. de Ruyter van Steveninck, R. R. et al. Reproducibility and variability in neural
spike trains. Science 275, 1805–1808 (1997).

38. Ecker, A. S. et al. Decorrelated neuronal firing in cortical microcircuits. Science
327, 584–587 (2010).

39. Vreeswijk, Cv & Sompolinsky, H. Chaos in neuronal networks with balanced
excitatory and inhibitory activity. Science 274, 1724–1726 (1996).

40. Brunel, N. Dynamics of networks of randomly connected excitatory and
inhibitory spiking neurons. J. Physiol. Paris 94, 445–463 (2000).

41. Renart, A. et al. The asynchronous state in cortical circuits. Science 327,
587–590 (2010).

42. Chialvo, D. R. Emergent complex neural dynamics. Nat. Phys. 6, 744–750
(2010).

43. Tkačik, G. et al. Thermodynamics and signatures of criticality in a network of
neurons. Proc. Natl Acad. Sci. USA 112, 11508–11513 (2015).

44. Humplik, J. & Tkačik, G. Probabilistic models for neural populations that
naturally capture global coupling and criticality. PLoS Comput. Biol. 13, 1–26
(2017).

45. Kinouchi, O. & Copelli, M. Optimal dynamical range of excitable networks at
criticality. Nat. Phys. 2, 348–351 (2006).

46. Boedecker, J. et al. Information processing in echo state networks at the edge
of chaos. Theory Biosci. 131, 205–213 (2012).

47. Shew, W. L. & Plenz, D. The functional benefits of criticality in the cortex.
Neuroscientist 19, 88–100 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04725-4

6 NATURE COMMUNICATIONS |  (2018) 9:2325 | DOI: 10.1038/s41467-018-04725-4 | www.nature.com/naturecommunications

https://doi.org/10.6080/K0Z60KZ9
https://doi.org/10.6080/K0Z60KZ9
https://doi.org/10.6080/K0MW2F2J
https://doi.org/10.6080/K0MW2F2J
https://github.com/jwilting/WiltingPriesemann2018
https://github.com/jwilting/WiltingPriesemann2018
www.nature.com/naturecommunications


48. Del Papa, B., Priesemann, V. & Triesch, J. Criticality meets learning: criticality
signatures in a self-organizing recurrent neural network. PLoS One 12, 1–22
(2017).

49. Hyvärinen, A. & Oja, E. Independent component analysis: algorithms and
applications. Neural Netw. 13, 411–430 (2000).

50. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex.
Nat. Neurosci. 17, 1661–1663 (2014).

51. Chaudhuri, R. et al. A large-scale circuit mechanism for hierarchical
dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

52. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and
saving energy in wireless communication. Science 304, 78–80 (2004).

53. Wilting, J. & Priesemann, V. On the ground state of spiking network activity
in mammalian cortex. Preprint at http://arxiv.org/abs/1804.07864 (2018).

54. Williams-García, R. V., Moore, M., Beggs, J. M. & Ortiz, G. Quasicritical brain
dynamics on a nonequilibrium Widom line. Phys. Rev. E 90, 062714 (2014).

55. Marom, S. Neural timescales or lack thereof. Prog. Neurobiol. 90, 16–28
(2010).

56. Eckmann, J. P. et al. The physics of living neural networks. Phys. Rep. 449,
54–76 (2007).

57. Cuntz, H., Forstner, F., Borst, A. & Häusser, M. One rule to grow them all: a
general theory of neuronal branching and its practical application. PLoS
Comput. Biol. 6, e1000877 (2010).

Acknowledgements
We thank Matthias Munk for sharing his data. J.W. received support from the Gertrud-
Reemstma-Stiftung. V.P. received financial support from the German Ministry for
Education and Research (BMBF) via the Bernstein Center for Computational Neu-
roscience (BCCN) Göttingen under Grant No. 01GQ1005B, and by the German-Israel-
Foundation (GIF) under grant number G-2391-421.13. J.W. and V.P. received financial
support from the Max Planck Society.

Author contributions
J.W. and V.P. contributed equally.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04725-4.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2018

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04725-4 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2325 | DOI: 10.1038/s41467-018-04725-4 | www.nature.com/naturecommunications 7

http://arxiv.org/abs/1804.07864
https://doi.org/10.1038/s41467-018-04725-4
https://doi.org/10.1038/s41467-018-04725-4
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Inferring collective dynamical states from widely unobserved systems
	Results
	Application to disease case reports
	Reverberating spiking activity in�vivo

	Discussion
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


