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The interaction between proteins is one of the most important features of protein functions. Behind
protein–protein interactions there are protein domains interacting physically with one another to perform the
necessary functions. Therefore, understanding protein interactions at the domain level gives a global view of the
protein interaction network, and possibly of protein functions. Two research groups used yeast two-hybrid
assays to generate 5719 interactions between proteins of the yeast Saccharomyces cerevisiae. This allows us to study
the large-scale conserved patterns of interactions between protein domains. Using evolutionarily conserved
domains defined in a protein–domain database called PFAM (http://PFAM.wustl.edu), we apply a Maximum
Likelihood Estimation method to infer interacting domains that are consistent with the observed protein–protein
interactions. We estimate the probabilities of interactions between every pair of domains and measure the
accuracies of our predictions at the protein level. Using the inferred domain–domain interactions, we predict
interactions between proteins. Our predicted protein–protein interactions have a significant overlap with the
protein–protein interactions (MIPS: http://mips.gfs.de) obtained by methods other than the two-hybrid assays.
The mean correlation coefficient of the gene expression profiles for our predicted interaction pairs is
significantly higher than that for random pairs. Our method has shown robustness in analyzing incomplete data
sets and dealing with various experimental errors. We found several novel protein–protein interactions such as
RPS0A interacting with APG17 and TAF40 interacting with SPT3, which are consistent with the functions of the
proteins.

[Supplementary material is available online at http://www.genome.org and http://www-hto.usc.edu/∼ msms/
ProteinInteraction.]

With the advancement of genomic technology and genome-
wide analysis of organisms, more and more organisms are
being studied extensively for gene expression on a global
scale. Expression profiling is now being used increasingly to
analyze gene functions or to functionally group genes on the
basis of their expression profiles (Lockhart and Winzeler
2000). After the completion of the genome sequence of Sac-
charomyces cerevisiae (Goffeau et al. 1996), a budding yeast,
many researchers have undertaken the task of functionally
analyzing the yeast genome, comprising ∼ 6280 proteins
(YPD), of which roughly one-third do not have known func-
tions (Mewes et al. 2002). Genes can be clustered on the basis
of similar expression profiles. This makes it possible to assign
a biological function to genes, depending on the functions of
other genes in the cluster (Eisen et al. 1998). However, expres-
sion profiling gives an indirect measure of a gene product’s
biological and cellular function. A more complete study of an
organism could possibly be achieved by looking at not only
the mRNA levels but also the proteins they encode. It is well
known that mRNA levels alone are not sufficient to group
genes into different functions, because not all mRNAs end up
being translated. Most biological functions within a cell are
carried out by proteins and most cellular processes and bio-
chemical events are ultimately achieved by interactions of

proteins with one another. Thus, it is important to look at
protein expression and their interactions simultaneously.

Affinity chromatography, two-hybrid assay, copurifica-
tion, coimmunoprecipitation, and cross-linking are some of
the tools used to verify proteins that are associated physically
with one another. Among these techniques, the two-hybrid
assay has been used widely to analyze protein–protein inter-
actions in Saccharomyces cerevisiae (Ito et al. 2000, 2001a; Uetz
et al. 2000). Their protein interaction profiles have made it
possible to look at the interaction networks comprising a large
number of proteins and to also functionally classify proteins
of unknown function. Uetz et al. (2000) used two different
approaches in their two-hybrid experiments. The first was a
protein array approach with 192 yeast proteins as bait, Gal4–
DNA-binding domain fusions, and ∼ 6000 yeast transformants
as prey, Gal4-activation domain fusions. The second, an in-
teraction sequence tag (IST) approach, used high-throughput
screens of an activation domain library encoding ∼ 6000 yeast
genes that were pooled. All yeast proteins were cloned into
DNA-binding domain vectors. Of the 6144 yeast ORF PCR
products, 5345 were successfully cloned. Their first approach
revealed 281 interactions, with less stringent selection crite-
ria, using HIS3. The second approach revealed 692 interac-
tions with the more stringent URA3 selection method. Ito et
al. (2001a) used a similar method and reported 4549 interac-
tions among 3278 proteins. Some interactions in both data
sets were repeated (bait and prey exchanged). They imposed a
more rigorous selection criterion including four reporter
genes, ADE2, HIS3, URA3, and MEL1, to minimize false posi-
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tives due to promoter-specific activation. All of these genes
have Gal4-responsive promoter.

Computational methods have been developed to predict
protein–protein interactions. Those approaches include the
Rosetta stone/gene fusion method (Enright et al. 1999; Mar-
cotte et al. 1999a), the phylogenetic profile method (Pelle-
grini et al. 1999) and the method combining multiple sources
of data (Marcotte et al. 1999b). Other computational methods
to predict protein–protein interaction have been presented on
the basis of different principles, including the interaction do-
main pair profile method (Rain et al. 2001; Wojcik and
Schachter 2001) and the support vector machine learning
method (Bock and Gough 2001). Gomez et al. (2001) devel-
oped probabilistic models for protein–protein interactions.
Sprinzak and Margalit (2001) analyzed over-represented se-
quence-signature pairs among protein–protein interactions.

In our study, we use the protein–protein interaction (PPI)
data sets of Uetz and Ito to predict domain–domain interac-
tions (DDI) in yeast proteins. The protein-domain informa-
tion is obtained from a protein-domain family database called
PFAM (Bateman et al. 2000). Because every protein can be
characterized by either a distinct domain or a combination of
domains, understanding domain interactions is crucial to un-
derstanding the nature and extent of biomolecular interac-
tions. Our study predicts probable domain–domain interac-
tions solely on the basis of the information of protein–protein
interactions. Because proteins interact with one another
through their specific domains, predicting domain–domain
interactions on a global scale from the entire protein interac-
tion data set make it possible to predict previously unknown
protein–protein interactions from their domains. Thus, do-
main interactions extend the functional significance of pro-
teins and present a global view of the protein–protein inter-
action network within a cell responsible for carrying out vari-
ous biological and cellular functions.

It is known that the yeast two-hybrid assay is not accu-
rate in determining protein–protein interactions, and the in-
teraction data used in our study certainly contain many false
positive and false negative errors (Legrain and Selig 2000;
Hazbun and Fields 2001; Mrowka et al. 2001). Taking into
account these errors, we apply the Maximum Likelihood ap-
proach to estimate the probability of domain–domain inter-
actions. We have also taken into account multiplicity of ob-
servations in the two data sets as evidenced by exchanged
baits and preys, repeated interactions, and synonymously
used gene names. To assess the accuracy of our method, we
predict protein–protein interactions using the inferred do-
main–domain interactions, and compare them with the ob-
served interactions. The following results are obtained: (1)
Our method has shown robustness in analyzing incomplete
data sets and dealing with various experimental errors, and we
achieve 42.5% specificity and 77.6% sensitivity using the
combined Uetz and Ito data. The relative low specificity may
be caused by the fact that the observed protein–protein inter-
actions in the Uetz and Ito combined data represent only a
small fraction of all of the real interactions. (2) Comparing
our predicted protein–protein interactions with the MIPS pro-
tein–protein interactions obtained by methods other than the
two-hybrid assays, we show that the prediction rate of our
method is about 100 times better than that of a random as-
signment. (3) We also compare the gene expression profile
correlation coefficients of our predictions with those of ran-
dom protein pairs, and our predictions have a higher mean
correlation coefficient. (4) Finally, we check for biological sig-

nificance of our novel predictions, and find several interesting
interactions such as RPS0A interacting with APG17 and TAF40
interacting with SPT3, which are consistent with the func-
tions of the proteins. A complete description of our model
and the results are given in the sections below.

RESULTS
The two sources of protein–protein interactions are listed in
Table 1. The domains include PFAM domains, superdomains,
and merged domains. A protein without any domain infor-
mation is treated as a superdomain. If two or more PFAM
domains always coexist in proteins, they are merged into one
domain.

We apply both the Association method and the MLE
method to estimate domain–domain interactions. However, it
is difficult to estimate the accuracies of our prediction at the
domain level, because very few domain–domain interactions
are known. We use the inferred domain–domain interactions
to predict protein–protein interactions and assess the predic-
tion accuracies at the protein level. The accuracies of the pre-
dictions are measured by specificity and sensitivity. The speci-
ficity, denoted as SP, is defined as the ratio of the number of
matched interactions between the predicted set and the ob-
served set over the total number of predicted interactions. The
sensitivity, denoted as SN is defined as the ratio of the number
of matched interactions over the total number of observed
interactions.

Results of the Association Method
Two proteins are predicted to be interacting if there exist two
domains, one from each protein, whose association value is
greater than a predefined threshold. We achieve 55.5% speci-
ficity and 55.0% sensitivity by setting the threshold at 0.65
using the combined data sets.

Results of the MLE Method
We apply the EM algorithm recursively to derive domain–
domain interaction probabilities from the combined data of
Uetz and the Ito with fixed false positive ( fp) and false nega-
tive ( fn). It was estimated in Hazbun and Fields (2001) that
each protein interacts with about t = 5 to 50 proteins. For
N = 6359 yeast proteins and t = 5, it gives a total number of
15,898 real interaction pairs.

Therefore,

fn = Pr�Oij = 0 � Pij = 1�

= 1.0 −
Pr�Oij = 1, Pij = 1�

Pr�Pij = 1�

� 1.0 −
Pr�Oij = 1�

Pr�Pij = 1�

� 1.0 −
number of observed interaction pairs

number of real interaction pairs

� 1.0 −
5719
15898

� 0.64.

Similarly, we can estimate fp. There are a total of N(N + 1)/2 ≈
2 E7 protein pairs of which about t � N/2 are potentially
interacting pairs. Therefore,
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fn = Pr�Oij = 1 � Pij = 0�

=
Pr�Oij = 1, Pij = 0�

Pr�Pij = 0�

�
Pr�Oij = 1�

Pr�Pij = 0�

=
number of observed interaction pairs

total protein pairs − number of real interaction pairs

=
5719

N�N + 1��2 − tN�2

�
5719

N�N + 1��2 − 50N�2
� 2.85E − 4.

Mrowka et al. (2001) estimated that perhaps up to 90% of the
total 5719 protein interactions inUetz’s and Ito’s combined data
are not correct interactions. That gives a false positive rate of
about fp = 2.5E – 4. Two proteins are predicted to interact if their
interaction probability is greater than a certain threshold. Using
the combined data with fp = 2.5E – 4 and fn = 0.80, we achieve
SP = 42.5% and SN = 77.6% by setting the threshold at 0.80. The
reason for the relatively low specificity is that the protein–
protein interactions in the Uetz and Ito combined data set con-
tain only a very small fraction of the potential protein–protein
interactions. This can be seen from the small overlap between
the Uetz’s data set and the Ito data set. Also, many interactions
in the MIPS database are not in the combined data set. A rea-
sonable program should predict more interactions than the
number of observed interactions, which results in relatively low
specificity.

Figure 1 shows the relationship between sensitivity and
specificity for both the association method and the MLE
method with fp = 2.5E – 4 and fn = 0.80. The MLE approach
outperforms the association method. For a given specificity,

the sensitivity of the MLE approach is always higher than that
of the association method.

Figure 2 shows that the specificity and the sensitivity are
quite similar for various combinations of fp and fn values.
This feature indicates that the MLE method is robust with
respect to experimental errors, and is capable of predicting the
core interactions in the data.

Validations of the MLE Predictions
The statistical significance of the predictions can be measured
by comparing the predicted interactions with the protein–
protein interactions in the MIPS database and the gene ex-
pression profiles.

Comparing With MIPS
We use theMIPS physical interaction pairs (Mewes et al. 2002)
to test our predictions. There are 2575 entries in the MIPS
protein physical interaction table. Excluding those interac-
tions overlapping with the Uetz and Ito interaction data, we
obtain a test data set of 1417 MIPS interactions. We then

measure whether the MLE method
can predict them.
Our method gives the probability
of interaction for each protein pair.
The larger the probability, themore
likely the interaction is real. Table 2
shows the matching numbers be-
tween the 1417 interactions and
our predicted interactions with
probability greater than some
threshold. If our approach is rea-
sonable, a real interaction should
more likely be in the high probabil-
ity categories than random pairs
are. To measure this excess, we cal-
culate the ratio of the fraction of
the predicted protein pairs in the
test data set with those in all pro-
tein pairs. We denote this quantity
by Fold:

Fold =
k0�K
n�L

,

in which L is the total number of
protein pairs, n is the number of
protein pairs with interaction prob-
ability greater than some threshold,
K = 1417, and k0 is the number of
matching protein pairs between the
1417 interactions in the test data
set and the n predicted interactions.

Table 1. Number of Proteins, Domains, and PPI in the
Uetz, the Ito, the Uetz and Ito Combined, and the Overlap
Data Sets

Proteins Domains PPI

Uetz 1337 1643 1445
Ito 3277 3685 4475
Combined 3729 4131 5719
Overlap 855 1179 201

A domain is a Pfam domain, a super-domain, or a merged
domain.

Figure 1 Comparison of specificity and sensitivity of the prediction rates for the association method
and the maximum likelihood method.
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Table 2 shows that the fold number increases as the
threshold increases. This is consistent with our prediction.
The 1417 protein pairs in the test data set are ∼ 97 times more
likely to have interacting probability >0.975 than random
pairs.

To statistically test whether the 1417 protein pairs in the
test data set are more likely to have interaction probability
greater than the threshold, we use the standard Z-score

Z =
k0 − np

�np�1 − p�
,

where

p =
K
L
.

Z has an approximate standard
normal distribution under the null
hypothesis. Both Z-scores and P-
values are given in Table 2.

It should be noted that set-
ting the threshold to 0.975 gives
9413 – 4289 = 5124 novel protein–
protein interactions. The matches
between these interactions and
the 1417 MIPS interactions ex-
cluding the Uetz and Ito PPIs are a
mere 35. However, the small num-
ber of overlaps is probably due to
the large size of the whole-yeast
protein interactions and errors in
the two-hybrid experiments.

Comparing With Gene
Expression Profiles
Recently, it was noted that genes
with similar expression profiles are
likely to encode interacting pro-
teins (Ge et al. 2001; Grigoriev
2001). We study the distribution
of correlation coefficients for pro-
tein pairs with predicted interac-
tion probability greater than a cer-
tain threshold. We use the gene
expression data of Eisen et al.
(1998), which contain 2467 ORFs
with 79 data points. Figure 3 gives

the distributions of the pairwise correlation coefficients for all
gene pairs, our predicted protein pairs with probability
�0.975, the Ito and Uetz original data, and the MIPS interac-
tion data.

To test whether the mean expression correlation coeffi-
cients for gene pairs in our predicted and experimentally veri-
fied interacting protein pairs are significantly higher than
that for all the gene pairs, we calculate the T-score and the
P-value for the null hypothesis of no difference between the
sample (the MIPS and our prediction) mean and the mean of
all gene pairs. The results are listed in Table 3. The T-scores are
calculated as the standard two sample T-test statistics:

T =
�1 − �2

� 1
n1

+
1
n2
�n1 − 1�S1

2 + �n2 − 1�S2
2

n1+ n2− 2

,

Table 2. Number of Matched Protein Pairs Between the Predictions

Threshold Prediction Train MIPS MIPS1 Fold Z score P value

All 20221620 5719 2575 1417 1 —
>0.00 125435 5717 1263 106 12.63 33.70 3.88e-249
�0.20 23182 5154 1074 51 40.36 44.25 —
�0.40 16287 4847 993 47 58.61 51.59 —
�0.60 12748 4647 933 43 75.73 56.31 —
�0.80 10441 4437 882 40 95.05 61.01 —
�0.975 9413 4289 845 35 97.45 57.80 —

(Prediction) fp = 2.5E-4, fn = 0.80, the training set (Train), the MIPS data (MIPS), and the MIPS excluding the training
data (MIPS1), respectively. The corresponding statistics (Fold, Z score, and P value) are also given.

Figure 2 Comparison of specificity and sensitivity of the prediction of protein–protein interactions by
the maximum likelihood method for four different values of fp and fn.
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where µ is the mean of samples, and

S = � 1
n − 1�i = 1

n

�xi − ��2

is the standard deviation of the samples.
Figure 3 and Table 3 show that the mean correlation

coefficient for protein pairs with interacting probability
greater than a certain threshold is significantly higher than
the mean correlation coefficient for random pairs.

Applying the MLE Method on the MIPS Data
For comparison, we also apply our probabilistic model and
the MLE method on the MIPS interaction data. We set fp = 0
and fn = 0.95 because the protein–protein interactions in

MIPS are individually verified and
thus should have a very small false
positive rate. We predict probabili-
ties for domain–domain interac-
tions. To assess the accuracies of the
predictions at the protein level, we
compute probabilities for protein–
protein interactions. Measured by
sensitivity and specificity, the MLE
method outperforms the Associa-
tion method. As expected, the over-
lap between our novel predictions
of protein–protein interactions and
the yeast two-hybrid data is small.
For example, the 4671 novel inter-
actions predicted with a threshold
have only 44 matches with the
yeast two-hybrid data. Given the
small overlap between the Uetz and
Ito combined data and the MIPS
data, this result is conceivable. All
of the results are shown in the
supplementary data.

Biological Significance of
Novel Predictions
Novel protein–protein interactions
are predicted from our probabilistic
model. The top 17 predictions with
probability >0.95 are listed in Table
4. We observe four interactions in
which one of the interactors has

unknown function. ORF YOL083W and ORF YNL078W are
shown to interact with a transcription factor, TFB1(TFIIH sub-
unit), and a serine/threonine kinase, MRK1. It is possible that
the two ORFs have some role to play in the transcription
machinery associated with RNA Pol II or DNA repair (TFIIH is
also involved in DNA repair) and the kinase pathway of
MRK1, respectively.

Some of our predictions, such as CTT1-PEX14 and
TAF40-SPT3 interactions, are significant. PEX14 facilitates
docking interactions at the peroxisomal membrane receptors
and catalase T is an oxidative enzyme that degrades hydrogen
peroxide. Because peroxisomes release enzymes that reduce
oxygen stress in the cell, there is a logical interaction between
the two proteins. An interesting finding was the SPT3 inter-
action with TAF40. SPT3 is a component of the nucleosomal
HAT (histone acetyl transferase) complex and is TBP associ-
ated. TAF40 is also TBP associated and is a transcription factor
in Pol II transcription. Thus, at some point between histone
acetylation, which facilitates the transcription machinery to
bind to DNA and the recruitment of transcription factors to
DNA, we find an interaction between the two processes.

Some predictions may indicate previously unknown pro-
tein functions such as SPS18, the sporulation-specific tran-
scription factor interacting with YIP1 and DPM1. Both YIP1
and DPM1 are integral membrane proteins and localized at ER
and Golgi. Their functions in vesicular transport and protein
modification suggest that the sporulation-specific genes acti-
vated by SPS18 may be recruited to membranes to form the
spore wall and therefore interact with YIP1 and DPM1. SPS18
may be involved in this process.

The rest of our top novel predictions involve interactions

Table 3. Summary Statistics of Distribution of the
Correlation Coefficient Between the Expression Profiles of
Two Interacting Proteins (With Gene Expression Profiles
From Different Data Sets and Predictions (fp = 2.5E-4, fn =
0.80) With Different Probability Thresholds

Pairs Pairs Mean Std T-score P value

All ORFs 3036880 0.0410 0.2444 0.0000 5.000e-01
�0.20 5333 0.0657 0.2529 7.3985 7.186e-14
�0.40 3692 0.0774 0.2549 9.0661 6.541e-20
�0.60 2764 0.0858 0.2613 9.6445 2.766e-22
�0.80 2205 0.0832 0.2609 8.1043 2.788e-16
�0.975 1959 0.0841 0.2628 7.8134 2.917e-15
Uetz + Ito 1307 0.0841 0.2600 6.3775 9.292e-11
MIPS 1100 0.1646 0.2721 16.8504 5.860e-64

Figure 3 Distributions of the pairwise correlation coefficients of gene expression profiles for inter-
action proteins in all gene pairs, the predicted interactions with threshold, the combined Uetz and Ito
data, and the MIPS data.
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between members of the same gene family, such as PRS5,
PRS3, PRS1, or between members of two separate gene fami-
lies, such as the SNO and SNZ gene family. From literature
sources, PRS1 and PRS3 are known to interact strongly with
each other and PRS5 has interactions with PRS2 or PRS4. Here,
we show interactions between PRS5 and PRS3, PRS5 and PRS1,
and PRS5 with itself. PRS is a phosphoribosyl pyrophosphate
synthetase involved in amino acid and nucleotide metabo-
lism. Each of the SNZ genes has SNO genes upstream, and

members of these two gene families are highly conserved and
coregulated. Genes of both families are involved in cellular
response to nutrient stress and, hence, interactions between
the two families is obvious from the biological point of view.

We also observe interactions of two ribosomal proteins,
RPS0A and RPS0B, with APG17, a protein involved in vesicu-
lar transport and autophagy. However, because pairwise in-
teractions do not give a complete functional role of a protein,
we looked at all interactions of APG17 and RPS0A separately
in Table 5 and Table 6. We observe RPS0A interactions with
APG17, BBP1, YDL100C, and ILV1 with probability greater
than 0.5. BBP1 is a spindle-pole body protein and is known to
bind Bfr1p (from literature sources), which is involved in ve-
sicular transport of secretory proteins and is localized on a
polyribosome–mRNP complex. APG17 is a component of the
APG complex of proteins involved in targeting proteins to
vacuoles/lysosomes under starvation conditions. We predict
binding of BBP1 and BFR1 (from literature) to RPS0A and also
binding of APG17 to RPS0A. Thus, binding of two different
vesicular transport proteins to ribosomal proteins may or may
not be part of one complex, depending on cellular environ-
ment. We predict several interactions for APG17 listed in
Table 5. We predict nine ORFs of unknown function to have
interaction with APG17. It is possible that these ORFs are in-
volved in a APG protein-dependent vesicular transport sys-
tem. We predict APG17 interacting with SEC9, another pro-
tein functioning in vesicular transport, and SPO20, involved
in sporulation, both of which are localized at the plasma

Table 4. Some Novel Predictions

Protein Function

Interactor I MRK1 Ser/Thr Kinase
Interactor II YNL078W unknown
Interactor I CTT1 Catalase T/cytosolic
Interactor II PEX14 Interacts with peroxisome membrane

receptors (docking
interactions)/PMP*

Interactor I LAP4 Lysosomal/vacuolar aminopeptidase
Interactor II YHR113W similar to Lap4p
Interactor I SPS18 Transcription factor, sporulation

specific/nuclear
Interactor II YIP1 Vesicular transport, fusion events/G*,

IMP*
Interactor I TFB1 RNA Pol II transcription, subunit of

TFIIH
Interactor II YOL083W Unknown
Interactor I DPM1 Protein modification/ER*, IMP*
Interactor II SPS18 Transcription factor, sporulation

specific/nuclear
Interactor I SNZ1 biosynthetic enzyme, role in cell

stress
Interactor II SNZ1 biosynthetic enzyme, role in cell

stress
Interactor I APG17 authophagy, Vesicular transport
Interactor II RPS0A Ribosomal protein, RNA-binding

protein/Cytoplasmic
Interactor I APG17 authophagy, Vesicular transport
Interactor II RPS0B Ribosomal protein, RNA-binding

protein/Cytoplasmic
Interactor I SNO3 putative vitamin biosynthetic

enzyme, role in cell stress
Interactor II SNZ3 similar function as SNZ1
Interactor I SNO2 similar function as SNO3
Interactor II SNZ1 biosynthetic enzyme, role in cell

stress
Interactor I SIW14 Ser/Thr phosphatase, cell cycle

control
Interactor II YCR095C unknown
Interactor I SIW14 Ser/Thr phosphatase, cell cycle

control
Interactor II SIW14 as above
Interactor I PRS5 amino acid and nucleotide

metabolism/cytoplasmic
Interactor II RPS3 similar function as PRS5
Interactor I PRS5 as above
Interactor II PRS5 as above
Interactor I PRS5 as above
Interactor II PRS1 similar function as PRS5
Interactor I TAF40 RNA Pol II transcription, TFIID

component, TBP associated
Interactor II SPT3 component of nucleosomal HAT

complex, TBP associated

(HAT) Histone acetyl transferase, (ER) Endoplasmic reticulum, (*G)
Golgi, (*PMP) Peripheral membrane protein, (*IMP) Integral
membrane protein. The functional annotations are obtained from
YPD.

Table 5. Novel Predictions for APG17 Interactions With
High Probability

Protein Localization
Function (cellular role or

biochemical)

APG17 — authophagy, Vesicular
transport

RPS0A Cytoplasmic Ribosomal protein,
RNA-binding protein

RPS0B Cytoplasmic Ribosomal protein,
RNA-binding protein

YBR197C unknown unknown
YPL077C unknown unknown
YAP7 — Transcription factor (Pol II),

leucine zipper family
CIN5 Nuclear Transcription factor (Pol II),

leucine zipper family
YMR031C unknown unknown
YKL050C unknown unknown
YBR270C unknown unknown
YJL058C unknown unknown
YMR124W unknown unknown
PLO1 unknown unknown
PLO2 unknown unknown
SPO20 Plasma membrane sporulation
LAT1 Mitochondrial Carbohydrate metabolism,

Energy generation
SEC9 Plasma membrane Vesicular transport (vesicle

docking and secretion)
DOG1 — Carbohydrate metabolism,

Hydrolase
DOG2 — Carbohydrate metabolism,

Hydrolase
KGD2 Mitochondrial Carbohydrate metabolism,

Energy generation,
Oxidoreductase

The functional annotations are obtained from YPD.
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membrane. We also predict APG17 interacting with four
other proteins, LAT1, DOG1, DOG2, and KGD2, all of which
are involved in carbohydrate metabolism and energy genera-
tion. Because APG17 targets proteins to vacuoles and lyso-
somes during nutrient stress conditions, it is possible that it
targets some other proteins involved in energy generation
(under starvation conditions) to mitochondria and some pro-
teins involved in spore wall formation to plasma membrane.
Thus, experimental verifications of some of our significant
predictions may throw light on cellular processes and explain
the roles of proteins that may be plausible links between dis-
tinct pathways.

DISCUSSION
We apply a probabilistic model to derive domain–domain in-
teractions from protein–protein interactions observed in two-
hybrid assays. We predict protein–protein interactions from
the derived domain–domain interactions, and assess the ac-
curacy of our model at the protein level in three ways as
follows: (1) comparing the prediction results with the original
experimental data, (2) comparing the prediction results with
the MIPS protein–protein interactions derived by methods
other than the two-hybrid assays, and (3) comparing the
mean gene expression correlation coefficient for the predicted
interacting protein pairs with that for random protein pairs.

Our probabilistic model and the Maximum Likelihood
Estimation method are robust in handling experimental er-
rors. The structure of our probabilistic model allows us to
incorporate various kinds of protein–protein interaction data,
even from different organisms, to infer domain–domain in-
teractions. As more and more protein–protein interactions are
experimentally determined, the prediction accuracy of our
method will improve substantially.

Statistics show that the prediction rate of our method is
∼ 100 times better than that of a random assignment in pre-
dicting the protein–protein interactions in MIPS. Although
the statistics are significant, the prediction ratio, 35/(9413 –
4289) = 0.68% does not seem to be practically useful. A pos-
sible reason is that the size of the protein interaction network
is huge. It is known that every experimental method is biased
to certain kinds of proteins and interactions. For example, the
Uetz and the Ito original experimental results have a very
small number of overlaps with the interactions from other
methods. It is possible that some of our novel predictions are
real, bias to particular proteins, and cannot be verified by
other methods.

Another explanation for the small overlaps between the
MIPS data and the yeast two-hybrid data is that the yeast
two-hybrid assays are not reliable and contain high false posi-
tives (Mrowka et al. 2001). Even though this may be true, the
mean correlation coefficient for our predicted protein pairs is
significantly higher than that of random pairs. These studies
validate our probabilistic model, and prove that the interac-
tion probability we have derived is a good estimation.

The basic assumptions of our model ignore the following
biological factors. First, our model assumes the independence
of domain–domain interactions. In fact, whether two do-
mains interact or not may depend on other domains in the
same protein or other environmental conditions. Although
we have identified domains that coexist in proteins and
merged them as one domain, there certainly exist many do-
mains whose functions depend on other domains in the same
protein. Second, the idea of using domain–domain interac-
tions to predict protein–protein interactions assumes that
some subunits with special structure are essential to protein–
protein interactions. These subunits may be different from
PFAM domains obtained through multiple alignments. Fur-
thermore, compared with functionally annotated PFAM-A do-
mains, PFAM-B domains are shorter and less known, so the
roles that they play in protein interactions may not be the
same, but in our model, we use them in the same level as the
PFAM-A domains.

It has been known that protein–protein interactions
have time and space constraints. Two proteins that contain
potentially interacting domains may not interact with each
other because they may be expressed at different times during
the cell cycle, or may be located at different cell compart-
ments. Protein–protein interactions not only depend on
structures, but also depend on other environmental condi-
tions. Even two proteins with the same domain structure may
have different interaction behavior with other proteins.

It is believed that the experimental protein–protein in-
teraction data is just a small fraction of the whole protein
interaction network. The incompleteness of current data
makes it difficult to derive domain interaction information.
The comparison of two data sets shows very small overlaps
between them. This may explain that the size of the protein
interaction network is much bigger than these two experi-
mental data, and thus, they have only a small part of overlaps.
On the other hand, it is known that the experimental data
contain many errors. The exact error rate has to be assessed by
using other techniques.

METHODS

Source of Data
We obtain the protein–domain relationship for yeast proteins
from PFAM (Bateman et al. 2000), a protein domain family
database. PFAM contains multiple sequence alignments for
each domain family and uses profile-hidden Markov models
to find domains in new proteins. The latest version, PFAM 6.5
(http://pfam.wustl.edu/) contains alignments for 2929 pro-
tein domain families in PFAM-A and 57891 domain families
in PFAM-B. The protein sequences are derived from SWISS-
PROT 39 and TrEMBL 14 databases (Bairoch and Apweiler
2000). Domains in PFAM-A are well defined because the cor-
responding multiple alignments and hidden Markov models
have been checked, and most of the domains have been as-
signed to functions. PFAM-B was generated automatically by
programs and includes ProDom domains (Corpett et al. 2000)
not covered by PFAM-A. We download both PFAM-A and

Table 6. Novel Predictions for RPS0A Interactions With
High Probability

Protein Localization
Function (cellular role or

biochemical)

RPS0A Cytoplasmic Ribosomal protein, RNA-binding
protein

APG17 — authophagy, Vesicular transport
BBP1 Nuclear protein in spindle pole body,

mitosis
YDL100C Cytoplasmic similarity with E. coli ArsA ATPase in

small molecule transport
ILV1 Mitochondrial Amino acid metabolism,

biosynthesis of amino acid, lyase

The functional annotations are obtained from YPD.
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PFAM-B from the PFAM ftp site. We extract domains along
with the Saccharomyces cerevisiae gene names and obtain do-
main information from both PFAM-A and PFAM-B. In this
process, we associate the yeast gene accession numbers with
the corresponding SWISSPROT and TrEMBL accession num-
bers to locate all yeast genes. Proteins for which no domain
information is available are classified as superdomains, and
those domains that always coexist in proteins are merged as
one domain as well.

Association Method
A simple measure of interaction between domain Dm and do-
main Dn (Sprinzak and Margalit 2001) is the fraction of inter-
acting protein pairs among all of the protein pairs containing
the domain pair (Dm, Dn). Let Imn be the number of interacting
protein pairs containing the domain pair (Dm, Dn), and Nmn be
the total number of protein pairs containing (Dm, Dn). The
association measure is given by

A �Dm, Dn� =
Imn

Nmn
.

The method relies on the accuracy of the observed data, and
in this case, the observed interactions are treated as the real
interactions. However, this method computes domain–
domain interactions locally. By locally, we mean that it ig-
nores other domain–domain interaction information be-
tween the protein pairs and, thus, does not make full use of all
of the available information.

For example, proteins PI, Pj, and Pk contain domains {Da,
Dx}, {Dy, Db}, and {Dy, Dc}, respectively. Domains Dx and Dy do
not appear in any other proteins. If we observe Pi interacting
with Pj and Pi interacting with Pk, then A(Dx, Dy) = 2/2 = 1.
Obviously, this kind of local method ignores other domain–
domain interactions such as Da interacting with Db and Dc. In
fact, it is possible that Dx and Dy do not interact with each
other but Da interacts with both Db and Dc. Therefore, to infer
a domain–domain interaction, other related domain–domain
interactions have to be taken into account. This means
that interactions of other proteins containing domains Da,
Db, or Dc are to be included, and thus, more domains and
proteins are involved. Iterating this idea, eventually all proteins
and all domains are related and need to be taken into account.

The association method also ignores experimental errors.
Following, we develop a global approach using a Maximum
Likelihood Estimation method to incorporate all of the pro-
teins and domains, as well as experimental errors.

Maximum Likelihood Estimation
Let D1,. . ., DM denote the M domains, and P1,. . ., PN denote
the N proteins. Let Pij denote the protein pair of Pi and Pj, and
Dij denote the domain pair of Di and Dj. Let Pij be the set of
domain pairs formed by proteins Pi and Pj. For example, as-
sume that protein P1 contains domains {D1, D2, D3} and pro-
tein P2 contains domains {D1, D4}. Then P12 = {D11, D12, D13,
D14, D24, D34}.

We treat protein–protein interactions and domain–
domain interactions as random variables. Let Pij = 1 if protein
Pi and protein Pj interact with each other and Pij = 0 other-
wise. Similarly, let Dmn = 1 if domain Dm interacts with do-
main Dn and Dmn = 0 otherwise. We make the following as-
sumptions throughout the work.

Assumption I
Domain–domain interactions are independent, which means
that the event that two domains interact or not does not
depend on other domains.

Assumption II
Two proteins interact if and only if at least one pair of do-
mains from the two proteins interact.

Under the above assumptions, we have

Pr �Pij = 1� = 1.0 − �
Dmn ∈ Pij

�1 − �mn�, ( 1 )

in which �mn = Pr(Dmn =1) denotes the probability that do-
main Dm interacts with domain Dn.

We consider two types of experimental errors in the two-
hybrid assays [another widely used definition of false posi-
tives is the ratio of the number of incorrect interactions over
the number of predicted interactions (Mrowka et al. 2001)],
false positives, in which two proteins do not interact in reality
but were observed to be interacting in the experiments, and
false negatives, in which two proteins interact in reality but
were not observed to be interacting in the experiments. The
false positive rate is denoted as fp and the false negative rate is
denoted as fn. Let Oij be the variable for the observed interac-
tion result for proteins Pi and Pj: Oij = 1 if the interaction is
observed and Oij = 0 otherwise. Then

fp = Pr�Oij = 1 | Pij = 0�,
fn = Pr�Oij = 0 | Pij = 1�.

Thus, the probability for the observed protein–protein inter-
action is

Pr�Oij = 1� ( 2 )
= Pr�Oij = 1, Pij = 1� + Pr�Oij = 1, Pij = 0�
= Pr�Oij = 1 � Pij = 1�Pr�Pij = 1�

+ Pr�Oij = 1 � Pij = 0��1 − Pr�Pij = 1��
= Pr�Pij = 1��1 − fn� + �1 − Pr�Pij = 1��fp.

The likelihood function, i.e., the probability of the observed
whole proteome interaction data is

L = ��Pr�Oij = 1��Oij�1 − Pr�Oij = 1��1 − Oij ( 3 )
where

Oij = �1 if the interaction of Pi and Pj is observed,
0 otherwise

The likelihood L is a function of � = (�mn, fp, fn). In the fol-
lowing, we fix fp and fn.

We estimate � using a maximum likelihood estimation
(MLE) approach. Because of the high dimensionality of �, it is
difficult to maximize L directly. We develop an Expectation-
Maximization (EM) algorithm (Dempster et al. 1977) to solve
the problem.

The idea of EM algorithms for a general problem is de-
scribed as follows. To obtain the MLE of the parameters, we
supplement the observed data with data that are not observ-
able (called the missing data). The observed data together
with the missing data form the complete data. In an EM al-
gorithm, we distinguish the observed data Y from the com-
plete data Z. We can obtain the MLE of the unknown param-
eters � on the basis of the complete data Z. We should also be
able to calculate the expectation of Z given the observed data.
There are two steps in an EM algorithm, the expectation (E)
step and the maximization (M) step. In the E step, we calcu-
late the expectation of the complete data Z given the observed
data Y, Ẑ = E(Z|Y,�(t–1)). In the M-step, we obtain the MLE
of �, �(t), based on Ẑ. Thus, we obtain a recursive formula to
estimate parameters �.

Next, we adapt the EM algorithm to our problem. The
observed data is the experimentally observed interactions
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O = {Oij = oij, i � j}. The complete data includes all the do-
main–domain interactions for each protein–protein pair. Let
Am be the set of proteins containing domain Dm. Let Nmn be
the total number of protein pairs between Am and An. To
estimate �mn, the probability that domain Dminteracts with
domain Dn, we need information on the interaction status for
protein pairs between Am and An. Define the complete data as
(O, D), in which O is given above and D = {Dmn

(ij) Pi � Am, Pj � An,
	m, n}. Dmn

(ij) = 1 if domain Dm and domain Dn interact in the
protein pair Pi and Pj and Dmn

(ij) = 0 otherwise. We derive the
EM algorithm as follows.

The E-step is:

E�Dmn
�ij� � Okl = okl, 	 k, l, ��t − 1��

= E�Dmn
�ij� � Oij = oij, ��t − 1��

=
Pr�Dmn

�ij� = 1,Oij = oij � ��t− 1��

Pr�Oij= oij��
�t − 1��

=
Pr�Dmn

ij = � ��t − 1��Pr�Oij= oij � Dmn
�ij� = 1, ��t− 1��

Pr�Oij= oij��
�t− 1��

=
�mn

�t − 1��1 − fn�oij fn1− oij

Pr�Oij= oij � ��t− 1��
,

where the denominator can be calculated using Equation 2.
The MLE of �mn is the fraction of {D(ij)

mn , Pi ∈ Am, Pj ∈ An} such
that D(ij)

mn = 1. We thus obtain a recursive formula for the M-step:

�mn
�t� =

1
Nmn

�
i ∈ Am,j ∈ An

E�Dmn
�ij� �Okl = okl, 	 k, l, ��t− 1��

=
�mn

�t − 1�

Nmn
�

i ∈ Am,j ∈ An

�1 − fn�oijfn1− 0ij

Pr�Oij= oij � ��t− 1��
.

( 4 )

The EM algorithm is described as follows: (1) Initialization;
choose initial values for {�mn, 	m, n}, and compute Pr (Pij = 1)
by Equation 1 and Pr(Oij = 1) by Equation 2; (2) Update pa-
rameters {�mn, 	m, n} by Equation 4 and compute the likeli-
hood function by Equation 3; (3) Go to step 2, repeat until the
value of the likelihood function is unchanged (within certain
error).
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